
Single MCMC Chain Parallelisation on Decision
Trees

Efthyvoulos Drousiotis1 and Paul G. Spirakis2,3

1 Department of Electrical Engineering and Electronics, University of
E.Drousiotis@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
spirakis@liverpool.ac.uk

3 Department of Computer Engineering and Informatics, University of Patras, 26504
Patras, Greece

Abstract. Decision trees are highly famous in machine learning and
usually acquire state-of-the-art performance. Despite that, well-known
variants like CART, ID3, random forest, and boosted trees miss a proba-
bilistic version that encodes prior assumptions about tree structures and
shares statistical strength between node parameters. Existing work on
Bayesian decision trees depend on Markov Chain Monte Carlo (MCMC),
which can be computationally slow, especially on high dimensional data
and expensive proposals. In this study, we propose a method to parallelise
a single MCMC decision tree chain that enables us to reduce its run-time
through multi-core processing while the results are statistically identical
to conventional sequential implementation. We also calculate the theoret-
ical and practical reduction in run time, which can be obtained utilising
our method on multi-processor architectures. Experiments showed that
we could achieve 18 times faster running time provided that the serial
and the parallel implementation are statistically identical.

Keywords: Parallel algorithms, Machine Learning, MCMC Decision Tree

1 Introduction

In Bayesian statistics, it is a common problem to collect and compute random
samples from a probability distribution. Markov Chain Monte Carlo (MCMC) is
an intensive technique commonly used to address this problem when direct sam-
pling is often arduous or impossible. MCMC using Bayesian inference is often
used to solve problems in biology [13], forensics [12], education [5], and chemistry
[6], among other areas making it one of the most widely used algorithms when a
collection of samples from a probability distribution is needed. Monte Carlo ap-
plications are generally considered embarrassingly parallel since each chain can
run independently on two or more independent machines or cores. Despite that,
the main problem is that each chain is not embarrassingly parallel, and when
the feature space and the proposal are computationally expensive, we can not
do much to improve the running time and get results faster. When we have to

2 E.Drousiotis et al.

handle huge state-spaces and complex compound states, it takes significant time
for an MCMC simulation to converge on an adequate model not only in terms
of the number of iterations required but also the complexity of the calculations
occurring in each iteration(such as searching for the best features and tree shape
of a decision tree). For example, running an MCMC on a single chain Decision
tree for a dataset of 400000 datapoints and 15 features took upwards of 6 hours
to converge when run on a 2.3 − 5.10GHz Intel Core i7-10875H. In [3], an ap-
proach aiming to parallelise a single chain is presented, and the improvement
achieved is at its best 2.2 times faster. The functionality of this kind of solu-
tion is therefore limited as in real-time, and life applications run time is critical.
The work presented in this paper aims to find methods to significantly reduce
the MCMC Decision tree’s runtime by emphasising on the implementation of
MCMC rather than the statistical algorithm itself. The remainder of this paper
is organised as follows. Section 2 explains the MCMC in General and the Most
Recent Work. Section 3 presents the MCMC in Decision trees. Our method is
outlined in section 4, with the possible theoretical improvements. We introduce
the case study in which we applied our method and reviewed results in section
5. Section 6 concludes the paper.

2 Markov Chain Monte Carlo in General and Most
Recent Work

One of the most widely used algorithms is the Metropolis [9] and its gener-
alisation (see algorithm1), the Metropolis-Hastings sampler (MH) [8]. Given a
partition of the state vector into components, i.e., x = (x1, ..., xk), and that we
wish to update the ith component, the Metropolis-Hastings update proceeds as
follows. We first have a density for producing candidate observation x′, such that
x′
i = xi, which is denoted by q(x, x′). Given the chains ergodic condition, the

definition of q is arbitrary, and it has a stationary distribution π which is selected
so that the observations may be generated relatively easily. After the new state
generation x′ = (x1, ..., xi−1, xi, xi+1, ..., xk) from density q(x, x′), the new state
is accepted or rejected using the Rejections Sampling principle with acceptance
probability α(x, x′) given by equation 1. If the proposed state is rejected, the
chain remains in the current state.

It is worth mentioning that acceptance probability in this form is not unique,
considering there are many acceptance functions that supplies a chain with the
required properties. Nevertheless, Peskun(1973) [10] proved that MH is the op-
timal one where the proper states are rejected least often, which maximises the
statistical efficiency meaning that more samples are collected with fewer itera-
tions.

a(χ, χ′) = min(1,
π(x′)

π(x′)

q(χ|χ′)

q(χ′|χ)
) (1)

On a Markov process, the next step depends on the current state, which
makes it hard for a single Markov chain to be processed contemporaneously by

Single MCMC Chain Parallelisation on Decision Trees 3

several processing elements. Byrd [2]. proposed a method to parallelise a single
Markov chain(Multithreading on SMP Architectures), where we consider backup
move “B” in a separate thread of execution as it is not possible to determine
whether move “A” will be accepted. If “A” is accepted, the backup move ‘B’ -
whether accepted or rejected - must be discarded as it was based upon a now
supplanted chain state. If “A” is rejected, control will pass to “B”, saving much of
the real-time spent considering “A” had “A” and “B” been evaluated sequentially.
Of course, we may have as many concurrent threads as desired.

At this point, it is worth mentioning that the single chain parallelisation
can become quickly problematic as the efficiency of the parallelisation is not
guaranteed, especially for computationally cheap proposal distributions. Also,
we need to consider that nowadays, computers make serial computations much
faster than in 2008, when the single parallelisable chain was proposed.

Another way of making faster MCMC applications is to reduce the conver-
gence rate by requiring fewer iterations. Metropolis-Coupled MCMC((MC)3)
utilised multiple MCMC [1] chains to run at the same time, while one chain is
treated as the "cold" where its parameters are set to normal while the other
chains are treated as "hot", which are expected to accept the proposed moves.
The space will be explored faster through the "hot" chains than the "cold" as
they are more possible to make disadvantageous transitions and not to remain
at near-optimal solutions. The speedup increased when more chains and cores
were added.

Our work is focused on achieving a faster execution time of the MCMC algo-
rithm on Decision trees through multiprocessor architectures. We aim to reduce
the number of iterations while the number of samples collected is not affected.
Multi-threading on SMP Architectures and (MC)3 differs from our work as the
former targets rejected moves as a place for optimisation, and the latter requires
communication between the chains. Moreover, the aims are different as (MC)3

expands the combination of the chain, enhancing the possibilities of discover-
ing different solutions and assisting avoid the simulation getting stuck in local
optima.

2.1 Probabilistic trees packages and level of parallelism

Most of the existing probabilistic tree packages are only supported by the R
programming language.

BART [4] software included in the CRAN package 4 supports multi threading
based on OpenMP, where there are numerous exceptions for operating systems,
so it is difficult to generalise. Generally, Microsoft Windows lacks OpenMP de-
tection since the GNU autotools do not natively exist on this platform and
Apple macOS since the standard Xcode toolkit is also not provided. The paral-
lel package provides multi-threading via forking, only available in Unix. BART
under CRAN uses parallelisation for the predict function and running concurrent
chains.
4 https://cran.r-project.org/web/packages/BART/index.html

4 E.Drousiotis et al.

BartMachine 5, which is written in Java and its interface is provided by rJava
package, which requires Java Development Kit(JDK), provides multi-threading
features similar to BART. BartMachine is recommended only for those users who
have a firm grounding in the java language and its tools to upgrade the package
and get the best performance out of it. Similar to BART, its parallelisation is
based on running concurrent chains.

The rest of the available packages, BayesTree6,dbarts7,Bartpy8,XBART9 and
imptree10 does not support any kind of parallelisation.

Concurrent chains can not solve the problem of long hours of execution time.
For example, if a single chain needs 50 hours to execute, 5 chains will still need
50 hours if run concurrently. In contrast, in our case, a chain that serially needs
50 hours now takes approximately 2 hours for each chain. Moreover, we can to
run concurrent chains where each chain is parallelised. If our implementation is
compared to a package like BartMachine and BART, the runtime improvement
we achieved is around 18 times faster, and if we compare it with a package that
does not offer any parallelisation like most of the existing ones, the run time
improvement for 5 chains is around 85 times faster.

3 Markov Chain Monte Carlo in Decision Tree

A decision tree typically starts with a root node, which branches into possible
outcomes. Each of those outcomes leads to additional decision nodes, which
branch off into other possibilities ending up in leaf nodes. This gives it a treelike
shape.

Our model describes the conditional distribution of y given x, where x is a
vector of predictors [x = (x1, x2, ..., xp)]. The main components of the tree(T)
includes the depth of the tree(d(T)), the features(k(T)) and the thresholds(c(T))
for each node where k(T), c(T) ∈ θ, and the possibilities p(Y |T, θ, x) for each
leaf node(L(T)). If x lies in the region corresponding to the ith terminal node,
then y|x has distribution f(y|θi), where f represents a parametric family indexed
by θi. The model is called a probabilistic classification tree, according to the
quantitative response y.

As Decision Trees are identified by (θ, T), a Bayesian analysis of the prob-
lem proceeds by specifying a prior probability distribution p(θ, T). Because θ
indexes the parametric model for each T , it will usually be convenient to use the
relationship

p(Y1 :N , T, θ|x1 :N) = p(Y |T, θ, x)p(θ|T)p(T) (2)

5 https://cran.r-project.org/web/packages/bartMachine/index.html
6 https://cran.r-project.org/web/packages/BayesTree/BayesTree.pdf
7 https://cran.r-project.org/web/packages/dbarts/index.html
8 https://pypi.org/project/bartpy/
9 https://jingyuhe.com/xbart.html

10 https://cran.r-project.org/web/packages/imptree/index.html

Single MCMC Chain Parallelisation on Decision Trees 5

In our case it is possible to analytically obtain eq 2 and calculate the posterior
of T as follows:

p(Y |T, θ, x) =
N∏
i=1

p(Yi|xi, T, θ) (3)

p(θ|T) =
∏

j∈(T)

p(θj |T) =
∏

j∈(T)

p(kj |T)p(cj |kj , T) (4)

p(T) =
a

(1 + d)β
(5)

Equation 3 describes the product of the probabilities of every data point(Yi)
classified correctly given the datapoints features(xi), the tree structure(T), and
the features/thresholds(θ) on each node on the tree. Equation 4 describes the
product of possibilities of picking the specific feature(k) and threshold(c) on ev-
ery node given the tree structure(T). Equation 5 is used as the prior for tree
Ti. This formula is recommended by [4] and three aspects specify it: the proba-
bility that a node at depth d(= 0.1.2....) is nonterminal, the parameter a ∈ 0, 1
which controls how likely a node would split, with larger α values increasing
the probability of split, and the parameter β > 0 which controls the number of
terminal nodes, with larger values of β reducing the number of terminal nodes.
This feature is crucial as this is the penalizing feature of our probabilistic tree
which prevents it from overfitting and allowing convergence to the target func-
tion f(X) [11], and it puts higher probability on "bushy" trees, those whose
terminal nodes do not vary too much in depth.

An exhaustive evaluation of equation 2 over all trees T will not be feasible,
except in trivially small problems, because of the sheer number of possible trees,
which makes it nearly impossible to determine precisely which trees have the
largest posterior probability.

Despite these limitations, Metropolis-Hastings algorithms can still be used
to explore the posterior. Such algorithms simulate a Markov chain sequence of
trees such as:

T0, T1, T2,, Tn (6)

which are converging in distribution to the posterior p(Y |T, θ, x)p(θ|T)p(T)
in equtaion 2. Because such a simulated sequence will tend to gravitate toward
regions of higher posterior probability, the simulation can be used to search for
high-posterior probability trees stochastically. We next describe the details of
such algorithms and their implementation.

3.1 Specification of the Metropolis-Hastings Search Algorithm on
Decision Trees

The Metropolis-Hastings(MH) algorithm for simulating the Markov chain in
Decision trees (see equation 7) is defined as follows. Starting with an initial tree
T0, iteratively simulate the transitions from Ti to Ti + 1 by these two steps:

6 E.Drousiotis et al.

1. Generate a candidate value T ′ with probability distribution q(Ti, T
′).

2. Set Ti+1 = T ′ with probability

a(Ti, T
′) = min(1,

π(Y1 :N , T ′, θ′|x1 :N)

π(Y1 :N , T, θ|x1 :N)

q(T, θ|T ′, θ′)

q(T ′, θ′|T, θ)
) (7)

Otherwise set Ti+1 = Ti.

To implement the algorithm, we need to specify the transition kernel q. We
consider kernels q(T, T ′), which generate T ′ from T by randomly choosing among
four steps:

– Grow(G) : add a new D(T) and choose uniformly a k(T) and a c(T)
– Prune(P) : choose uniformly a D(T) to become a leaf
– Change(C) = choose uniformly a D(T) and change randomly a k(T) and a

c(T)
– Swap(S) = choose uniformly two D(T) and swap their k(T) and c(T)

The rules are chosen by picking a number uniformly between 0 and 1 and
each action have its own interval. For example, p(G) = 0.3, p(P) = 0.3, p(C) =
0.2, p(S) = 0.2, [0, 0.3, 0.6, 0.8, 1]

The probabilities (see equation 8) represent the sum of the probabilities of
every accepted forward move. P(G), p(P), p(C), p(S) are set by the user who
chooses how often each move wants to be proposed.

q(T ′, θ′|T, θ) = q(T ′|T)q(θ′|T ′) =
∑
a

q(a)q(T ′|T, a)q(θ′|T ′, θ, a) (8)

where :

q(G)q(T ′|T,G)q(θ′|T ′, θ, G) = p(G)× 1

c
× 1

k
× 1

|L(T)|
(9)

q(P)q(T ′|T, P)q(θ′|T ′, θ, P) = p(P)× 1

|D(T)| − 1
(10)

q(C)q(T ′|T,C)q(θ′|T ′, θ, c) = p(C)× 1

|D(T)|
× 1

c
× 1

k
(11)

q(S)q(T ′|T, S)q(θ′|T ′, θ, S) = p(S)× 1

(|D(T)|(|D(T)| − 1))/2
(12)

Equation 9 can be described as the possibility of proposing the grow move
including the probability of choosing the specific feature(k), threshold(c) and
leaf node(|L(T)|) to grow. P(G) is multiplied by the number of features(k),
the unique number of datapoints(c) and the number of leaf nodes(|L(T)|). For
example, given a dataset with 100 unique datapoints(c), 5 features(k), a tree
structure(T) with 7 leaf nodes(|L(T)|) and a p(G) = 0.3 eq9 will be 0.3× 1

100 ×
1
5 × 1

7

Single MCMC Chain Parallelisation on Decision Trees 7

Equation 10 is the possibility of proposing the prune move, where p(P) is
multiplied by the number of decision nodes subtracting one((|D(T)| − 1) we are
not allowed to prune the root node). In practise, given a p(P) = 0.3 and a tree
structure(T) with 7 decision nodes(|D(T)|) eq10 will be 0.3× 1

10−1
Equation 11 is the possibility of proposing the change move where p(C) is

multiplied by the number of decision nodes(|D(T)|), the number of features(k),
and the number of unique datapoints(c). For example, given a dataset with with
100 unique datapoints(c), 5 features(k), a tree structure(T) with 12 decision
nodes(|D(T)|) and a p(G) = 0.2 eq9 will be 0.2× 1

100 × 1
5 × 1

12
Equation 12 is the possibility of proposing the swap move where p(S) is

multiplied by the number of paired decision nodes(|D(T)|).In practise, given a
tree structure(T) with 12 decision nodes(|D(T)|) and a p(S) = 0.2 eq12 will be
0.2× 1

((12)(12−1))/2

Theorem 1. Transition kernel(see equation 13) yields a reversible Markov chain,
as every step from T to T ′ has a counterpart that can move from T ′ to T .

q(T ′, θ′|T, θ) (13)

Proof. Assume a Markov chain, starting from its unique invariant distribution π.
Now, take into consideration that for every sample T0, T1, ..., Tn have the same
joint probability mass function(p.m.f) as their time reversal Tn, Tn−1, ..., T0, so
as we can call the Markov chain reversible, as well as its invariant distribution
π is reversible. This can be explained as a simulation of a reversible chain that
looks the same if it runs backward.

The first thing we have to look for is if the Markov chain starts at π, and it
can be checked by equation14

P (Tk = i|Tk+1 = j, Tk+2 = ik+2,, Tn = in)

=
P (Tk = i, Tk+1 = j, Tk+2 = ik+2,, Tn = in)

P (Tk+1 = j, Tk+2 = ik+2,, Tn = in)

=
πPijPjik+2....Pin−1in

πPjik+2....Pin−1in

=
πPij

πj

(14)

Equation14 is only dependent on i and j where this expression for reversibility
must be the same as the forward transition probability P (X = Tk+1 = i|X =
Tk = j) = Pji. If, both original and the reverse Markov chains have the same
transition probabilities, then their p.f.m must be the same as well.

An example for our probabilistic tree is the following:
Assume a tree structure(T) with 5 leaf nodes(|L(T)|) and 11 decision nodes(|D(T)|)

sampling from a given dataset with 4 features(c) and 100 unique datapoints(k)
for each feature.

8 E.Drousiotis et al.

If for example the forward proposal(q(T ′, θ′|T, θ)) = (”change”) with p(C) =
0.2, we end up with the following equation: 0.2× 1

11×
1
4×

1
100 . At the same time the

reverse proposal(going from the current position to the previous) (q(T, θ|T ′, θ′))
equation looks exactly the same as the forward proposal. Given the above prac-
tical example we have strengthen our proof which shows that (q(T ′, θ′|T, θ)) =
(q(T, θ|T ′, θ′)), which shows in practise the reverse transition kernel nature of
our model.

Algorithm 1 The General Metropolis-Hashting Algorithm
Initialize X0

for i = 1 to N do
sample χ′ from q(χ′|χt−1)

Calculate α(χi, χt−1) = min(1, π(x′)
π(x′)

q(χ|χ′)
q(χ′|χ)

)

Draw u from u[0, 1]
if u < α(χi|χt−1) then

χi = χ′

else
χi = χt−1

end if
end for

4 Parallelising a single Decision Tree MCMC Chain

Given a Decision’s Tree MCMC chain with N iterations, we propose a method
that utilises C number of cores aiming to enhance the running time of a single
chain by at least an order of magnitude. As stated in Section1 and Section3,
at each iteration, a new sample χ′ is drawn from the proposal distribution.
Our method requires sampling from C number of cores, S(C = S) number
of samples in parallel. We then accept the sample with the greatest a(Ti, T

′)
and repeat the same method until the Markov Chain converges to a stationary
distribution. In our method, we check the Markov chain convergence when the
F1-score fluctuates less than ±3% for at least 100 iterations. Once the Chain
has converged, we proceed to the second phase of our method. We now keep
producing samples using C cores, but we can now collect more than one sample
which satisfies a(Ti, T

′) >= u. (u is a random uniform number[0, 1]) From this
point, we will propose new samples from the sample with the greatest a(Ti, T

′)
until we are happy with the number of samples collected. Using this method,
we can collect the same number of samples and explore the feature space as
effectively as the serial implementation, but 18 times faster.

Our algorithm reduces the number of iterations and explores the feature
space faster as we use more cores. This provides us with a significant run time
improvement up to 18 times faster when the feature space is big and the proposal

Single MCMC Chain Parallelisation on Decision Trees 9

is expensive. The following sections will evaluate the running time improvement
and the quality of the samples produced.

Algorithm 2 Single Chain parallelisation on MCMC Decision Trees
Initialize T0

for i = 1 to N do
sample C number of T ′ from Q(T j ′|T j

t−1)

Calculate in parallel α(T j
i|T j

t−1) = min(1, p(Y1:N ,T ′,θ′|x1:N)
p(Y1:N ,T,θ|x1:

q(T,θ|T ′,θ′)
q(T ′,θ′|T,θ)

) for each
sample

Store every sampled posterior α(T j
t|T j

t−1) value
Until converge T ′ = maxα(T j

i|T j
t−1)

if Markov Chain converged then
Draw u from uniform[0, 1]
for j = 1 to j do ▷ For loop run in parallel

if α(T j
i|T j

t−1) > u then
Collect Sample
T ′ = maxα(T j

i|T j
t−1)

end if
end for

end if
end for

Theoretical gains Using C cores simultaneously, the programme cycle consists
of repeated "steps," each performing the equivalent of between 1 and n itera-
tions. We need to calculate the number of iterations based on the acceptance
rate to produce the same number of samples(S) when we increase C. The moves
are considered in parallel, where they are accepted or rejected. Given that the
average probability of a single arbitrary move being rejected is pr, the proba-
bility of the ith in every single concurrent core is pr. This step continues for i
iterations where equations 15, 16, and 17 show the iterations needed, run time,
and speedup improvement, respectively, given a time(t) in minutes for each iter-
ation. Theoretical Run time(see figure2) and speedup (see figure3) were plotted
for varying cores.

i =
S/C

pr
(15)

Runtime =
i

t
(16)

Speedup =
Runtime

C
(17)

For example, given a single MCMC Decision Tree chain running for 10000
iterations and an acceptance rate of 70%, after 3000 burn-in iterations, we end
up with 4900 samples.

10 E.Drousiotis et al.

For the parallel MCMC chain, given the same settings as the serial one, with
a 30% burn-in period and 25 cores, we will collect the same number of samples
with 500 iterations. This provides us with a 25 times faster execution time.
Algorithm 2 indicates the part implemented on a parallel environment, and figure
3 the maximum theoretical benefits from utilising our method. Considering the
communication overhead and the parts of the algorithm that are not parallelised,
in practise the speedups of this order are not achievable. Therefore, we will test
it in practise and find out how it performs on real-life scenarios respect to the
accuracy and the runtime improvement

5 Results

5.1 Quality of the samples between serial and parallel
implementation

We have used the Wine dataset from scikit learn datasets11 repository as well as
Pima Indians Diabetes and Dermatology from UCI machine learning repository
12, which are publicly available, to examine the quality of the samples on several
testing hypotheses, including the different number of cores per iteration given
the average F1-Score(see figure 1). Precision and Recall were also calculated
for more depth and detailed insights about the performance and quality of the
samples. The results, including the F1-Score, Precision, Recall, and Accuracy(see
table2, table3 and table4) produced through 25-Fold Cross-Validation, ensure
that every observation from the original dataset has the possibility of appearing
in the training and test sets and also reduce any statistical error. Before any
performance comparison, we need to examine whether the samples produced
for each test case(25 cores and 40 cores) have any statistical difference from
the serial implementation. We next examine if extracted samples by utilising 25
and 40 cores are representative of the family of the data they come. We use as
ground truth data the F1-scores on each sample collected on every fold of the
serial implementation, and we compare them with the corresponding collected
samples from the other two test cases. In order to check any statistical difference
between the samples, we performed the two-sample t-test for unpaired data[7],
which is defined as follows:

T =
Y1 − Y2√
s21
N1

+
s22
N2

(18)

|T | > t1−a/2,νwhere : ν =

(
s21
n1

+
s22
n2

)2

(s21/n1)
2

n1 − 1
+

(s22/n2)
2

n2 − 1

(19)

11 https://scikit-learn.org/stable/datasets/toydataset.html
12 https://archive.ics.uci.edu/ml/index.php

Single MCMC Chain Parallelisation on Decision Trees 11

Formula18 is used to calculate the t-Test statistic equation where N1 and N2

are the sample sizes, Y1 and Y2 are the sample means, and s21 and s22 are the
sample variances. The null hypothesis is rejected when equation 19 holds, which
is the critical value of the t distribution with ν degrees of freedom.

For our first dataset(Wine), we first examine the serial implementation with
the parallel using 25 cores. The absolute value of the t-Test, 0.60, is less than
the critical value of 1.964, so we prove the null hypothesis and conclude that the
samples drawn by using 25 cores have not any statistical difference at the 0.05
significance level. We then compare the serial implementation with the parallel
using 40 cores. In this case, the absolute value of the t-Test, 27.73, is greater
than the critical value of 1.964, so we reject the null hypothesis and conclude
that the samples drawn by using 40 cores have a statistical difference at the
0.05 significance level. We also examine the parallel implementations between
them(using 25 and 40 cores accordingly). In this case, the absolute value of
t-Test, 53.54, is greater than the critical value of 1.964, so we reject the null
hypothesis and conclude that the samples drawn using 40 cores(in comparison
with the samples drawn with 25 cores) have a statistical difference at the 0.05
significance level. The results for the rest of the datasets are presented explicitly
in table 1

Datasets 1 vs 25 cores 1 vs 40 cores 25 vs 40 cores Critical T value
Pima Indians Diabetes 0.51 36.15 32.31 1.97
Dermatology 1.95 16.41 32.31 1.97
Wine 0.60 27.72 53.54 1.97

Table 1. Datasets Critical Values

T-test proves that when we sample with 25 cores, it is less possible to end
up with samples that are not statistically the same as the serial implementation.
Table 1, table 2, and table 3 shows that when we sample in parallel using less
than 25 cores, the accuracy and the F1-score remain on the same levels as the
serial implementation. On the other hand, when we sample with more than 25
cores (see graph 1), results and the t-Test(see Table 1) indicate that the quality
of the samples is not as accurate as required, affecting the F1-Score and the
overall quality of the samples. Our recommendation is to scale up to 25 cores
the algorithm we propose, whereas the user can choose a greater number of cores
with a trade-off between improved time and less accurate samples and results.

Tables 1, 2, 3, 4 and graph 1 indicate that a single chain on MCMC Decision
Trees can not be an embarrassingly parallel algorithm as we can only improve
the running time of a single chain by utilising a specific number of cores. The
running time improvement we achieved(×18 faster) is the maximum run-time
enhancement we can achieve on an MCMC decision tree to maintain the high
metrics produced by the serial implementation. If we try to extract more than
25 samples per iteration, it is highly probable to get samples that affect the
final results negatively. According to our results, the maximum number of cores

12 E.Drousiotis et al.

can that be used is 25. Furthermore, Precision, Recall, and F1-score metrics
indicate that no overfit is observed even when more than 3 labels exist, proving
the samples’ quality even in multi class classification problems.

Labels Precision Recall F1-score
1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.85 0.88 0.90 1.00 1.00 0.83 0.92 0.94 0.86
1 1.00 1.00 0.67 0.78 0.78 0.89 0.88 0.88 0.76
2 1.00 0.93 1.00 1.00 1.00 0.69 1.00 0.96 0.82
accuracy 0.93 0.93 0.81

Table 2. Results for Wine Dataset

Labels Precision Recall F1-score
1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.83 0.84 0.92 0.86 0.83 0.68 0.84 0.84 0.78
1 0.65 0.63 0.54 0.61 0.65 0.86 0.63 0.64 0.66
accuracy 0.78 0.78 0.73

Table 3. Results for Pima Indian Diabetes Datasets

Labels Precision Recall F1-score
1 core 20cores 40cores 1 core 20cores 40cores 1 core 20cores 40cores

0 0.93 0.93 0.93 1.00 1.00 1.00 0.97 0.97 0.93
1 0.94 0.94 0.77 1.00 1.00 1.00 0.97 0.97 0.77
2 1.00 1.00 1.00 0.96 0.96 0.96 0.98 0.98 1.00
3 0.94 0.94 0.92 0.94 0.94 0.75 0.94 0.94 0.92
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 0.67 0.67 0.50 0.80 0.80 1.00
accuracy 0.96 0.96 0.93

Table 4. Results for Dermatology Datasets

5.2 Practical gains

Figure 2 demonstrates our proposed method’s theoretical and practical run time
improvement regarding how many hours are needed to collect a specific num-
ber of samples. Figure 3 presents the theoretical and practical speedup achieved
given the number of cores used. Both figures 2, and 3 show a remarkable run-
time improvement, especially when the feature space is ample and the proposal

Single MCMC Chain Parallelisation on Decision Trees 13

Fig. 1. Quality of Samples Based of Number of Cores per Iteration

is expensive. Figure 3 demonstrates that in practise, theoretical speedups of this
order can not be achieved for various reasons, including communications over-
head, and as well as the cores do not receive constant utilisation. The practical
improvement achieved used the novel method we proposed, speeds up the pro-
cess up to 18 times depending on the number of cores the user may choose to
utilise. To the best of our knowledge it is the first time where a single chain in
general, specifically on decision trees, is parallelised with our proposed method.

14 E.Drousiotis et al.

Fig. 2. Total Hours to Collect 5000 Samples Given a Dataset with 500 000 Datapoints

Fig. 3. Speedup achieved by utilising different number of cores

Single MCMC Chain Parallelisation on Decision Trees 15

6 Conclusion

Our novel proposed method for parallelising a single MCMC Decision tree chain
takes advantage of multicore machines without altering any properties(when run
on less than 25 cores) of the Markov Chain. Moreover, our method can be easily
and safely used in conjunction with other parallelisation strategies, i.e., where
each parallel chain can be processed on a separate machine, each being sped up
using our method.

Furthermore, our approach can be applied to any MCMC Decision tree algo-
rithm which needs to process hundreds of thousands of data given an expensive
proposal where an execution time of 18 times faster can be easily achieved. As
multicore technology improves, CPUs with multiple processing cores will pro-
vide speed-ups closer to the theoretical limit calculated. By taking advantage of
the improvements in modern processor designs our method can help make the
use of MCMC Decision tree-based solutions more productive and increasingly
applicable to a broader range of applications. Future work includes exploring the
SMC(Sequential Monte Carlo) family of algorithms on Decision trees, focusing
on optimal L-kernel.

References

1. Gautam Altekar, Sandhya Dwarkadas, John P Huelsenbeck, and Fredrik Ronquist.
Parallel metropolis coupled markov chain monte carlo for bayesian phylogenetic
inference. Bioinformatics, 2004.

2. Jonathan MR Byrd, Stephen A Jarvis, and Abhir H Bhalerao. Reducing the run-
time of mcmc programs by multithreading on smp architectures. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. IEEE, 2008.

3. Jonathan MR Byrd, Stephen A Jarvis, and Abhir H Bhalerao. Speculative moves:
multithreading markov chain monte carlo programs. High-Performance Medical
Image Computing and Computer Aided Intervention (HP-MICCAI), 2008.

4. Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian
additive regression trees. The Annals of Applied Statistics, 2010.

5. Efthyvoulos Drousiotis, Lei Shi, and Simon Maskell. Early predictor for student
success based on behavioural and demographical indicators. In International Con-
ference on Intelligent Tutoring Systems. Springer, 2021.

6. Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan.
Quantification of uncertainties in the assessment of an atmospheric release source
applied to the autumn 2017. Atmospheric Chemistry and Physics, 2021.

7. Lloyd Fisher and John Mcdonald. 3—two-sample t-test. Fixed effects analysis
of variance. Probability and mathematical statistics: a series of monographs and
textbooks, 1978.

8. W Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. 1970.

9. Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The journal of chemical physics, 1953.

10. Peter H Peskun. Optimum monte-carlo sampling using markov chains. Biometrika,
60(3):607–612, 1973.

16 E.Drousiotis et al.

11. Veronika Ročková and Enakshi Saha. On theory for bart. In The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR, 2019.

12. Duncan Taylor, Jo-Anne Bright, and John Buckleton. Interpreting forensic dna
profiling evidence without specifying the number of contributors. Forensic Science
International: Genetics, 2014.

13. Gloria I Valderrama-Bahamóndez and Holger Fröhlich. Mcmc techniques for pa-
rameter estimation of ode based models in systems biology. Frontiers in Applied
Mathematics and Statistics, 2019.

