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Abstract: The aim of this paper is to gain insight into nonlinear vibration feature of a dynamic 

model of a gas turbine. Firstly, a rod fastening rotor-bearing coupling model having fixed-point 

rubbing is proposed, where the fractal theory and the finite element method are utilized. For contact 

analysis, a novel contact force model is introduced in this paper. Meanwhile, the Coulomb model is 

adopted to expound the friction characteristics. Then the governing equations of motion of the rotor 

system are numerically solved and the nonlinear dynamic characteristics are analysed in terms of 

bifurcation diagram, Poincaré map, and time histories. After that, the potential effects provided by 

contact degree of joint interface, distribution position and amount of contact layer are discussed in 

detail. Finally, the contrast analysis between integral rotor and rod fastening rotor is conducted in the 

condition of fixed-point rubbing. 

Key words: rod fastening rotor, joint interface, fixed-point rubbing, nonlinear dynamic 

characteristics 

1. Introduction 

As a typical high-tech large-scale military and civil power equipment, gas turbine is widely 

used in energy, transportation, aviation and other fields. To satisfy the requirements of performance, 

processing, maintenance and transportation, the combined structure is designed to replace the 

traditional integral structure and gradually adopted in the manufacturing process. Under this 
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circumstance, rod fastening rotors have been one of the generally recognized structure designs of 

heavy-duty gas turbine because of its advantages of easy assembly and maintenance [1]. 

Rod fastening rotor system is mainly composed of pull rods, discs and blades. Several discs are 

integrated by the pressure and the friction force provided by the pull rods [2]. Since the global 

stiffness of the rotor system is closely related to the contact stiffness of the joint interface, it is of 

significance for scholars to master its contact mechanism in advance. At present, three main methods 

for determining the contact stiffness can be concluded as equivalent stiffness method, stiffness matrix 

correcting method, and virtual material method. In the first one, the equivalent spring element and 

equivalent damper element are defined to describe the contact mechanism of joint interface. For a 

bolted beam, Hartwigsen et al. [3] identified the interface mechanical parameters from a transient 

excitation test. By utilizing the Lagrange’s equation, Hu et al. [4] proposed a dynamic model of rod 

fastening rotor-bearing system, in which the contact effects between the discs of the bolted joint were 

described by the cubic nonlinear stiffness. Qin et al. [5] developed an analytical model for the 

bending stiffness of the bolted disc-drum joints and implemented the joint stiffness into the dynamic 

model of a simple rotor connected through the bolted disc-drum joint. Qin et al. [6,7] investigated the 

time-varying stiffness at the joint interface with bolt loosening by means of three-dimensional 

nonlinear finite element (FE) models and provided a general approach for the vibration analysis of a 

rotating cylindrical shell coupled with an annular plate. What is more, many researchers have made 

great endeavour on the stiffness matrix correcting method and virtual material method. Wu et al. [8] 

built a contact stiffness matrix capable of describing the contact effect between discs, where the 

lateral stiffness, shear stiffness, bending stiffness and torsional stiffness of joint interface were taken 

account of. Jalali et al. [9] applied the thin-layer element theory to investigate the surface-to-surface 

contact interface of a compound structure. 

Contact stiffness of joint interface plays a crucial role in the vibration behaviours of rod 

fastening rotor system. The most favourable model for this purpose is the Greenwood-Williamson 



statistical model [10]. According to the boundary element method, Pohrt et al. [11] calculated the 

contact stiffness of the elastomer with fractal rough surface. Taking a two-dimensional fractal rough 

surface profile as the object, the load-compliance relation for the contact of this profile was estimated 

in [12]. Liu et al. [13] discussed the influence of friction on the normal contact stiffness of isotropic 

fractal interface when the elastic-plastic contact happened. When the surface fractal feature and 

normal loading conditions were considered, a new modeling approach was proposed to represent the 

tangential frictional stick-slip behaviors of contact interfaces in [14]. Jiang et al. [15] carried out the 

research on interface stiffness based on the fractal-curve description of the topology. Moreover, the 

dynamic characteristics of rod fastening rotor system have attracted extensive attention. By the 

numerical simulation, Rimpel et al. [16] discussed the change law of natural frequency of a real tie 

bolt rotor system subjected to different preload forces. From the perspective of nonlinear dynamics, 

Hei et al. [17] observed the rich nonlinear phenomena in the rod fastening rotor system, including 

quasi period, bifurcation and chaos. 

Performance and efficiency of rotating machines can be enhanced by reducing the clearance 

between components in relative motion. However, this approach greatly increases the risk of 

rub-impact fault. Rub-impact can accelerate erosion, thermal fatigue and even other catastrophic 

failures. In the past few decades, the full annular rub and partial rub have attracted a huge amount of 

interest already. Yu [18] studied the reverse full annular rub occurring in a two degree-of-freedom 

rotor/seal model, in which the rubbing location was simulated away from the lumped rotor mass. 

When a modified Jeffcott rotor underwent either forward synchronous whirling or self-excited 

backward whirling motions with continuous stator contact, Vlajic et al. [19] investigated its 

complicated vibration behaviours. Jiang [20] gained deep insights into the global response 

characteristics of a piecewise smooth dynamical system with full annular rub and revealed the 

influences of parameters, including coefficient of friction and impact stiffness. Yang et al. [21] 

simulated the dynamic behaviours of a dual-rotor system with partial rub and obtained the fault 



characteristics, such as combination forms in the frequency domain. Moreover, Yang et al. [22] 

investigated the fault characteristics of the rotor system with parametric uncertainties based on the 

Polynomial Chaos Expansion. 

Up to now, the contact mechanism of bolted joint interface and dynamic characteristics of rod 

fastening rotor systems have been studied in depth. Nevertheless, the effects of multiple disc contacts 

on the vibration behaviours of the rotor system have been rarely studied. Moreover, compared with 

the integral rotor system, the pioneering contribution to dynamic prediction of rod fastening rotor 

system with rub-impact fault is not enough. It is more fulfilling to include this feature in a rod 

fastening rotor model if more realistic and useful results are required. 

This paper aims at studying the nonlinear dynamic characteristics of a rod fastening 

rotor-bearing coupling system with rub-impact fault. The law of influences of joint interface in 

disc-disc contact is revealed in depth. On this basis, the comparison of fault response between 

integral rotor and rod fastening rotor is conducted as well. 

2. Mathematical model 

In this section, the dynamic model of a circumferential rod fastening rotor system with 

rub-impact fault is established based on the rough fractal theory and finite element method. 

Meanwhile, a novel contact force model considering coating effects is adopted to solve the 

rub-impact fault. 

Fig. 1(a) shows the actual structure of a circumferential rod fastening rotor system. By 

extracting the main structure features, the simplified physical model is given in Fig. 1(b). The model 

is formed by a flexible shaft, a disc group composed of eight discs with blades, eight long pull rods 

and two pedestals. In the process of modelling, some basis assumptions are given as follows: 

(1) The rotating shaft is considered as the Rayleigh beam, in which the shear effects and torsion 

deformation are neglected. 

(2) All the discs with blades are assumed to be rigid and their deformations are ignored. 
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Fig. 1 Diagram of a circumferential rod fastening rotor system: (a) actual structure and (b) simplified 

physical model. 

(3) The balls of the bearing model are only rolling and the bearing deformation is mainly 

considered as contact deformation between rolling balls and raceway. 

(4) All the long pull rods are evenly distributed on the discs along the circumference. 

(5) Contact phenomenon exists in the joint interface between any two discs. 

(6) In the process of rub-impact, the thermal effect and friction torque are ignored. In addition, 

the thermal effect caused by the joint interface is not considered. 

2.1 Contact mechanism of joint interface 

As shown in Fig. 2, two rough surfaces of joint interface contact each other, which can be 

regarded as an equivalent rough surface in contact with a rigid flat surface. By utilizing the rough 

fractal theory given in [23], the contour curve of the nth asperity before elastic deformation can be 



expressed as 
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where G  denotes the feature parameter of rough surface profile, D  denotes the fractal dimension 

of two dimensional fractal rough surface, nl  is the sampling length of the nth asperity, which obeys 
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Fig. 2 Schematic diagram of G-W contact model. 

After obtaining Eq. (1), the curvature radius of the nth asperity shown in Fig. 2 can be further 

derived as 
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Then the expression of the height of the nth asperity is given by 
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Correspondingly, the actual deformation of the nth asperity is approximately equal to 
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According to the Hertz contact theory, the relation between the contact area and the contact 

force of the nth asperity takes the following forms 
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In the elastic deformation process of the nth asperity, the maximum value under the critical 

condition can be expressed as 
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where E  denotes the equivalent elastic modulus, 1E  and 2E  denotes the elastic modulus of hard 

and soft materials,   denotes the coefficient that is related to the Poisson’s ratio. 

The above derivations show the deformation mechanism of the nth asperity in the contact 

process. For a joint surface, the different asperities are distributed in the contact surface by referring 

to a certain probability density. For this case that the rough surface is in contact with the rigid plane, 

the area distribution function of the asperity conforms to the law of ocean area distribution [24], 

namely 
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where la  denotes the maximum contact area of the asperity, a  denotes the contact area of the 

asperity. 

By integrating the above expression, the actual contact area of the whole rough surface can be 

obtained as 
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Due to the multi-scale characteristics of the rough surface, it is assumed that the area 

distribution probability of different asperities in the rough plane is ( )nn a , and its value depends on 

the scale ordinal number n. When defining ( ) ( )nn a Cn a= , the actual contact area of the whole rough 

surface is also expressed as 
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By comparing Eq. (8) with Eq. (9), the expression of the variable C  is 
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Therefore, the total elastic contact force and contact stiffness of the joint surface can be 

respectively expressed as 
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in which, the critical elastic contact area and critical elastic frequency index are given by 
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After analysing the normal contact mechanism of joint interface, the bending stiffness of rough 

contact layer shown in Fig. 3(a) is written as 
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where dI  denotes the second moment of contact area. 
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Fig. 3 Contact interface between any two discs: (a) rough contact diagram and (b) bending 

deformation diagram. 

According to the description given in [25], the tangential contact stiffness of contact layer can 

also be obtained as 
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where d  denotes the Poisson’s ratio of disc. It is noted that Eq. (15) can be used to modify the 

stiffness characteristic of disc-disc contact segment. 

Because the long rods are distributed in the different positions of the disc set, their distances 

from the neutral layer of the rotating shaft are not the same. The distance between the neutral layer 

and the ith rod is assumed to id . 

For the rod fastening rotor system, the angle between two discs in the process of whirling 

motion is set to   (see Fig. 3(b)). Therefore, the moment acting on the ith rod can be expressed as 
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in which rr  denotes the radius of cross section of the ith rod, il  denotes the initial axial 

deformation caused by the preload, il  denotes the initial length of the ith rod, 
rE  denotes the 

elastic modulus of the rod. 

After that, the total moment of all the rods can be calculated by summation. The bending 

stiffness provided by the rods can be further given by 
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Due to the parallel connection between rough contact layer and rods, the total bending stiffness 

of the disc-contact segment is modified as 
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2.2 Finite element discretization of rotor system 

The flexible shaft is divided into several segments and the disc set with long rods is seen as 

three parts, including equivalent element of left discs, disc-disc contact element and equivalent 

element of right discs. 

Combining with the whirling motion of the rotor system, the flexible shaft is modeled as the 

Timoshenko beam. According to the vibration theory, there are four degrees of freedom at each node, 

including two translations and two rotations. Therefore, the generalized displacement vectors of 

beam element in the coordinate plane of xoz  and yoz  can be respectively expressed as 
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where Ax , Bx , Ay , By  represent four translational degrees of freedom at node A and node B 

separately. Meanwhile, yA , yB , xA , xB  represent four rotational degrees of freedom at the 

two nodes. 

On this basis, the translational inertial matrix of the beam element is given by 
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where s  denotes the density of beam element, sl  denotes the length of beam element, sA  

denotes the area of cross section. The expressions of coefficients used in Eq. (20) are 
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where s  denotes the shear coefficient of cross section, ( )( )= 2 1s s sG E v+  denotes the shear modulus, 

sE  denotes the elastic modulus of beam element, sI  denotes the area moment of inertia. 

Similarly, the rotational inertial matrix of the beam element can also be derived as 
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in which the inertial coefficients obey the following forms, namely 
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Gyroscopic effect is a special feature of rotating machinery which can directly affect the 

dynamic characteristics of the system. Therefore, it should be paid attention to in the process of 

dynamic modelling. The gyroscopic effect is not only related to the structure size, but also related to 

the rotational speed of the system. In the following part, the gyroscopic matrix of the beam element 

can be expressed as 
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where   denotes the rotational speed of the rotor system. 

Moreover, according to the deformation characteristics of the Timoshenko beam, the stiffness 

matrix of the beam element obeys  
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where the coefficients of the stiffness matrix are 
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When dealing with the disc set shown in Fig. 1(b), it can be treated as two kinds of types, 



including disc-disc contact element and equivalent element of left/right discs. From Fig. 4(a), it can 

be seen that the rough contact layer is sandwiched between two single discs. In this condition, the 

force transmission and deformation relationship of the series structure should be considered. Then 

the stiffness matrix of the disc-disc contact element can be expressed as 
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where the coefficients used in Eq. (27) obey the following forms 
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where d  denotes the shear coefficient of cross section of single disc, ( )( )= 2 1d d dG E v+  denotes 

the shear modulus of single disc, dE  denotes the elastic modulus of single disc, dI  denotes the area 

moment of inertia of single disc. 

Except for the disc-disc contact element, both the left discs and the right discs are equivalent to 

the lumped mass model, as shown in Fig. 4(b). Because the elastic deformation of the structure is 

ignored, each lumped mass element has only one node. Thus the mass matrix and gyroscopic matrix 

of the equivalent element of left/right discs are respectively written in a 2 2  form in the coordinate 

plane of xoz , namely 



 d

d

d d

m

J

 
=  
 

M  (29) 

 
0

d

pdJ

 
=  
 

G  (30) 

where dm  denotes the mass of the lumped mass model, ddJ  and pdJ  denote the diametric inertia 

and polar inertia, respectively. 
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(a) disc-disc contact element (b) equivalent element of left/right discs 

Fig. 4 Schematic diagram of disc discrete element: (a) disc-disc contact element and (b) equivalent 

element of left/right discs. 

According to the design of element division, the global mass, stiffness and gyroscopic matrices 

of the rod fastening rotor system can be integrated. It should be noted that due to the existence of 

elastic support boundary, the global stiffness matrix needs to be modified. Consequently, the 

governing equations of motion of the rod fastening rotor system can be expressed as 

 + + =Mu Cu Ku Q   (31) 

where u  denotes the generalized displacement vector, M  denotes the mass matrix, C  denotes 

the damping matrix, K  denotes the stiffness matrix, Q  denotes the generalized force vector. 

2.3 Nonlinear constraint boundary 

The nonlinear force provided by the constraint condition is studied in this section. The rolling 

bearing model is mainly composed of rolling balls, inner ring, outer ring and bearing housing. The 

bearing housing is fixed on the foundation. 



To describe the point-to-point contact mechanism between rolling balls and raceway, the Hertz 

contact theory is adopted here. Obviously, the contact forces are nonlinear and their expressions in 

the two directions of o x−  and o y−  are 

 ( )( ) ( )
1.5

1

sin +
bN

rx h b b b b

i

F Hk i i c x 
=

=    (32) 

 ( )( ) ( )
1.5

1

cos +
bN

ry h b b b b

i

F Hk i i c y 
=

=    (33) 

where H  represents the Heaviside function, hk  denotes the point-point contact stiffness, bc  

denotes the support damping of bearing. 

The contact displacement is determined by the initial gap of bearing model and the whirling 

motion of the rotor system. Therefore, the contact displacement of the ith rolling ball is written as 

 ( ) ( ) ( ) 0= sin cosb b b b b bi x i y i    + −   (34) 

where 0b  denotes the initial gap of bearing model, bx  and by  respectively denote the vertical 

and lateral displacements of shaft node at the bearing position. 

According to the motion trajectory, it is easy to calculate the specific position of the ith rolling 

ball, namely 

 ( ) ( )
2

1b
b

b b b

r
i t i

R r N

 
 = + −

+
  (35) 

where bR  and br  denote the outer and inner radii of bearing model, bN  denotes the number of 

rolling balls. 

2.4 Mechanical mechanism of rub-impact fault 

Due to the complicated external suspension, such as fuel tank, cooler bin and pipeline, the 

convex point is more likely to appear in the stator. Fixed-point rubbing denotes that rotor contacts a 

fixed point of stator once in one cycle. When the eccentricity exists in the equivalent element of left 

discs, to a remarkable extent delivered, the fixed-point rubbing may be induced. More specifically, if 



the whirling amplitude of the disc is larger than the initial gap, the rub-impact fault happens. 

Otherwise, the fault never happens. 

According to [26], a contact force model is adopted to reveal the mechanical mechanism of 

rub-impact under the influences coatings. The effectiveness of the contact model is verified in an 

impact experiment at different rotational speed on a rotor test rig. Therefore, the rotor-stator impact 

force can be expressed as 
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where sk  denotes the structure stiffness of stator, lk  denotes the local contact stiffness of coatings. 

In the above expression, the local deformation of coatings l  and the global impact 

deformation N  obey the following relation 
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At the same time, the Coulomb law is adopted to describe the friction characteristics between 

rotor and stator, so that 

 ( )sgn cos sinT N d s d sF F x y   = + −   (38) 

where   denotes the coefficient of Coulomb friction, s  denotes the angular position of stator, dx  

and dy  denote the vertical and lateral velocity of disc, respectively. 



3. Simulation and discussion 

For a multi degree of freedom system with strong nonlinear factors, it is relatively difficult to 

analytically study its nonlinear characteristics. In this paper, the integral rotor system has 12 degrees 

of freedom and the rod fastening rotor system has 16 degrees of freedom. The sources of nonlinearity 

are mainly reflected in the two aspects: on the one hand, when the radial displacement of the rotor is 

greater than the initial gap, the rub-impact fault happens. Obviously, this leads to a clearance-type 

nonlinearity. On the other hand, the rolling bearing can bring stiffness nonlinearity to the system. 

Then the combination of Runge-Kutta method and linear interpolation method is chosen. The 

structure parameters of rod fastening rotor-bearing coupling system are given in Table 1. 

The flow chart of dynamic prediction of rod fastening rotor system is given in Fig. 5, in which 

there are four aspects: dynamic modelling, numerical simulation, dynamic characteristic analysis and 

rub-impact fault investigation. 
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Fig. 5 Flow chart of dynamics prediction of the rotor system. 



Table 1 Structure parameters of rod fastening rotor-bearing coupling system 

Physical parameter Value 

Radius of disc (mm) 60 

Density of disc (kg/m3) 7800 

Thickness of single disc (mm) 30 

Elastic modulus of virtual contact layer (GPa) 210 

Radius of shaft (mm) 20 

Density of shaft (kg/m3) 7800 

Elastic modulus of shaft (GPa) 210 

Length of shaft (mm) 280 

Poisson ratio of shaft 0.3 

Normal stiffness of contact layer (MN/m) 280000 

Tangential stiffness of contact layer (MN/m) 2600000 

Initial gap of rolling bearing (μm ) 0.4 

Contact stiffness of rolling bearing (MN/m) 13340 

Elastic modulus of coatings painted on components (GPa) 200 

Poisson ratio of coatings painted on components 0.3 

Coefficient of friction 0.1 

The motion state is checked to find if there has been a change of contact condition from nor 

rubbing to rubbing or from rubbing to no rubbing. If this change has happened during a time step, 

linear interpolation is used repeatedly to determine the time instant when this change happens, so that 

the tolerance value of rub-impact region is met. A case of ‘no rub to rub’ is analyzed, in which 0  

denotes the initial gap, t
 

denotes the original time step,   is defined to describe the rub tolerance 

zone. Then the case of ‘no rub to rub’ can be expressed as 
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where k  and +1k  represent the radial displacement of the disc at the previous and following 

moment, respectively. 

If the condition of 1 0k  + −   is satisfied, the time step remains the same. Otherwise, the 

new time step should be adopted by the linear interpolation, so that 
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  (40) 

Thus, the radial displacement of the disc 
*

1k +  is recalculated by utilizing the new time step 
*t
 

and the initial condition of k . If the radial displacement 
*

1k +  satisfies the rub tolerance condition, 

the iteration is finished. 

3.1 Nonlinear responses of rotor system 

In this section, the fixed-point rubbing is not accounted provisionally and the contact effect of 

rough joint interface between two discs is paid more attention. As one of useful ways of observing 

nonlinear vibration behaviour, the bifurcation diagram is used to provide a summary of the essential 

dynamics. 

For the case of no disc-disc contact and long rods, the rotor system can be seen as a common 

integral model to a great extent. At this time, the response bifurcation diagram of the system is 

depicted in Fig. 6(a). From this figure, it can be observed that the system responses are exhibited as 

1T-periodic motion in the range of rotational speed  300  2000 rad/s， . At =1430rad/s , the first-order natural 

frequency of the rotor system is equal to the imbalance excitation frequency. After that, due to the 

nonlinear constraint boundary provided by the rolling bearings, the nonlinear jump phenomenon 

happens. With the increase of rotational speed, the integral rotor system always keeps the regular 

periodic motion. 

Under the same structure parameters and operating conditions, the disc-disc contact behaviour 



and long rods are introduced into the system. The bifurcation diagram of the rod fastening rotor is 

shown in Fig. 6(b). Through the comparative analysis, the vibration response of the rotor system has 

changed significantly. The first-order resonance frequency of the system decreases to =1340rad/s . The 

main reason for this phenomenon is that the rough joint interface between discs can weaken the 

global stiffness of the system. Moreover, the region of complicated vibration forms, such as quasi 

period and even chaos, is observed in the region of high rotational speed. This just proves that for the 

rod fastening rotor system, the vibration response is obviously determined by the contact condition 

of discs. 

  

(a) an integral rotor (b) a rod fastening rotor 

Fig. 6 Bifurcation diagram of rotor-bearing coupling system: (a) an integral rotor and (b) a rod 

fastening rotor. 

To fully understand the vibration characteristic of the rod fastening rotor system at different 

rotational speeds, the time histories and Poincaré map are used, respectively. As shown in Figs. 7(a) 

and (b), the 1T-periodic motion happens around a position which is almost zero, and the vibration 

amplitude is about 59.38 10 m− . Meanwhile, only an isolated point is found in the Poincaré map. When 

the rotational speed mounts up to 1600rad/s = , the original regular periodic motion will be broken and 

evolve into quasi-periodic motion. At this moment, the Poincaré map includes a closed petal curve 

constructed by discrete points, as shown in Figs. 7(c) and (d). According to the theory of nonlinear 

dynamics, the phenomenon in the Poincaré map illustrates the occurrence of quasi-periodic motion. 



Additionally, the more complex nonlinear vibration behaviours can be observed in the response 

of rod fastening rotor system. When the rotational speed is =1700rad/s , the rotor system enters the 

window of chaotic motion. Under this circumstance, the Poincaré map is composed of a large 

number of irregular scattered points. 

  

(a) time histories at 1340rad/s =  (b) Poincaré map at 1340rad/s =  

  

(c) time histories at 1600rad/s =  (d) Poincaré map at 1600rad/s =  

  

(e) time histories at 1700rad/s =  (f) Poincaré map at 1700rad/s =  

Fig. 7 Nonlinear response of rod fastening rotor system at different rotational speeds: (a) time 



histories at 1340rad/s = , (b) Poincaré map at 1340rad/s = , (c) time histories at 1600rad/s = , (d) 

Poincaré map at 1600rad/s = , (e) time histories at 1700rad/s =  and (f) Poincaré map at 

1700rad/s = . 

Next, the effects of distribution position on the nonlinear dynamic behavior of rod fastening 

rotor system are discussed. As shown in Fig. 8, there are four work conditions for describing the 

distribution position of the rough contact layer, including ‘2-6’ distribution, ‘4-4’ distribution, ‘5-3’ 

distribution and ‘6-2’ distribution. In this paper, the ‘2-6’ working condition is different from ‘6-2’ 

working condition. The main reason is that the disc group is not installed in the middle part of the 

rotating shaft, and thus the system is not an asymmetric structure with respect to the mid-point of the 

shaft. Then the comparative analysis of rod fastening rotor system under the above four work 

conditions is conducted. 
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Fig. 8 Schematic diagram of distribution position of rough contact layer: (a) ‘2-6’ distribution, (b) 

‘4-4’ distribution, (c) ‘5-3’ distribution and (d) ‘6-2’ distribution. 



From Fig. 9, it appears clear that the first-order resonance frequency of the system is obviously 

affected by the distribution position of the rough contact layer. For example, the first-order resonance 

frequency of the system under ‘2-6’ distribution is about 1300rad/s = . While keeping the structure 

parameters unchanged, the resonance phenomenon happens at 1410rad/s =  under ‘6-2’ distribution. 

Not only that, affected by the distribution state, the rotational speed range of complicated vibration 

response turns to be narrow, which means that the motion stability of the system is improved. 

  

(a) ‘2-6’ distribution (b) ‘4-4’ distribution 

  

(c) ‘5-3’ distribution (d) ‘6-2’ distribution 

Fig. 9 Bifurcation diagram of rod fastening rotor system under different distribution positions of 

rough contact layer. 

Different from Figs. 9(a) and (b), the system responses given in Figs. 9(c) and (d) are exhibited 

as the alternate forms of periodic motion, quasi-periodic motion and chaos at the interval of 

1650 2000rad/s− . Generally speaking, for rod fastening rotor system, the motion state and resonance 

characteristic are closely related to the distribution position of rough contact layer. 



3.2 Effect of rough joint interface 

This part focuses on the study of the contact characteristics of the rough joint interface by 

discussing the variation of first-order resonance frequency. For convenient analysis, the stiffness 

influence coefficient is defined as ke , where its value is set to  1 3,  1 2,  2,  3 . 

Different from the integral rotor system, the inherent characteristics of the rod fastening rotor 

system are not only related to the rotating shaft and constraint boundary, but also affected by the 

contact state of joint interface between discs. 

  

(a) 1 2ke =  (b) 1 3ke =  

  

(c) 2ke =  (d) 3ke =  

Fig. 10 Variation of first-order resonance frequency of the rod fastening rotor system: (a) 1 2ke = ,  

(b) =1 3ke , (c) =2ke  and (d) =3ke . 

Through the forward sweep frequency analysis, the first-order resonance frequency of the rotor 

system with different stiffness influence coefficients is depicted in Fig. 10. The case of 1 3ke =  



means that the contact degree between two discs is relatively light and the contact stiffness of the 

rough contact layer is reduced. Therefore, the first-order resonance frequency of the system 

decreases from 1340rad/s =  to 1230rad/s = , as shown in Fig. 10(a). When the stiffness influence 

coefficient is 1 2ke = , the first-order resonance frequency is modified as 1300rad/s =  (see Fig. 

10(b)). On this basis, the natural characteristics of the rotor system are further investigated in the 

conditions of 2ke =  and 3ke = . It can be seen that the first-order resonance frequency could 

increase from 1300rad/s =  to 1360rad/s = . 

3.3 Effect of multi disc contacts 

In previous work, for the rod fastening rotor system, the influence mechanism of a contact layer 

between two discs is mainly discussed. However, the contact analysis of multiple discs is rare in the 

existing research. Actually, the multi disc contacts may occur during the operation of rod fastening 

rotor. It is worth studying in order to improve the operation safety of the system. In the following 

work, the nonlinear characteristics of the rotor system affected by multi disc contacts will be 

discussed by means of bifurcation diagram. 
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(a) two contact layers (b) three contact layers 

Fig. 11 Schematic diagram of multi disc contacts: (a) two contact layers and (b) three contact layers. 

Fig. 11 shows the different contact conditions of multi disc contacts, including two contact 

layers and three contact layers. When the two contact layers are considered in the dynamic model, 

the bifurcation diagram of the rotor system is given in Fig. 12(a). By comparing Fig. 12(a) with Fig. 

6(b), it is clear that the first-order resonance frequency decreases from 1340rad/s =  to 



1320rad/s = . The system enters the window of quasi-periodic motion in the rotational speed range 

 380 395 rad/s， . Moreover, the nonlinear vibration zone is shifted to the left as a whole. 

  

(a) two contact layers (b) three contact layers 

Fig. 12 Bifurcation diagram of rod fastening rotor system containing different contact layers: (a) two 

contact layers and (b) three contact layers. 

When the rod fastening rotor system contains three contact layers, the bifurcation diagram is 

shown in Fig. 12(b). In this condition, the first-order resonance frequency is about 1150rad/s = . The 

complicated vibration region composed of periodic, quasi-periodic and chaotic motion will occur in 

the lower speed region. 

Based on the above analysis, it can be concluded that multiple contact layers could weaken the 

global stiffness of the rotor system, reduce the natural frequency, and lead to nonlinear vibration of 

the system at low rotational speed, which is not conducive to the smooth operation of the system to a 

certain extent. 

  

3.5 Effect of fixed-point rubbing 

In the above work, the fixed-point rubbing considering coatings effects is temporarily ignored. 

When the amplitude of whirling motion of the rotor system is larger than the rotor-stator initial gap, 

the fixed-point rubbing happens synchronously. Thus, the rotor-stator rub-impact is taken into 

consideration, and the rub-impact response differences between integral rotor and rod fastening rotor 

at different speeds are under contrastive analysis. 



Fig. 13 shows the rub-impact state of integral rotor and rod fastening rotor at different rotational 

speeds. At the interval of  300  580 rad/s， , the rub-impact fault never occurs due to the smaller 

whirling motion. With the increase of rotational speed, the whirling amplitude of disc becomes larger 

than the rotor-stator initial gap and the fixed-point rubbing happens. When the rotational speed is 

smaller than the first-order resonance frequency, the existence of the rough contact layer can 

strengthen the rub-impact degree. However, as the rotational speed continues to increase, the more 

serious rub-impact occurs in the integral rotor system. Actually, these phenomena are closely related 

to the resonance characteristics of the rotor system, considering the effects of the contact layer in a 

disc group. Due to the disc-disc contact, the first-order critical speed of the rotor system tends to 

decrease, that is, the peak in the amplitude-frequency response of the system shifts to the left and the 

amplitude increases. Under this circumstance, the rod fastening rotor has the most serious rub-impact 

when the rotational speed is relatively low. A partial enlarged figure for describing the critical 

condition of ‘no rub to rub’ is given in Fig. 13(b). It proves that due to the rough contact layer, the 

rub-impact is more likely to happen at the lower rotational speed. 

  

(a) maximum impact force (b) partial enlarged figure 

Fig. 13 Change law of fixed-point rubbing at different rotational speeds: (a) maximum impact force 

and (b) partial enlarged figure. 

4. Conclusions 

In this paper, a dynamic model of rod fastening rotor-bearing coupling system is established, in 



which the contact mechanism of rough joint interface between any two discs is analytically described 

through the fractal theory. After that, the nonlinear dynamic characteristics of the rod fastening rotor 

system are analysed in terms of bifurcation diagram, time histories and Poincaré map. After that, the 

parameter analysis is carried out around the contact degree of joint interface, distribution position of 

contact layer and multi disc contacts. Finally, aiming at the fixed-point rubbing, the fault response 

characteristics of rod fastening rotor and integral rotor are analysed. According to the calculation 

results, the following conclusions can be obtained. 

(1) Different from the integral rotor system, the resonance characteristics of rod fastening rotor 

system are affected not only by the structural design and support boundary, but also by the contact 

condition of the joint interface in the disc set. Due to the contact behavior of joint interface, the 

first-order resonance frequency decreases from 1430rad/s =  to 1340rad/s = . 

(2) The existence of contact layer could lead to the occurrence of complicated nonlinear 

vibration, and the rotational speed range of nonlinear vibration is closely related to the distribution 

position and amount of contact layer. 

(3) The contact behaviour of the joint interface could promote the fixed-point rubbing to occur 

at a lower rotational speed, and aggravate the degree of rotor-stator rub in the range of 

 300  1300 rad/s， . 
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