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Abstract

Physical layer key generation is a lightweight technique to generate secret keys from wireless channels for resource-
constrained Internet of things (IoT) applications. The security of the key generation relies on spatial decorrelation, which
assumes that eavesdroppers observe uncorrelated channel measurements when they are located over a half-wavelength
away from legitimate users. Unfortunately, no experimental validation exists for communications environments with
both large-scale and small-scale fading effects. Furthermore, while the current key generation work mainly focuses on
short-range communications techniques such as WiFi and ZigBee, the exploration with long-range communications, e.g.,
LoRa, is somewhat limited. This paper presents a long-range key generation testbed and reveals a new attack scenario
that perceives and utilizes large-scale fading effects in key generation channels, by using multiple eavesdroppers circularly
around a legitimate user. We formalized such an attack and validated it through extensive experiments conducted in
indoor and outdoor environments. It is corroborated that the attack reduces secret key capacity when large-scale fading
is predominant. We further investigated potential defenses by proposing a conditional entropy and high-pass filter-based
countermeasure to estimate and eliminate large-scale fading components. The experimental results demonstrated that
the countermeasure significantly improved the key generation’s security when both large-scale and small-scale fading
existed. The keys generated by legitimate users have a desirable low key disagreement rate (KDR) and are validated by
the NIST randomness tests. In contrast, eavesdroppers’ average KDR is increased from 0.25 to 0.49.
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1. Introduction

Internet of things (IoT) has triggered extensive exciting
applications, including health monitoring, environmental
sensing, and industrial control [1]. Information security
of IoT networks is essential as the information exchanged
may be essential, private, and sensitive [2, 3]. It is usually
achieved by symmetric encryption algorithms and key dis-
tribution schemes. The former, e.g., advanced encryption
standard (AES), is used to protect the data using a sym-
metric key. The latter is currently handled by the conven-
tional public-key cryptography (PKC), such as the elliptic-
curve Diffie-Hellman (ECDH) key exchange. PKC schemes
rely on complicated mathematical problems, such as dis-
crete logarithms. Hence, they are computationally expen-
sive, which results in high power consumption and may
not be suitable for resource-constrained IoT devices [4].
Furthermore, managing the PKC in decentralized IoT net-
works is difficult as the public key infrastructure may not
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always be available [5, 6]. Finally, PKC schemes will be-
come vulnerable to emerging quantum computers because
they are not scalable [7].

In order to address this challenge, particularly for low-
cost IoT devices, an alternative technique named key gen-
eration from wireless channels, which has attracted exten-
sive research interests [4, 8, 9, 10, 11]. This technique
exploits the randomness from the shared wireless channel
between a pair of users to generate secret keys; hence, it
is information-theoretically secure [12, 13]. In addition,
it is not complicated and consumes much less power than
PKC schemes, which is suitable for low-cost IoT devices.
For example, Zenger et al. implemented a key generation
protocol on an 8-bit Intel MCS-51 micro-controller, and
showed the energy cost to generate a 128-bit secret key is
98 times less than that of the ECDH key exchange [14].

Key generation mainly exploits multipath [15], and em-
ploys the randomness in temporal [16, 17], frequency [18,
19, 20], and spatial domains [20, 21, 22]. Local induced
randomness enhances the key generation performance in
a multipath limited environment [23, 24]. The security
level of the key generation against eavesdropping relies
on spatial decorrelation. In a multipath-rich environment,
when an eavesdropper is more than a half-wavelength away
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from legitimate users, the eavesdropper experiences uncor-
related channels, hence the eavesdropper cannot infer cor-
rect keys. This assumption is determined from the Bessel
function developed for a sum of multipath signals [25].
The core interest is to validate the spatial decorrelation
assumption in practice [26, 27, 28]. Edman et al. designed
a ZigBee-based testbed and experimentally demonstrated
that the eavesdropper’s capability of secret key inference
reduces as the distance between an eavesdropper to legiti-
mate users increases [26]; they also found that the required
distance for securing at least 50% secret key information
is far more than a half-wavelength. Zhang et al. con-
structed a WiFi-based testbed and also carried out exten-
sive measurements in different environments, including an
anechoic chamber (no multipath), a reverberation chamber
(very rich multipath), and an indoor office (normal multi-
path) [27]. They found that key generation security signif-
icantly relies on the multipath levels of the environments.
In particular, the secure distance should be much larger
than a half-wavelength in an environment where multipath
is limited. However, none of them provided correspond-
ing countermeasures against eavesdropping. In addition,
all the above experimental validation was performed with
short-range communications; the spatial decorrelation as-
sumption is not clear in long-range communications when
large-scale fading is present.

In practice, eavesdroppers may seek collusion to reveal
more information in key generation. Thai et al. inves-
tigated and proposed a multi-antenna-based scheme that
achieves high secret key rates over colluding eavesdrop-
pers and non-trusted relays [29]. Waqas et al. investi-
gated secret key generation as eavesdroppers colluded in a
social network and designed an algorithm for high secret
key generation rates [30, 31]. These works rely on multiple
antennas or relays, which may not apply to the networks
deployed with low-cost IoT devices.

IoT can be categorized into wireless local area networks
(WLAN), wireless personal area networks (WPAN) as well
as low-power wide-area networks (LPWAN). WLAN and
WPAN are short-range communications systems, such as
WiFi and ZigBee, respectively. Key generation has been
mainly applied with them so far, such as WiFi [27, 32],
ZigBee [33], and Bluetooth [34]. There have been extensive
measurements campaigns to demonstrate the feasibility of
key generation with these communications technologies.

LPWAN is an important element of IoT with represen-
tative technologies such as LoRa and Narrowband Inter-
net of Things (NB-IoT) and has become the key enabler of
many transformative IoT applications [35, 36]. In compar-
ison with WLAN and WPAN, key generation applied with
LPWAN is rather limited, with some preliminary experi-
mental explorations reported in [37, 38, 39, 40, 41] and sim-
ulation work on large-scale fading for key generation [42].
Ruotsalainen et al. investigated the effects of LoRa setup
on key generation performance [37, 41]. Zhang et al. de-
signed a differential value-based key generation protocol
for LoRa and validated the performance in both indoor

and urban environments [39]. Xu et al. also proposed
a LoRa-based protocol and carried out extensive experi-
ments [40]. However, a systematic investigation of eaves-
dropping attacks on long-range key generation is currently
missing and urgently required for security validation.

For long-range wireless communications, signals travel-
ing longer distances have more significant and predictable
attenuation due to large-scale fading effects. The pre-
dictable attenuation leads to predictable received signal
characteristics that can compromise the long-range key
generation. Furthermore, there will be barely non-hostile
key generation environments as the LPWAN is often de-
ployed under insufficient surveillance. For example, net-
works deployed on highways, farmlands, and national parks
face various threats to reduce the secret key capacity, con-
strain the key generation rate, and compromise the key.

The above research challenges motivated us to reveal
and investigate an unstudied key generation attack sce-
nario in long-range communications and devise a secure
long-range key generation protocol under the impact of
large-scale fading. The novelty of the proposed attack sce-
nario and the countermeasure are justified as follows.

• Large-scale fading has not been known to leak secret
keys in key generation, but it is naturally presented
in long-range communications.

• The spatial decorrelation assumption was not prac-
tically validated in the presence of large-scale fading
variation, though it is the ground for the key gener-
ation security.

• No prior work exists that constructively explores the
high-pass filter implementation to improve the key
generation security.

Our contributions are listed as follows.

1. A long-range communications testbed is designed,
and extensive experiments are carried out to inves-
tigate the impact of large-scale fading on the key
generation.

2. A new channel-perceiving attack scenario is revealed
and guided by our formalization to validate the spa-
tial decorrelation assumption. The attack perceives
large-scale fading effects in key generation channels,
by using multiple eavesdroppers circularly around a
legitimate user. The experimental results demon-
strated that the colluding eavesdroppers can infer a
higher portion of secret keys utilizing large-scale fad-
ing variation. We also demonstrated that the secret
key inference capability of the revealed attack can
be boosted by the signal pre-processing techniques
that are often adopted in practice to enhance the
key generation.

3. A conditional entropy and high-pass filtering coun-
termeasure is proposed to mitigate the effect of this
newly revealed attack. In particular, key generation
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users can estimate large-scale fading associated low-
frequency components using their channel observa-
tions and remove them without losing much ran-
domness. The results showed that the key leakage
was mitigated as colluding eavesdroppers’ KDR in-
creased significantly. The NIST randomness tests
validated the randomness of the large-scale fading
filtered key bits.

The rest of the paper is organized as follows. Section 2
introduces the preliminary knowledge of key generation
and the model used in the experiments. Section 3 presents
the new colluding-eavesdropping attack and formalizes its
large-scale fading estimation and secret key inference ca-
pabilities. Section 4 describes the experimental setup and
analytical metrics. Section 5 presents the experimental
analysis. Section 6 proposes the countermeasure against
the revealed attack. Finally, Section 7 concludes the pa-
per.

2. Preliminary

2.1. Key Generation Protocol

The wireless channel between two users is the ideal
source of randomness to generate secret keys for crypto-
graphic applications [11, 13]. Suppose Alice and Bob want
to generate a shared key using the randomness of the wire-
less channel. Due to channel reciprocity, they measure
and analyze identical channel characteristics by sending
and receiving known data packets. These measurements
can then be transferred to binary sequences for encryption
purposes. Detailed protocol generally incorporates the fol-
lowing steps.

1. Channel Probing: Bi-directional measurements are
taken between key generation users. The measured
channel characteristics are analyzed and stored in
sequences. The probing packets do not have to carry
useful messages, but it is important to have similar
packet sizes to avoid power offset in transmission.

2. Signal Pre-Processing: The step is optional in a tra-
ditional key generation process but widely applied to
mitigate the discrepancies brought by hardware im-
pairment and channel noise. Signal pre-processing
techniques can be classified into filtering and inter-
polation, where the first is to eliminate mismatches
and the second is to fill in missing values. An advan-
tageous technique should greatly improve measure-
ment correlation without being high-cost and intro-
ducing security threats.

3. Quantization: Each channel characteristic value of a
sequence is mapped to a binary bit.

4. Information Reconciliation: Although the channel
characteristics are highly correlated with users, slight
mismatches are unavoidable in practice. A single bit
difference can fail to decrypt messages. Therefore,
error detection protocol-based approaches (EDPA)

and error correction code-based approaches (ECCA)
are used to cope with the bit difference after quanti-
zation. The resulted bit strings are perfectly matched
after the reconciliation.

5. Privacy Amplification: Users need to exchange error-
correcting messages in public channels in the infor-
mation reconciliation step, and the messages can re-
veal some bit information. Therefore, it is important
to discard the partial information. This is often de-
veloped using hash functions in practice.

Among the key generation steps, channel probing is the
only step to introduce randomness, and it is sensitive to
large-scale fading variations. The broadcasting nature of
wireless communications makes channel probing most vul-
nerable to eavesdropping, where the other steps are mostly
encrypted and processed offline. Hence our experiments
focused on channel probing and signal pre-processing as
both measure raw channel characteristics.

2.2. User and Threat Model

The user model consists of two end devices that sepa-
rated far enough to introduce large-scale fading. The de-
vices communicate directly with predetermined long-range
techniques (e.g., LoRa). One end device serves as a sta-
tionary base station, and the other is either a mobile node
or a stationary node depending on the large-scale fading
variation in experiments. The communication link is se-
cure, and no active adversary to disrupt or jam at all stages
of signal transmission.

Following the traditional threat model in key genera-
tion research, we assume eavesdroppers listen to all users’
communications. Hardware discrepancies are negligible.
There is no restricted key generation protocol information
to access (e.g., signal pre-processing techniques). There
is also no restriction on communication protocol infor-
mation; therefore, eavesdroppers should know all signal
sources, types, and sequences. Further, eavesdroppers can
exchange their measurements in and out of listening, and
users cannot detect the communication. Last, eavesdrop-
pers can move freely but never into a half-carrier-wavelength
range of legitimate users.

2.3. Large-Scale Fading Model

Channel effect is a superposition of small-scale and
large-scale fading [25]. Small-scale fading is caused by the
constructive and destructive interference of signals due to
reflection, diffraction, and scattering. It is unpredictable
as it can be affected by even a very slight movement of the
device or the environment. Hence, it introduces random-
ness to received signal characteristics over a short time and
distance.

In contrast, large-scale fading introduces a more sig-
nificant attenuation to the received signal over a long dis-
tance, which is consisted of path loss and shadow fading.
Path loss describes the signal attenuation along with the
distance while shadowing is caused by the blocking of large
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obstacles such as buildings. From a far-field transmitter
to a receiver, the path loss effect in the linear scale can be
expressed as [25]

Pr,lin = Pt,linGlin

(
d0
d

)γ
(1)

where Pt,lin is the transmission power, Glin denotes the
combined system gains, γ is the path loss exponent, d0
is the reference distance, and d is the distance from the
transmitter to the receiver.

For the simplification of notation, the received power
is usually represented in the logarithm scale. The overall
received power affected by both the path loss and shadow
fading can be given as [25]

Pr = Pt +G− 10γ log10

(
d

d0

)
︸ ︷︷ ︸

path loss

− χ︸︷︷︸
shadowing

(2)

where Pt and G are the transmission power and system
gains in the logarithm scale, and χ is a log-normal dis-
tributed shadowing component with a zero mean (µχ = 0
dB).

As most of the existing key generation works focus on
short-range communications such as WiFi, small-scale fad-
ing has been exploited as their random sources [15, 18,
27]. Following the initial LoRa-based work in [37, 38,
39, 40, 41], this paper will take a step further to investi-
gate the key generation performance when there are large-
scale fading and small-scale fading effects. In particular,
its security against a large-scale fading resulted colluding-
eavesdropping attack will be examined.

3. A New Large-Scale Fading Resulted Colluding-
Eavesdropping Attack

Two legitimate users, namely Alice and Bob, wish to
generate the same key from the randomness of their shared
wireless channel. This will require channel probing, which
involves bidirectional wireless transmissions between Al-
ice and Bob. They will alternately transmit probing sig-
nals. Thanks to the channel reciprocity property, when
the probing delay is much smaller than the coherence time,
hAB = hBA will hold, where huv is the channel effect be-
tween users u and v. Hence, both users will obtain highly
correlated received signal characteristics that can be ex-
ploited to generate secret keys. We used the received signal
strength indicator (RSSI), which is readily accessible for
LPWAN devices. Far-field communications are assumed
when Alice and Bob’s distance d is much larger than the
carrier wavelength λ. LPWAN technologies like LoRa and
NB-IoT are designed for long-range communications; thus,
it is reasonable to assume d� λ.

When Alice and Bob are carrying out channel probing,
a group of eavesdroppers can also receive all the transmis-
sions due to the broadcast nature of wireless communica-
tions. This work considers such an attack as a colluding-
eavesdropping attack, which is portrayed in Fig. 1. We

Fig. 1. A key generation setup with the large-scale fading resulted
colluding-eavesdropping attack; four eavesdroppers are used for il-
lustration.

consider M eavesdroppers uniformly and circularly dis-
tributed around Alice at a distance of r, where r is larger
than a half-carrier-wavelength. The antenna gains of Al-
ice, Bob, and the eavesdroppers are identical. The eaves-
droppers passively receive the probing signals from Bob
and collude to deduce the received power at Alice. For the
m-th Eve, her distance to Bob can be given as

dB−Em
=

√
d2 + r2 − 2dr cos

(
α+

2π(m− 1)

M

)
(3)

where α is the angle between the path of Alice and Bob
and the path of Alice and the first eavesdropper. If the
power resulted from path loss at the m-th Eve is PEm

r,lin,
the average power can be calculated as

P
E

r,lin =
1

M

M∑
m=1

PEm

r,lin

=
1

M

M∑
m=1

Pt,linGlin

(
d0

dB−Em

)γ
(4)

As eavesdroppers aim to obtain accurate observations,
they are usually not far from legitimate users, i.e., r is
small. Hence, d � r reasonably holds in LPWAN, and
then dB−Em ≈ d. We have

P
E

r,lin ≈ Pt,linGlin
(d0
d

)γ
(5)

The averaged received power affected by both the path loss
and shadow fading in the logarithm scale can be given as

Pr
E ≈ Pt +G− 10γ log10

(
d

d0

)
− χE (6)

where χE denotes the average shadowing.
Regarding the probing signals sent from Bob to Al-

ice, the RSSI of Alice is denoted by PAr and follows the
same form as (2). According to (2) and (6), the difference
between the estimated power via colluding-eavesdropping
and the power resulted from large-scale fading at Alice can
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Fig. 2. Outdoor experimental environment and the trajectory of
Bob.

Table 1. LoRa Configuration

Carrier
Frequency

Bandwidth
Transmission

Power
Spreading

Factor
Coding
Rate

915 MHz 500 kHz 17 dBm 7 4/5

be given as

Pr
E − PAr = χ− χE (7)

The large-scale fading estimation is also affected by
small-scale fading. According to the central limit theorem,
a large M can minimize the small-scale fading introduced
uncertainty. In practice, a large number of eavesdrop-
pers can be discovered by legitimate users easily. Hence,
we used a small number, only four eavesdroppers, in our
experiments to demonstrate the colluding-eavesdropping
attack, with reduced estimation accuracy resulted from
small-scale fading.

4. Experimental Setup and Analytical Metrics

4.1. Experimental Setup

We used six Arduino Nano controlled LoRa SX1276
modules in our experiments, to act as Alice, Bob, and four
eavesdroppers, respectively. Each module was equipped
with an omnidirectional antenna. The LoRa configuration
specifications are given in Table 1.

These six LoRa modules are placed as shown in Fig. 1.
We considered four different scenarios, as detailed in Ta-
ble 2. There was no large-scale fading variation in sce-
narios (a) and (b) as both Alice and Bob were static. In
contrast, there was large-scale fading variation in scenarios
(c) and (d) because Bob was moving.

Extensive experiments were conducted in both indoor
and outdoor environments.

Table 2. Experimental Channel Summary

Scenario Channel Variation
(a) Static channel Noise

(b) Moving scatterers
Small-scale fading

and noise

(c) Moving Bob
Large-scale fading,
small-scale fading,

and noise

(d)
Moving Bob

and moving scatterers

Large-scale fading,
small-scale fading,

and noise

1. In the indoor environment, all the six devices were
placed on the same floor of an apartment building,
and there was no line-of-sight from Bob to Alice and
the eavesdroppers. The indoor experiments covered
all four scenarios, and we used (Ia), (Ib), (Ic), and
(Id) to represent them, hence to ease the description
after.

2. The setup of the outdoor environment is shown in
Fig. 2. Alice and eavesdroppers were placed on a
deck in the middle of a pedestrian bridge. Direct
line-of-sight paths were present most of the time be-
tween Bob and Alice as well as between Bob and
eavesdroppers. The outdoor experiments involved
scenarios (b) and (d) as we were not able to con-
trol the behavior of scatterers, e.g., pedestrian. We
accordingly used (Ob) and (Od) to represent the out-
door scenarios.

For scenarios (Ic), (Id), and (Od), Bob walked ran-
domly with an average speed of 1 m/s to introduce large-
scale fading variation. We varied the distance r to 2λ, 3λ,
4λ, and 5λ for each scenario. The wavelength λ is approx-
imately 0.33 m when the carrier frequency is 915 MHz.

For each experiment, in the n-th probing, Alice first
transmits a packet with 20 ms airtime to Bob who will
measure the RSSI, PBr (n); Bob will then transmit a packet
with 20 ms airtime to Alice who will measure the RSSI,
PAr (n). Fixed payloads and data rates maintain the air-
time; the channel coherence time in the experiments is
longer than 100 ms. The channel reciprocity can thus be
ensured. Meanwhile, the m-th Eve will receive the packet
from Bob and measure the RSSI, PEm

r (n). Alice and Bob
will keep the above channel probing process until they col-
lect sufficient samples. For the simplification of notation,
we use Xu(n) = Pur (n) to denote a measured RSSI sample
at the party u in the n-th probing, where u = {A,B,Em}
denotes Alice, Bob, and the m-th eavesdropper, respec-
tively. XEc

(n) denotes the RSSI sample estimated by the

colluding-eavesdropping attack, i.e., Pr
E

. Alice and Bob
carried out channel probing for more than three minutes
and collected at least N = 10,000 RSSI samples.

4.2. Analytical Metrics

We used cross-correlation, secret key capacity, and in-
tact key information ratio as the analytical metrics.
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Fig. 3. RSSI sequences in indoor experiments (4000 samples in each sequence are selected for demonstration). (a) Static scenario (Ia). (b)
Channel with moving scatterers (Ib). (c) Channel with moving Bob (Ic). (d) Channel with moving Bob and moving scatterers (Id).

4.2.1. Cross-Correlation

The Pearson correlation coefficient for the RSSI se-
quences measured by Alice and Bob and the m-th eaves-
dropper is defined as

ρu,v =

∑N
n=1[(Xu(n)− µu)(Xv(n)− µv)]√∑N

n=1(Xu(n)− µu)2
√∑N

n=1(Xv(n)− µv)2

(8)

where u = A and v = B,Ec, Em, m = 1, 2, 3, 4. When
eavesdroppers obtain correlated RSSI sequences, they can
develop an accurate secret key inference.

4.2.2. Secret Key Capacity

The secret key capacity describes the maximum key
generation rate [13, 43, 44]. It can be expressed as

CK = min[I(XA;XB), I(XA;XB |XEm
), I(XA;XB |XEc

)]
(9)

where I(X;Y ) denotes the mutual information between X
and Y and can be given as

I(X;Y ) = H(X)−H(X|Y ) (10)

= −
∑
x∈X

p(x) log2 p(x) +
∑
y∈Y

∑
x∈X

p(x, y) log2 p(x|y)

(11)

p[Xu(n)] was calculated according to the observing fre-
quency of Xu(n). Before calculating the mutual informa-
tion, we normalized RSSI samples to remove DC offset.

In our analysis, CK is upper-bounded by the minimum
among the mutual information of Alice and Bob, the con-
ditional mutual information given by an eavesdropper, and
the conditional mutual information given by the colluding-
eavesdropping attack. A higher CK stands for more key
bits can be generated from an RSSI sequence.

4.2.3. Intact Key Information Ratio

The intact key information ratio is defined as

RCK
=

CK
I(XA;XB)

(12)
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The ratio determines the proportion of an RSSI sequence
that is not leaked. RCK

closes to one is desirable as it
indicates eavesdroppers have the least information related
to key generation.

5. Attack Results and Discussion

Fig. 3 shows the RSSI sequences measured by Alice and
Bob in the scenarios (Ia), (Ib), (Ic), and (Id) of the indoor
experiments. As can be observed from Fig. 3(a), there was
no noticeable random variation at Alice and Bob, which
would not be suitable for key generation. Comparing the
Fig. 3(b) with Fig. 3(c) and Fig. 3(d), large-scale fading
brought significant RSSI changes. This section firstly in-
vestigated the impact of large-scale fading variation on key
generation through cross-correlation and secret key capac-
ity analysis. Then, we investigated the effect of signal
pre-processing on the intact key information ratio.

5.1. Cross-Correlation Analysis

Fig. 4 and Fig. 5 show the cross-correlation analysis
results for indoor and outdoor experiments, respectively.
The red bars are obtained by calculating the highest Pear-
son correlation coefficient among the four eavesdroppers
and Alice. Hence, it represents the optimal capability of
secret key inference developed by a single eavesdropper.
The black bar is obtained by calculating the Pearson corre-
lation coefficient between the colluding-eavesdropping at-
tack and Alice.

In the static scenario (Ia), |ρA,B | is very small, which
echos the RSSI sequence shown in Fig. 3(a). This is be-
cause the signal variation is introduced by hardware ther-
mal noise and/or interference, which are not correlated.
Key generation in static scenarios will thus not be feasi-
ble.

One observation from the figures is that the colluding-
eavesdropping attack in the scenarios (Ic) and (Id) pro-
duces higher coefficients than any single eavesdropper. Bob
was stationary in the scenarios (Ia) and (Ib), the colluding-
eavesdropping attack does not outperform a single eaves-
dropper. Bob was mobile in the scenarios (Ic) and (Id), the
colluding-eavesdropping attack obtains more channel in-
formation generated by large-scale fading to improve chan-
nel correlation with Alice. On average, the colluding-
eavesdropping attack obtained an additional 15% channel
information when Bob was mobile. In all the dynamic sce-
narios, the cross-correlation coefficients between Alice and
Bob are much higher.

5.2. Secret Key Capacity Analysis

Table 3 and Table 4 present the secret key capacity
analysis results for indoor and outdoor experiments, re-
spectively. The I(XA;XB) demonstrates the maximum
obtainable CK when there was no eavesdropping. The el-
ements in red color denote the true secret key capacity
when eavesdropping occurred.

Observing Table 3, the results can be summarized into
three categories.

1. Scenario (Ia). The scenario produces the lowest value
of I(XA;XB) because only noise was available in
the static scenario. Unfortunately, hardware ther-
mal noise is independent at each device, and there is
no correlation between two devices; hence, it is not
suitable for key generation.

2. Scenario (Ib). There was no large-scale fading vari-
ation, hence the colluding-eavesdropping attack has
no chance to reduce the secret key capacity. The
resulted I(XA;XB |XEc) is not the smallest value.

3. Scenarios (Ic) and (Id). Large-scale fading changed
in the scenarios (Ic) and (Id), and the large-scale
fading estimation perceived these changes that intro-
duce randomness to the key generation between Al-
ice and Bob. Therefore, the colluding-eavesdropping
attack outperformed any single eavesdropper. This
is corroborated from the table as the I(XA;XB |XEc

)
is always the smallest for these two scenarios.

The same pattern can be observed from Table 4 corre-
sponding to outdoor experiments.

5.3. Intact Key Information Ratio Analysis

In the indoor experiments, an average of 92.1% RSSI
information was never leaked in the scenario (Ib), 79.1%
in the scenario (Ic), and 73.3% in the scenario (Id). In the
outdoor experiments, the value was 80.1% in the scenario
(Ob) and 72.0% in the scenario (Od). For RSSI sequences
with the same number of samples, the sequences generated
in large-scale fading varying channels leaked more samples
to the colluding-eavesdropping attack, hence fewer secret
keys were generated. In practice, key generation users can
develop additional channel probing to compensate for the
secret key loss, but this will also increase the key genera-
tion cost.

Signal pre-processing is commonly employed in the key
generation to improve channel reciprocity [45, 46, 47, 48,
49]. Most research claim that their approaches are effec-
tive in noise cancellation and improving cross-correlation
of channel measurements. They help to reduce the key
generation cost, which is desirable for resource-constrained
IoT devices. However, applying noise cancellation in large-
scale fading-based key generation may reduce the intact
key information ratio. In other words, we reveal that there
is a trade-off between the benefit brought by the noise can-
cellation and the security deduction of the key generation.
The detailed analysis is shown as follows.

A moving window average (MWA) technique is investi-
gated as it is practical and convenient to reduce noise. The
MWA window sizes include 0, 5, 15, 25, 35, and 45, where
0 stands for no MWA processing. After applying MWA on
the experimental RSSI sequences, we calculated the new
intact key information ratio using (12). Table 5 and Ta-
ble 6 show the results for indoor and outdoor experiments,
respectively.
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(a) (b)

(c) (d)

Fig. 4. Cross-correlation results in indoor experiments. |ρA,B | denotes the absolute Pearson correlation coefficient between Alice and Bob.
max(|ρA,Em |) denotes the maximum coefficient between Alice and eavesdroppers. |ρA,Ec | denotes the coefficient between Alice and the
colluding-eavesdropping attack. (a) Static scenario (Ia). (b) Channel with moving scatterers (Ib). (c) Channel with moving Bob (Ic). (d)
Channel with moving Bob and moving scatterers (Id).

(a) (b)

Fig. 5. Cross-correlation results in outdoor experiments. (a) Channel with moving scatterers (Ob). (b) Channel with moving Bob and
moving scatterers (Od).

As can be observed from Table 5, in the scenarios (Ib),
(Ic), and (Id), the intact key information ratio reduces as
the MWA window size increases. The reduction is signif-
icant in the large-scale fading varying scenarios, e.g., (Ic)
and (Id). The average reduction is 2.32% without large-
scale fading variation and 9.77% with large-scale fading

variation. From Table 6, the average reduction is 2.86%
for large-scale fading invariant scenarios and 11.52% for
varying large-scale fading scenarios in the outdoor experi-
ments.

We deduce that the reason for the more significant re-
duction is that the MWA reduces noise and small-scale fad-
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Table 3. Secret Key Capacity in Indoor Experiments

Scenario r I(XA;XB) I(XA;XB |XE1
) I(XA;XB |XE2

) I(XA;XB |XE3
) I(XA;XB |XE4

) I(XA;XB |XEc )

(Ia)

5λ 0.0293 0.0297 0.0237 0.0289 0.0282 0.0273
4λ 0.0225 0.0081 0.0187 0.0223 0.0126 0.0233
3λ 0.0110 0.0084 0.0089 0.0064 0.0092 0.0095
2λ 0.0160 0.0129 0.0151 0.0143 0.0111 0.0127

(Ib)

5λ 1.2830 1.2024 1.2310 1.2706 1.2634 1.2543
4λ 1.0166 0.9954 0.9647 0.9967 0.9596 0.9624
3λ 0.9167 0.9046 0.9019 0.8439 0.8437 0.8487
2λ 0.5888 0.5475 0.4988 0.5233 0.5873 0.5241

(Ic)

5λ 0.8479 0.7487 0.7396 0.7474 0.7446 0.6714
4λ 1.0165 0.8802 0.8988 0.8573 0.9376 0.8028
3λ 0.7744 0.6776 0.7080 0.6731 0.6685 0.6014
2λ 1.1411 1.0241 1.0024 1.0216 1.0246 0.9156

(Id)

5λ 0.7600 0.6784 0.6860 0.6777 0.6638 0.5723
4λ 1.0533 0.9055 0.9239 0.9512 0.9850 0.8601
3λ 0.7013 0.5619 0.5256 0.5542 0.5695 0.4366
2λ 1.3026 1.0578 1.0565 1.1360 1.0934 0.9293

Table 4. Secret Key Capacity in Outdoor Experiments

Scenario r I(XA;XB) I(XA;XB |XE1 ) I(XA;XB |XE2 ) I(XA;XB |XE3 ) I(XA;XB |XE4 ) I(XA;XB |XEc )

(Ob)

5λ 0.7933 0.7657 0.6987 0.7684 0.7506 0.7665
4λ 0.7864 0.5621 0.6858 0.7509 0.7566 0.6711
3λ 1.0384 1.0133 0.8552 1.0295 0.9181 1.0284
2λ 0.9759 0.9315 0.8663 0.7616 0.9324 0.8034

(Od)

5λ 0.9215 0.8117 0.7628 0.7474 0.7302 0.6365
4λ 0.8361 0.7123 0.6647 0.6741 0.7556 0.5786
3λ 1.0646 0.9414 0.9027 0.8428 0.9591 0.7822
2λ 1.1463 0.9958 0.9758 0.9736 1.0191 0.8612

Table 5. Intact Key Information Ratio Analysis Results of an MWA Application in Indoor Experiments

Scenario r W.Size(0) W.Size(5) W.Size(15) W.Size(25) W.Size(35) W.Size(45) ∆[W.Size(45), (0)]

(Ia)

5λ 80.88% 76.89% 77.21% 75.35% 72.39% 71.97% −8.91%
4λ 36.17% 61.09% 55.47% 49.35% 40.72% 47.21% +11.04%
3λ 58.75% 77.94% 91.07% 51.98% 74.93% 80.76% +22.01%
2λ 69.36% 76.78% 84.35% 83.91% 83.85% 82.91% +13.55%

(Ib)

5λ 93.72% 93.85% 93.62% 92.21% 91.13% 90.64% −3.08%
4λ 94.39% 94.61% 94.12% 93.10% 92.45% 92.13% −2.26%
3λ 92.04% 91.65% 91.36% 89.88% 89.49% 88.60% −3.44%
2λ 85.95% 85.74% 85.05% 85.21% 85.60% 85.46% −0.49%

(Ic)

5λ 79.18% 79.15% 77.69% 74.60% 71.27% 68.75% −10.43%
4λ 78.98% 78.37% 75.91% 74.21% 71.58% 69.34% −9.64%
3λ 77.66% 77.68% 76.80% 74.10% 71.99% 70.49% −7.17%
2λ 80.24% 79.46% 76.62% 73.15% 71.10% 69.76% −10.48%

(Id)

5λ 75.30% 74.97% 72.76% 69.86% 66.34% 64.67% −10.63%
4λ 81.66% 80.69% 79.69% 77.21% 75.02% 74.42% −7.24%
3λ 62.25% 61.52% 62.07% 58.43% 53.72% 50.05% −12.20%
2λ 71.34% 71.09% 67.87% 65.20% 63.39% 61.00% −10.34%

Table 6. Intact Key Information Ratio Analysis Results of an MWA Application in Outdoor Experiments

Scenario r W.Size(0) W.Size(5) W.Size(15) W.Size(25) W.Size(35) W.Size(45) ∆[W.Size(45), (0)]

(Ob)

5λ 88.08% 88.01% 86.20% 86.34% 85.57% 86.15% −1.93%
4λ 71.47% 74.60% 74.79% 72.06% 70.13% 70.06% −1.41%
3λ 80.43% 81.21% 80.79% 80.16% 78.66% 77.09% −3.34%
2λ 78.04% 78.43% 76.99% 76.06% 73.61% 73.30% −4.74%

(Od)

5λ 69.07% 68.80% 67.34% 63.89% 62.01% 62.10% −6.97%
4λ 69.20% 68.56% 65.47% 62.60% 59.29% 57.47% −11.73%
3λ 73.47% 73.15% 69.04% 65.37% 62.97% 60.73% −12.74%
2λ 75.12% 74.05% 70.41% 65.73% 62.87% 60.48% −14.64%

ing at the same time. In the scenarios (Ic), (Id), and (Od),
the small-scale fading reduction makes large-scale fading
variation contribute to a higher portion of the channel in-
formation shared between key generation users. Hence,

the colluding-eavesdropping attack can take advantage of
the large-scale fading estimation to obtain more users’ mu-
tual information. Therefore, we argue that noise canceling-
based signal pre-processing helps reduce the channel prob-

9



ing cost may not be optimal for the key generation chan-
nels with varying large-scale fading and small-scale fading
effects.

6. A Conditional Entropy and High-Pass Filtering
Countermeasure

Small-scale fading is more random than large-scale fad-
ing because it can be affected by slight movements. Hence,
the key generation security can be improved against the
colluding-eavesdropping attack if we can mitigate the large-
scale fading and mainly leverage small-scale fading.

6.1. Countermeasure

Large-scale fading varies in a much slower manner com-
pared to small-scale fading variation. This inspires us to
devise a high-pass filtering approach to minimize the im-
pact of large-scale fading variation. Discrete cosine trans-
form (DCT) is commonly used in signal processing nowa-
days, and DCT-II is regarded as the most common DCT
variant [50], which is adopted in this paper. To the best
knowledge of the authors, this is the first key generation
study regarding filtering low-frequency components, while
the other research focuses on filtering high-frequency com-
ponents [45, 49, 51, 52].

Identifying large-scale fading associated low-frequency
components is of importance as excessive filtering leads
to a significant secret key capacity drop. Therefore, we
designed an algorithm exploiting conditional entropy to
estimate the optimal filter size, as shown in Algorithm 1.
Without loss of generality, we assume Bob will be respon-
sible for the estimation and will send the estimated filter
size to Alice. Both users will then carry out the DCT-
based filtering.

Specifically, Bob will first transform his RSSI sequence
to a sum of cosine components at different frequencies us-
ing DCT-II expression (line 1), given as

Yu(z) =

N∑
n=1

Xu(n) cos

[
π

N

(
n+

1

2

)
z

]
, z = 0, ..., N − 1

(13)

Bob then sets YB(z), z = 1, 2, ..., Z, as zero to cumula-
tively remove the low-frequency components (line 3). Sub-
sequently, an inverse discrete cosine transform (IDCT) is
used to transform the new YB back to a filtered RSSI se-
quence, Xf

B,z (line 4). After that, Bob will calculate the

conditional entropy H(XB |Xf
B,z) (line 5), which increases

with filtered components. The increasing rate, denoted by
∇H(XB |Xf

B,z), is not constant because large-scale fading
changes more significantly than small-scale fading in mag-
nitude. Bob will find the position of the largest increasing
rate. The determined optimal filter size denoted by z0,
is the largest rate position added by one (line 6), as the
increasing rate is calculated on a midpoint. Bob will send
z0 to Alice (line 7). Finally, Alice and Bob can obtain the

filtered sequences, Xf
A,z0

, Xf
B,z0

, respectively (line 8).

Algorithm 1: Large-Scale Fading Filtering Al-
gorithm.

Input: XA,XB %RSSI sequences of Alice and Bob
Input: Z % Maximum filter size

Output: Xf
A,z0

,Xf
B,z0

%Filtered RSSI sequences

1 YB = DCT (XB)
2 for z ← 1 to Z do
3 YB(z) = 0

4 Xf
B,z = IDCT (YB)

5 Bob calculates H(XB |Xf
B,z)

6 z0 = argmax
z

∇H(XB |Xf
B,z) + 1

7 Bob sends z0 to Alice
8 Alice and Bob calculate large-scale fading filtered

sequences, Xf
A,z0

and Xf
B,z0

, respectively.

6.2. Filtering Effect

We use (9) and (12) to analyze secret key capacity and
intact key information ratio for filtered RSSI sequences,
which are denoted by CfK and RfCK

, respectively. We con-
sidered two cases.

1. A worst-case scenario assumes that eavesdroppers
know all the filtered components and develop the
same filtering process as Alice and Bob.

2. A general case assumes that eavesdroppers have no
knowledge about the filtered components.

Fig. 6 shows the high-pass filtering result for an out-
door large-scale fading varying channel. The resulted se-
cret key capacities in both general and worst cases are
significantly improved, with the maximum improvement
occurs after filtering the first nine components. When
more components are filtered, the secret key capacities
start to drop. The secret key capacity improvement is
contributed by the elimination of large-scale fading vari-
ation, which reduces the channel correlation between the
colluding-eavesdropping attack and legitimate users. Af-
ter filtering the first seventy components, the secret key
capacities go below the original value. This is because the
high-pass filter starts to affect small-scale fading, and the
entire entropy of the RSSI sequences is reduced. Fig. 7
shows the high-pass filtering result for outdoor channels
without large-scale fading variation, i.e., scenario (Ob). As
there was no large-scale fading, the resulted secret key ca-
pacity is almost always smaller than the original capacity.
This is caused by entropy reduction as filtered components
are associated with small-scale fading.

As can be observed in Fig. 6, an optimal secret key
capacity can be achieved by filtering the first z0 = 9 com-
ponents. This is obtained by knowing all RSSI sequences
of Alice, Bob, and eavesdroppers. However, this cannot
be done in practice as Alice and Bob are not allowed to
exchange their measured RSSI sequences. Furthermore,
they do not have access to the RSSI sequences of eaves-
droppers. Therefore, we carried out Algorithm 1 to let Bob
develop large-scale fading filtering base on his RSSI obser-
vations. Figs. 8(a), (b), and (c) show the estimated z0 in
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Fig. 6. Secret key capacity and intact key information ratio after
filtering low-frequency components of the RSSI sequences measured
in the scenario (Od) with r = 3λ.

Fig. 7. Average secret key capacity and intact key information
ratio after filtering low-frequency components of the RSSI sequences
measured in the scenario (Ob).

the scenario (Od) when r = 5λ, r = 4λ, and r = 2λ. The
estimated z0 are 8, 7, and 7, respectively. All the resulted
secret key capacities from the z0 are higher than the orig-
inal secret key capacities. Although Alice and Bob choose
z0 without knowing eavesdroppers’ information, they can
achieve a secret key capacity closing to the optimal value.

6.3. Key Disagreement Rate and Randomness

We implemented a mean-based quantizer to convert
RSSI sequences into key bits. A mean value-based quan-

Table 7. KDR Before and After Large-Scale Fading Filtering

Scenario r
KDRA,B KDRA,Ec

Before After Before After

(Od)

5λ 0.1026 0.1359 0.2456 0.4798
4λ 0.1055 0.1424 0.2581 0.4870
3λ 0.0798 0.1078 0.2563 0.4891
2λ 0.0708 0.1056 0.2524 0.4943

tizer is mathematically given as follows

Ku(i) =

{
1, Xu(n) > µu

0, Xu(n) ≤ µu
(14)

where µu = E{Xu} is the mean value. Before quan-
tization, we downsampled experimental RSSI sequences
to generate key bits with length, lk. The RSSI measure-
ments were dropped probabilistically to maintain a high
bit entropy under the mean value-based quantizer. A
multi-region quantizer can be deployed without downsam-
pling the RSSI sequences while maintaining a high bit en-
tropy [53, 54].

Key disagreement rate (KDR) and randomness are com-
mon evaluation metrics in the key generation area [8].
KDR is defined as the ratio between the numbers of dif-
ferent key bits and total key bits, expressed as

KDRu,v =

∑lk
n=1 |Ku(n)−Kv(n)|

lk
(15)

The values of KDR should close to 0 when keys are associ-
ated with legitimate users and close to 0.5 when associated
with eavesdroppers. The tolerable KDR is determined by
the following information reconciliation stage, which will
correct key bit mismatches using error-correcting codes.
The correcting capacity of information reconciliation de-
pends on the adopted error correction code. A correction
capacity of 0.2 is used in this paper [39].

Table 7 shows the KDR results, where eavesdroppers
developed the same large-scale fading filtering process as
Alice and Bob. All KDR increased as large-scale fad-
ing was filtered. However, the KDR associated with the
colluding-eavesdropping attack increased more significantly
than those of legitimate users. The KDR between legit-
imate users is all within 0.2, hence they can correct the
mismatches. On the other hand, the KDR associated with
eavesdroppers is close to 0.5, hence comparable to a ran-
dom guess.

We used the National Institute of Standard and Tech-
nology (NIST) randomness test suite to evaluate the ran-
domness of key bits generated from filtered RSSI sequences.
Each test returns a p-value, and the test passes if the p-
value is larger than 0.01. We run eight widely used NIST
tests in physical layer key generation systems [18, 20, 32,
39, 53, 55]. The randomness test results of the key bits
generated by Bob after large-scale fading filtering is shown
in Table 8, and all eight tests passed.

Overall, as a security recommendation and an effec-
tive countermeasure against our revealed new attack, a
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(a) (b) (c)

Fig. 8. The optimal filter size, z0, estimated with Bob’s RSSI measurements. The star denotes the secret key capacity after implementing
the corresponding optimal filter in the scenario (Od), where the red star denotes the general case, and the pink star denotes the worst case.
(a) r = 5λ. (b) r = 4λ. (c) r = 2λ.

Table 8. Randomness Test Results of Large-Scale Fading Filtered
Key Bits Generated by Bob

Scenario (Od)
r 5λ 4λ 3λ 2λ

Sequence Length 413 431 441 396
Frequency 0.146 0.104 0.134 0.204

Block Frequency 0.219 0.265 0.245 0.362
Runs 0.057 0.105 0.054 0.547

Longest Run of 1s 0.035 0.138 0.107 0.461
FFT 0.359 0.819 0.731 0.791

Serial
0.499
0.079

0.499
0.499

0.841
0.922

0.499
0.499

Appro. Entropy 0.076 0.170 0.390 0.386
Cum. Sums (rev) 0.157 0.122 0.122 0.408
Cum. Sums (fwd) 0.149 0.140 0.160 0.167

high-pass filter can be implemented with Algorithm 1 to
effectively minimize the secret key information leak caused
by large-scale fading variation in practice.

7. Conclusion

This paper investigated physical layer key generation
security when both large-scale and small-scale fading are
presented. In particular, we constructed a long-range com-
munications key generation testbed and carried out exten-
sive experiments in indoor and outdoor environments. A
new attack that perceives large-scale fading effects was re-
vealed and formalized, using only four eavesdroppers cir-
cularly around a legitimate user. We demonstrated that
the RSSI sequences generated in a large-scale fading vary-
ing channel are more predictable than no large-scale fading
variation through the cross-correlation and secret key ca-
pacity analysis. Therefore, a higher portion of secret keys
can be compromised under the revealed attack. Further-
more, through the intact key information ratio analysis, we
found that the revealed attack’s capability can be boosted

by signal pre-processing techniques designed initially to
improve channel probing reciprocity for generating highly
agreed key bits. Finally, we proposed a conditional entropy
and high-pass filtering countermeasure for the revealed at-
tack as the impact of large-scale fading variation persists
for a long duration. In this context, we designed an al-
gorithm to allow key generation users to adaptively esti-
mate the large-scale fading associated low-frequency com-
ponents based on their channel observations. The results
demonstrated that the countermeasure can significantly
improve the users’ secret key capacity and increase eaves-
droppers’ KDR almost twice under the large-scale fading
resulted key generation attack. The NIST randomness test
suite confirmed that the randomness of the filtered key se-
quences is suitable for cryptographic applications.
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Design of an efficient OFDMA-based multi-user key generation
protocol, IEEE Trans. Veh. Technol. 68 (9) (2019) 8842–8852.
doi:10.1109/TVT.2019.2929362.

[20] H. Liu, Y. Wang, J. Yang, Y. Chen, Fast and practical secret
key extraction by exploiting channel response, in: Proc. 32nd
IEEE Int. Conf. Comput. Commun. (INFOCOM), Turin, Italy,
2013, pp. 3048–3056. doi:10.1109/INFCOM.2013.6567117.

[21] J. W. Wallace, R. K. Sharma, Automatic secret keys from
reciprocal MIMO wireless channels: Measurement and analy-
sis, IEEE Trans. Inf. Forensics Security 5 (3) (2010) 381–392.
doi:10.1109/TIFS.2010.2052253.

[22] Z. Li, H. Wang, H. Fang, Group-based cooperation on sym-
metric key generation for wireless body area networks, IEEE
Internet Things J. 4 (6) (2017) 1955–1963. doi:10.1109/JIOT.

2017.2761700.
[23] N. Aldaghri, H. Mahdavifar, Physical layer secret key generation

in static environments, IEEE Trans. Inf. Forensics Security 15
(2020) 2692–2705. doi:10.1109/TIFS.2020.2974621.

[24] M. F. Haroun, T. A. Gulliver, Secret key generation using
chaotic signals over frequency selective fading channels, IEEE
Trans. Inf. Forensics Security 10 (8) (2015) 1764–1775. doi:

10.1109/TIFS.2015.2428211.
[25] A. Goldsmith, Wireless Communications, Cambridge University

Press, 2005.
[26] M. Edman, A. Kiayias, Q. Tang, B. Yener, On the security of

key extraction from measuring physical quantities, IEEE Trans.
Inf. Forensics Security 11 (8) (2016) 1796–1806. doi:10.1109/

TIFS.2016.2543687.
[27] J. Zhang, R. Woods, T. Q. Duong, A. Marshall, Y. Ding,

Y. Huang, Q. Xu, Experimental study on key generation for
physical layer security in wireless communications, IEEE Ac-
cess 4 (2016) 4464–4477. doi:10.1109/ACCESS.2016.2604618.

[28] C. Zenger, H. Vogt, J. Zimmer, A. Sezgin, C. Paar, The passive
eavesdropper affects my channel: Secret-key rates under real-
world conditions, in: Proc. IEEE Globecom TCPLS Workshops,
Washington DC, USA, 2016, pp. 1–6. doi:10.1109/GLOCOMW.

2016.7849064.
[29] C. D. T. Thai, J. Lee, T. Q. Quek, Physical-layer secret key

generation with colluding untrusted relays, IEEE Trans. Wire-
less Commun. 15 (2) (2016) 1517–1530. doi:10.1109/TWC.2015.
2491935.

[30] M. Waqas, M. Ahmed, Y. Li, D. Jin, S. Chen, Social-aware se-
cret key generation for secure device-to-device communication
via trusted and non-trusted relays, IEEE Trans. Wireless Com-
mun. 17 (6) (2018) 3918–3930. doi:10.1109/TWC.2018.2817607.

[31] M. Waqas, M. Ahmed, J. Zhang, Y. Li, Confidential infor-
mation ensurance through physical layer security in device-
to-device communication, in: Proc. IEEE Global Commun.
Conf. (GLOBECOM), Abu Dhabi, UAE, 2018, pp. 1–7. doi:

10.1109/GLOCOM.2018.8647343.
[32] S. Mathur, W. Trappe, N. Mandayam, C. Ye, A. Reznik, Radio-

telepathy: Extracting a secret key from an unauthenticated
wireless channel, in: Proc. 14th Annu. Int. Conf. Mobile Com-
puting and Networking (MobiCom), San Francisco, California,
USA, 2008, pp. 128–139. doi:10.1145/1409944.1409960.

[33] T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka,
Wireless secret key generation exploiting reactance-domain
scalar response of multipath fading channels, IEEE Trans. An-
tennas Propag. 53 (11) (2005) 3776–3784. doi:10.1109/TAP.

2005.858853.
[34] S. N. Premnath, P. L. Gowda, S. K. Kasera, N. Patwari,

R. Ricci, Secret key extraction using Bluetooth wireless signal
strength measurements, in: Proc. 11th Annu. IEEE Int. Conf.
Sensing, Commun., and Networking (SECON), Singapore, 2014,
pp. 293–301. doi:10.1109/SAHCN.2014.6990365.

[35] K. Mekki, E. Bajic, F. Chaxel, F. Meyer, A comparative study
of LPWAN technologies for large-scale IoT deployment, ICT
Express 5 (1) (2019) 1–7. doi:10.1016/J.ICTE.2017.12.005.

[36] B. Miles, E.-B. Bourennane, S. Boucherkha, S. Chikhi, A
study of LoRaWAN protocol performance for IoT applications
in smart agriculture, Comput. Commun. 164 (2020) 148–157.
doi:10.1016/j.comcom.2020.10.009.

[37] H. Ruotsalainen, S. Grebeniuk, Towards wireless secret key
agreement with LoRa physical layer, in: Proc. ACM ARES,
no. 23, Hamburg, Germany, 2018, pp. 1–6. doi:10.1145/

3230833.3232803.
[38] W. Xu, S. Jha, W. Hu, Exploring the feasibility of physical layer

key generation for LoRaWAN, in: Proc. IEEE Trustcom, New
York, NY, USA, 2018, pp. 231–236. doi:10.1109/TRUSTCOM/

BIGDATASE.2018.00044.
[39] J. Zhang, A. Marshall, L. Hanzo, Channel-envelope differencing

eliminates secret key correlation: LoRa-based key generation
in low power wide area networks, IEEE Trans. Veh. Technol.
67 (12) (2018) 12462–12466. doi:10.1109/TVT.2018.2877201.

[40] W. Xu, S. Jha, W. Hu, LoRa-key: Secure key generation system
for LoRa-based network, IEEE Internet Things J. 6 (4) (2019)
6404–6416. doi:10.1109/JIOT.2018.2888553.

[41] H. Ruotsalainen, J. Zhang, S. Grebeniuk, Experimental inves-
tigation on wireless key generation for low power wide area
networks, IEEE Internet Things J. 7 (3) (2020) 1745–1755.
doi:10.1109/JIOT.2019.2946919.

[42] J. Zhang, M. Ding, G. Li, A. Marshall, Key generation based
on large scale fading, IEEE Trans. Veh. Technol. 68 (8) (2019)
8222–8226. doi:10.1109/TVT.2019.2922443.

13

http://dx.doi.org/10.1109/MCOM.2017.1600522CM
http://dx.doi.org/10.1109/ACCESS.2016.2521718
http://dx.doi.org/10.1016/J.COSE.2018.08.001
http://dx.doi.org/10.1016/J.COSE.2018.08.001
http://dx.doi.org/10.1016/J.COSE.2018.06.009
http://dx.doi.org/10.1109/MWC.2019.1800455
http://dx.doi.org/10.1109/18.243431
http://dx.doi.org/10.1109/TIFS.2010.2043187
http://dx.doi.org/10.1016/J.COMNET.2016.06.013
http://dx.doi.org/10.1109/TIFS.2012.2206385
http://dx.doi.org/10.1109/TMC.2012.144
http://dx.doi.org/10.1109/TMC.2012.144
http://dx.doi.org/10.1109/JIOT.2017.2764384
http://dx.doi.org/10.1109/TCOMM.2016.2552165
http://dx.doi.org/10.1109/TVT.2019.2929362
http://dx.doi.org/10.1109/INFCOM.2013.6567117
http://dx.doi.org/10.1109/TIFS.2010.2052253
http://dx.doi.org/10.1109/JIOT.2017.2761700
http://dx.doi.org/10.1109/JIOT.2017.2761700
http://dx.doi.org/10.1109/TIFS.2020.2974621
http://dx.doi.org/10.1109/TIFS.2015.2428211
http://dx.doi.org/10.1109/TIFS.2015.2428211
http://dx.doi.org/10.1109/TIFS.2016.2543687
http://dx.doi.org/10.1109/TIFS.2016.2543687
http://dx.doi.org/10.1109/ACCESS.2016.2604618
http://dx.doi.org/10.1109/GLOCOMW.2016.7849064
http://dx.doi.org/10.1109/GLOCOMW.2016.7849064
http://dx.doi.org/10.1109/TWC.2015.2491935
http://dx.doi.org/10.1109/TWC.2015.2491935
http://dx.doi.org/10.1109/TWC.2018.2817607
http://dx.doi.org/10.1109/GLOCOM.2018.8647343
http://dx.doi.org/10.1109/GLOCOM.2018.8647343
http://dx.doi.org/10.1145/1409944.1409960
http://dx.doi.org/10.1109/TAP.2005.858853
http://dx.doi.org/10.1109/TAP.2005.858853
http://dx.doi.org/10.1109/SAHCN.2014.6990365
http://dx.doi.org/10.1016/J.ICTE.2017.12.005
http://dx.doi.org/10.1016/j.comcom.2020.10.009
http://dx.doi.org/10.1145/3230833.3232803
http://dx.doi.org/10.1145/3230833.3232803
http://dx.doi.org/10.1109/TRUSTCOM/BIGDATASE.2018.00044
http://dx.doi.org/10.1109/TRUSTCOM/BIGDATASE.2018.00044
http://dx.doi.org/10.1109/TVT.2018.2877201
http://dx.doi.org/10.1109/JIOT.2018.2888553
http://dx.doi.org/10.1109/JIOT.2019.2946919
http://dx.doi.org/10.1109/TVT.2019.2922443


[43] A. Khisti, S. N. Diggavi, G. W. Wornell, Secret-key agreement
with channel state information at the transmitter, IEEE Trans.
Inf. Forensics Security 6 (3) (2011) 672–681. doi:10.1109/TIFS.
2011.2151188.

[44] F. Zhan, Z. Zhao, Y. Chen, N. Yao, On the using of Rényi’s
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