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ABSTRACT 
Environmental Management is a framing concept for the specific research topics 
in this thesis, and within that the work focuses on metals in the environment. 
Some of the work focuses on metals as toxicants, some on metal micronutrients, 
and some on metals that may be either, depending upon conditions. This thesis 
begins with work in which I developed a “two-in-one” whole-cell bioreporter 
approach to assess harmful effects of cadmium and lead. With the lights-on 
bioreporter’s unique two-in-one ability for speciation and toxicity measurement, 
in conjunction with the validated biotic ligand model, the bioreporter can 
predict toxicity endpoints over the range of the lowest Water Quality Criterion 
to the 50th rank-percentile of aquatic organisms sensitivity. 

In the context of dramatic environmental/biogeochemical change from metal 
pollution, relatively little work has been done on the role of micronutrients in 
influencing the development and progression of harmful algal blooms. In this 
thesis, I report results from mesocosm experiments with Microcystis and 
Desmodesmus spp., in mono- and mixed-cultures, to probe questions of how 
copper, iron, and copper-iron amendments affect the growth, short-term 
assemblage progression, and production of siderophore, chalkophore, and 
microcystin in lake water. The findings from this study are summarized: 1) 
copper-iron impacts on growth and community progression do not agree with 
lab-based findings. 2) Interplay between chalkophore/siderophore production 
supports a concept model wherein Microcystis spp. varies behavior to manage 
copper/iron requirements in a phased manner. In being able to specifically 
screen for chalkophores, I observed a previously unreported link between 
chalkophore and microcystin production that may relate to iron-limitation. 3) 
the lake water itself influences mesocosm changes; differentiated effects for iron 
regarding growth indicators and/or reduction of iron-limitation stress were 
found at a harmful algal bloom-free field station, likely a consequence of low 
bioavailability of iron in this station. 

My findings that Microcystis spp. varies behavior to manage copper/iron 
through the interplay between chalkophore/siderophore production and the 
previously unreported link between chalkophore and microcystin production 
addressed an important gap in furthering research on the effects of 
micronutrients bioavailability in natural water.  Follow-up research with 
revised copper/iron amendments and increased level of algal acclimation was 
achieved. Similar to the initial work, I again saw a very similar dynamical 
phased behavior between chalkophore/siderophore production for Microcystis 
spp. that exhibited significant differences in trajectories according to specific 
differences in copper and iron amendments. The most interesting finding was 
that I observed a strong microcystin-chalkophore relationship again. Based on 
this research, I can say that chalkophore is a predictor of this cyanobacterial 
toxin production. While I discuss possible reasons for this new finding, it is 
previously undocumented, and I outline follow-up work that I believe would be 
fruitful to further elucidate the biological mechanisms underlying this behavior 
and why Microcystis spp. produce the toxin, microcystin. 
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PREFACE 

The study leading to the award of a Doctor in Philosophy begins for all kinds of 

reasons, but when all is said and done, looking back on the adventures I had 

over the past four years, they have one thing in common: they are shooting stars, 

a spectacular moment of light in the universe, a fleeting glimpse of eternity, and 

in a flash, set deeply into my memory.  

I did not begin for the reason of a strong interest in the way of science, nor did I 

begin to consider how much this degree might increase life quality. I begin for 

the reason to win this title, as the best proof to show “smart”. Deeper into the 

study toward the Doctor in Philosophy changed my arrogant way of thinking 

myself to know a lot. The more I read, the more I tried to explore, the more I 

found how little I know, how little we know, as the limitation of knowledge for 

science. The inner flame then burns gradually, encouraging me to uncover what 

lies in the darkness. 

The elements, the organisms, wind and sun, space and water, what are the 

relationships and the profound mysteries behind all those? How do we 

understand those responses and what will we learn in the way of Biology, and in 

the way of Environmental Science? Bringing those macroscopic minds into 

microscopic researches, I focused my study on the topic of toxic metals, 

micronutrients, whole-cell biosenors, biomolecules and algal blooms from the 

lab into the field, trying to uncover the deeper relationships among those, and 

trying to improve the knowledge of Environmental Management.  
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 Introduction 

1.1 BACKGROUND 

This thesis focuses on different aspects of progressing the fundamental 

understanding of trace metal bioavailability in the context of dramatic 

environmental/biogeochemical change from trace metal pollution. As I had 

diverse topics in my thesis, and some of the work evolved in a manner that led 

me to include background about the research and literature review, existing 

research gaps, and specific research objectives in individual chapters. In doing 

so, the thesis also deals with development of new approaches to using this 

understanding in Environmental Management (EM) of priority metal pollutants. 

The interplay between chemical speciation, bioavailability, and toxicity are key 

issues in pollution assessment (US EPA, 2002) and are also central to a proper 

understanding of biogeochemical cycles, hence this interplay is a common 

theme for the different research work presented here. 

Within these central themes, this thesis can be divided into two research areas, 

one dealing with bioreporters (a type of whole-cell biosensor) and trace metal 

pollution. The other research area deals with how trace metals affects bloom-

forming algae. An overview of the first research area is shown in Figure 1-1. For 

this research I show how a bioreporter can be used to develop a two-in-one 
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approach to speciation and toxicity in the context of Water Quality Criteria 

(WQC). This work concerns cadmium (Cd) and lead (Pb), two of the most toxic 

and globally prevalent pollutants that also disproportionately impact 

disadvantaged communities. Anthropogenic release of Cd and Pb to the 

environment poses a serious ecotoxicological threat to many aquatic organisms.  

 
Figure 1-1. Schematic representation of the bioreporter two-in-one approach to 

speciation and toxicity. Unlike other organisms in use for setting WQC via toxicity 

testing results, the bioreporter is able to give a response under the maximum 

concentration to protect aquatic life up to the limit of the bioreporter’s toxic response.  
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To quantify bioavailability for metals, genetically engineered whole-cell 

bioreporters have become of increasing interest with respect to hazardous 

materials. Lights-on bioreporters have only been used for measurements of 

metal speciation and bioavailability, whereas lights-off bioreporters can only be 

used for metal toxicity measurements. I used bioreporter technology to 

demonstrate an approach combining the study of speciation and toxicity 

simultaneously and within the biotic ligand model framework for risk 

assessment of hazardous materials. I used the LIVE/DEAD toxicity assay for 

bacteria to measure toxic effects from cadmium and lead and use this as a 

benchmark to demonstrate how the lights-on reporter can be used for toxicity 

measurements in addition to speciation. At the outset of my work, I posited, and 

was later able to demonstrate, that whole-cell biosensor technology based on 

so-called lights-on bioreporters (depicted as the flagellated rod in the centre of 

Figure 1-1) could enable an approach for the determination of bioavailability 

that spans the continuum from speciation to toxicity, and in a manner that 

permits the unified validation of both within a modeling framework that is 

commonly used in development of WQC and decision support in EM. The figure 

illustrates conceptually how this works. Various components in the aqueous-

phase affect overall speciation and the amount of toxic free-metal that is 

bioavailable. The bioreporter is able to give a report, in the form of an optical 

signal (blue arrow pointing upwards), that is proportional to bioavailable 

toxicant up to the limit of the bioreporter’s toxic response (line with constant 

slope). Thereafter, toxicity causes inhibition of bioluminescence (dashed curve). 

The limit of detection (LOD) of the bioreporter is under the maximum 

concentration to protect aquatic life set by WQC. Toxicity endpoints for other 
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cadmium and lead biotic ligand models reported in literature average 71st and 

44th rank-percentile sensitivity (i.e., insensitive). In comparison, with the lights-

on bioreporter’s unique two-in-one ability for speciation and toxicity 

measurement, in conjunction with the validated biotic ligand model, the 

bioreporter can predict toxicity endpoints over the range of the lowest Water 

Quality Criterion to the 50th rank-percentile of aquatic organism sensitivity. The 

approach is generally extensible to a large number of toxic environmental 

pollutants that increasingly pose environmental challenges globally. 

For my research area that deals with how trace metals affect bloom-forming 

algae, I found that trace metals have a phased effect on biomolecule production, 

which thus in turn may affect trace metal bioavailability. My approach is an 

entirely new perspective to understand micronutrients dynamics in aqueous 

environments as this is the first work to systematically screen for chalkophores 

and siderophores separately, as a function of copper (Cu)/iron (Fe) amendment, 

and using community trajectory analysis. I also performed multivariate analysis 

of the extended dataset of 117 mesocosm results  28 parameters using 

principal component analysis to understand differences in mesocosm behavior 

across the large data set. Figure 1-2 is a conceptual graphic showing the phased 

trajectory-type behavior of the effects of Cu and Fe on the production of the 

algal biomolecules that chalkophore, siderophore and microcystin. This figure 

shows how, for one set of experiments, Microcystis spp. increased siderophore 

production, or molecules strongly complex Fe and are believed to increase the 

bioavailability of Fe. In a phased manner, chalkophore (molecules that strongly 

complex Cu) production then increased.  
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It was of interest to me to restructure the copper amendment in particular to 

see potentially contrasting effects between different levels, and I also wanted to 

collect additional evidence on the microcystin-chalkophore link.  The follow-up 

research was methodologically similar, though I revised copper/iron 

amendments and increased the level of algal acclimation, as well as using more 

advanced algorithms within the family of techniques used in trajectory analysis. 

While in follow-up experiments, I found that rates of change and phase-

differences vary, in all cases I found a previously undocumented link between 

chalkophore and microcystin. While it remains unclear why Microcystis 

generates the toxin microcystin, many authors posit that competing algae, green 

algae in the figure, are adversely affected by microcystin, hence its production 

conveys a competitive advantage, in this case in nutrient stressed conditions. 

 
Figure 1-2. Graphic trajectory over time showing Cu and Fe effects on the production of 

algal biomolecules (chalkophore, siderophore and microcystin).  
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Both areas of research that I describe herein deal with freshwater environments, 

however the results might also be relevant to estuarine or even marine settings, 

as much of the background literature that I cite illustrates. The field components 

of my work were conducted in a highly impacted lacustrine environment, which 

is highly relevant to my interest in EM, as these sinks represent an endpoint for 

catchment-wide effects (pollution, land use and land use change). 

1.2 RESEARCH QUESTIONS AND STRUCTURE OF THESIS 

This thesis is structured to contain six chapters and Chapter 1 was arranged as a 

general overview of this thesis with summarized research questions and 

statement of my publications in construct this thesis. Three research questions 

framed around the main thesis, each of which is reported on in detail in 

Chapters 2–4. I summarize the three research questions as follows: 

I) Will “lights-on” whole-cell bioreporters also predict metal toxicity in 

addition to metal speciation, thus being able to give a report on the status 

of toxic metals, spanning the continuum of speciation up to the reporter’s 

toxicity endpoint? 

II) How do Cu, Fe, and Cu-Fe together affect bloom-forming algae in a 

highly impacted environment, and are there implications concerning the 

use of Cu in whole-lake EM of harmful algae blooms?  

III) Is the microcystin-chalkophore link that I observed in the course of 

work on Research Question II above a general phenomenon, and how does 

this relate to Fe-limitation?" 
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In Chapter 5, conclusions are made for the work reported in Chapter 2–4 with 

further work being pointed out. Chapter 6 listed the references cited in this 

thesis.  

1.3 STATUS OF MANUSCRIPTS ARISING FROM WORK 

All of the work reported in this thesis is either published or scheduled for 

publication. The publication status of the work presented here, at the time of 

submission of this manuscript to the examiner, is listed below. 

Work presented in Chapter 2, published in Water Research:  

Li, B., Zhang, X., Tefsen, B., Wells, M., 2022. From Speciation to Toxicity: Using a 

“Two-in-One” Whole-cell Bioreporter Approach to Assess Harmful Effects 

of Cd and Pb. Water Res. 217, 118384.  

Work presented in Chapter 3, published in Water Research:  

Li, B., Zhang, X., Deng, J., Cheng, Y., Chen, Z., Qin, B., Tefsen, B., Wells, M., 2021. A 

new perspective of copper-iron effects on bloom-forming algae in a highly 

impacted environment. Water Res. 195, 116889. 

Work presented in Chapter 4, manuscript in preparation:  

Li, B., Zhang, X., Deng, J., Qin, B., Tefsen, B., Wells, M., 2021.  Chalkophore is a 

predictor of microcystin toxin production by harmful cyanobacteria.  

Additionally, in this thesis I cite works that substantively inform my primary 

research, reported here. The articles below represent work in which I 
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participated with my colleague, Dr. Zhang, during my PhD study and for which I 

am second author:  

Zhang, X., Li, B., Xu, H., Wells, M., Tefsen, B., Qin, B., 2019. Effect of 

micronutrients on algae in different regions of Taihu, a large, spatially 

diverse, hypereutrophic lake. Water Res. 151, 500–514. 

Zhang, X., Li, B., Deng, J., Qin, B., Wells, M., Tefsen, B., 2020a. Advances in 

freshwater risk assessment: Improved accuracy of dissolved organic 

matter-metal speciation prediction and rapid biological validation. 

Ecotox. Environ. Safe. 202, 110848. 

Zhang, X., Li, B., Deng, J., Qin, B., Wells, M., Tefsen, B., 2020b. Quantitative high-

throughput approach to chalkophore screening in freshwaters. Sci. Total 

Environ. 139476. 

Zhang, X., Li, B., Deng, J., Qin, B., Wells, M., Tefsen, B., 2020c. Regional-scale 

investigation of dissolved organic matter and lead binding in a large 

impacted lake with a focus on environmental risk assessment. Water Res. 

115478.
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 From Speciation to Toxicity: 
Using a “Two-in-One” Whole-
cell Bioreporter Approach to 
Assess Harmful Effects of Cd 
and Pb 

2.1 BACKGROUND ON WHOLE-CELL BIOREPORTERS, THE BIOTIC 

LIGAND MODEL, AND CADMIUM AND LEAD POLLUTION 

Chemical speciation, bioavailability, and toxicity are key issues in hazard 

assessment, as this assessment are processes occurring at environmental 

interfaces (including organisms) and/or in different environmental 

compartments which regulate the rate of formation, stability and prevalence of 

these metal species. These reactions likewise control the chemical speciation of 

metals that enhance or restrict their transport in the environment, and to and 

within organisms (see review of the Metals Action Plan to identify key scientific 

issues important for assessing the hazards and risks of toxic metal 

contamination, US EPA, 2002). Toxic effect is a function of bioavailability rather 

than total concentration (Wells et al., 2004; Harms et al., 2006), as 

acknowledged, for instance, by the US Environmental Protection Agency’s 
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Framework for Metals Risk Assessment, which states that for hazardous metals 

risk assessors should “explicitly incorporate factors that influence the 

bioavailability of a metal” (Fairbrother et al., 2007). While the US EPA was early 

to recognize these inter-relationships, the perspective is now woven into 

practice in many countries (e.g., see EC, 2013). Because bioavailability is a 

function of metal chemical speciation (hereafter speciation, Nor and Cheng, 

1986; Tessier and Turner, 1995; Machado et al., 2010; Sander et al., 2011; Khan 

et al., 2017; Zhang et al., 2017 and 2020a), many environmental factors that 

influence speciation (e.g., pH, organic matter complexation with heavy metals) 

also influence metal bioavailability. Most environmental studies focus on either 

speciation/bioavailability (e.g., Sundaray et al., 2010; Bagherifam et al., 2014; 

Zhang et al., 2017; Yan et al., 2020), or toxicity (based on bioavailability, e.g., An 

et al., 2012 and 2015; Gong et al., 2021), i.e. one or the other, usually not both. 

To my knowledge, there is a paucity of work combining the simultaneous study 

of speciation and toxicity as a holistic approach to understanding biological 

effects. 

To assist with setting defensible WQC, the biotic ligand model (BLM) was 

developed (US EPA, 2003; US EPA, 2016a), which is a model that is mechanistic 

and explicitly links speciation to toxicity, albeit for most risk assessment work 

the BLM is run in toxicity mode since available biological endpoints consist of a 

single metric, such as EC50 (effective concentration causing 50% toxic effect). In 

the framework of the BLM, a biotic ligand (BL) is a specific receptor within an 

organism for which complexation by a metal (M) can lead to toxic effects, hence 

the BLM includes expressions to describe metal complexation with BLs (US EPA, 

2007). Complexation of nontoxic-metal cations with the BL is also specified in 
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the model, and the competition of major cations in environmental samples, that 

is cations of calcium, magnesium, potassium and sodium (Ca, Mg, K, Na, 

respectively), for binding with BL reduces toxic M-BL complexation, and 

therefore toxic effects. Parameters describing the reactions of M with other 

solution constituents are required for BLM models run in speciation mode. For 

BLM toxicity mode, there needs to be further parameterization for calculation of 

a toxicity endpoint such as EC50 (e.g., Di Toro et al., 2001; Crémazy et al., 2016). 

The BLM model is mechanistic in nature, and model inputs are simple and 

inexpensive to obtain. BLM results have been demonstrated to be an accurate 

predictor of environmental risk for several toxic heavy metals and to be fit-for-

purpose tool for decisions regarding WQC (Niyogi and Wood, 2004). Though 

developed in the US, the BLM has also been adopted as the basis of some 

environmental quality standards (EQS) in Europe to enable site-specific EQS 

values to be derived (EC, 2010). While copper and nickel BLMs have been 

thoroughly studied and are used in the United States, in Europe, and 

increasingly in other places (EC, 2010; US EPA, 2016a), as An et al. (2012) have 

pointed out, fewer BL-based models are available for Cd and Pb. Considering the 

toxicity of Cd and Pb, increasing the focus on these environmental contaminants 

within the BLM framework is timely. 

Cd and Pb are considered to be two of the most hazardous substances globally 

(Tellez-Plaza et al., 2013; Pure Earth/Green Cross, 2015; Alengebawy et al., 

2021), and also contribute to alarming environmental issues in China and India, 

which together account for about 37% of the entire global population (Tong et 

al., 2000; Cheng, 2003; Kan, 2009; Kumar et al., 2019; Hu et al., 2020). Cd ranks 

seventh on one list referred to as the “Top 20 Hazardous Substance” (CERCLA, 
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2005). Additionally, “Cadmium and cadmium compounds”, i.e. anything that 

contains Cd, is on the two most well-known lists of carcinogens as classified by 

the International Agency for Research on Cancer and the National Toxicology 

Program (NTP) of the United States, the latter of which only contains 69 line 

items as compared to the tens of thousands of agents that are probable or 

possible carcinogens (McGuire, 2016; NTP, 2016; Oldani et al., 2020). Cd is 

notably affected by pH in soils, which is exacerbated by anthropogenic increases 

in acid rain, and this contributes to Cd’s being accumulated in important 

foodstuffs such as rice (Liu et al., 2007; Song et al., 2015). Due to the 

carcinogenicity of Cd and its increasing presence in food items, Cd 

contamination represents a global hazard to both food security and human 

health (Khan et al., 2021). With regard to Pb, its increasing environmental 

prevalence might arguably be described as an impending crisis inasmuch as 

there is no safe level of Pb exposure (Grandjean, 2010), and Pb is differentially 

neurotoxic to children, compromising cognitive development (Grandjean and 

Landrigan, 2014). The global annual costs of childhood Pb exposure from 

cognitive defects alone are estimated to be 1.15 trillion US dollars, most of 

which is borne by low- and middle-income countries (Grandjean and Bellange, 

2017). Due to activities such as coal burning that release Pb (and Cd), and the 

continued increasing global production of Pb (Mudd, 2013; Marx et al., 2016) 

for use in various applications, including increasing use in “sustainable” solar 

photovoltaic energy systems (Gottesfeld and Cherry, 2011), a continued stark 

increase in environmental Pb levels is virtually assured. The increasing 

prevalence and extremely hazardous nature of Cd and Pb ensures that exposure 
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to these contaminants is an intergenerational issue, predicating my choice to 

study Cd and Pb in this work. 

Many different methods have been and are being developed to quantify 

bioavailability for metals (Florence, 1986; Batley et al., 2004; US EPA, 2007a; 

Fairbrother et al., 2007), among which whole-cell bioreporters have become of 

increasing interest with respect to pollutants in environmental matrices such as 

water, soil, sediments and other geomaterials (Belkin, 2003; Al-Anizi et al., 2014; 

Wells, 2012; Xu et al., 2014; Zhang et al, 2017; Jiang et al., 2021). Bioreporters 

are living microbial cells that have been genetically engineered to produce a 

measurable signal (typically optical, measured as bioluminescence, fluorescence, 

or absorbance) in response to a specific chemical or physical agent in their 

environment (van der Meer and Belkin, 2010). Whole-cell bioreporters have 

been described as falling into two mechanistic response categories: lights-off 

and lights-on (Belkin, 2003; Xu et al., 2014). Lights-off bioreporters are used for 

metal toxicity measurements, as they constitutively emit a continuous signal in 

the absence of bioavailable metal, and only after dosing with toxic levels of 

metals is signal inhibited (Belkin, 2003; An et al., 2012; Abbas et al., 2018). As 

diminishing signal accompanies toxicity, the process is referred to as lights-off, 

and the effect is non-specific—any toxin could cause signal diminution. Lights-

on bioreporters are notably used in speciation measurements as they have the 

capacity to emit a dose-dependent bioluminescence in response to bioavailable 

metals (Belkin, 2003; Magrisso et al., 2008; Senevirathna et al., 2009; Shemer et 

al., 2015; Kauffer et al., 2017), i.e., signal increases (lights-on), typically linearly, 

with the metal free-ion species concentration. Lights-on bioreporters are 

notably selective, or sometimes even specific, to a single analyte. For example, I 
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used a lights-on bioreporter in this work for which resistance to Cd and Pb 

toxicity is mediated, at least in part, by the presence of the zntA gene (Riether et 

al., 2001). This gene endows the bioreporter with the capacity to emit a positive 

(nontoxic) dose-dependent bioluminescence response to available Cd and Pb 

within environmentally relevant Cd and Pb concentration ranges (Kessler et al., 

2012). While lights-on bioreporters have demonstrated success for speciation 

measurements of metal free-ion, to my knowledge they have not been used to 

quantify toxic effects. 

 
Figure 2-1. Schematic diagram illustrating two-in-one study concept. Interactions 

between inorganic and organic solution constituents, free metal, and the bioreporter, 

affect bioreporter signal production. For speciation or toxicity measurement, a 

bioreporter bacteria is first exposed to environmental free metal (M2+). The zntA 

promoter will only be activated when M2+ binds with zntR (a transcriptional regulator), 

which controls expression of a reporter gene (lux genes). Luciferase is then formed and 

provides an optical signal or report. For M2+ binding, environmental constituents 

dissolved organic matter (DOM) and inorganic anions bind with M2+, reducing metal 

bioavailability. Cations compete with M2+, for binding with BL, and thus reduce the 

bioavailability and toxicity of the M2+. 

Here I use bioreporter technology to demonstrate an approach to combining the 

study of speciation and toxicity simultaneously and within the BLM framework 
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for risk assessment of hazardous materials. The general approach is graphically 

summarized in Figure 2-1. I used the standard LIVE/DEAD toxicity assay for 

bacteria to measure toxic effects, which furnishes a benchmark to demonstrate 

how the lights-on reporter can be used for toxicity measurements in addition to 

speciation. Results are used to construct BLM models, and I perform additional 

experiments to validate BLM predictions for Cd and Pb in BLM speciation and 

toxicity modes. 

2.2 BIOREPORTER EXPERIMENTS 

Bioreporter strain and growth media 

Escherichia coli PHL268 strain zntA (hereafter zntA, in contrast to the gene 

zntA), was used as the lights-on bioreporter for this study. The strain was stored 

at 4 °C on Lysogeny Broth (LB) agar (Bertani, 2004) amended with 40 μg·mL-1 

ampicillin. Overnight cultures were grown at 30 °C with shaking at 90 rpm for 

16 hours. The overnight culture was diluted 100-fold in fresh LB without 

ampicillin and re-grown at 26 °C, shaking at 200 rpm. At an optical density at 

600 nm (OD600) of 0.10, cells were harvested by centrifugation (13,200 g). The 

supernatant was discarded, and the cells were resuspended in optimized 

minimal medium (MM) to an OD600 of 0.20. The MM contained 6.06 g of 3-[N-

morpholino] propane sulfonic acid (MOPS), 2 g of sodium gluconate, 0.23 g β-

glycero-phosphate, 4.68 g of NaCl, 1.07 g of NH4Cl, 0.43 g of Na2SO4, 0.2 g of 

MgCl2·6H2O and 0.03 g of CaCl2·2H2O, dissolved in 1000 mL of distilled water 

and adjusted to pH 7.0 ± 0.1 (Mergeay et al., 1985; Magrisso et al., 2009). All 

chemicals were reagent grade or better and purchased from Alfa Aesar Co., Ltd 
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(Shanghai, China). 

Bioreporter speciation assays 

A common feature of lights-on bioreporters that enables them to be useful in 

work with contaminated samples is that they are, by design, to some extent 

resistant to their toxic target analytes. In zntA, resistance to Cd and Pb toxicity is 

mediated by the zntA gene, which encodes a metal efflux pump that enables the 

reduction of intracellular toxic metals (Riether et al., 2001), and accordingly, 

many previous studies have used zntA to measure metal free-ion speciation, i.e., 

the metal species regarded as causing toxic effects (e.g., Magrisso et al., 2009; 

Zhang et al., 2017; Zhang et al., 2020a). The method that I use here is well-

known and relies on the use of a bioavailability calibration curve (Magrisso et al., 

2009) calibrated to the activity of metal free-ion, in this case 𝑎Cd2+  or 

𝑎Pb2+(activity of Cd2+ or Pb2+, respectively). The bioavailability/speciation assay 

(Zhang et al., 2017, and references therein) entails adding 50 µL of bioreporter 

cell suspension (OD600 = 0.2) to a 96-well white microtiter plate (Nunc, 

Denmark) followed by adding 50 µL of Cd or Pb standard (prepared per Zhang 

et al., 2017) or sample. Next, the microplate was incubated at 26 °C with a 

rotation speed of 180 rpm and bioluminescence was measured every 10 

minutes for 3 hours using a luminometer (Varioskan LUX, Thermo Fisher 

Scientific, USA). Since for some experiments I needed to collect both 

bioluminescence and fluorescence readings in one measurement (discussed 

below), a single type of white microtiter plate was used for internal consistency. 

Bioluminescence response was calculated as maximum response ratio (MRR, 

MRR = RLUCM, max/RLU0, max, where RLUCM, max is the maximum response, in 
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relative luminescence units or RLU, for metal concentration CM, and RLU0, max is 

the maximum response of the blank, per Zhang et al., 2017). The LOD was 

calculated as signal greater than three times the standard deviation of the blank, 

and the limit of quantitation (LOQ) as three times the LOD (Shrivastava, 2011).  

Bioreporter toxicity assays  

While lights-on bioreporters do typically have characteristics that convey 

resistance to toxic effects from the chemical species on which they report, for 

zntA toxic effects from Cd and Pb nonetheless occur given high enough levels 

(Riether et al., 2001). Since this is the first time that I know of for a lights-on 

bioreporter to be used for toxicity studies or in a BLM context, and a low 

bioluminescence signal can equally well result either from low  𝑎Cd2+/𝑎Pb2+  or 

bioluminescence inhibition due to toxicity at high  𝑎Cd2+/𝑎Pb2+ , I employed the 

well-known LIVE/DEAD toxicity bioassay as a benchmark for toxicity studies. 

Using the LIVE/DEAD®  BacLightTM Bacterial Viability Kit (L13152, Thermo 

Fisher), live and dead cells were differentiated, respectively, by SYTO 9 and 

propidium iodide (PI) staining (Stocks, 2004). 

To perform the LIVE/DEAD assay, a working solution of the LIVE/DEAD 

staining reagent was made by mixing solubilized SYTO 9 and PI dyes from the 

kit to achieve a final concentration of 12 µM SYTO 9 and 60 µM PI. To perform 

LIVE/DEAD experiments, 100 µL of the prepared LIVE/DEAD working solution 

was added to each well of the microplate 1:1 with cell suspensions to stain live 

and dead cells, and then mixed thoroughly by pipette. After 15 minutes’ 

incubation in the dark at room temperature, the fluorescence emission at 490–

700 nm (emission maxima, λmax, for SYTO 9 and PI being 500 and 635 nm, 
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respectively) was then measured according to the L13152 kit protocol, with 

excitation at 470 nm. The LIVE/DEAD fluorescence emission ratio, 

𝜆max, SYTO 9 𝜆max, PI⁄ , was calculated from spectra. Calibration plots of 

𝜆max, SYTO 9 𝜆max, PI⁄  versus the ratio of live-to-dead cells, RL/D, were constructed 

using mixtures of live and dead zntA prepared according to the L13152 kit 

protocol. Subsequently, for LIVE/DEAD toxicity assays, 100 µL of working 

solution was added to each well 1:1 with activated bioreporter solutions (i.e., 50 

µL of bioreporter cell suspension + 50 µL of Cd or Pb standard/sample) and 

mixed, and after incubation the RL/D metric of toxic effect was determined. 

LIVE/DEAD toxicity measurements were always performed immediately after 

bioreporter bioluminescence measurements to quantify bioluminescence 

inhibition, per the common approach to toxicity measurements for lights-off 

bioreporters (An et al., 2012; Qu et al., 2013). Here I test whether such an 

approach is extensible to lights-on reporter measurements. In my experimental 

protocol, speciation, as 𝑎Cd2+  or 𝑎Pb2+ , is measured in ranges for which 

bioreporter bioluminescence increases as a function of increasing activity of 

metal free-ion, until a transition point is reached wherein bioluminescence 

decreases in a sigmoidal fashion consistent with toxic effect. While lights-on 

reporters are not normally used for toxicity work, it is normal to combine cell 

viability tests with lights-on reporter speciation measurements to ensure that 

low bioluminescence results from low activity of metal free-ion and not toxicity. 

For instance, Buffi et al (2011) measured cell viability during lights-on 

bioreporter studies using the approach that I use here. For the assay to measure 

toxicity via bioreporter bioluminescence inhibition, toxic effect is expressed as  
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RLum = MRRCi/MRR0i, where MRR0i is the maximum response with zero 

inhibition and MRRCi is the MRR at some concentration, Ci, at which 

bioluminescence is inhibited by Cd or Pb. 

Experiments on the effect of inorganic cations and dissolved organic 

matter on Cd and Pb bioavailability/speciation and toxicity assays 

Table 2-1 summarizes the experiments performed in this study in order to build 

and validate BLM models. Regarding parameterization of BLM models for zntA, 

no further information was needed for speciation, since the BLM run in 

speciation mode requires no specific organism-dependent parameters. For BLM 

run in toxicity mode, parameterization is needed, and it is necessary to first 

characterize the individual effect of cations Ca, Mg, K and Na (major inorganic 

constituents) on Cd and Pb toxicity. The Cd and Pb toxicity tests for BLM 

parameterization contained four sets of major cation concentrations, referred to 

as Ca-set, Mg-set, K-set and Na-set. Each set was composed of a series of media 

having different concentrations of one target cation, with the remaining major 

cation and other component concentrations being fixed (US EPA, 2003). For 

each specific target cation concentration in each set, toxicity bioassays across a 

range of Cd or Pb concentrations were conducted, allowing the calculation of the 

EC50 (Sebaugh, 2011) and the subsequent systematic analysis of the effects of 

inorganic cations on EC50. 

Subsequent to construction of the BLM toxicity model for zntA, validation 

experiments were conducted for BLM performance in speciation- and toxicity-

mode calculations. For parameterization of the zntA BLM model, experiments 

with dissolved organic matter (DOM) were not needed, however, for validation 
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experiments it was desirable to test effects of varying both cations and DOM. To 

investigate the effect of DOM on Cd and Pb bioavailability, humic acid (HA) was 

selected to represent DOM as, in aqueous systems, HA is typically the fraction of 

DOM that is prevalent and most strongly complexes bivalent metals (Coles and 

Yong, 2006; Shahid et al., 2012; Schwarzenbach et al., 2016). HA (Alfa Aesar, 

Tianjin, China) stock solutions were prepared according to the method of Zhang 

et al. (2017). The concentrations of the prepared HA stock solutions were 

verified using a total organic carbon (TOC) analyzer (multi N/C® 3100, 

Analytikjena, Germany). Per Zhang et al. (2017), solutions with different HA 

concentrations were spiked with Cd or Pb standard and stored in the dark 

overnight at room temperature to allow equilibration of metal complexation 

with HA before use (Sander et al., 2004). 

Bioavailability of Cd or Pb in metal-spiked HA solutions was determined as 

described above. Measurements were also made to monitor bioreporter 

response in the presence of HA and absence of Cd or Pb (i.e., to see if the HA 

alone had any effect on the bioreporter, such as affecting growth), and results 

from these experiments showed the same (to within experimental precision) 

very slow and monotonic increase in OD600 with time as I observe in the same 

concentration of MM (without HA). A similar approach was used for organic 

matter experiments as for cations wherein DOM was varied while all other 

components were held constant. There were three types of validation 

experiments, two using lab-prepared samples to mimic the environmental 

variability of cations and/or HA, and the third type of validation experiment 

used real complex matrix environmental field samples. 
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Table 2-1. Chemical composition of the test media for different types of experiments 
conducteda.  

Components in solution, as preparedb or as analyzedc:  

 Ca (mM) Mg (mM) K (mM) Na (mM) DOMc 

MM 
(“Control”)  

0.10 0.50 10. 54 NA 

Experiments for parameterization of the zntA BLM toxicity model, by series:  

Ca-set 
0.01, 0.10, 
0.58, 1.1, 

3.0, 5.8, 11 
0.50 10. 54 NA 

Mg-set 0.10 
0.005, 0.05, 
0.5, 1.5, 2.8, 

4.0, 5.0 
10. 54 NA 

K-set 0.10 0.50 
0.025, 0.25, 
1.3, 2.5, 10, 

18, 25 
54 NA 

Na-set 0.10 0.50 10. 
14, 20., 23, 
28, 43, 54, 

83 
NA 

Speciation-mode calculation validation experiments, by seriesd: 

SV-Ca 0.01, 11 0.50 10. 54 NA 

SV-Mg 0.10 0.005, 5.0 10. 54 NA 

SV-K 0.10 0.50 0.025, 25. 54 NA 

SV-Na 0.10 0.50 10. 14, 80. NA 

SV-HA 0.10 0.50 10. 54 
0‒19.6 
mg·L-1 e 

Toxicity mode calculation validation experiments, by seriesd: 

TV-C1 1.0  0.50 2.0 85 NA 

TV-C2 9.0 0.50 5.0 59 NA 

TV-C3 5.0 1.0 3.0 24 NA 

TV-C4 15 3.5 2.5 20. NA 

TV HA-C1 0.10 0.50 10. 27 5.0 

TV HA-C2 1.0 1.0 2.0 85 10. 

TV HA-C3 15 3.5 2.5 20. 20. 

TV LT-St 7b 22 7.3 5.0 39 0.75 µMf 

TV LT-St 26b 33 7.7 4.8 36 0.48 µM 
a Concentrations are reported in units that correspond to BLM software inputs. This is M for cations and 
dissolved organic matter modeled as aqueous-phase, and mg·L-1 for HA modeled using the Stockholm 
Humic Model (Section 2.3). b The concentrations of cations in all test media except Lake Tai were as 
prepared. c The concentrations of humic acid (HA) and the cations in Lake Tai were as analyzed. d 

Abbreviations: speciation validation (SV); toxicity validation-cations (TV-C), where C represents a 
randomly chosen combination of concentrations for Ca, Mg, K, Na; toxicity validation with HA and cations 
(TV HA-C); Lake Tai (LT), Station (St). e The amount of HA in solutions used in speciation validation is 16 in 
total, arranged as a dilution series with a maximum of 19.6 mg·L-1, decreasing by a factor of two (16 HA 
concentrations) plus 1 control without HA). f The HA concentrations in LT samples were reported in Zhang 
et al. (2020c). 

The first type of validation involved testing samples containing different 

concentrations of major cations, according to extrema for speciation 
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(representative low and high values, SV-cation series, Table 2-1) and varied 

randomly for toxicity (i.e., randomly chosen variation of cations within the 

range of extrema, TV-C series, Table 2-1). Solutions were spiked with Cd or Pb, 

equilibrated and tested. For the second type of validation experiment, a range of 

HA solutions were prepared, holding cation concentrations constant for 

speciation (SV-HA, Table 2-1). For toxicity, three different HA solutions with 

cation concentrations varied randomly (TV HA-C series, Table 2-1) were made. 

Solutions were subsequently spiked with different concentrations of Cd and Pb, 

equilibrated and tested. The third exercise for validation involved testing 

natural water samples from Lake Tai1 (TV LT-St series, Table 2-1) collected at 

stations that are routinely monitored by NIGLAS (Nanjing Institute of 

Geography and Limnology, Chinese Academy of Sciences, Zhang and Chen, 

2011). These water samples were chosen as they were characterized as part of 

an investigation of metal bioavailability-based risk assessment (Zhang et al., 

2020a; Zhang et al., 2020c). Table 2-1 summarizes major cation and DOM/HA 

concentrations of these samples; see Table 2-2 for the detailed results from 

water quality analysis of those water samples. Water samples were filtered 

through a pre-combusted 45 mm Whatman GF/F glass fiber filters (nominal 

pore size 0.7 mm) and then spiked with different concentrations of Cd or Pb 

standards allowed to equilibrate overnight and tested. Speciation and toxicity 

measurements for Cd and Pb for all types of validation experiments were 

measured per Section 2.2. 

 

 
1 Taihu, 太湖, in Chinese.  
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Table 2-2. Chemical and physical properties of water samples from Lake Tai1. 

Parameter Units LT-St 7 LT-St26 

pH pH units 7.94 8.21 

COD (mg·L-1) 4.88 3.91 

DO (mg·L-1) 6.51 7.83 

BOD (mg·L-1) 2.09 1.63 

NH4+ (mg·L-1) 0.36 0.06 

NO2- (mg·L-1) 0.016 0.002 

NO3- (mg·L-1) 0.090 0.069 

TDN (mg·L-1) 0.76 0.45 

TN (mg·L-1) 1.57 1.08 

PO43- (mg·L-1) 0.029 0.007 

TDP (mg·L-1) 0.06 0.01 

TP (mg·L-1) 0.14 0.06 

Chl-a (µg·L-1) 22 17 

DOC (mg·L-1) 4.85 3.25 

Ca2+ (mg·L-1) 5.01 4.76 

Mg2+ (mg·L-1) 39.33 36.40 

K+ (mg·L-1) 21.81 32.88 

Na+ (mg·L-1) 7.31 7.70 

Cl- (mg·L-1) 44.56 42.96 

SO42- (mg·L-1) 51.86 52.95 

Transp (m) 0.30 0.30 

Cond (µS·cm-1) 440 485 
1Abbreviations are dissolved oxygen (DO), Biological oxygen demand (BOD), chemical oxygen demand 
(COD), ammoniacal nitrogen (NH4+), nitrate (NO3-), nitrite (NO2-), total dissolved nitrogen (TDN), total 
nitrogen (TN), phosphate radical (PO43-), total phosphorus (TP), total dissolved phosphorus (TDP), 
chlorophyll-a (Chl-a), dissolved organic carbon (DOC), chloride (Cl-), sulfate (SO42-) and electrical 
conductivity (Cond). 

2.3 BIOTIC LIGAND MODEL PARAMETERIZATION AND ASSOCIATED 

DATA ANALYSIS 

Formal derivation of the full set of equations describing BLM parameterization 

has been well-documented elsewhere (US EPA, 2003). For brevity, here I 

summarize those expressions and equations that are needed in practice. The 

affinities of Cd/Pb metal cations for binding to BL sites are represented by 

complexation/association constants, KMBL, the relevant expressions governing 
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complexation being written as follows (US EPA, 2003): 

Mn+ + BL−1  ↔  MBLn−1, and                                     (2-1a) 

𝐾MBL =
𝑎
MBLn−1

𝑎Mn+ ∙ 𝑎BL−1
 ,                                                      (2-1b) 

where the charges and reaction stoichiometry are operationally assumed, 𝑎Mn+  

is the activity of the toxic metal (Cd or Pb, bivalent), 𝑎BL−1 is the BL free site 

activity, and 𝑎MBLn−1is the activity of the MBLn-1 complex. 

While I use M in the sense of toxic metal, the same expressions in eq. 2-1a and 2-

1b would also apply to Ca, Mg, K, Na binding with BL, in which case a system of 

four major cation equations exist, which can be solved for KcationBL values using a 

matrix expression if the relationships that specify how major cations affect EC50 

are known. Linear regression analysis of EC50 versus cation free-ion activity 

expresses these EC50-cation relationships linearly in the form of a slope, m, and 

an intercept, b. From m and b the ratio Rcation (m/b) is calculated, and the 

resulting matrix expression is as follows (US EPA, 2003):  

(

 
 
 

1 −𝑅Ca ∙ 𝑎Mg2+
Ca      

−𝑅Mg ∙ 𝑎Ca2+
Mg

1

−𝑅K ∙ 𝑎Ca2+
K −𝑅K ∙ 𝑎Mg2+

K

−𝑅Na ∙ 𝑎Ca2+
Na −𝑅Na ∙ 𝑎Mg2+

Na

−𝑅Ca ∙ 𝑎K+
Ca −𝑅Ca ∙ 𝑎Na+

Ca

−𝑅Mg ∙ 𝑎K+
Mg

−𝑅Mg ∙ 𝑎Na+
Mg

1 −𝑅K ∙ 𝑎Na+
K

−𝑅Na ∙ 𝑎K+
Na 1 )

 
 
 
(

𝐾CaBL
𝐾MgBL
𝐾KBL
𝐾NaBL

) = (

𝑅Ca
𝑅Mg
𝑅K
𝑅Na

) , (2-2)   

where, for instance, 𝑎Mg2+
Ca  is the activity of Mg2+ in the Ca-set (Table 2-1). After 

solving eq. 2-2 for KcationBL, additional parameters are needed to describe the 

interaction of M with BL. The total activity of BL sites (𝑎TBL) is a sum of all BL 

species, the expression for which can be rearranged to express the fraction, f, of 

BL sites occupied by M, according to 
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𝑎TBL = 𝑎BL−1(∑BLspecies) ,                                             (2-3a) 

and 

𝑓 =
𝑎MBL

𝑎TBL
= 𝐾MBL ∙ 𝑎Mn+/(∑BLspecies),            (2-3b)                                                                                                                    

where 

∑BLspecies = 1 + 𝐾CaBL ∙ 𝑎Ca2+ + 𝐾MgBL ∙ 𝑎Mg2+ + 𝐾KBL ∙ 𝑎K+ + 𝐾NaBL ∙ 𝑎Na+ +

𝐾MBL ∙ 𝑎Mn+ . 

The quantity f is related to the toxicity imposed on an organism by a metal 

toxicant (Brown and Markich, 2000), and KMBL is obtained as a fitting parameter 

from the optimized relationship between the logit-transformed toxic effect (RL/D 

or RLum) plotted versus f, (eq. 2-3b). The specific fraction of BL sites occupied by 

M at the EC50, fcrit (critical fraction), is the x-intercept of this plot.  

The BLM, and indeed all speciation models in common use, are based on the 

Tableau method of Morel (1983), which entails using total concentrations (e.g., 

Table 2-1) as model component inputs, with outputs being speciation in 

concentration or activity. Since Ks as referred to above are thermodynamic 

quantities, activity is used. In literature however, particularly toxicity literature, 

total concentration is more common, for instance as the abscissa in dose-

response curves or reported EC50s. In discussing my results, activity was used 

for BLM parameterization and validation. Total concentration was used when 

comparing my results to literature findings. I have already introduced the 

symbol a for activity. Hereafter I use C to refer to total concentration. 

Dose-response curves (Ritz, 2010) were used to determine EC50s for both 

LIVE/DEAD and bioluminescence inhibition toxicity assays via nonlinear fitting 
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using OriginLab software and the following sigmoidal function: 

𝑅toxic effect =
1

1+10
(LOGEC50−𝑎Mn+

)𝑝 ,                              (2-4) 

where Rtoxic effect is either RL/D or RLum (for LIVE/DEAD or bioluminescence 

inhibition assays, respectively) and p is the slope at the steepest part of the 

curve, also known as the Hill slope for the sigmoidal dose-response curve. 

For BLM toxicity model parameterization, values for m and b that are needed to 

calculate Rcations in eq. 2-2 were obtained by linear regression analysis of EC50 

versus major cation free-ion activity. A one-tailed t-test was used to confirm m > 

0, which in turn determines whether data for any given major cation is used in 

parameterization of BLM models. The KcationBL parameters required for BLM 

metal toxicity predictions were obtained by solving eq. 2-2 using R (R Core 

Team, 2020). The 95% confidence limits for KcationBL were calculated by 

performing 1000 Monte Carlo simulations of Rcation based on uncertainty in 

measured m and b, followed by solution of eq. 2-2. (de Schamphelaere and 

Janssen, 2002). Subsequently, KMBL and fcrit were determined via optimization of 

the logit toxic response versus f plot. 

Speciation and toxicity-mode calculations were performed using Visual MINTEQ 

3.1 (VM, Gustafsson, 2014). These calculations involved component inputs, 

comprised of CCd, CPb, CCa, CMg, CK, CNa, and CDOM/HA, as well as total concentrations 

of all other MM constituents (Section 2-2, Table 2-1) and yield species outputs 

in activity. In both speciation and toxicity calculations, DOM does not directly 

interact with the BL, however it has a competitive effect via complexing toxic 

metal. For experiments utilizing commercially purchased HA, the standard 

parameterization of M-DOM binding in the Stockholm Humic Model (SHM) in 
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VM was retained (Zhang et al., 2017, 2020a). For toxicity predictions for 

experiments utilizing Lake Tai natural water samples, DOM-specific values of 

KPbHA from Zhang et al (2020a) were used, and values of KCdHA were determined 

according to the approach of Plaza et al (2006) based on relationships between 

Cd and Pb binding. All BLM toxicity predictions were run with the parameters 

KcationBL, KMBL and fcrit, determined as described herein, to obtain predicted EC50 

for any given sample composition. 

2.4 BIOAVAILABILITY AND BLM SPECIATION-MODE RESULTS 

For bioreporter measurement of speciation, it is first necessary to construct 

bioavailability calibration curves (Magrisso et al., 2009). Figure 2-2A‒D shows 

the bioluminescence response of zntA subsequent to activation with Cd and Pb. 

Figures 2-2A and 2-2B display the kinetics of the bioluminescent response (in 

RLU) versus time and as a function of CCd and CPb, respectively. After the 

bioreporter is exposed to Cd or Pb, the bioluminescence response increases 

over time, typically reaching maximum bioluminescence at ~180 minutes. 

Figures 2-2C and 2-2D show three representative bioavailability calibration 

curves (independent experiments) (Magrisso et al., 2009), for which response is 

reported as the MRR versus 𝑎Cd2+  or 𝑎Pb2+ , respectively. The MRR results of 

three independent experiments are similar, and the average relative standard 

deviation (RSD) of replicates for each experiment was lower than 8%, which 

represents excellent precision for this type of biological measurement. The zntA 

LOQ for Cd and Pb in MM (“control” or reference), expressed as CCd and CPb, is 

0.0011 mg·L-1 and 0.015 mg·L-1, respectively. 
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Figure 2-2. Bioreporter bioluminescent response kinetics and bioavailability 

calibration curves. Response kinetics (in RLU) of bioreporter strain zntA are shown 

over time and as a function of (A) CCd and (B) CPb in standards, and representative 

examples of the resulting bioavailability calibration curves (three independent 

experiments represented by circles, triangles, squares to differentiate each experiment 

three) for MRR versus (C) 𝑎Cd2+  and (D) 𝑎Pb2+ . Per the expression for MRR given in 

Section 2.2, the time of maximum intensity is not specified, as these may vary slightly 

from experiment to experiment and from strain to strain. The Pearson R2 for all lines in 

panels C–D is consistently > 0.99. 

It has long been recognized that both inorganic and organic constituents of 

environmental samples can strongly affect the speciation, and thus 

bioavailability, of metals (Morel and Hering, 1993; Scwarzenbach et al., 2002). 

To measure how such constituents affect metal free-ion speciation, I designed 

experiments keeping the CCd or CPb constant and varying CCation (inorganic) or 
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CHA (organic). As CCd or CPb increases, 𝑎Cd2+  or 𝑎Pb2+ , the bioavailable toxic metal 

free-ion, will increase to a greater or lesser extent, depending upon the 

reactions with major cations and/or HA in solution. 

Figure 2-3A‒B shows the measured and predicted 𝑎Cd2+  and 𝑎Pb2+  for the 

speciation-mode validation experiments listed in Table 2-1. The solid black line 

indicates exact agreement between measured and predicted, and the dashed 

lines indicate a factor of twice the average relative percent difference (RPD) 

between measured and predicted over the range of Cd and Pb response, pooled 

(all measurements, speciation and toxicity) to provide a common indicative 

metric. I use average RPD as a nominal guideline; my average RPD of 12% 

reflects how results I report herein are consistently well below the validation 

guideline that measured and predicted response should agree within a factor of 

two (Zhang et al., 2020a; US EPA, 2003). 

For major cations, the agreement between predicted and measured 𝑎Cd2+/𝑎Pb2+  

is generally distributed about the black line that represents exact agreement, 

and free-ion activity increases with increasing total concentration. For DOM, I 

find that, as HA increases, the bioavailability of Cd and Pb decreases, and results 

here are in very close agreement with Zhang et al.’s (2017) previous findings for 

Pb. The average RPD for predicted and measured 𝑎Cd2+/𝑎Pb2+  for HA speciation 

was 22%, which is higher than for major cations. The least favorable agreement 

is for Pb at lower 𝑎Pb2+ , and in Figure 2-3A‒B I see that for Cd and Pb, 

agreement is better at higher 𝑎Cd2+/𝑎Pb2+ , and vice versa, with a slight bias 

toward overestimation and underestimation of predictions for Cd and Pb, 

respectively, at lower 𝑎Cd2+/𝑎Pb2+ . This may be due in part to values that are 
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approaching LOQ, however, published work in which I contributed as an author 

and the published work of others have previously documented the 

shortcomings of one-size-fits all models such as the SHM for describing M-HA 

speciation (Mostofa et al., 2013; Ahmed et al., 2014; Zhang et al., 2020a and 

2020c). Working with colleagues in my doctoral research group, while we do 

use one-size-fits-all models for some work, we have found much better 

agreement when using M-HA models based on our own parameterization of M-

HA binding (Zhang et al., 2020a), however, obtaining bespoke parameters is 

more experimentally intensive, with models such as the SHM being more 

convenient. 

 
Figure 2-3. Effects of major cations and HA on predicted versus measured Cd and Pb 

free-ion. (A) 𝑎Cd2+ , and (B) 𝑎Pb2+ . Note that 𝑎Cd2+/𝑎Pb2+ increase as CCd/CPb increase. 

For panels A and B the solid line indicates an exact match between measured and 

predicted 𝑎Cd2+/𝑎Pb2+ , and the dashed lines a factor of twice the pooled average RPD 

between measured and predicted over the range of Cd and Pb response. All of the 

results I report herein are below the accepted validation guideline that measured and 

predicted response to agree within a factor of two.  
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2.5 USING A LIGHTS-ON BIOREPORTER TO MEASURE TOXICITY, 

TOWARDS TOXICITY PREDICTION  

Results from LIVE/DEAD toxicity measurements 

The results discussed in Section 2.4 are consistent with other reports (Hynninen 

and Virta, 2009; Zhang et al, 2017; Hansen et al., 2019) adducing how 

bioreporter measurements are used in the study of speciation. I have not found 

reports detailing the use of a lights-on bioreporter to measure toxicity, thus the 

point of departure in toxicity studies was to use a standard method such as 

LIVE/DEAD for comparison. According to the manufacturer’s protocol for the 

LIVE/DEAD kit, I first conducted preliminary experiments with different 

percentages of live and dead zntA cells to optimize dye ratios and experimental 

conditions, then, I subsequently performed experiments determining the EC50s 

for Cd and Pb. The experiments performed to parameterize the Cd and Pb BLMs 

for toxicity are given in Table 2-1, and representative results from these 

experiments are shown in Figure 2-4. The results in Figure 2-4A show 

fluorescence spectra for different percentages of live (higher fluorescence signal 

at 505 nm from SYTO 9) to dead (higher fluorescence signal at 645 nm from PI) 

zntA cells after dyeing with the LIVE/DEAD working solution, and Figure 2-4B 

shows a resulting calibration line. The linear relationship between 

𝜆max, SYTO 9 𝜆max, PI⁄  plotted versus RL/D showed good agreement with 

manufacturer’s protocol specifications, confirming that the LIVE/DEAD method 

was suitable for toxicity experiments with zntA. Figures 2-4C–F show 

fluorescence spectra (C and E) and dose-response curves (D and F) in the 

control medium for Cd and Pb LIVE/DEAD toxicity experiments with zntA.  
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Figure 2-4. Representative fluorescence spectra and dose-response curves for 

bioreporter LIVE/DEAD experiments. (A) Fluorescence spectra and (B) 

𝜆max, SYTO 9 𝜆max, PI⁄  plotted versus RL/D for experiments varying the percentages of live 

and dead zntA bioreporter. Panels C‒F show representative fluorescence spectra (C 

and E) and dose-response curves (D and F) for zntA toxicity experiments with Cd (C‒D) 

and Pb (E‒F), respectively in the control medium. 
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For the control, I found an EC50
𝐶Cd  of 7.1 mg·L-1 compared to an EC50

𝐶Pb  of 10. mg·L-

1, indicating that these two metals are similarly toxic to zntA. One recent report 

for the green algae Chlamydomonas reinhardtii, frequently investigated for its 

resistance to metals, also found less tolerance to Cd (EC50
𝐶Cd~13 mg·L-1) than to 

Pb (EC50
𝐶Pb~30 mg·L-1, Li et al., 2021). Meanwhile, the World Health Organization 

(WHO, 2013) has set guidance levels for drinking water quality for CCd and CPb at 

0.001 and 0.005 mg·L-1, respectively. Results from my and Li et al.’s (2021) 

acute toxicity tests on lower organisms and the WHO exposure metrics for 

humans indicate that the hazards posed by Cd, in comparison to Pb are of the 

same order of magnitude in each case, albeit with lower metrics for Cd (i.e., 

lower levels being associated with greater exposure hazard/acute toxicity).  

For BLM parameterization, I used the LIVE/DEAD method to determine EC50
𝑎
Cd2+  

and EC50
𝑎
Pb2+and how these vary as a function of major cation free-ion activities, 

results for which are shown in Figure 2-5. All four major cations have a 

protective effect on the toxicity of Cd. The results are different for Pb; only Ca 

and Mg have a protective effect on the toxicity of Pb, whereas increasing K and 

Na appear to promote Pb toxicity nonlinearly. Similar results have been found 

by An et al. (2011) for Cd and Pb effects on the bacterium Vibrio fischeri; these 

authors did not discuss their observations of this effect, and omitted these 

alkaline metals in their BLM parameterization. Kim et al. (2002) observed that 

increases in Ca and Mg aqueous free-ion decreased the bioaccumulated Cd and 

Pb in rice roots, however K did not diminish Cd and Pb bioaccumulation. The 

effect that I observe for K and Na on Pb in Figure 2-5C–D was also found for 

copper (Cu) by de Schamphelaere and Janssen (2002) with Daphnia magna. 
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These authors remarked upon the effect, however, gave no explanation of 

possible reasons behind behind it. Gao et al. (2020), in studying the toxicity of 

Cu to Danio rerio, reported the slope for EC50s versus K and Na activities were 

not differentiable from zero. Similar to my results, Qu et al. (2013) also 

observed the non-protect effects of K for Cd toxicity on the bacterium 

Photobacterium phosphoreum; these authors theorized that Cd might inhibit 

Na+/K+-ATPase in a variety of tissues, such that increases in K will promote the 

excretion of Na by cells, making P. phosphoreum more sensitive to Cd. This 

explanation seems reasonable, but since Qu et al. (2013) did not vary Na in their 

toxicity tests, their explanation may not be suitable to explain why both K and 

Na lack the protective effect in the case of my observations and those of other 

authors cited above. The non-protective effect found in An et al. (2011), Qu et al. 

(2013), and de Schamphelaere and Janssen (2002) looks very similar to my 

results here in Figure 2-5 (C and D), exhibiting a behaviour that is fitted better 

with a decreasing logarithmic function rather than a linear decrease. Since I do 

not have a suitable explanation for the effect that would also support cogent 

parameterization, I do as others and omit K and Na from calculations for KKBL 

and KNaBL for Pb. Since the effect has been observed for multiple metals and is 

not limited to bacteria, it would seem to warrant more detailed investigation. 

Results from bioluminescence inhibition toxicity measurements 

Subsequent to characterizing Cd and Pb toxicity using the LIVE/DEAD method, I 

was interested to see how the results based on bioreporter bioluminescence 

inhibition might compare, representative results from which using the control 

medium are shown in Figure 2-6. I generally find that dose-response curves 
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based on bioluminescence inhibition are quite similar to those obtained with 

the LIVE/DEAD method. For instance, when comparing toxicity in the same 

medium measured by the standard toxicity method LIVE/DEAD in Figure 2-4 to 

the bioluminescence inhibition results in Figure 2-6, I find that the EC50
𝑎
Cd2+

 is 5.2 

mg·L-1 and 7.1 mg·L-1 for bioluminescence and LIVE/DEAD, respectively, and for 

EC50
𝑎
Pb2+  the values are both 10. mg·L-1.  

 
Figure 2-5. EC50 versus major cations for LIVE/DEAD toxicity experiments. Effects of 

competing/major cation free-ion activities on  EC50
𝑎
Cd2+  (hollow circles) and EC50

𝑎
Pb2+  

(filled circles) are shown in the four panels A–D. 

On average, I find that the EC50 I obtain from bioluminescence inhibition for Cd 

and Pb is, respectively, 83% and 89% of the EC50 for these toxic metals that I 
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obtain with the LIVE/DEAD method and that these differences are both 

significant at p < 0.001. This difference might be viewed as reasonable, due to 

the uncertainties from sigmoidal curve fitting, and also the endpoint of these 

two types of toxicity measurement methods are different. 

Regarding curve fitting, there is uncertainty in measurement regarding the 

exact concentration at which MRR0i occurs, which will affect the curve fit. With 

respect to the measurement endpoint, LIVE/DEAD reflects cell membrane 

integrity, while bioluminescence inhibition measures cellular metabolic status 

as bioluminescence is directly linked to respiration, through the electron 

transport chain. The inhibition of bacterial metabolism is manifested by 

attenuation of light emittance that occurs at the toxicity level of the tested 

substance (Girotti et al., 2008). Nonetheless, considering that the generally 

accepted BLM convention holding that predicted versus measured need to agree 

to within a factor of two was adopted in view of large uncertainties associated 

with many types of toxicity test, agreement to within 83 or 89% hardly seems a 

notable difference, even if statistically significant.  

 
Figure 2-6. Representative dose-response curves for bioluminescence inhibition 

experiments. Values of RLum are plotted versus increasing (A) CCd and (B) CPb in the 

control medium. 
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Figure 2-7 shows EC50
𝑎
Cd2+  and EC50

𝑎
Pb2+plotted as a function of major cation free-

ion activities for toxicity measurements using bioluminescence inhibition. As for 

the LIVE/DEAD results in Figure 2-5, bioluminescence inhibition experiments 

also show that K and Na did not have a protective effect with respect to Pb 

toxicity. Comparing Cd/Pb toxicity measured by LIVE/DEAD (Figure 2-5) to 

bioluminescence inhibition (Figure 2-7), there is no systematic trend for 

differences in m and b, however Rcation (described in Section 2.3) is always 

smaller for LIVE/DEAD compared to the bioluminescence inhibition method.  

 
Figure 2-7. EC50 versus major cations for bioluminescence inhibition toxicity 

experiments. Effects of competing/major cation free-ion activities on  EC50
𝑎
Cd2+  (hollow 

circles) and EC50
𝑎
Pb2+  (filled circles) are shown in the four panels A–D. 
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The value Rcation may be thought of as the rate of change of M toxicity as a 

function of the rate of change of major cation free-ion activity, m, normalized to 

the toxicity of M in the absence of any given major cation, b. In physical terms, a 

smaller Rcation indicates that the protective effect of major cations per unit 

increase in major cation free-ion activity is less as measured by 

bioluminescence inhibition as compared to LIVE/DEAD. The key issue is how 

such differences affect model parameterization, which I discuss in the next 

section. 

2.6 PARAMETERIZATION OF CD AND PB BLM TOXICITY-MODE 

MODELS FOR LIGHTS-ON BIOREPORTER 

As described in Section 2.3, Rcation values from the data in Figures 2-5 and 2-7 

were calculated and used to solve eq. 2-2 for KCaBL, KMgBL, KKBL and KNaBL. One-

tailed t-tests were performed to confirm that the m values used in calculating 

Rcation were greater than zero. After obtaining values for KCationBL, KMBL and fcrit 

were then calculated with those values using eq. 2-3. Figure 2-8 shows the logit 

of the RL/D and RLum, for Cd and Pb, respectively, plotted versus f for both the 

LIVE/DEAD (A–B) and bioluminescence inhibition method (C–D), reflecting the 

fits associated with final values of KMBL and fcrit. Results for all parameters used 

to construct final BLM toxicity models are given in Table 2-3, along with 

parameters reported for Cd and Pb BLM models developed for other test 

organisms.  
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Figure 2-8. Relationships between toxic response and the fraction of BL sites occupied. 

The logit of the measured toxic response (RL/D and RLum) is plotted versus values of f 

calculated for LIVE/DEAD with (A) Cd and (B) Pb, and for bioluminescence inhibition 

with (C) Cd and D) Pb. 

The parameters Kcation, KMBL and fcrit interactively determine the toxic effect 

within the framework of the BLM. Higher Kcation values indicate that major 

cations are more competitive with toxic metals for BL binding, thus reducing 

toxicity. Higher KMBL values indicate that the toxic metal has a higher binding 

affinity for BL, increasing toxicity. A small fcrit indicates that only a small fraction 

of the BL needs to be occupied to cause a toxic effect, and the bioreporter will 

reach the toxic effect sooner as compared to an organism that models high fcrit. 

In theory, Kcation and KMBL for zntA by LIVE/DEAD and bioluminescence 

inhibition methods should be the same as the competitive binding ability of any 

given major cation and M for the BL should be invariant. While my one tailed t-

tests showed that Kcation determined by LIVE/DEAD compared to the 

bioluminescence inhibition method are not the same, this may result from 

various experimental uncertainties, some of which I discussed previously.
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Table 2-3. Parameters for Cd and Pb BLM models constructed for this work compared 
to literature values. 

Organism Source logKCa logKMg logKK logKNa logKMBL fcrit 

BLM toxicity-mode parameters for Cd: 

zntA 

This study, 
LIVE/DEAD 

3.67 3.82 2.72 2.48 
6.40 0.500 

(3.39-
3.84)a 

(3.56-
3.98) 

(2.47-
2.88) 

(2.23-
2.64) 

This study, 
bioluminescence 

inhibition 

3.16 3.39 2.08 1.77 
5.90 0.520 

(3.13-
3.18) 

(3.36-
3.41) 

(2.06-
2.10) 

(1.76-
1.79) 

V. fischeri (An et al., 2012) 2.84 2.19 1.56 NAb 5.02 0.435 

E. fetida (Li et al., 2008) 3.35 2.82 2.31 1.57 4.00 0.720 

H. vulgare 
(Wang et al., 

2016) 
2.87 2.98 EXc NA 5.19 0.290 

D. rerio  
(Feng et al., 

2018) 

4.57 4.39 3.05 
EX 5.66 NRd 

(4.51-
4.67) 

(4.33-
4.44) 

(3.01-
3.09) 

BLM toxicity-mode parameters for Pb: 

zntA 

This study, 
LIVE/DEAD 

1.90 2.28 
EX EX 4.30 0.140 

(1.84-
1.95) 

(2.25-
2.31) 

This study, 
bioluminescence 

inhibition 

1.28 1.99 
EX EX 4.44 0.185 

(0.95-
1.46) 

(1.63-
2.18) 

V. fischeri (An et al., 2012) 2.30 2.13 EX NA 6.67 0.547 

D. rerio  
(Feng et al., 

2018) 

4.17 3.82 

EX EX 4.93 NR (4.11-

4.23) 

(3.80-

3.85) 

a 95% confidence limits. b NA–not applicable, was not varied. c K was excluded (EX) from the calculation (eq. 
2-2). d fcrit was not reported (NR).  

Because all of these parameters influence model predictions, it is difficult to 

draw conclusions from pairwise comparison of like parameters in Table 2-3, 

however I will return to a discussion of how they affect the overall model result 

later, in the context of WQC.  
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2.7 BENCHMARKING AND VALIDATION OF BIOREPORTER BLM 

TOXICITY-MODE MODELS 

Figure 2-9 shows BLM predicted versus measured EC50
𝑎
Cd2+  and EC50

𝑎
Pb2+ , 

including results from back-calculation and validation using LIVE/DEAD (A‒B) 

and bioluminescence inhibition (C‒D) methods. Back-calculation is the process 

of verifying that predicted toxicities from the BLM toxicity-mode 

parameterization experiments in Table 2-1 (Ca-set, Mg-set, K-set and Na-set) 

correspond to measurements.  

For validation, three types of experiment were performed to verify that the 

model could predict resulting changes in toxicity: 1) Varying major cation 

concentrations randomly (changes in inorganic components); 2) Varying HA 

concentrations (changes in organic components); 3) Testing natural freshwater 

samples (changes in inorganic and organic components in environmental 

matrices). As with speciation, agreement between measured and predicted 

values is quite strong and well within the factor of two guideline for validation. 

The results in Figure 2-9 demonstrate that the bioluminescence inhibition assay 

produces similarly well-behaved validation results for both Cd and Pb when 

compared to the well-known LIVE/DEAD toxicity bioassay, and in practice I find 

that the bioluminescence inhibition assay is much faster and cheaper when 

compared to the LIVE/DEAD toxicity measurement.  
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Figure 2-9. Plots of predicted versus measured toxicity. A–B show the linear 

relationship, respectively, between the predicted and measured EC50
𝑎
Cd2+  and EC50

𝑎
Pb2+  

using the LIVE/DEAD toxicity test, and C–D show the comparative results from the 

bioluminescence inhibition method. The solid line indicates an exact match between 

measured and predicted EC50
𝑎
Cd2+/EC50

𝑎
Pb2+ , and the dashed lines a factor of twice the 

pooled average RPD between measured and predicted EC50
𝑎
Cd2+/EC50

𝑎
Pb2+ . All of the 

results that I report herein are within the accepted validation guideline (measured and 

predicted response shall agree within a factor of two).  
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2.8 LIGHTS-ON BIOREPORTER’S TWO-IN-ONE PROPERTIES RELATE 

TO WATER QUALITY CRITERIA 

Returning to the discussion of the BLM toxicity-mode parameters in Table 2-3, I 

was interested to compare the outcomes, i.e., the predicted EC50
𝐶Cd  and EC50

𝐶Pb  

from BLM models for different organisms in the context of WQC, as the BLM was 

developed to assist with setting defensible WQC. The EC50
𝐶Cd  and EC50

𝐶Pb  that I 

predict here are acute criteria, and for illustrative purposes I will consider 

results relative to the criterion maximum concentration (CMC), which is the 

highest concentration of a material in ambient water to that an aquatic 

community can tolerate for brief durations (acute basis) without resulting in an 

unacceptable adverse effect. The CMC originates from Genus Mean Acute Values 

(GMAVs) for toxicity.  

To calculate a CMC, the typical approach is to rank available data for GMAVs, 

with the most sensitive genus having the lowest rank, and from this assess the 

EC50 at P5% (5th percentile according to rank) to obtain a final acute value (FAV). 

Since the FAV is a mean EC50, i.e., a concentration at which 50% of a population 

experiences effects, the FAV is divided by two to obtain the CMC. According to 

the one set of guidance documentation on ambient freshwater WQC, the Cd 

GMAVs range from 0.00419 mg·L-1 for Salvelinus (char/trout) to 49.052 mg·L-1 

for Chironomus (midge) (US EPA, 2016b). The Cd freshwater FAV WQC for Cd at 

a hardness of 100 mg·L-1 was reported to be 0.00573 mg·L-1, however, for Cd 

the CMC was set at CCd = 0.0018 mg·L-1 (US EPA, 2021), lower than the FAV/2, to 

protect the commercially important Rainbow trout. For Pb, the GMAV ranged 

from 0.3446, for Gammarus (amphipod crustacean) to 570.1 mg·L-1, for the 
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Tanytarsus (midge) (US EPA, 1984). Relatively fewer data were available for Pb, 

and the Pb CMC for freshwater was set at CPb = 0.065 mg·L-1 at hardness of 100 

mg·L-1 (US EPA, 2021), based on inference of the P5% GMAV. In order to assess 

how useful BLM models for the organisms listed in Table 2-3 are in light of these 

WQC/CMC, predicted EC50
𝐶Cd  and EC50

𝐶Pb  were plotted in Figure 2-9, along with the 

GMAV for the most sensitive organism used in calculating FAV WQCs, the least 

sensitive organism’s GMAV from the same ranking, the CMC and the LOD of zntA, 

which I discuss in context further below. The x-axis in Figure 2-10 places the 

EC50 results for the organisms in Table 2-3 at the Pn% percentile where they fall 

among all the GMAVs in the WQC guidance documentation. In Figure 2-10 I see 

immediately that, although the zntA BLM parameters for bioluminescence 

inhibition are consistently lower than for LIVE/DEAD, the predicted EC50
𝐶Cd  and 

EC50
𝐶Pb  for the two are similar for both Cd and Pb, and in comparison to 

variations from other organisms, even though the BLM parameters for zntA 

from LIVE/DEAD are in some cases statistically different from bioluminescence 

inhibition, the outcome in terms of toxicity is a result of the interplay of all 

parameters. Hence, the decreased protective effect of the lower Kcation values for 

zntA bioluminescence inhibition are in whole or part offset by the lower KMBL 

values found for bioluminescence inhibition. 

Comparing the EC50
𝐶Cd  and EC50

𝐶Pb  for zntA from Figure 2-10 to other organisms 

with reported Cd/Pb BLMs, the predicted EC50s for D. rerio, and especially 

Eisenia fetida, are higher. The highest predicted EC50
𝐶Cd  is for E. fetida, which, at 

1,234 mg·L-1, is over an order of magnitude higher than the highest Cd GMAV for 

Chironomus (thus plotted above P100%). In terms of BLM parameters, the highest 
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fcrit in Table 2-3 is for E. fetida, being half again (~50%) higher than the average 

fcrit in Table 2-3. It is logical that E. fetida is relatively insensitive; work by Jones 

et al. (2009) and Li et al. (2009) shows that E. fetida can 

compartmentalize/sequester Cd and Pb, increasing the organism’s resistance to 

Cd and Pb toxicity. D. rerio, meanwhile, has documented heavy metal 

detoxification mechanisms, such as glutathione S-transferase protein expression 

(Tierbach et al., 2018). The fcrit of Hordeum vulgare is the lowest compared to all 

the organisms in Table 2-3, such that only 29% of BL sites need to complex with 

Cd to cause a toxic effect for barley root elongation. Cd is absorbed and 

accumulated in plant tissues, and as roots are the primary site of accumulation 

(Shi et al., 2016 and references therein), they are also a locus of toxic effects, 

likely explaining the sensitivity and low fcrit of H. vulgare. 

Regarding results for bacteria in Figure 2-10, V. fischeri and zntA have similar 

predicted EC50
𝐶Cds (12. mg·L-1 for V. fischeri; 9.1 mg·L-1 for zntA LIVE/DEAD; and 

10.1 mg·L-1 for zntA bioluminescence inhibition), however the V. fischeri EC50
𝐶Pb  

is ~30 times lower, on average, than for zntA (0.4 mg·L-1 for V. fischeri versus 

12.6 mg·L-1 for zntA LIVE/DEAD and 12.8 mg·L-1 for zntA bioluminescence 

inhibition). The insensitivity of V. fischeri to Cd in comparison to zntA was not 

expected, inasmuch as V. fischeri is a lights-off bioreporter, hence a lower EC50
𝐶Cd  

is consistent with needs for measurement of toxic response, whereas zntA, as a 

lights-on reporter, should ideally be more resistant to toxic metals in order to 

measure speciation for environmental samples from contaminated sites. For V. 

fischeri, Ranjitha and Karthy (2011) have reported that heavy metal resistance 

is highly variable, and Teodorovic et al. (2009) have questioned the applicability 
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of V. fischeri as a useful screening method in assessing various environmental 

samples due to its low sensitivity to heavy metals. As such, the variability of 

results, and insensitivitiy with regard to Cd, for V. fischeri in Figure 2-10 are 

consistent with literature reports. 

 

Figure 2-10. BLM-predicted EC50 in the context of WQC. (A) EC50
𝐶Cd  and (B) EC50

𝐶Pb for 

different organisms listed in Table 2-3 (filled squares) by sensitivity from more 

sensitive (low EC50) to less sensitive (high EC50) plotted according to the comparative 

Pn% from WQC guidance documentation (see text). Data is also shown for the most 

sensitive genera used in formulating CMC (Salvelinus for Cd, Gammarus for Pb) and for 

the P100% (Chironomus for Cd, Tanytarsus for Pb (open circles), along with, for 

comparison, the CMCs (solid lines) and zntA LOD (dashed lines) for Cd and Pb, 

respectively. All data reflect a hardness of 100 mg/L. The labels L/D and Lum in the 

figures indicate BLMs for zntA based on LIVE/DEAD and bioluminescence inhibition 

assays, respectively. The fcrit value for D. rerio was assumed to be 0.5 since the authors 

of that work did not report it. 

While some organisms are more sensitive than others, as compared to the FAV 

for Cd and Pb and the EC50
𝐶Cd  and EC50

𝐶Pb  for sensitive species (Salvelinus and 

Gammarus, respectively), none of the organisms for which BLMs have been 

developed could be regarded as fit-for-purpose for toxic metal environmental 

risk assessment according to existing WQCs, i.e., the metrics that matter. Even V. 

fischeri for Pb is above the P10%, while the CMC is set at P5%. This point has not 

been addressed in any of the works whose model results I include in Figure 2-
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10. It is an important point, and it underscores the essential difference in the 

approach I take here, namely, that because lights-on reporters are capable of 

measuring speciation and toxicity, consistent with how the BLM can be run in 

speciation and toxicity mode, they are much less limited compared to effectively 

any other organisms in use for BLM studies. 

Figure 2-11 graphically illustrates the dual-mode response characteristic for Cd 

and Pb, whereby at concentrations well below the EC50, the lights-on zntA is 

able to report levels of toxic Cd and Pb in a linear (data not shown) to log-linear 

(solid lines in Figure 2-11) response pattern. The relative ranges over which 

zntA is able to report for Cd and Pb begin below the corresponding CMC for each 

metal (compare the LODs for these metals to the CMCs in Figure 2-10).  At the 

maximum of the log-linear speciation range, the response smoothly transitions 

to bioluminescence inhibition/toxicity. Thus, while other organisms used in 

BLM work report toxicity as a single metric such as EC50, for any given water 

composition, the lights-on bioreporter is able to render results for an entire 

concentration range, in the case of Cd and Pb starting from well below the 

respective FAVs for these metals, up to the EC50 for the bioreporter.  

While the Cd and Pb BLMs for other organisms listed in Table 2-3 are not able to 

produce results for Cd and Pb levels that are environmentally relevant in terms 

of WQC, zntA, and by extension other lights-on reporters, can measure 

speciation before reaching toxic effect. Consequently, the two-in-one speciation 

+ toxicity capability of lights-on bioreporters, as demonstrated here for zntA, 

may be used to report at toxicity endpoints for many other organisms whose 

toxicity endpoints lie in the LOD–EC50 range of the bioreporter. In the case of 
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zntA specifically, I can measure, and with the validated BLM predict, Cd and Pb 

EC50s for any genus for which the GMAV falls in the range of CMC– P50% or CMC– 

P55%, respectively for Cd and Pb, i.e., the most sensitive half of all species for 

which data has been reported in setting the WQC guidance values used for 

discussion in Figure 2-10. While this range excludes relatively insensitive 

species such as E. fetida, it includes the majority of sensitive species, and these 

are precisely the species that are of interest with regard to WQC and 

environmental risk assessment. 

 
Figure 2-11. Two-in-one bioluminescence response of zntA. Response is plotted for 

increasing (A) CCd and (B) CPb. The solid lines show the log-linear response range for 

speciation whereas the dashed line corresponds to a dose-response curve for the 

region of bioluminescence inhibition/toxicity response. This response pattern is unique 

in the context of other reports on BLM models, which focus on toxicity only and render 

a single toxicity response metric (EC50). The lights-on bioreporter response is able to 

represent the entire functionality of the BLM model, speciation and toxicity modes. In 

this way, the lights-on bioreporter can report at toxicity endpoints for any organism for 

which the toxicity/EC50 endpoint lies in the LOD–EC50 range of the bioreporter. In the 

case of zntA Cd and Pb, the reporter can measure and predict EC50s for the most 

sensitive half of species for which data has been reported in the WQC guidance 

documentation used for illustrative purposes here. 
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 A new perspective of copper-
iron effects on bloom-
forming algae in a highly 
impacted environment 

 

3.1 BACKGROUND ON COPPER AND IRON MICRONUTRIENT 

EFFECTS ON ALGAE 

Increasing population, growing demands on water resources and 

anthropogenically induced environmental change create urgent surface-water 

management challenges (Best, 2019; Mushtaq et al., 2020). Lakes particularly 

contribute to ecosystem services/ productivity and are important for fisheries, 

drinking water and hydrological regulation (Lévêque, 2001; Schallenberg et al., 

2013). Ecological problems from lacustrine harmful algal blooms (HABs) have 

been named as possibly the greatest inland water quality threat, impacting 

public health and aquatic ecosystems (Brooks et al., 2016; Paerl, 2018). 

Eutrophication, from excess anthropogenic nitrogen (N) and phosphorous (P), 

is a major cause of HABs (Heisler et al., 2008; O’Neil et al., 2012), investigated by 

many studies regarding effects on algal growth (Paerl et al., 2011, 2015; 
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Quiblier et al., 2013; Gobler et al., 2016). For some notable examples, HABs have 

not responded as expected to abatement efforts despite significant investments 

(Posch et al., 2012; Qin et al., 2019). 

In addition to N and P (hereafter NP), a wide range of algal cellular processes 

require micronutrients (MNs, Andersen’s definitive text, 2005, nine MNs were 

discussed), however some MNs become toxic with increasing concentration 

(Chakraborty et al., 2010). Early research noted the role of MNs on freshwater 

ecosystem’s cycling (Outridge and Noller, 1991; Maier and Knight, 1994), since 

which other investigators have emphasized that a crucial research frontier is 

understanding MN-coupled biogeochemical cycles (Finzi et al., 2011; 

Schlesinger et al., 2011). Complicating matters, trace metal pollution, which has 

occurred due to industrialization, urbanization, and increases in energy 

consumption, has brought massive disruption of MN biogeochemical cycles 

(Andreae et al., 1984; Kaushal et al., 2014). Relative to this dramatic 

environmental/biogeochemical change, comparatively little work aims to 

understand the role of MNs in influencing HAB development and progression 

(Facey et al., 2019; Zhang et al., 2019), which is therefore an important and 

largely neglected topic. My colleague, Dr. Zhang, and I previously found 

statistically significant effects of algal growth limitation for B, Co, Cu and Fe 

(Zhang et al., 2019). Fe is frequently limiting in marine environments (Boyd et 

al., 2007; Tripathy et al., 2019), and there have been some reports for 

freshwater (Nagai et al., 2007; Molot et al., 2010). MNs have an interesting role 

in regard to environmental management, since relatively minor inputs/changes 

could potentially have pronounced effects. For example, Cu has been suggested 

at concentrations on the order of 100 µg·L-1 as an algal biocide for use in HAB 
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management (Wu et al., 2017). At 20 µg·L-1 Cu, however, my colleague Dr. Zhang 

and I found a tremendous stimulatory effect (Zhang et al., 2019), suggesting that 

HAB management with Cu may not always be advisable. 

The environmental bioavailability of Fe is often low, yet some phytoplankton 

have relatively high cellular requirements (Brand, 1991; Schoffman et al., 2016). 

Some studies report Cu-Fe interactions, whereby Cu facilitates Fe uptake 

(Schoffman et al., 2016), and in previous work in which I was involved in my 

doctoral group, we were unable to discount that Cu amendment induced 

increased Fe bioavailability (Zhang et al., 2019). Synergistic NP-MN interactions 

involving Fe (e.g. phototroph N-metabolism is sensitive to Fe-limitation, Quigg 

et al., 2008) have contributed to conceptualization of the extended Redfield 

ratio (Ho et al., 2003). In addition to NP-MN synergies, there are well-known 

MN-MN interactions for algae. As early as 1987, Stauber and Florence observed 

that Fe reduced Cu toxicity to different algal species, which they attributed to Cu 

scavenging by a layer of Fe-hydroxide on algal cell surfaces, thus reducing 

cellular Cu penetration. Recently, Kochoni and Fortin (2019) also found that Fe 

ameliorates Cu toxicity to the green algae Chlamydomonas reinhardtii, an effect 

rationalized via the BLM, i.e., Fe competes with Cu for the BL binding sites of C. 

reinhardtii, such that less Cu was binded with the BL site and initiates toxic 

response caused by Cu. Fe-hydroxide scavenging or BLM theories cannot 

explain the stimulatory effect observed for Cu in work in which I participated 

(Zhang et al., 2019), whereby we hypothesized a Cu-Fe link involving bacterial 

or algal production of strong Fe- and Cu-binding ligands, respectively, called 

siderophores (Saha et al., 2016) and chalkophores (Solioz, 2018) that have 

demonstrated importance in aiding organisms to navigate the divide between 
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MN nutrition and toxicity. In 1980, McKnight and Morel found that Fe-limitation 

caused Anabaena spp. to secrete strong Cu-binding ligands; they speculated that 

Cu-ligand complexes reduced Cu2+, conveying an advantage to cyanophytes. In 

another example, Nicolaisen et al. (2010) reported that at low Fe and Cu, 

Anabaena spp. secrete the siderophore schizokinen to complex with Fe and 

increase its bioavailability to these organisms. At high Cu/low Fe concentrations, 

Cu-schizokinen complexation lowers Cu intake/toxicity and synthesis of 

another Fe transporter (IacT) is activated. Similarly, for P. aeruginosa, toxic Cu 

concentrations caused siderophore production that conveyed a Cu-protective 

effect (Braud et al., 2010).  

The literature I found concerning coupled Cu-Fe effects is from laboratory 

studies on algal monocultures, which is very different from field settings. Also, 

the environmental half-life of some MN-binding ligands is relatively low 

(Maldonado et al., 2005). What happens in field settings is actually relevant to 

MNs and environmental management. “Whole lake” management is much 

discussed (Carpenter et al., 1987; Nault et al., 2014; Paerl et al., 2016; Hanson et 

al., 2017), including HABs, and using Cu to control Microcystis (Jančula and 

Maršálek, 2011). If Cu-Fe links affect chalkophore/siderophore production, this 

affects Cu/Fe bioavailability, and whole-lake management of HABs using Cu may 

have unanticipated side effects. Certainly, a better understanding is needed, 

including field settings, before implementing whole-lake Cu application, 

particularly in geographical settings with highly variable ecosystem dynamics 

across a regional scale. 
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Here I examine how Cu and Fe amendments affect small-scale mesocosms 

initiated with Microcystis and Desmodesmus spp. in lake water from a large, 

hypereutrophic lake that has widely varying algal ecology geographically. My 

field area is Taihu, China’s third largest freshwater lake (2,338 km2 surface area; 

catchment area 36,900 km2), located in a rapidly developing region (Yangtze 

Delta, Qin et al., 2007). Cyanobacterial HABs have impacted Taihu every 

summer since the mid-1980s due to environmental change/human impacts (Qin 

et al., 2007; Wang et al., 2009). Hence Taihu has become a locus of field studies 

to understand HAB management. I monitored mesocosm changes for 25 

standard water quality parameters plus the biomolecules chalkophore, 

siderophore, and microcystin. Chalkophore screening is new (Zhang et al., 

2020b), and this is the first work to analyze chalkophore and siderophore 

separately, and as a function of Cu/Fe. Chalkophore/siderophore results are not 

well characterized by standard time-series analysis, and I use Community 

Trajectory Analysis (CTA), a powerful new approach in ecological studies. I also 

apply multivariate analysis to the full 28-parameter data set. Results offer an 

entirely new perspective to understanding MN dynamics in aqueous 

environments. Summarizing, I find 1) Cu-Fe impacts on growth and community 

progression do not agree with lab-based findings, 2) there is an interplay 

between chalkophore/siderophore production wherein Microcystis spp. varies 

behavior to manage Cu/Fe requirements, including a link between chalkophore 

and microcystin, and 3) the lake water itself influences mesocosm changes. 
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3.2 METHODS USED IN ALGAL MESOCOSM EXPERIMENTS 

Study area, collection and treatment of lake water 

Taihu is a polymictic lake located ~150 km west of Shanghai (lake center: 

31°10ʹ0ʺN, 120°90ʹ0ʺE). Water samples were collected during an HAB in August, 

2018, at three stations (Figure 3-1) monitored quarterly by NIGLAS. Meiliang 

Bay, (St 3), receives large amounts of untreated wastewater via the Liang and 

Zhihu rivers (Paerl et al., 2011). Accordingly, recurring and increasing 

Microcystis-dominated HABs often originate at St 3 (Qin et al., 2007). Xukou Bay 

(St 28) has a high density of macrophytes and is typically unimpacted by HABs. 

Gonghu Bay (St 13), located in between St 3 and St 28, is usually less impacted 

by HABs compared to St 3. These three stations were selected for sampling 

based on our previous work (Zhang et al., 2019) wherein my colleague Dr. 

Zhang and I found that water chemistry is different and significant differences 

were found in MN mesocosm experiments for these stations.  

Forty-L water samples from 0.2 m below the surface were collected into acid-

cleaned polyethylene carboys. All work was conducted trace-metals clean, using 

ultrapure water (UPW). Water temperature, pH, turbidity and dissolved oxygen 

were measured in the field using an YSI 6600 sonde. Water samples from Taihu 

were filtered immediately after collection using Whatman GF/F glass-fiber 

filters, nominal pore size 0.7 μm, to remove in situ phytoplankton. Due to filter 

clogging when filtering 40-L, many filters must be used, and small amounts of in 

situ algae (Algis) are introduced to the filtrate from transfer during filter changes 

(confirmed to be below the limit of detection/LOD by microscopic counting and 

automated cell counts).  
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Algal Cultures 

Microcystis was selected as the main HAB-forming species in Taihu (Qin et al., 

2007), also reportedly sensitive to Cu (Wu et al., 2017). Desmodesmus was 

selected as a contrasting, non-nuisance green alga with a relative tolerance to 

Cu (Buayam et al., 2019), also having been used as a model Microcystis-

competitor in lab studies (Chang et al., 2012; Omidi et al., 2019). 

 
Figure 3-1. Map of Taihu field area and stations sampled for mesocosm work in the year 

of 2018. The location in Taihu of Sts 3, 13 and 28 where water samples were collected 

is shown along with the site of mesocosm experiments (Taihu Laboratory for Lake 

Ecosystem Research, TLLER). 
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Microcystis (> 99% Microcystis spp. from microscopic examination) were 

collected from a point off the dock at TLLER in August, 2018. Desmodesmus was 

purchased from Aquatic Biology Services (Wuxi Zhongshun Biotechnology Co., 

Ltd; > 99% Desmodesmus from microscopic examination and 18s rRNA 

sequencing). Algae were passed through a 65 μm zooplankton net, then 

acclimated in modified COMBO medium (Kilham et al., 1998, with 1 mg·L-1 N, 0.1 

mg·L-1 P, no Cu/Fe, and all other ingredients at 50% of COMBO). Mono-algal 

status was verified by microscopic examination periodically and on mesocosm 

establishment. For mesocosm bioassays, algae were collected/concentrated by 

coarse filtration. 

Nutrient Limitation Bioassays (NLBs) 

The NLB used here is a small-scale field mesocosm study that possesses an 

element of control akin to lab experiments (improved reproducibility, isolation 

of variables, resulting basis for tractable hypotheses), while also offering 

environmental reality (e.g. diel cycles, temperature conditions) that lab 

experiments lack (Spivak et al., 2011). Meta-analysis by Elser et al., (2007) and 

Spivak et al., (2011) on 1060 NLB experiments, spanning a wide range of 

volumetric (as little as 0.02 L) and temporal (0–7 days) scales, concluded that 

the approach is applicable to larger-scale processes. Their findings confirm the 

suitability of NLBs for my large factorial experiment that screens for potential 

environmental MN effects. 

I designed NLB amendments as follows (Table 3-1): 1) no added Cu/Fe (control, 

Ctl), 2) 50 µg·L-1 Cu, 3) 200 µg·L-1 Fe, and 4) Cu and Fe (CuFe) at the dose used 

for each individually. All had NP to ensure that these are non-limiting and to 
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focus on the effects of Cu, Fe, and Cu-Fe. Concentrations of NP and Fe were the 

same used previously (Zhang et al., 2019); Cu concentration was increased 2.5 

times over previous work (Zhang et al., 2019) to levels reportedly at or 

approaching levels toxic to Microcystis (Wu et al., 2017) to observe how this 

affects mesocosm progression. I also varied the chemical form of Fe (Table 3-1). 

For Fe only I used FeCitrate, a solubilized and exchangeable, more bioavailable2, 

form of Fe (Sutak et al., 2012; Quigg, 2016; Mustoe, 2018). I used FeCl3·6H2O for 

CuFe, which, as a less bioavailable form due to the formation of insoluble Fe-

oxyhydroxides, was to test whether the response of algae to Cu will have an 

influence on the bioavailability of Fe.  

Table 3-1. Amendment schedule used in Taihu NLB in the year of 2018. 
 N a P b Fe Cu e 
Control 2.0 mg·L-1 N 0.2 mg·L-1 P No added Fe No added Cu 

 
Fe “ “ 200 µg·L-1 Fe c 

 
No added Cu 

Cu “ “ No added Fe 50 µg·L-1 Cu 
 

CuFe “ “ 200 µg·L-1  Fe d 50 µg·L-1 Cu 
a added as KNO3; b added as K2HPO3·3H2O; c added as FeCitrate; d added as FeCl3·6H2O; e added as 
CuSO4·5H2O. 

Trials were also conducted to see if MN effects differ for mono- and mixed-

cultures. I designate the different groups of mesocosm trials as Mmeso (dosed 

with Microcystis spp.), Dmeso (Desmodesmus spp.), and Bmeso (1:1 mixture of 

Microcystis and Desmodesmus by OD, or “both”). To perform NLBs, filtered lake 

water was divided into three portions and dosed with algae to a starting optical 

density at 750 nm (OD750 hereafter OD) of 0.05. Given the difficulty of obtaining 

 
2 Here I adhere to the terminology of Semple et al. (2004), whereby bioavailability references 
only the amount of a substance available to an organism at some time, which is distinguished 
from bioaccessibility, i.e. that which might become or be rendered bioavailable. As an outgrowth 
of some decades of study, bioavailability and bioaccessibility of micronutrients and other 
species are generally recognized to be a function of chemical speciation, i.e., per Campbell, 1995, 
as an example. 
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large amounts of algae-free water from natural water, it was given that Algis 

species might grow in my mesocosms over time. Our prior work from my 

colleague Dr. Zhang and I found that MNs may mediate changes in algal 

assemblages (Zhang et al. 2019), which is a possible outcome of interest; my 

primary criterion of importance for NLB experimental design is that the initial 

conditions for all mesocosms are controlled. For each NLB permutation (station 

water used, algae dosed, amendment type), triplicate subsamples were placed 

into 1-L transparent, chemically inert, cubitainers, which were then spiked to 

achieve the final concentrations of NP and MN (Table 3-1). The cubitainers were 

then incubated in situ in Taihu near the surface at TLLER. Samples for analysis 

were collected from initial water, initial algal suspensions (t0), and then each 

cubitainer was sampled three times, at days 2, 4 and 6 (t2, t4, and t6, 

respectively) for analysis. 

Sample Analysis 

Mesocosm subsamples were analyzed for OD, pH, dissolved organic carbon 

(DOC), total dissolved nitrogen (TDN), ammoniacal nitrogen (NH4), nitrate 

(NO3), nitrite (NO2), total dissolved phosphorus (TDP), orthophosphate (PO4), 

total dissolved copper (TDCu), total copper (TCu), total dissolved iron (TDFe), 

total iron (TFe), cations Na, K, Mg, Ca, chloride and sulfate anions (Cl, SO4), 

Chlorophyll-a (Chl-a), chalkophore, siderophore and total microcystin. I 

identified and enumerated algae by microscopic counting (Cts.m) and 

automated cell counting by electric-field exclusion (Cts.ef). I used flow 

cytometry measurement to determine average diameter (d.avg). Some analytes 

were measured at t0 and t6 only due to sample volume or other limitations. 
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OD was measured in 96-well plates (3599, Costar) using a plate luminometer 

(Varioskan LUX, Thermo Fisher Scientific, USA). pH was measured with a pH-

meter (Seven easy, Mettler Toledo). Chl-a concentrations were determined 

spectrophotometrically, following extraction in 90% hot ethanol (ISO, 1992). 

Chalkophore and siderophore were measured operationally using the 

competitive-ligand exchange assay that I helped to develop (Zhang et al., 2020b). 

This approach is a competitive ligand exchange (chrome azurol sulfonate, CAS, 

spectrophotometric assay) based high-throughput chalkophore screening 

approach. CAS assay conforms to this operational nature of the term; any ligand, 

in solution that functionally displaces Cu or Fe from Cu-CAS or Fe-CAS is 

screened as positive for chalkophore or siderophore (Zhang et al., 2020b and 

references therein). EDTA was used as a model ligand and as calibration, as it is 

one of the best studied metal chelating ligands, and therefore useful in 

confirming function of the competitive ligand exchange scheme. Per Zhang et al. 

(2020), since the definition of chalkophore and siderophore is operational 

according to association constants, calibration is performed in terms of 

μequivalents ethylene diamine tetra-acetic acid (μeq EDTA), i.e. an equivalent 

amount of EDTA that would bind metal. Microcystin was measured by enzyme-

linked immunosorbent assay (ELISA) using the Microcystins-ADDA ELISA kit 

(No.52011) from Abraxis (USA, per US EPA, 2015). 

Phytoplankton samples were preserved with 0.25% glutaraldehyde (Medical 

grade, Macklin; Marie et al., 2014). Cts.ef were obtained using a CASY cell 

counter and protocol (CASY TT, OLS, Germany). Algal objects were identified 

using field counting (Woelkerling et al., 1976) from microscopic observation of 

samples in a Sedgwick-Rafter chamber (SCA, 1990). Samples were surveyed at 
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1000x prior to counting at 400x; colonies and individuals were counted and 

Cts.m reported as total individual counts. Genera differentiated t2–t6 and, based 

on observations, I grouped them as follows: 1) Blue-green algae (BG); 2) 

Desmids (Des); 3) Dominant unicellular green algae (UG); 4) Diatoms (Dia); and 

5) the remainder (Rest), typically dominated by green algae. I designate the sum 

of green algae as TotG. The d.avg was obtained from analysis of single cells using 

a FACSCalibur flow cytometer (Becton Dickinson, California, USA, argon solid-

state and red diode lasers, excitation at 488 and 635 nm, respectively). The 

intake speed was set to 12 μL·min-1; forward scatter and side scatter 

amplification gain was set at 1 and measured in the linear mode. Acquisition 

was set to capture 25,000 total events for each sample. Size calibration was 

achieved using microspheres (Dae Technology, China) of 1, 6 and 15 μm.  

DOC was determined using the high-temperature combustion method with a 

Dohrmann DC-190 TOC analyzer (Rosemont Analytical Inc., Calif., US EPA, 1979). 

The quantities TDN and TDP were determined using a combined persulfate 

digestion (Ebina et al., 1983). NH4 was determined using the indophenol blue 

method and NO3 and NO2 with the cadmium reduction method (APHA, 1995). 

The PO4 was determined by using the molybdenum blue method (APHA, 1995). 

Cations and anions were analyzed using ion chromatography following the 

National Standards of the People’s Republic of China (MHPRC, 2016a, b). 

Samples for TDCu and TDFe were filtered through 0.45 μm MCE filter units 

(Titan, China) and the filtrate was immediately mixed 1:1 by volume with 4% 

ultrapure nitric acid (Aladdin, China). Samples for TCu and TFe were 

immediately mixed 5:1 by volume with 70% ultrapure nitric acid (Aladdin, 

China). Concentrations of TDCu, TCu, TDFe and TFe were analyzed by ICP-MS 
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(Inductively Coupled Plasma Mass Spectrometry, NexION300, PerkinElmer, 

USA). 

Analytical quality assurance/quality control (QA/QC) for ICP-MS analysis was 

performed according to US EPA guidelines (US EPA, 1998), including analysis of 

a certified reference material (CRM, GBW10020 from Beijing Wanjiashouhua 

Biological Technology Co., Ltd). For total metals (TM), 30 samples were selected 

for digestion (according to US EPA, 2007) and analysis to verify that the average 

concentration of TM in mesocosms, 𝐶meas
TM , at any particular time, t, is conserved 

to within accepted figures of merit (US EPA, 2007), according to 

 Recovery =
𝐶meas, 𝑡
TM

𝐶pred
TM  × 100%,             (3-1a) 

where the predicted TM, 𝐶pred
TM , is the sum of individual contributions to the TM 

present initially, according to 

 𝐶pred
TM  = 𝐶water, t0

TDM  + 𝐶spike, t0
TDM  + 𝐶algae, t0

TM .            (3-1b) 

In equation (3-1b), 𝐶water, t0
TDM , 𝐶spike, t0

TDM , and 𝐶algae, t0
TM  are, respectively, the 

concentration of total dissolved metals (TDM) in filtered water used for 

mesocosms, the concentration of TDM resulting from spiking a blank (ultra-

pure water) mesocosm, and the TM in algae at t0 (for Microcystis spp. or 

Desmodesmus spp., with the concentration for the mixture taken as an average 

of the two).  
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3.3 CALCULATIONS AND STATISTICAL AND MULTIVARIATE DATA 

ANALYSIS 

Total effective spherical volume (ESV, 25,000 events) was calculated from d.avg 

according to Li and Dickie (2011). Some data results are reported as normalized 

or as area under curve (AUC) to obtain an understanding of integrated 

variations in individual parameters over time (Lucius et al., 2019). For multi-

pairwise comparison, Tukey's Honest Significant Difference (HSD) Qsample was 

calculated using Microsoft Excel. Values for Qcrit were obtained from Gleason’s 

Q-value table (Gleason, 1999). The criterion of p < 0.05 was used for rejection of 

the null hypothesis, H0; individual p-values were calculated using Lane’s p-value 

calculator (Lane, 2015). Additional data analysis utilized the corrplot, factoextra, 

plot3D, smacof and vegclust packages in R (de Leeuw and Mair, 2009; De 

Cáceres et al., 2010; Alboukadel and Fabian, 2017; Wei and Simko, 2017; Karline, 

2017; R Core Team, 2019) for pair-wise correlation analysis (using Spearman’s 

ρ), CTA and principal component analysis (PCA). 

The approach taken here, involving the use of time-series data, is very common 

in environmental and many other areas of science. For the work that I report, 

the simplest approach that I take is to compare results from different 

amendments at a discrete sampling time using multiple pairwise comparison. In 

this case, I use Tukey’s HSD, which is a very conservative approach to avoid 

Type I error (Wilkinson, 1999; Lane, 2010 and 2015), however, for my data it is 

potentially overly conservative inasmuch as, for many comparisons that I make, 

I am not actually trying to compare all trials to each other, but often my focus is 

to compare two, in which case using a t-test would be valid and would be far 
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more likely to lead to statistically discernible differences. 

Often, condensing time-series data down to a summary statistic or value is used 

to simplify analysis of time-series data by removing the temporal element 

(Matthews et al., 1990). Common summary values that are simplest units in 

common use include peak (maximum), time-to-peak, and area under curve 

(AUC) (Fedra, 1983; Matthews et al., 1990). Peak holds the advantage of 

simplicity and a number of disadvantages including the issue that, for the time 

intervals used in these experiments, it is likely that the true peaks are in 

between sampling intervals, thus inter-comparison across a single time interval 

(as I do here with Tukey’s HSD) is more likely than not to under-estimate 

differences (Narang et al., 2020). Time-to-peak is a useful unit, as with peak, for 

simplicity, and additionally may be useful when early-phase response to 

stimulus is a focus (Narang et al., 2020). Even more than peak, time-to-peak is 

susceptible to inaccuracy when the peak centroid is not determinable with 

confidence. As such, for some data I use instead AUC (Hasenbrink et al., 2005). 

AUC holds the advantage of reflecting that time-series data are actually two-

dimensional (2-D, magnitude of variation of parameter measured and duration 

of response, Matthews et al., 1990; Narang et al., 2020), and additionally, since 

data is integrated, there is ensemble averaging of random errors across time 

points (e.g. as in Thomas, 2016). 

Data normalization, in some fields referred to as scaling, is also frequently used. 

Common methods for time-series/growth related data include fold-change 

normalization (as I do here, normalizing to t0), normalizing to minimum or 

maximum (also done for this work), scaling to a 0-1 interval, and Z-scoring 
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(Goedhart, 2019). Many of these approaches involve ratio calculations, which 

are performed in order to better visualize changes on the same scale or 

according to a common benchmark. This has been the major purpose of 

normalization when used in this work, however, normalization (scaling, ranging) 

is also sometimes used for different reasons in numerical/multivariate analysis 

and can alleviate or induce effects that are not fully reflective of the underlying 

data structure (Rietjens, 1995; Brauner and Shacham, 1998; Nordgård et al., 

2006). 

All of the approaches above have a history of long-standing use, in some cases 

because they reduce uncertainty associated with raw data, i.e. as ensemble 

averaging in AUC. Contrawise, much has been written as well concerning 

problems with each, in some cases contributing to uncertainty. Normalization is 

a case in point with reference to my work. Consider a simple quotient or ratio, 

and the standard approach to propagation of error for same (Ku, 1966): 

  𝑥𝑁 = 
𝑥

𝑦
,               (3-2a) 

where xN is x normalized (to y), and then 

  𝑠𝑥𝑁 = √((
1

𝑦
)
2

∙ 𝑠𝑥2 + (
𝑥

𝑦2
)
2

∙ 𝑠𝑦2)
2

 ,                                     (3-2b) 

where sxN is the propagated error of xN given the uncertainties in x (sx) and y (sy), 

respectively. The details concerning the magnitude of uncertainty and form of 

the distribution of data in y may have a considerable effect on sxN, in plain terms 

this is to say, rendering xN effectively incorrect, even misleading (Curran-

Everett, 2013). In the manner in which I use ratio normalization, the issue is 

effectively moot. For example, because Chl-a at t0 is derived from replicates of 
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the “authentic sample” in each case, and said replicates have very low variance, 

normalizing all Chl-a values to the average value at t0 closely approximates 

normalizing to a discrete, constant scalar quantity. In this case, the uncertainty 

in the normalized quantity is simply that of the uncertainty in Chl-a at any time 

point, t2–t6. Where the issue becomes problematic however is in the case of 

normalizing x to some value y, when y is a variable with its own peculiarities in 

the magnitude, structure, and variation in uncertainty, the common example for 

which is when y is some metric representing changes in growth (OD, 

Cts.m/Cts.ef, etc.). Returning to the simple propagation of error in eq. 3-2b, for 

chalkophore, consider a value of chalkophore = 6 μeq·L-1 EDTA, with an RSD of 

15% (i.e. sx = 0.9) for a sample that has an OD of 0.035 ODU, and an RSD of 10% 

(sy = 0.0035). In this case, the propagated error, sxN, amounts to a RSD of 23%, 

however, the error structure typically magnifies further for larger uncertainties 

in x and y, and more problematically, differences in the distribution of the 

numerator and the denominator can lead to substantial distortions in the 

resulting normalized data (Curran-Everett, 2013). The issue is that the 

numerator and denominator represent inherently different kinds of unit. 

Though normalizing various results to indicators of biomass is quite common 

for results from the type of experiments that I report here, likewise the points 

that I make about the dangers of doing this appear to be largely unappreciated, 

or at least I am not aware of any works that use this normalization that also 

discuss the need for caution in interpretation of results. My approach for work 

in this chapter, when dealing with parameters whose changes might be 

correlated with growth indicators (importantly siderophore, chalkophore, and 

microcystin) has been as follows: 1) I have scrutinized data for possible 
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correlations and provided readers with metrics, and in some cases commentary, 

and 2) I report some results in terms of derived data, according to the summary 

values chosen as most appropriate, while also including comparative data (vide 

infra), such that readers are equipped with the information needed to make 

their own conclusions. For all the data that I report, I have taken a conservative 

approach to uncertainty, i.e., there may be more significant differences in 

different data that I analyze than I actually report. 

3.4 MESOCOSM INITIAL CONDITIONS AND CORRELATION MATRIX 

PLOT 

Table 3-2 shows t0 water quality results, which agree with prior research on 

Taihu (Zhang et al., 2019). The Secchi-disk transparency followed St 3 < St 13 < 

St 28, as expected, reflecting the pattern of HAB formation and the predominant 

drainage (from northwest to southeast), and consistent with higher particulates 

in St 3/St 13. TDFe is higher in St 3/St 13, perhaps because some colloidal Fe 

passes the 0.45 m filter that is operationally used for TD measurement. TDCu 

for all stations was < 6.7 µg·L-1, well below levels causing toxic effects to algae 

(Wu et al., 2017). Temperature and pH of the water in three stations were 

similar at the time of sampling. 

The high pH of Taihu during the time of sampling should be mentioned as this is 

a key indicator of the degree of anthropogenic perturbation (Zhang et al., 2019) 

that results from inorganic carbon scavenging of phytoplankton by HABs (Fang 

et al., 2018). The high pH indicates an unusually low hydronium ion activity 

(from carbon scavenging, Section 3.5), compared to the range that is considered 

normal. TDN was not highly variable between the three stations (relative 
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standard deviation, RSD, of 16%), while TDP was more variable (RSD 53%), 

with the TDP value being a factor of two or higher at St 3 than for St 13 and St 

28. Both TDN and TDP were dominated by organic forms, (dissolved organic 

nitrogen (DON) and dissolved organic phosphorus (DOP) (55 to 80%). DOC is 

similar for these three stations with a RSD of 5%. The initial TDFe were similar 

for St 3 and St 13, which is double that of St 28 and consistent with findings in 

my colleague Dr. Zhang’s previous work (Zhang et al., 2019).  

Table 3-2: Water quality of three sampling stations.a 

 Parameter  Station 3  Station 13  Station 28 

Physical Secchi Depth (m) 0.25  0.52  > 1.8  

 WT (°C) 33.0 32.3 31.2 

 pH 9.70 9.26 9.86 

Chemical TDN (mg·L-1) 0.70 0.52 0.70 

 DON (mg·L-1) 0.51 (72) 0.34 (65) 0.56 (80) 

 NH4 (mg·L-1) 0.17 0.16 0.09 

 NO3 (mg·L-1) 0.019 0.023 0.049 

 NO2 (mg·L-1) 0.003  0.002  0.001  

 TDP (mg·L-1) 0.033 0.012 0.017 

 DOP (mg·L-1) 0.024 (73) 0.006 (55) 0.013 (78) 

 PO4 (mg·L-1) 0.009  0.005  0.004  

 DOC (mg·L-1) 3.88 4.05 3.72 

 TDFe (µg·L-1) 190 200 90 

 TDCu (µg·L-1) 6.7 5.8 6.0 

 Na (mg·L-1) 46.8  51.0  46.2 

 K (mg·L-1) 5.62  5.96  4.34  

 Mg (mg·L-1) 8.57  9.24  8.81  

 Ca (mg·L-1) 30.1  31.7  21.6 

 Cl (mg·L-1) 56.9 58.0 54.4 

 SO4 (mg·L-1) 64.9 66.4 62.4 

t0 NP 
amended 

NO3 (mg·L-1) 2.019 2.023 2.049 

 PO4 (mg·L-1) 0.209 0.205 0.204 
a Values in parentheses are percentages of dissolved organic nitrogen (DON) and dissolved organic 
phosphorous (DOP) for N and P species. 

Concentrations of ions are similar for all three stations except in St 28, where Ca 

is lower than for the other two stations. Shi et al. (2013) have found that Ca 

plays an important role in the growth of Microcystis spp. and that enhancement 

in polysaccharide synthesis in response to increases in Ca concentration is a 
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mechanism that would promote bloom formation. At face value, this would 

seem to be a potential contributing reason for the absence of HABs in St 28, 

however, in my work and others, the Ca concentration is variable, sometimes 

being low compared to, for instance, Meiliang Bay/St 3, sometimes not (Li et al., 

unpublished data, also see Tao et al., 2013). As there does not seem to be a 

correspondence between Ca concentrations in St 28 and occurrence of BG, this 

explanation for why St 28 is “different” seems less likely. 

Figure 3-2 is a bivariate correlation matrix plot that gives an overview of inter-

parameter associations. Time is listed first, followed by parameters associated 

with algal growth, including OD, pH, Cts.ef, Cts.m, ESV and d.avg. The counts for 

different algal species groups (determined from Cts.m) are next, followed by 

biomolecules (chalkophore, siderophore and microcystin). NP species and 

Cu/Fe results TDCu, TDFe, TCu and TFe (“N” in Figure 3-2 denotes all 

normalized to maxima), are shown at the bottom. The growth indicators OD, pH, 

Cts.ef and Cts.m all have strong correlations with each other. Chl-a is not as 

strongly correlated with Cts.ef, Cts.m and ESV as OD, a consequence of Chl-a’s 

not being solely related to cell number or volume (Ignatiades et al., 1985) and 

that different algae have different rates of Chl-a synthesis, according to growth 

state and conditions. Chl-a alone is not sufficient to make correlation with 

different type of algae. In addition to Chl a, different algal groups contain 

additional pigments, which were not quantified in this study. Chl-a correlates 

most with Algis (UG, Dia, Rest, i.e. those absent at t0), since temporal Algis 

increases contribute to Chl-a. Chalkophore and siderophore correlate positively 

with OD, pH and Cts.ef, and chalkophore specifically correlates with BG.  
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Figure 3-2. Correlation matrix plot showing pairwise-correlation analysis for results 

from mesocosm experments in the year of 2018. The size and degree of coloration of 

each circle in the matrix is proportional to Spearman’s ρ, according to the color legend 

at the bottom of the figure. For |𝜌| 0.4, the associated p-values are all  0.05. 

As expected, TDN/NO3 correlate negatively with growth indicators (OD, pH, 

Cts.ef and Cts.m), and the strong positive NO2-UG correlation suggests more 

nitrification in samples with UG. TCu and TDCu negatively correlate with BG, 

accompanied by reduction in growth indicators and concomitant increases in 

ESV/d.avg (BG cells being small), reflecting differential BG sensitivity to the 

level of Cu amended. Interestingly, microcystin correlates negatively with TFe, 

discussed in more detail in Section 3.7. For individual station data, correlations 
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are comparatively stronger for St 13 than for St 3/St 28, however St 3/St 13 

patterns in pair-wise correlation are more similar compared to St 28. Such 

differences are discussed where relevant in subsequent sections. 

3.5 CHANGES IN ALGAL GROWTH INDICATORS 

Figure 3-3 shows OD and pH versus time for all stations and amendments. 

There is a strong OD-pH correlation (ρ = 0.78, p < 0.001, Figure 3-2) as OD and 

pH are both primary consequences of growth (pH increases due to inorganic 

carbon scavenging, Wang et al., 2017). For Mmeso Ctl/Fe, both parameters 

increase, then decrease, indicating onset of stationary phase by ~ t2. Where 

differences exist, Mmeso OD and pH are higher for Fe than Ctl (p < 0.05) during 

growth (t2) for St 3, whereas post-stationary Fe > Ctl differences are for St 13 

and St 28, much more so for St 28 by t6, indicating that St 28 Ctl growth has 

started to taper, with an ameliorating affect for Fe. Considering that St 28 t0 

TDFe is half of the other stations and that Fe can limit Microcystis growth (Fujii 

et al., 2016), the St 28 difference between Ctl and Fe may be caused by Fe-

limitation. Cu for Mmeso caused inhibition with or without Fe. OD for Mmeso Cu 

showed a decrease t0–t2, while pH showed no increase; from microscopic 

examination, I know that this is from a Cu-induced diminution in BG/Microcystis. 

For Mmeso Cu, OD slowly recovered with simultaneous pH increases t2–t6. Per 

results in Section 3.6, this results from Algis increases. Also with Cu, there are 

indications that Fe exerts a positive effect, notably pH has risen for CuFe much 

more than for Cu by t4. 
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Figure 3-3. Changes in OD and pH with time for mesocosm experments in the year of 

2018. Results for OD (750 nm) are in the top three rows and for pH are in the bottom 

three rows. Results are plotted for three stations as a function of mesocosm type and 

amendment. 

For Dmeso, OD drops t0–t2, likely a result of incomplete acclimation. After a 

longer induction than Mmeso, Dmeso OD for all amendments entered logarithmic 
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growth-phase, with substantive increase of OD/pH by t6. There were no 

differences by amendment, except that St 3 Fe had higher pH compared to 

Cu/CuFe (p < 0.01) at t4; by t6 the benefit of Fe disappeared. Comparing OD/pH 

results for Mmeso and Dmeso, Dmeso had a greater ability to cope with the amended 

level of 50 µg·L-1 Cu, consistent with other research on green algae (Buayam et 

al., 2019; Wu et al., 2017). 

Other metrics used as growth indicators include counts and Chl-a. There are 

various reasons why strong correlation/linearity between OD and counts/Chl-a 

might not exist, e.g. differential effects from pH, other environmental factors, 

that counts represent different species with different growth behavior (Francois 

et al., 2005; Griffiths et al., 2011)—in effect, OD is a bulk solution measurement 

and counts are not. Per Figure 3-2, OD strongly correlates with both Cts.ef and 

Cts.m. (respectively, ρ is 0.76 and 0.79, p < 0.0001); I also find a generally linear 

relationship (Pearson’s r of 0.74 and 0.79 respectively, for Cts.ef and Cts.m), 

shown in Figure 3-4, however with substantial scatter around the trend.  

 
Figure 3-4. Linear relationships between OD (750 nm) with Cts.m and Cts.ef. Cts.m are 

shown in hollow symbols and Cts.ef in solid fill. 
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A diminished correlation between OD and Cts.m/Cts.ef might be expected given 

assemblage diversification (Section 3.6). Consistent with this logic, I find that 

linearity between counts and OD is strongest for single species mesocosms 

when pHs < 8 and weakest for mixed species at pHs >10. 

In Figure 3-2, the correlation between OD and Chl-a is not as strong (ρ = 0.64, p 

< 0.001) as for counts, which I find is due, at least in part, to the changing 

percentages of algal assemblages over time and the proclivity of different 

groups to produce more or less Chl-a. Figure 3-5 shows Chl-a versus time, 

normalized to t0 by mesocosm to show relative changes (t0 Chl-a values are 

given in the figure caption).   

 
Figure 3-5. Changes in Chl-a with time for three stations as a function of mesocosm type 

and amendment. For each plot, Chl-a values were normalized to t0 to show relative 

changes on the same scale. Values of Chl-a at t0 are as follows: St 3 Mmeso=73 μg·L-1; 

Dmeso=207 μg·L-1; Bmeso=138 μg·L-1. St 13 Mmeso=78 μg·L-1; Dmeso=207 μg·L-1; Bmeso=133 

μg·L-1. St 28 Mmeso=85 μg·L-1; Dmeso=207 μg·L-1; Bmeso=153 μg·L-1. 
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Figure 3-5 shows that Fe results in increases in Chl-a production in Mmeso, with 

or without Cu, and shows higher Chl-a compared to Ctl by t2 (St 3 and St 28, p < 

0.05). Chl-a in St 28 Mmeso Ctl is less than half of Mmeso Fe by t6 (p < 0.05), which 

agrees with OD results. That Cu at 50 µg·L-1 severely impairs Mmeso Chl-a fully 

agrees with OD and pH results, however, the Mmeso OD results for Cu/CuFe are 

still lower than for Ctl and Fe by t6, and the reverse is true for Chl-a (p < 0.05). 

This corresponds to algal assemblage changes for Cu/CuFe after t2.  

Like OD, Dmeso Chl-a dropped substantively by t2 (Figure 3-5). Compared to 

Ctl/Fe, Cu/CuFe negatively impacted Chl-a production in Dmeso at t4 (Cu < Fe, St 

3–St 28; CuFe < Fe, St 3/St 28, p < 0.05), consistent with Küpper et al.’s (2003), 

results showing a Cu-induced temporary drop in Chl-a for the Desmid 

Scenedesmus quadricauda. This might be explained by the negative effect Mg2+ 

substitution by Cu2+ in the Chl-a complex has been documented to have on Chl-a 

synthesis at first (Küpper et al., 2003), until Cu-detoxification mechanisms in 

the green algae overcome this sub-lethal Cu-toxicity and Chl-a synthesis is 

restored to control levels, as observed at t6 (Figure 3-5). As with OD and pH, 

Chl-a of green-algae dominated samples (Figure 3-5 and 3-6) increased with 

time. Though Mmeso Cu/CuFe contain predominantly green algae from t2, 

grouping with Dmeso in Figure 3-6, unlike Dmeso there are some differences 

between Cu and CuFe, noted above. For Mmeso Chl-a levels show CuFe > Cu 

during t2–t6, though this is not observed by t6 for St 28.  The difference in Chl-a 

results for St 28 may reflect Fe-limitation (Fujii et al., 2016), per OD/pH results, 

and for St 28 relating to other observations below. Differentiating St 28, Chl-a 

correlation with TotG is comparatively stronger in St 3 and St 13. 
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Figure 3-6. Linear relationships between OD (750 nm) and Chl-a. Results for 

mesocosms are grouped according to dominant algal assemblages (BG versus green 

algae) with different amendments and for three stations. Panels A, B and C show results 

for t2, t4 and t6, respectively. Filled symbols are for Mmeso and Bmeso Ctl and Fe 

amendments (i.e. without Cu); hollow symbols are Mmeso and Bmeso with Cu/CuFe 

amendment and Dmeso for all amendments. Different axis scales are used for visual 

clarity.   
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The OD versus Chl-a plot in Figure 3-6 illustrates how different algal 

assemblages (details in Section 3.6) contribute to Chl-a. The slopes for Dmeso and 

samples becoming green-algae dominated (Mmeso and Bmeso Cu/CuFe) are less 

than corresponding slopes for Microcystis-dominated samples (Mmeso and Bmeso 

Ctl/Fe), such that for any given increase in OD, the corresponding increase in 

Chl-a is less for the latter. In my work on Taihu, I have found that Microcystis 

consistently have relatively lower Chl-a than green algae, which has also been 

observed by others (Ghadouani and Ralph, 2005). For Microcystis-dominated 

samples, Chl-a is consistent with OD and pH, increasing to t2, then diminishing 

on entering stationary phase, with Fe > Ctl for Chl-a (St 3/St 28, p < 0.05) during 

the period of growth up to t2 (similar to OD). Fe increases Chl-a in Mmeso, with or 

without Cu. Chl-a in St 28 Mmeso Ctl is less than half of Mmeso Fe by t6 (p < 0.05), 

which also agrees with OD results. Though Mmeso Cu/CuFe OD are still lower 

than for Ctl/Fe by t6, the reverse is true for Chl-a (p < 0.05). This reflects algal 

assemblage changes for Cu/CuFe after t2. 

3.6 HOW AMENDMENTS AFFECT ALGAL ASSEMBLAGES 

Cts.m remain unsurpassed for simple determination of species 

density/assemblage changes and cell condition (Butterwick et al., 1982). 

Transition from blue-green to green algae from varying NP/carbon sources has 

been long-known (Shapiro, 1973), and my colleague Dr. Zhang and I previously 

found that MN also mediate algal assemblage changes (Zhang et al., 2019). 

Because of my experimental design, I anticipated that Algis might cause algal 

assemblage changes over the course of my field experiments and that changes 

might reflect initial conditions or Cu/Fe amendment. Figure 3-7 shows time-



77 
 

dependent changes in Cts.m of algae groups by amendment. At t0, algal species 

and Cts.m are as expected. Since the mixture in Bmeso was effected according to 

OD, Des in Dmeso constitute larger, but fewer, individuals, and thus t0 

BG/Microcystis Cts.m is greater than Des in Bmeso.  

 
Figure 3-7. Pie charts showing changes in algal assemblages mesocosm experiments in 

the year of 2018. The percentages of algae for different amendments for three stations 

are given by group (BG = Blue-green algae; Des = Desmids; UG = Unicellular green algae; 

Dia = Diatoms; Rest = remaining, less common algae). 

For t2–t6, the compositions of the five algal groups were as follows: BG were 

97+% Microcystis with smaller amounts of Chroococcus and Pseudoanabaena; 

Des were primarily Desmodesmus with occasional occurrences of Scenedesmus; 
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UG included mixtures of Carteria and Chlorella (81+%, not always easily 

differentiable), with lesser amounts of Chlamydomonas; Dia were mixtures of 

Navicula and Nitzschia, with minor amounts of Asterionella, Cyclotella, and 

Fragilaria (each never exceeding 12%); and Rest constituted low, highly 

variable, counts of Chlosteriopsis, Coelastrum, Dichtyospaerium, Eudorina, 

Haematococcus, Kirchneriella, Micractinium, Monoraphidium, Oocystis, 

Pediastrum, Planktosphaeria, Radiococcus, Schrodeiria, Tetraedron, Mallomonas, 

Chroomonas, Chryptomonas and Trachelomonas. 

 
Figure 3-8. Algal species representing different groups observed under the microscope.  

Blue-green algae (BG, panel A); Desmids (Des, panel B); Dominant unicellular green 

algae (UG, panel C); Diatoms (Dia, panel D); and the remainder (Rest, panel E). 
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A striking feature in Figure 3-7 is, by t2, Mmeso Cu/CuFe amendment resulted in 

replacement of Microcystis by other groups through to t6, i.e., Microcystis is 

more sensitive to the Cu concentrations that I use compared to other freshwater 

algae, consistent with Zeng et al.’s (2010) report of an IC50 of 25.5 µg·L-1 for 

Microcystis, whereas Buayam et al. (2019) and Wan et al. (2018) reported that 

Desmodesmus and Chlorella can tolerate higher Cu concentrations. Figure 3-7 

suggests that excretion of Cu-protective compounds (e.g., Nicolaisen et al., 2010) 

is non-operative or non-effective for Mmeso Cu/CuFe. Also apparent in Figure 3-7 

is that when Microcystis is not impacted, it retains its place (Mmeso) or gains 

ground (Bmeso) over other species, which may partially result from more 

efficient BG CO2 uptake at high pH (King, 1970; Shapiro, 1973). The 

proportionate increase of Des in Dmeso was slower than UG growth, and UG 

consistently dominated Dmeso by t6. Des may have been less competitive due to 

incomplete acclimation. Changes in Bmeso Ctl/Fe assemblages followed those for 

Mmeso, albeit not as dramatically; Microcystis was the major species (t0–t6 

average  77%, minimum 61%), while Des averaged 34% at t0, decreasing 17% 

on average (maximum 37%) in Bmeso by t6. 

Since different algae grow at different rates, results may be considered in terms 

of AUC to obtain comparative information on integrated growth, growth 

inhibition (documented for Microcystis, Dong et al., 2019; Omidi et al., 2019) or 

stimulation (i.e. mono- versus mixed-cultures, Stockenreiter et al., 2012; Smith 

and Crews, 2014). Figure 3-9 shows AUC for the four main algal groups (BG, Des, 

UG, Dia, in panels A–D, respectively; AUC is normalized to the station maximum 

to show relative scale). Cts.m for BG of Mmeso and Des of Dmeso are divided by two 

for comparison with Bmeso-proportionate t0 conditions (Cts.m for BG/Des in 
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Bmeso were half those of BG in Mmeso and Des in Dmeso, respectively; p < 0.05). 

Results in Figure 3-9A and 3-8B imply that BG and Des grow better in mixed-

culture. On average, AUC for BG in Bmeso Ctl (Figure 7A) is higher by 35%, than 

BG in Mmeso Ctl (p < 0.05). With Fe, BG in Bmeso AUC is 27% higher than for Mmeso 

(though p ~ 0.15), the difference being least for St 13 (not significant) and most 

for St 28 (p ~ 0.007). Looking at Des (Figure 3-9B), for Ctl, Bmeso is 30% greater 

than Dmeso, however, this is not statistically significant on average or station-to-

station. For Fe, Des counts in Bmeso average 25% greater than for Dmeso; for St 3 

and St 13 significantly (p < 0.05). For Des Cu/CuFe, there is no apparent 

difference in in Dmeso versus Bmeso.  

UG and Dia are Algis, with comparable small t0 amounts by station, hence are 

plotted differently than BG/Des. No consistent station-to-station differences 

were observed, thus plots show station averages. UG AUC (Figure 3-9C) is 

consistently most variable and highest in Dmeso, on average, by more than a 

factor of two compared to Mmeso/Bmeso Cu/CuFe. For Mmeso and Bmeso, AUC for Cu 

~ CuFe > Ctl ~ Fe (p < 0.05), except for Mmeso Cu > Ctl and CuFe > Ctl (p ~ 0.07 

and 0.08, respectively). 

My data show, as others find (Chen et al., 2016; Wan et al., 2018), that UG copes 

with Cu (comparing Dmeso Ctl/Fe to Cu/CuFe), however, Microcystis is inhibiting 

(Dong et al., 2019; Omidi et al., 2019), which effect persists even when the 

original Microcystis population is diminished. Logically, lysis and release of 

microcystin is expected with BG/Microcystis diminution in Cu/CuFe (Shen et al., 

2019). That microcystin is labile in field surface-water (Welker and Steinberg, 

2000; Chen et al., 2008), possibly accounts for higher UG AUC with Cu/CuFe in 

Mmeso and Bmeso While lysing cells may transiently increase solution microcystin, 
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live cells can provide continuous flux of microcystin/toxic secondary 

metabolites, flux being in some ways more relevant than load (Tecon et al., 2006; 

Omidi et al., 2019). 

 
Figure 3-9. Bar plots of AUC for the four main algal groups: (A) BG, (B) Des, (C) UG and 

(D) Dia. AUC was calculated from the Cts.m results of different algal group over time 

(t0–t6) and plotted as normalized to station maximum.  

For Dia, Cts.m are low and variability high; averaging stations does not increase 

this. The Dia AUC is higher for Cu/CuFe versus Ctl/Fe in Mmeso and Bmeso (p < 

0.05). In contrast, Dmeso Dia is higher in Ctl compared to Cu/CuFe (p < 0.05) on 

an average and station-to-station basis. Uncertainty is higher for Fe; Dmeso Dia 

Fe > Cu/CuFe, though not significantly (p ~ 0.21). Unlike Figures 3-8A–C, which, 

respectively, show growth favored or inhibited in mixed-culture, Mmeso and Bmeso 

are not different. Dia for Mmeso Cu/CuFe suggest growth despite this Cu level. 

Perhaps Dia grow better in these mesocosms because of increased DON (Bronk 
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et al., 2007) or because the additional DON/DOP in these mesocosms complex 

Cu in a protective manner (Zeng et al., 2010), however I am cautious about such 

inferences due to low Cts.m. 

3.7 TEMPORAL CHANGES IN AMENDED N AND P 

Here I summarize NP results. Three NP changes are most interesting/relevant 

to other results. First, DON/DOP is higher in Cu/CuFe BG-containing mesocosms, 

consistent with Cu-induced algal death and subsequent cycling into dissolved 

organic matter. Second, NO2 increases in mesocosms having active in growth of 

UG; I postulate that this likely results from different bacterial assemblages in 

these. Third, all Mmeso, irrespective of amendment, are steady-state for P, i.e. the 

rate of P-production from organic matter cycling is equal to the rate of P-uptake 

by algae and/or bacteria. I posit that this is also an effect of bacterial 

assemblages, however, as the effect is not a function of amendment, it is less 

relevant to my focus. As important limiting factors to algal growth, NP species 

were measured at t0 and t6 as described in Section 3.2. The results are 

expressed in terms of uptake (deltas, , being negative for net uptake and 

positive for net release). 

Figure 3-10 is a schematic showing major known NP cycles in the water column, 

and for each measured component of the cycle, relevant s are shown. The 

average of three stations (avg) is given in cases where the relative standard 

deviation associated with avg is less than 20% or when the results are low 

(around the LOQ and lower, wherein constant and proportionate error 

contribute to greater variability). 
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A prominent and expected motif in Figure 3-10 is that TDN is dominated by 

changes in NO3, due to the addition of N in this form, and is always negative, 

consistent with uptake and conversion to biomass and negative correlations in 

Figure 3-2 with growth indicators OD, pH, Cts.m, Cts.ef, and to a lesser extent 

Chl-a. While TDN and Chl-a did not correlate across all mesocosms, perhaps due 

to changing assemblages (Section 3.6), there was a correlation for St 28 (ρ = -

0.54; p < 0.05) and a stronger negative correlation between TDN and pH (ρ = -

0.80; p < 0.0005) for this station. In Figure 3-2, correlations for TDN resemble 

those of NO3. There are weak positive correlations between TDN, ESV, and d.avg, 

as the latter two would, on average, increase with TDN uptake. Here again, the 

correlation between NO3 with ESV/d.avg is stronger for St 28. On average, the 

largest magnitude TDN is for Dmeso, and among Dmeso, the largest changes are 

for St 28, which in three of four cases appears to approach steady-state, 

assuming the initial DON-dominated N is refractory. For Mmeso, save for St 28 Ctl, 

Cu/CuFe have smaller uptake than for Ctl and Fe. For St 3 and St 13, uptake for 

Fe is 20% higher than for Ctl, and for St 28 the difference is a factor of 2. This is 

in excellent agreement with OD results, for which Fe is larger than Ctl by 14%, 

40%, and a factor of 2.5, for St 3, St 13, and St 28, respectively. In general, TDN 

for Bmeso are similar for three stations among amendments and follow the trend 

of TDN Fe > Ctl > Cu ~ CuFe, though notably, like Mmeso, uptake of Ctl in Bmeso is 

smaller in St 28. For individual stations, there is strong correlation between 

TDN and DON, however, for St 28 there is also a correlation with NH4, i.e., the 

TDN fraction has a somewhat higher component of NH4 for this station. 

Subsequent to uptake and conversion to biomass, N is removed from the 
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dissolved nutrient pool unless DON increases as a result of DOM release by 

algae or increased particulate organic matter (POM, i.e., from dead algae) 

decomposition into the dissolved phase (DOM  DON/DOP). DON is highest in 

Mmeso with Cu/CuFe, which is consistent with lysing effects of Cu on BG. For all 

stations, DON for Mmeso is positive or ~ zero and follows the trend CuFe > Cu > 

Ctl > Fe, where the magnitude of CuFe > Cu, Cu > Ctl, and Ctl > Fe is, respectively, 

34, 51, and 77+% (large as s are very low for Fe St 13 and St 28). For Bmeso the 

distinction between Cu/CuFe and Ctl/Fe is not so distinct and DON follows the 

trend CuFe ~ Cu > Ctl ~ Fe. That DON is higher in Mmeso and Bmeso cultures for 

Cu/CuFe is consistent with recycling of POM from dying Microcystis (indicated 

by changes in OD and counts by t2), and according to ODs, Mmeso and Bmeso 

Ctl/Fe are in various stages of stationary phase, more so Ctl than Fe, suggesting 

again that Fe amendment increases the resiliency of Microcystis. ΔDON in Dmeso 

samples overall exhibit lower levels of DON accumulation for St 3 and St 13, 

consistent with Dmeso samples still being in exponential growth phase and 

having high pHs, however, ΔDON is again higher for Cu/CuFe than for Ctl/Fe, 

suggesting that Cu has a mildly negative effect. For St 28 Dmeso, DON is negative, 

with Cu/CuFe having higher uptake than Ctl/Fe. Among other things, this 

suggests that the mildly negative effect of Cu/CuFe seen in St 3 and St 13 is not 

happening in St 28, consistent with Chl-a results, where I also see that Chl-a of 

Dmeso for Cu/CuFe is lower than for Ctl and Fe in St 3 and St 13 at t4, while 

examination of the Chl-a trends in Figure 3-6 shows how these differences at t4 

are relatively diminished for St 28. Certainly, bacteria may play a major role in 

organic matter cycling, and as Fan et al. (2018) have shown, the assemblages 

and their associated activities in different parts of Taihu vary greatly. This also 



86 
 

relates to the positive effect that DON may play on stimulating bacterial 

production (Seitzinger et al., 1999). Generally, DON does not exhibit strong 

correlations in Figure 3-2, likely indicative of different states of organic matter 

cycling in different mesocosms, and hence largely variable/complex behavior in 

Bmeso. There is a strong correlation between DON and Dia, as discussed in 

Section 3.6.  

In surface waters, nitrification converts DON to NO3 via NH4 and NO2. NH4 

behavior is complicated since, while it is taken up by algae as a N-source, at the 

high pHs that are reached in these experiments (all my pH samples reached pH 

9 by t6), it is also lost via volatilization of ammonia in the form of NH3. I report 

NH4 for reference in Figure 3-10 and primarily focus my discussion on 

changes in purely aqueous nutrient forms. In Figure 3-2, the proximal oxidation 

product of NH4, NO2, correlates with OD, pH, and Chl-a, with strong positive 

correlations with UG and other Algis groups, and strong negative correlations 

with BG and the BG-produced microcystin. Correlations with Cts.m and Cts.ef 

are absent, as would be expected since all other indicators are consistent with 

NO2 increases being associated with green algae. In Figure 3-10, when 

comparing samples dominated by BG (Mmeso and Bmeso Ctl/Fe) to the remainder 

that are dominated by green algae, by the one-half LOD statistical method 

(Hornung and Reed, 1990), the ΔNO2 of the latter is a minimum of ~ 75-fold 

that of the former. Production of NO2 as a nitrification intermediate is only 

observed in samples with more UG; of these, ΔNO2 for Dmeso, all amendments, 

average twice that of Mmeso and Bmeso Cu/CuFe. All mesocosms with positive 

ΔNO2 are samples associated with being in an early or exponential growth 

phase at t6 (as indicated by ODs), and microscopic examination of Dmeso show a 
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profusion of aplano- and zoospores. Within the Dmeso group, values for ΔNO2 are 

slightly higher for Cu/CuFe than for Ctl/Fe, and the highest values occur for St 

28 (data not shown), consistent with this station’s having negative ΔDON and 

the idea that there is a high rate of N cycling and associated bacterial 

nitrification for this station. Stronger negative correlations were also found in St 

28 for NO2 with TDN, DON, and NH4. 

ΔNO3 is negative (uptake) and varies less than 2% for all mesocosms, but 

lowest ΔNO3 values occur for Mmeso Cu/CuFe followed by Bmeso Cu/CuFe. These 

samples are where I saw the Cu effect in diminution of OD and counts for BG. 

Subsequent to growth inhibition of BG, uptake of source (NO3) by green algae 

occurs later, and the growth of green algae in these samples is still less than for 

Ctl and Fe based on OD, pH and counts results. 

Regarding P species, PO4 uptake is highest and effectively at steady-state for 

Mmeso, and, most conspicuously, is the same across amendments. The algal 

assemblages and appearance under the microscope are very different for 

Cu/CuFe and Ctl/Fe, therefore, there does not seem to be a common 

denominator that would explain this with the purview of algal effects. I 

considered chemical effects, and can find no explanation from that standpoint. I 

thus hypothesize that the PO4 uptake for Mmeso, may relate to bacterial 

assemblages present at t0 and the more active cycling of biomass based on the 

growth-phase of Mmeso Ctl/Fe and injection of DON/DOP into Mmeso Cu/CuFe. 

This idea is supported by some literature. In a survey of 15 low-latitude lakes, 

They et al. (2017) found a dramatic linear decrease in bacterial N : P ratio, 

consistent with increased P uptake, with increasing bacterial production 
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(magnitude of slope ~ 100).  In contrast to TDN/NO3, PO4 uptake is 

consistently lowest for Dmeso, and I posit that this is an outcome of the as-yet 

exponential growth in these mesocosms, such that PO4 is not at steady-state. 

For Mmeso, ΔDOP is always higher for Cu/CuFe, which agrees with the previous 

discussion on the toxicity effect from Cu addition, but the difference in the 

average ΔDOP between Mmeso and Dmeso is minor. The pool of DOP depends on 

both degrading algal POM and rate of PO4 release by DOP. 

3.8 TEMPORAL CHANGES IN DISSOLVED VERSUS TOTAL CU AND FE 

For trace metals analysis QA/QC is especially important, and I first review those 

results. For TM (TCu/TFe) results, QA/QC metrics are within acceptable limits 

according to the US EPA (2007). Recoveries for TM QA/QC spike checks were 

104 and 108% and for the CRM were 104% and 102% for TCu and TFe, 

respectively. The average respective recoveries (equation 3-1a) for TCu and TFe 

were 101% and 107%, with an RSD of 15% in each case. Values of 𝐶algae, t0
TCu  were 

14 µg·L-1, 16 µg·L-1 and 15 µg·L-1, respectively, for Mmeso, Dmeso and Bmeso, and 

values of 𝐶algae, t0
TFe  were 400 µg·L-1, 650 µg·L-1 and 520 µg·L-1, respectively, for 

Mmeso, Dmeso and Bmeso. For dissolved metals, the concentration of 𝐶spike, t0
TDCu  in Cu 

and CuFe amendments were 50 and 51 µg·L-1, respectively (100 and 102% 

recovery), and the concentration of 𝐶spike, t0
TDFe  in Fe and CuFe amendments were 

213 and 214 µg·L-1, respectively (107% recovery). For TDCu and TDFe sample 

analysis, QA/QC results were also within acceptable limits, with the average 

spike recovery being ≥ 97% and the average RSD being 7%. 

Given the acceptable QA/QC outcome, I confirmed that TCu/TFe were 
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conserved for t0–t6, to within analytical uncertainty, and therefore the primary 

changes that I wanted to look at involved TDM, results for which over time are 

shown in Figure 3-11. For Cu/CuFe, TDCu results show that the low, ambient 

concentrations of TDCu at t0 (Table 3-2) did not change over time for Ctl/Fe. 

For Cu/CuFe, TDCu decreased t0–t2, then stabilized, in most cases by t2. 

According to speciation calculations, CuSO4 used in amendment should be 

entirely dissolved, hence the change in TDM from initial conditions for Cu is 

likely to reflect algal uptake, either intracellular or via adsorption to algal cell 

walls. The TDCu uptake for Cu/CuFe amendments averaged 27 µg·L-1 for Dmeso, 

or ~ 50% greater than that of 18 µg·L-1 for Mmeso (p < 0.001). This corresponds 

to an average TDCu uptake of 47% and 31%, respectively, of t0 TDCu for Mmeso 

and Dmeso. Bmeso TDCu are not differentiable from predicted based on averaging 

Mmeso and Dmeso (p > 0.05). For some Cu mesocosms in Figure 3-11, there 

appears to be a slight TDCu increase toward t6. I speculate that this may be 

related to organic matter cycling during the growth phase and/or growth 

induced changes in pH, which are known to have a significant impact on trace 

metal speciation and solubility. In several cases, it appears that TDCu uptake for 

Cu is less than for CuFe (statistically different for St 28 Mmeso at t2; St 13 Bmeso at 

t4 with p < 0.05), which could be a small effect of Fe scavenging Cu (Hem and 

Skougstad, 1960; Hem and Cropper, 1962), however, when present, the effect is 

not great. A report by Hadjoudja et al. (2010), found that Cu cell surface zeta 

potential attraction was greater for Microcystis than for the green algae Chlorella 

and speculated that this might relate to the differential sensitivity of Microcystis 

to Cu that many authors have found. As others have reported that extracellular 

Fe crusts are capable of scavenging Cu and thus reducing Cu toxicity, this 
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toxicity effect could be reduced or offset by Fe. I see no evidence of such an 

effect here. This may be a question of kinetics. Some investigators have found 

that uptake rates for soluble metals are reasonably rapid (Zeng et al., 2010; 

Sutak et al., 2012), in which case, as for my experiments here, the negative zeta 

potential of Microcystis might result in rapid uptake before amended Fe has time 

to form extracellular adhered oxyhydroxides. 

For TDFe, results were not as expected, the main finding of note being the 

unanticipated differentiation of bioavailable/biounavailable forms. I used 

different forms of Fe by design (Section 3.2), and I anticipated that FeCitrate 

used for Fe amendment would exhibit a greater or longer-term bioavailability 

than for the FeCl3·6H2O used for CuFe amendment. The most striking feature of 

TDFe results is that, by t2, Fe in both types of amendment had become TFe of 

some form. On average, the TDFe uptake from t2 to t6 is the same for Mmeso 

versus Dmeso. Differences in TDFe as a function of amendment are generally not 

large, though for St 3 and St 13, by t4 the TDFe averages ~ 30% less for Ctl/Fe 

than for Cu/CuFe (p < 0.05 for St 13, p < 0.07 to 0.10 for St 3). In some cases, 

there appears to be a slight TDFe release into solution over time, most 

noticeable for St 3 Mmeso Cu/CuFe. As the NP results indicate a considerable 

reworking of organic matter in the Cu/CuFe amended mesocosms with 

Microcystis spp., it would be reasonable to see Fe released into solution, 

however, due to oxyhydroxide formation, it is also reasonable that such changes 

would be low.  
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Figure 3-11. Changes in TDCu and TDFe as a function of time for mesocosm 

experiments in the year of 2018. Results are plotted as a function of mesocosms type 

for different MN amendments and for three stations. TDFe results at t0 for Fe/CuFe 

amended mesocosms are plotted off-scale in order to better visualize t2 to t6 changes 

in TDFe.  
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Common to both TDCu and TDFe, levels are consistently lower for St 28, though 

the differences between St 28 and St 3/St 13 are not always pronounced. 

Another difference for St 28 is that for this station there are stronger negative 

correlations between TDFe and TDP/PO4 (ρ = -0.65/-0.52 for St 28, ρ = 

0.07/0.02, whereas for St 3 and St 13, -0.2 < ρ < 0). This is likely related to 

biogeochemical cycling regimes in Taihu. Fan et al. (2018) used qPCR to study 

bacterial communities in sediments underlying areas of the lake subject to 

intense cyanobacteria HABs in comparison to macrophyte-dominated areas 

such as St 28. These investigators found that bacterial communities in these 

different areas resulted in much different Fe:P ratios and rates of Fe and P 

cycling that are conceptually consistent with the inverse TDFe and TDP/PO4 

relationships in overlying water that I observe at St 28. 

Correlations between TCu/TFe/TDCu/TDFe in Figure 3-2 are in alignment with 

reasonable expectation. For Cu, TCu and TDCu correlations with other 

parameters are very similar, in keeping with my expectations based on Cu 

speciation/solubility. There are some weak to moderate negative correlations 

with growth indicators, BG, and microcystin, in line with the predominantly 

toxic effects of Cu in mesocosms containing BG/Microcystis. These are the same 

mesocosms for which I see positive correlations between Cu and DON/DOP, 

increases in which would result from reworking of BG biomass in the aftermath 

of Cu toxicity. This is also consistent with a small, weak correlation between 

TDCu and TDFe, i.e., small amounts of which might be reworked/released at the 

same time. There are positive correlations with ESV and d.avg, representing 

changes in growth/colony size for cells in mesocosms that do not exhibit strong 

toxic response to Cu. There are also positive correlations with NO2, which is 
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disproportionately produced in those mesocosms wherein green algae are able 

to outcompete BG due to Cu toxicity. Notably, there is a moderate positive 

correlation with Dia. Regarding Fe, TDFe is the least correlated parameter in 

Table 3-2, reflecting the circumstance discussed in Section 3.4: even when 

amended as FeCitrate, Fe complexed to what is normally regarded as a 

reasonably stable ligand, TDFe is nonetheless predominately transformed into 

TFe in my environmental setting. While more than for TDFe, there are still 

relatively few correlations between parameters and TFe. The causation of these 

relationships is discussed in Section 3.9. 

3.9 RELATIONSHIPS BETWEEN CU/FE AMENDMENTS AND 

BIOMOLECULE PRODUCTION 

This field work is first to study chalkophore and siderophore production using 

assays differentiating the two. Chalkophores are defined as being ligands that 

have very strong and, as compared to other metals, very high 

association/complexing constants for Cu-binding (Saha et al., 2016) and 

analogously siderophores are ligands that have differentially stronger Fe-

binding behavior. Prior work that is not able to separate chalkophores from 

siderophores as operational classes includes, for instance, studies that 

characterize strong-Cu binding ligands (that could be siderophores), when it is 

increasingly recognized that siderophores are strong-Cu-binding ligands (Jones 

and Hart, 1989; Baptista et al., 2014; Solioz, 2018), i.e., many methods in use do 

not explicitly separate chalkophore from siderophore. The method that I use 

here (Zhang et al., 2020b) specifically distinguishes chalkophore from 

siderophore, and the present work is the first to use this approach that 
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specifically differentiates chalkophores from siderophores. I analyzed results 

using CTA, recently adduced as a fresh perspective on dynamic aspects of 

population/community changes (De Cáceres et al., 2019). 

Trajectory analysis (TA) is a well-accepted class of formalized mathematical 

approach to study a wide array of problems including diverse topics such as 

recurrence quantification analysis, used in cognitive and social sciences, 

structural damage detection in engineering applications, and land cover change 

in physical geography (Zhou et al., 2008; Majkut, 2012; Wallot and Leonardi, 

2018), and many more. A key aspect of TA is that it represents an approach to 

analyze multiple time-series (per Wallot and Leonardi, 2018, for instance, 

multiple physiological indicators from within a group) that are often non-

stationary, or possess other interesting dynamics. The dynamical aspect of TA 

has been key to its use in analysis of process dynamics (using multivariate 

process trajectories), useful for the systematic consideration of dynamics that 

may be otherwise masked in static consideration of, for instance, single time 

points or summary values (Section 3.3, Bogomolov, 2011). Because TA 

considers inherently dynamical processes, it is a method that can readily 

accommodate phase differences (e.g. Bischof and Zedrosser, 2009, per Section 

3.9, Figure 3-15A and B). As such, another common feature of TA is that initial 

raw data, how a set of given quantities vary over time, is transformed into so-

called phase space (Majkut, 2012; Wallot and Leonardi, 2018, i.e., data that are a 

function of time are translated to a corresponding phase-space depiction), 

which rendering is sometimes also referred to as a phase portrait. The sort of 

processes that are highly amenable to a process-dynamics analytical approach 

such as TA have long been discussed in the area of ecology, notably in the 
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textbook case of Lotka-Volterra predator-prey dynamics (see for instance 

phase-space diagrams in Bischof and Zedrosser, 2009), and, therefore, from the 

equations of state that govern this and other dynamical processes (e.g., Bischof 

and Zedrosser, 2009; Majkut, 2012; Wallot and Leonardi, 2018), it should also 

be apparent that phase-space representations may be likened to velocities in 

many instances. In the last decade, work by De Cáceres, (2010, also see De 

Cáceres, 2019, and works of other authors citing these) has formalized the 

mathematical application of TA to ecological studies (De Cáceres et al., 2019), in 

the form of CTA wherein different measurements that reflect changes in the 

community over time constitute community space, the ecological equivalent of 

phase-space. Analysis of community space trajectories provides a way to 

formally quantify and analyze variation in properties that reflect community 

dynamics (Bogomolov, 2011, De Cáceres et al., 2010 and 2019). 

Before I discuss the biomolecule results in the context of CTA, I first discuss a 

question that naturally arises, which is, how do chalkophore/siderophore 

changes relate to growth? As I detail in Section 3-3, while many authors use 

some normalization process to try and address this question, the distortions 

that can be introduced by this practice are often unknown by adherents of the 

practice, but are potentially disastrous to the goal of proper understanding of 

processes. Yet, clearly, chalkophore and siderophore are to some extent related 

to growth (moderate correlations with OD/pH in Figure 3-2, also see results 

from the first report of chalkophore screening in Zhang et al., 2020). Looking at 

correlations between chalkophore/siderophore and OD/Cts.ef/Cts.m, I find that 

relationships between the two are not consistent and often not proportionate or 

simultaneous. Results for chalkophore and siderophore are shown in Figures 3-
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11 and 3-12, normalized to t0 in order to discuss scale changes in the context of 

growth. For instance, while OD and Cts.ef/Cts.m in Mmeso increase after t0 by as 

much as a factor of 2 (Figure 3-4), chalkophores increase by factors of > 8 

(Figure 3-12). For siderophores, the maximum increase is more proportionate 

to changes in growth indicators, albeit not always cotemporaneous (Figure 3-

13). Comparison of Figures 3-11 and 3-12 with Figure 3-3 underscores the 

dynamical aspects of results, on which basis I am interested to expand the 

current exploratory application of CTA to future work.  

 
Figure 3-12. Chalkophore values in different mesocosms over time for mesocosm 

experiments in the year of 2018. All results are normalized to t0 values. Amendment 

without Cu are present in solid lines and amendment with Cu are present in dash lines.  

Figure 3-14A–F illustrates the CTA concept (A–B) and summarizes selected 

chalkophore/siderophore results (C–G). Figure 3-14A shows time-sequence 

data for model variables x and y, similar to results I report (e.g. OD in Figure 3-4;        

Chl-a in Figure 3-5). Figure 3-14B shows what model x-y pairs look like as 
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Figure 3-13. Siderophore values in different mesocosms over time for mesocosm 

experiments in the year of 2018. All results are normalized to t0 values. Amendment 

without Cu are present in solid lines and amendment with Cu are present in dash lines. 

“trajectories in community space”. Prominently, without an x-y phase difference, 

a trajectory becomes a line, hence subject to correlation analysis (or PCA 

calculated from a correlation matrix). Phase differences, however, are 

commonly present between variables in community/ecological data (Bischof 

and Zedrosser, 2009), and may efface correlation. Though CTA is multivariate, 

for this first work, I use 2-D community space for data shown in Figure 13-3C–G 

to simplify understanding of results and eliminate noise from potentially 

unrelated parameters. Also, I use raw results, not normalized to any growth 

metric, for reasons discussed above and because the circumstance of potential 

distortions from such normalization have the potential to be exacerbated in CTA. 

Figure 3-14C shows representative chalkophore/siderophore trajectories. 
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Those trajectories in Figure 3-14C with substantial “shape” (angularity), are 

counter-clockwise. Angularity results from increase in siderophore relative to 

chalkophore initially, followed by increasing chalkophores, and in some cases by 

subsequent decreasing chalkophore/siderophore. The diagonal line shows a 

chalkophore/siderophore ratio that Dmeso trajectories never exceed, whereas 

Mmeso commonly do by more than threefold. chalkophore/siderophore ratios for 

Bmeso vary. I was not able to find any literature that would suggest whether or 

not this ratio might represent a stoichiometric cellular process. The t0–t2 

increase in Mmeso and Bmeso siderophore for Ctl/Fe is higher than for other 

mesocosms by an average factor of ~ 3 (e.g., Figure 3-14C Mmeso Ctl versus Fe), 

less pronounced for St 28 Mmeso (for which, by t2, Fe siderophore is higher than 

Ctl by 50%, on average). Chalkophore increases following siderophore are more 

variable in magnitude. For some trajectories chalkophore/siderophore changes 

are sequential and for some simultaneous, possibly relating to sampling period 

discussed above. 

The trajectories in Figure 3-14C have three segments (S1–S3). The simplest 

trajectory measurements include total segment length (Figure 3-14D) and 

angles between segments (two angles, S1/S2 and S2/S3, Figure 3-14E). The 

former represents the cumulative chalkophore/siderophore bivariate change, a 

type of velocity, while the latter indicates proportionate change between 

variables, i.e. angularity is absent when variables change at the same rate. The 

Mmeso and Bmeso Ctl trajectories average more than a factor of two longer than 

the longest trajectories in green-algae dominated Dmeso or Mmeso Cu/CuFe groups. 

After Ctl, longest trajectories are for Mmeso Fe, followed by Bmeso Fe for two of  
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three stations. Mmeso and Bmeso Ctl/Fe also differ from other groups in angularity, 

for which S2/S3 averages ~360% more than S1/S2, i.e. palpable 

disproportionate change in the latter growth stages. CTA trajectory length is 

plotted versus angularity to better understand simultaneous trends in both 

(Figure 3-14F, angularity plotted as total/sum of all angles). Except for the 

Microcystis-dominated Mmeso and Bmeso Ctl/Fe, trajectory lengths are similar, 

with an average trajectory length of 7 and associated RSD of 13%. In contrast 

with angularity, there is no obvious pattern in angularity, other than CuFe is 

high. 

While t0–t2 siderophore Fe > Ctl for Mmeso and Bmeso, overall, Ctl trajectories are 

greater. Since this work is the first to screen for chalkophore and siderophore, 

there is no comparable literature context for results. That t0–t2 siderophore 

production is higher for Fe versus Ctl may appear counterintuitive, however, 

Fujii et al. (2016) found that Microcystis aeruginosa Fe-uptake rates decreased 

with increasing Fe-limitation due to lower Fe requirements resulting from 

adaption to low Fe. This would explain why Microcystis in my mesocosms 

produce more siderophore for Fe. There is another interesting implication—

despite conversion of amended TDFe to TFe by t2, Fe bioaccessibility may yet be 

sensed. With aging (von der Heyden and Roychoudhury, 2015; Jiménez et al., 

2019), amorphous oxyhydroxides crystallize, becoming less labile; organisms 

sensing this, i.e. via reduced flux, could adjust siderophore production 

accordingly.  

Concerning chalkophores, Baptista et al. (2014) found that strong-Cu binding 

ligand field concentrations were higher during Microcystis-dominated HABs, 
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however, for their analytical method, Cu-binding siderophore are not 

differentiable from chalkophore. Much as t0–t2 siderophore is higher in 

Microcystis-dominated Fe mesocosms, chalkophore production in these may be 

differentially increased in Ctl (causing longer trajectories) due to Fe-limitation. 

It is well-known that, with Fe-limitation, Cu-based plastocyanin becomes 

important in photosynthetic electron transfer (Quigg et al., 2008), causing Cu 

requirements to increase up to ten-fold (Schoffman et al., 2016). Unlike 

McKnight and Morel (1980) and Nicolaisen et al.’s (2010) results for Anabaena 

(discussed in Section 3.1), I find no evidence of chalkophore/siderophore 

mechanisms to protect from Cu-toxicity in Microcystis-dominated mesocosms. 

Comparing results from Mmeso to Dmeso, perhaps even Microcystis susceptibility 

to Cu results from enhanced siderophore and, particularly, chalkophore 

production, increasing acquisition/uptake of Cu (Hadjoudja et al., 2010). 

The meaning of chalkophore and siderophore is explicit—molecules that have, 

respectively, high association constants for Cu and Fe (Zhang et al., 2020b). The 

causative basis for Microcystis to produce microcystin is as yet unclear (Omidi et 

al., 2018). Ceballos-Laita et al. (2017) reported microcystin-Fe binding, 

speculating on microcystin’s being a siderophore that conveys competitive 

advantage to Microcystis. I monitored terminal microcystin concentrations to 

explore this. I find that microcystin produced is higher for Ctl versus Fe for St 3 

and St 13 (Figure 3-15A), consistent with Lukač and Aegerter (1993) and 

Alexova et al. (2011), who found stress-triggered microcystin production 

induced by Fe-limitation. As with other results here, St 28, which is not subject 

to HABs, is different. Since other factors in experiments are matched/equal, 

differences in St 28 may be summarized as “its something in the water”—or not, 
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as the case may be? One apparent difference for St 28 that relates to Cu- or Fe-

binding ligands is TDFe. St 28 t0 TDFe is approximately half that of St 3/St 13. 

For t2–t6, St 28 TDFe averages 42% that of St 3 and St 13. If microcystin 

production is suppressed when bioaccessible Fe is sensed, and such is lacking in 

St 28, microcystin for St 28 Ctl and Fe should be similar. 

  
Figure 3-15. Microcystin results for mescosm experiments in the year of 2018. (A) 

Results from microcystin analysis for those mesocosms having enough Microcystis to 

produce detectable levels of microcystin. (B) Chalkophore versus microcystin 

relationships at t0 and t6 (t6 Pearson’ r = 0.78, p < 0.005, Spearman’s ρ = 0.77, p < 

0.005). 

I find no relationship between microcystin and siderophore production. I do see 

a possible relationship with chalkophore. Figure 3-15B plots chalkophore 

versus microcystin. At t0 (dashed ellipse), chalkophore is effectively constant 

(RSD ~ 18%), and microcystin varies. Specifically, Mmeso values are all similar 

and highest, whereas for Bmeso, in which Microcystis Cts.m are approximately 

half, values are lower and more variable (expected as, for instance, one value is 

below the LOQ). To within statistical uncertainty, t0 Bmeso microcystin is half 

that of Mmeso. By t6, for the linear chalkophore-microcystin relationship in 

Figure 3-15, Pearson’s r = 0.78 (p < 0.005), with Spearman’s ρ being 0.77 (p < 

0.005), in close agreement. 
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As my data for microcystin are a snapshot and not analyzed in phase-space, for 

comparison I show microcystin results normalized to OD for three stations in 

Figure 3-16, comparing the difference between Ctl and Fe amendment.  

 
Figure 3-16. Microcystin normalized to OD (750 nm) for three stations from results 

results of mescosm experiments in the year of 2018.  

The overall behavior is the same as seen in Figure 3-15A, wherein production of 

microcystin is less in Fe than in Ctl, and the differences between Ctl and Fe 

microcystin production are greater for Mmeso than Bmeso. On an OD normalized 

basis, differences between Ctl and Fe are on average larger. I note again that 

these normalized results should be viewed with caution, in view of data 

distortion and uncertainty discussed above herein, and since the rate of change 

of microcystin production and half-life of microcystin in mesocosms is likely to 

be much different than the rate of change of OD and half-live of algal individuals 

in water. 

My working hypothesis to explain biomolecule results involves Microcystis 

production of siderophores first, to capture Fe, then shifting to production of 
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chalkophore as available/accessible Fe depletes. Simultaneously, in Ctl 

microcystin increases, possibly as a stress reaction or to inhibit other 

algae/microorganisms that might compete for NP/MN; inhibition is consistent 

with what I observe for UG and Dia in Figure 3-12C–D. This hypothesis explains 

why Ctl/Fe trajectories lead with siderophore followed by chalkophore and are 

longest overall for Ctl (both Cu and Fe low), the greater siderophore initial 

production for Fe (bioaccessible, less so for St 28 Fe), why microcystin is less for 

Fe, and why chalkophore-microcystin correlate by t6. St 28 values (Figure 3-

15B) are lowest in part because by t6 population crash has begun. My 

hypothesis concerning Fe-bioavailability in Taihu is consistent with Fan et al. 

(2018) and a prior finding from work that I did with my colleague Dr. Zhang 

that organic matter metal-binding affinity/retention of metal solubility is lowest, 

of 32 monitoring stations across Taihu, at St 28 (Zhang et al., 2020c). 

An objective in biomolecule analysis was to see if high Cu causes production of 

Cu-bioavailability reducing ligands or a Fe-linked effect. I do not see that. 

Instead, the Cu concentration was toxic to Microcystis, and I am not able to see if 

Cu causes different chalkophore/siderophore/microcystin production than Fe. I 

do see interesting effects for Fe with the interplay between 

chalkophore/siderophore production and amendment, and the potential link 

between microcystin-chalkophore production is very interesting. Emerging 

literature concerning the importance of Fe and Cu as limiting MNs and the 

interplay between Cu-Fe (literature cited, references therein) underscores the 

importance of this topic, however, this is the first work reporting 

chalkophore/siderophore screening separately as classes. The additional 

potential interrelationships with microcystin production will be interesting to 
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pursue in future work. Because these classes of molecule are documented to 

have short half-lives in environmental conditions3, the advent of CTA provides a 

timely and useful new tool for study of both the interplay between time-varying 

production of these molecules and the ability to treat this interplay in terms of 

multivariate velocities. 

3.10 PCA ANALYSIS OF FULL DATA SET 

I chose PCA for multivariate analysis as an approach free from investigator bias 

and well-known for allowing discrimination of data patterns and indications of 

which individual parameters most influence same (e.g., see Zhang et al., 2020b). 

PCA was performed on temporally complete data (t0–t6) as some analytes were 

measured at t0 and t6 only due to sample volume or other limitations as 

discussed in Section 3.2. Figure 3-17A shows a PCA scree plot of the percent 

total variance explained by each PC, and Figures 3-16B–D show the contribution 

of each variable to PC1–PC3, respectively, calculated to quantify the most 

important contributing variables to each. In Figure 3-17A, a total of ~ 68 

percent of variance in the data is explained by PC1-PC3 (PC1–33.3%, PC2–21.3% 

and PC3–13.1%), whereas PC4 and larger account for only small amounts of 

total variance ( 6%) with diminishing returns on the amount of variance 

captured. Thus, PC1–PC3 were chosen for further analysis. PC1 describes how 

Cu affects indicators of growth, in particular for BG (negative Cu loading 

associated with positive Cts.ef, Cts.m, OD, and BG (BG being smaller diameter 

algae). Since BG are smaller diameter algae (individuals) negative d.avg and ESV 
 

3 Cederocol, a sideophore for gram-negative bacteria and the terminal elimination half-life of 
cederocol was 1.98 to 2.74 hours (Takayuki et al., 2017) and cefiderocol, a siderophore with 
reported mean half-life of 0.84 hours (Ghazi et al., 2017). A half-life for microcystin-LR was 
reproted to be 2.2 days in the water sample taken during HABs (Medvedeva and Kuzikva, 2021).” 
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loading are likewise observed for this PC. Negative Cu is associated with 

positive chalkophore in PC1, in accord with the greater length of CTA 

trajectories (Section 3.9) for mesocosms dominated by BG.  

 
Figure 3-17. Scree plot and variables contributing to PCs from PCA. (A) Scree plot 

showing total percent explained variance that each PC accounts for in the input data; 

dimensions 1–10 represent PC1–PC10, respectively. (B–D) Bar plots showing the 

percent total contribution that each variable makes to PC1 (B), PC2 (C), and PC3 (D). 

The dashed red reference line corresponds to the expected value if the contribution 

where uniform; a contribution above the reference line is often considered as 

important in contributing to the dimensions.     

For PC2, there is a concomitant loading of Chl-a, t, and Algis, i.e. representing an 
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increase of Algis over time. The TotG loading in PC2 being in part a function of 

UG Algis increase and growth-associated increases in pH. PC3 contributions are 

positive for TFe and dominant green algae (Des and UG, both in turn major 

contributors to TotG). Des and some UG are larger on average than BG, hence 

d.avg loading is positive, accompanied by negative loading in chalkophore and 

TCu/TFe

Further PCA results in Figure 3-18 include (A) a three-dimensional (3-D) plot of 

PC1–PC3, (B) a recap listing signed parameters with highest contributions to 

each PC, and (C–E) 2-D plots of PC1 versus PC2 for St 3–St 28. Figure 3-18A 

shows that data separate into three clusters: Cluster 1–Dmeso; Cluster 2–Mmeso 

and Bmeso Ctl/Fe; and Cluster 3–Mmeso and Bmeso Cu/CuFe. The “narrative” 

describing PCs that I construct from Figure 3-18B is as follows: PC1–how Cu 

affects indicators of growth, particularly for BG; PC2–Algis increases over time; 

and PC3–positive TFe-green algae association accompanied by negative 

chalkophore loading. Figure 3-18A shows clear separation of Cluster 2 (+PC1) 

and Cluster 3 (-PC1). Cluster 2 PC1 values correspond to Mmeso and Bmeso 

without Cu, whereas Cluster 3 corresponds to Mmeso and Bmeso with Cu. As PC1 

describes how Cu affects growth (particularly for BG), Cluster 3 has low PC1 

values, while Cluster 2 (no Cu) signifies no Cu toxicity, or positive PC1. Also in 

Figure 3-18A, PC3 = 0 demarcates Dmeso and Mmeso, with Bmeso in between, which 

is sensible since Des, TotG and TFeN are the biggest contributors to PC3, Dmeso 

contains more Des compared to Bmeso, Des was not added to Mmeso, and t0 Des 

contained higher TFe. Though Des has the highest TFe, in PC3 UG and TFe load 

together, i.e., t0 Des TFe is not the only aspect of Fe concentration providing 

discrimination. Chalkophore variation by amendment suggests that PC3 



108 
 

chalkophore loads negatively to TFe in consequence of higher chalkophore in 

BG-dominated mesocosms and as a result of Fe-status in mediating chalkophore 

production in Ctl (Section 3.9). Separation between Cu and non-Cu amendments 

in PC2 versus PC1 plots is more complex, per the solid-black diagonal line in 

Figure 3-18C–E. Temporal shifts parallel to this line relate to growth, since PC1 

and PC2 are loaded by growth indicators.  

 
Figure 3-18. Analysis of results from PCA. (A) Three-dimensional (3-D) plot of PC1–PC3; 

ellipses show three separate groupings according to mesocosm algae and amendment. 

(B) Parameters that have important contributions to each PC (i.e. that are larger than 

what would be expected if each parameter contributed equally to variance). (C), (D) 

and (E) show PC1 vs PC2, respectively, for St 3, St 13 and St 28. Ellipses in (A) and 

markups in (C) through (E) are discussed in the text. 
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PC1 and PC2 are loaded by BG and Algis, respectively, which explains the 

variable rate of change in PC1 versus PC2. In Figure 3-18C–E, t0 is centered at 

PC1~ 0 and PC2 ~ -3 (solid-grey ellipses), wherein Mmeso have greater PC1 

(more BG) than Dmeso, Dmeso has greater PC2 (more green algae/Chl-a), and Bmeso 

is in the middle. By t2, PC2 for all mesocosms increases or remains 

approximately the same. For PC1, in contrast, all Cu decrease substantively 

(dashed-grey ellipses), while Mmeso and Bmeso Ctl/Fe increase similarly in PC1. 

Thus PC1 separates Cu and non-Cu mesocosms across the black line for the 

remainder of the experiments. Dmeso follows the diagonal black line (red solid 

and dashed arrows) over t2–t6, per comments above regarding PC1/PC2 and 

growth. For Mmeso and Bmeso Cu/CuFe, after the t0–t2 decrease in PC1, 

subsequent changes are in PC2 only (vertical dashed-green line). After the Cu 

toxic effect to BG, as the transition to different algal assemblage progresses, 

growth resumes along PC1/PC2 (diagonal dashed-green line). Mmeso and Bmeso 

Ctl/Fe change in PC1 and PC2/growth over t0–t2 (diagonal solid-green line), 

after which there is no further change. These mesocosms remain dominated by 

BG till t6, thus t2–t6 these mesocosms are dominated by BG-loaded PC1 changes 

(horizontal solid-green line). The graphical change of those mesocosms t2–t6 

agrees with OD, Cts.m, Cts.ef, and pH results; as BG growth progressed into 

stationary phase, PC1 first shifted to higher values, and then later back to lower 

values by t6. 

With PCA, I wanted to know whether variations across the whole data set would 

discriminate according to initial water used in the otherwise t0-matched 

mesocosms. In Figure 3-18C–E, notable differences (thick black arrows) involve 

growth in St 28 versus St 3/St 13 Mmeso and Bmeso. Changes in St 28 for Mmeso and 
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Bmeso t2–t6 are all diminished in comparison to St 3 and St 13. This finding is 

most interesting because it applies to Ctl/Fe and Cu/CuFe mesocosms, which 

have very different algal assemblages. It is as if to say, growth will be 

diminished for any St 28 mesocosm touched by Microcystis, per Figure 3-3 

wherein the maximum OD and final OD, compared to t0 for St 28 mesocosms, 

averages 55% that of St 3/St 13. This echos again the concept of “something in 

the water”—or not. So what could “something” be? The high (equalizing) t0 NP 

amended effectively rules out macronutrient-based causation. Other water 

quality indicators, which have been measured and reported in Table 3-2, are not 

likely. My discussion herein suggests that microcystin is not the direct cause, 

however, chalkophore/siderophore trajectories are very different for St 28 and 

t0 TDFe is half that of St 3/St 13, remaining lower t2–t6 relative to amendment. 

Why would the TDFe differ by a factor of two in this polymictic, ergo relatively 

short water-retention time, lake? The most likely explanation that I have seen 

relates to Fan et al.’s work (2018) demonstrating how different bacterial 

consortia affect Fe biogeochemistry. Prior work shows MN/Fe-limitation in 

eastern Taihu (including St 28, Fan et al., 2018; Zhang et al., 2019 and 

references therein).  

Chalkophore/siderophore trajectories clearly concern the reaction of 

algae/associated bacteria to the mesocosm environments, particularly to the 

status of Cu-Fe MNs. The evidence that I present here clearly shows 1) the 

difficulty of keeping Fe bioavailable in more realistic experiments compared to 

lab studies, 2) the lower TDFe in St 28 water, as collected and as amended over 

time, 3) the increased production of siderophore/chalkophore in Microcystis-

dominated mesocosms, i.e. strong Cu-Fe chelating ligands that microorganisms 
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may produce to modulate the bioavailability of Cu-Fe. While the work herein 

cannot be considered as fully conclusive, it strongly supports a model wherein 

Fe/Cu-Fe MNs biogeochemistry is a fundamental control on HAB formation in 

eastern Taihu. 
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 Chalkophore is a Predictor of 
Microcystin Toxin Production 
by Harmful Cyanobacteria 

4.1 RATIONALE AND EXPERIMENTAL DESIGN FOR ADDITIONAL 

MESOCOSM INVESTIGATIONS—FOCUS ON BIOMOLECULES 

Chapter 3 addressed an important gap in furthering research on the effects of 

MN bioavailability in natural waters, with particular reference to Cu, Fe and 

links between the two. Understanding possible links is important in turn to 

understand how MNs might or might not play a role in environmental 

management. One innovation in Chapter 3 is that I performed field mesocosm 

studies to examine the specific production of chalkophores and siderophores, as 

separate and distinct classes of ligand, in response to Cu and Fe amendment. In 

particular, my work is the first that I know of to study chalkophores in natural 

oxygenated freshwater environments using a screening assay that has only 

recently been reported. This assay, unlike others that have been used, is able to 

operationally distinguish strong Cu-binding ligands, chalkophores, from 

siderophores that in some instances might also be able to engage in strong Cu-

binding. Two aspects of my work from Chapter 3 that I found most interesting 
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were 1) that I was able to observe patterns in chalkophores and siderophores 

indicative of modulated production of these biomolecules in response to MN 

amendment, and 2) that I observed an unreported link between production of 

chalkophore and the cyanobacterial toxin microcystin. While I felt that my work 

in Chapter 3 made an important contribution to filling knowledge gaps that I 

had identified, it also raised more interesting questions that need further work. 

There were two important areas of further enquiry that interested me. 

One thing that I wanted to investigate further subsequent to Chapter 3 work 

involves the level of Cu amended. I had wanted to investigate whether high Cu 

causes production of Cu-bioavailability changing ligands or a Fe-linked effect, 

and the level that I used previously, 50 µg·L-1, was chosen based on prior work 

as a level targeted to be at the lower part of a dose response curve. In hindsight, 

I decided that the Cu concentration that I amended was too high for what I 

wanted, and so I was not able to see if Cu causes different 

chalkophore/siderophore/ microcystin production than Fe. For the work 

reported here therefore, I decided upon an alternate approach to Cu 

amendment.  

A second area that I wanted to investigate deals with microcystin production. 

Because it has been proposed that microcystin perhaps serves as a siderophore, 

especially during extended iron starvation, or acts as an iron storage component 

(Martin-Luna et al. 2006, Alexova et al. 2011), I was surprised to find in my 

initial work that there was no apparent microcystin-siderophore correlation, 

and even more surprised at my discovery of a hitherto unreported discovery 

microcystin-chalkophore link. The type of experiment that I have been doing is 
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highly field-relevant, however, with aspects of control. Nonetheless, despite 

controlled aspects, the water that I use, the algae that I use (particularly 

Microcystis) and the environmental conditions in the field, hence mesocosms, 

vary year-on-year. Because of this variability, which considerably complicates 

making generalizations about results, I was greatly interested in designing 

experiments that would supplement my knowledge from those described in 

Chapter 3, while at the same time affording an opportunity to see if I would 

again observe a microcystin-chalkophore link, and how this might or might not 

relate to Fe-limitation.  

With the aims above in mind, for my follow-up work, I designed the MN dosing 

scheme to include four amendments 1) Control (Ctl), i.e., no MNs added, 2) “Low” 

Cu (CuLo), 2) low Cu with “high” Fe (CuLoFeHi) and 4) high Cu with high Fe 

(CuHiFeHi). The Ctl is clearly required for comparative purposes. My rationale 

for CuLo was that Cu is a MN, and might promote growth, as has been seen 

previously. Additionally, however, Cu, when at low enough concentrations to be 

nontoxic, may be involved in the same mechanisms of uptake as Fe to promote 

algal growth. Therefore, CuLo also serves as a kind of potential control or 

contrast to CuLoFeHi. It is well known that high Cu will produce toxic effects, 

however, it has also been hypothesized that Fe might compete with Cu for BL 

and reduce toxicity from Cu (Kochoni and Fortin, 2019), ergo my choice of the 

CuHiFeHi amendment. In using CuHiFeHi, I was also interested to see, would the 

high Fe compete with Cu for BL and reduce toxicity from Cu? For all MN 

amendments, would there be notable differences in biomolecule formation 

suggestive of similar and/or different reactions to Cu and Fe? Further details 

concerning the specific rationale that I followed to decide which concentrations 
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constituted “high” and “low” for Cu and Fe are given in Section 4-2 below. 

For the rationale of which algae to use, Microcystis and Desmodesmus were 

selected for the reasons described in Chapter 3, Section 3.2. My primary focus is 

Microcystis as it is the main HAB species and with more interesting biomolecule 

results found for Microcystis in Chapter 3. As Desmodesmus populations had 

crashed in the early phase of experiments reported in Chapter 3, I selected 

Chlorella as another contrasting, non-nuisance green alga, and there is recent 

interest concerning Cu toxicity to Chlorella (Chen et al., 2016; Wan et al., 2018). 

Ultimately, to include trials on non-nuisance green algae, instead of using one 

genus as I had previously, I mixed Desmodesmus and Chlorella. My reasoning 

was as follows: 1.) There was a possibility that the algal acclimation would again 

not be sufficient, so mixing Desmodesmus and Chlorella added insurance for the 

green algae to survive in the field experiment. 2.) Since the focus is Microcystis, 

whether the contrasting green alga is mono- or mixed-culture is not as 

important. As previously, I also added mesocosm trials with a 1:1 mixture of 

Microcystis and the non-nuisance green algae. The basis for doing this was, as 

before, to see if behaviour would be additive or not (one organism potentially 

affecting others) and as this adds an element to the controlled experiment that 

more closely reflects the field situation where diversity occurs, at least prior to 

full HAB development.  

The experiments described in previous work of mine and work in which I 

participated (Zhang et al., 2019, and Li et al., 2021/Chapter 3) involved 

mesocosms using water from three stations. Our group found that water 

chemistry from these three sites is different, and therefore the significant 
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differences found in MN mesocosm experiments for these stations were 

consistent with this. Considering that the strongest effects for Cu reported in my 

previous work was for mesocosms using water from Xukou Bay (St 28) (Li et al., 

2021/Chapter 3, also see Zhang et al., 2019), and that the experiments are very 

laborious (Li et al., 2021), I decided to focus my follow-up work on this special 

station. In focusing work on St 28, I was able to spend more time in crucial 

preparations, including algal acclimation, which I believe had been at issue in 

the original work, and my strategy was to try to maximize the chances of 

obtaining high quality data by performing more focused work on only one 

station. 

In this chapter, I report my follow-up work to that of Chapter 3, based on the 

rationale and experimental design described above. To implement the 

experimental design, I chose Taihu as my field area for reasons discussed in 

detail in Chapter 3, Section 3.2. Additionally, since the CTA approach to analysis 

that I introduced in Chapter 3 is ideally suited to the results observed, I 

explored this approach further here, applying more advanced algorithms within 

the family of techniques used in trajectory analysis. Summarizing major findings, 

1) while the exact form of trajectories observed for this work differ from those 

that I reported in Chapter 3, more so for Microcystis, I again see a very similar 

dynamical phased behavior between chalkophore/siderophore production that 

show significant trajectories differences under different Cu and Fe amendments. 

2) I again observe a microcystin-chalkophore relationship, for this work being 

much stronger than that reported in Chapter 3, and I find again that microcystin 

production is lower with Fe. 
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4.2 MODIFICATIONS TO EXPERIMENTAL METHODS FOR ALGAL 

MESOCOSM EXPERIMENTS 

The method of collecting and characterizing St 28 water is described in Chapter 

3, Section 3.2. Microcystis (> 99% Microcystis spp. from microscopic examination) 

were collected from Meiliang Bay during an HAB in August, 2019. In August, 

2018, I had collected Microcystis from a point off the dock at TLLER, because I 

found that the algae there were effectively mono-algal Microcystis spp.  

 
Figure 4-1. Map showing Taihu field sites for mesocosm experiments in the year of 

2019. The locations of St 6 (Microcystis collection site), St 28 (water collection site), and 

TLLER, the site of mesocosm experiments. 
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In August, 2019, as compared to 2018, the situation was different, and while at 

many sites experiencing an HAB I found > 95% Microcystis spp., there were 

small amounts of other genera of algae (Chroococcus, Pseudoanabaena and 

Nitzschia). I travelled around the whole of Taihu and found a breathtaking level 

of HAB development at St 6 in Meiliang Bay. On microscopic examination back 

at TLLER, this was > 99% Microcystis spp., so I changed the location for 

Microcystis collection to Taihu St 6 in 2019.  Figure 4-1 shows the stations 

where I collected algae and water for the work described in this chapter, as well 

as the location of TLLER where I did some lab work and deployed the mesocosm 

experiments. 

 
Figure 4-2. Pictures from field sampling work in the year of 2019. These images show 

what Taihu looked like at Meiliang Bay, St 6, during the HAB in August, 2019. 
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Figure 4-2 shows some photos that will provide an appreciation of the state of 

development of the HAB in August, 2019. The other algae that I used, 

Desmodesmus and Chlorella, were purchased from Aquatic Biology Services 

(Wuxi Zhongshun Biotechnology Co., Ltd; > 99% Desmodesmus and Chlorella 

from microscopic examination). 

I took a much more intensive approach to algal acclimation in 2019, aiming to 

mimic as much as possible an environment similar with my field site, Taihu, 

where the sunlight is strong and water temperature is high (an average of 32 °C 

as reported in Chapter 3, Section 3.3). First, I obtained permission to deploy a 

series of 160 L buckets with water outside my lab (this violated security 

protocols, however, I was able to secure permission for the time that I needed). I 

used the large buckets to mimic the surface environment of Taihu, and the size 

was workable for me to control the temperature of water in the bucket. Since 

my lab is not far from Taihu, the sunlight at the top of the water surface in the 

bucket should have been similar sunlight for the algae as at Taihu. I divided my 

algae (filtered and in modified COMBO medium, per Chapter 3) into several 3-L 

transparent capped bottles; I added 1.5 L algal culture to each transparent 

bottle to make sure there would be enough air in the bottle. Then I placed the 3-

L transparent bottles with algae at the water surface inside in the middle of the 

160 L buckets. I devised a method to make sure that the 3-L transparent bottles 

were set and remained in the middle of the water bucket, where the 

environment was more stable. Daily maintenance of the algal cultures during 

acclimation included two important operations. The first consisted of opening 

the 3-L transparent bottles to allow air exchange, agitating the bottles to mix 

algae with the medium and promote air exchange, then closing and reopening 
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each bottle to repeat, multiple times with each bottle. The second operation was 

to ensure temperature control in the bucket. From preliminary experiments 

with the buckets, I realized that the temperature in the buckets could become 

too hot, due to their relatively low thermal mass. To control the temperature, I 

would first mix the water in the bucket, then take the temperature. If the bucket 

was approaching too high of a temperature (according to records of surface 

water temperature in Taihu), I would add ice, agitate the water till the ice 

melted, check the temperature, and then repeat this process as necessary until 

the temperature of the bucket was to within a degree or two below the target 

water temperature. I needed to perform the two operations to ensure air 

exchange and measure and control the temperature in the buckets several times 

each day, with multiple visits needed during the hottest part of the day. Algae 

were acclimatized in this way for two weeks before the field experiments.  

Table 4-1 lists details concerning the four amendments used for mesocosm 

experiments in this work. Regarding Cu concentrations, as I summarized in 

Chapter 3, during my work on Cu-amended mesocosms in Taihu, I observed two 

very different outcomes between 20 and 50 µg·L-1 Cu. At 20 µg·L-1 Cu, this 

strongly stimulated growth and effected assemblage changes that sometimes 

favored Microcystis spp. (Zhang et al., 2019), whereas 50 µg·L-1 Cu, with or 

without Fe, favored an assemblage shift from Microcystis spp. to green algae. For 

CuLo, therefore, I chose 20 µg·L-1 wherein significant growth promotion was 

observed at this concentration (per Zhang et al., 2019, also see references 

therein). For CuHi I decided to increase this by a factor of two over my previous 

work (Li et al., 2020). Based on my work and that of others (Wu et al., 2017), I 

predicted that this increase would ensure Cu levels toxic to Microcystis. Setting 
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CuHi to this level is also relevant to observe how this affects mesocosm 

progression, because this level is reportedly in the starting range of toxicity to 

green alga, for instance the EC50 (growth inhibition) of Cu was found to be in the 

range of 50 to 500 µg·L-1 for the green algae Desmodesmus, Scenedesmus and 

Chlorella spp. in similar water compositions (Shehata and Badr, 1980; Zhang et 

al., 2001; Lombardi et al., 2007). For Fe, I chose the concentration of 200 µg·L-1, 

per my colleague Dr. Zhang’s and my previous work (Zhang et al., 2019; Li et al., 

2020). I call it FeHi in the sense that it is the concentration that we and others 

(Xu et al., 2013) have used to enhance growth and the concentration is high 

compared to CuHi. I used FeCl3·6H2O for the Fe amendment. It is widely held 

that this form is less bioavailable due to the formation of insoluble Fe-

oxyhydroxides (Lis et al., 2015; von der Heyden and Roychoudhury, 2015; 

Jiménez et al., 2019), use of which serves to test whether the response of algae 

to Cu will have an influence on the bioavailability of Fe.  

Table 4-1. Amendment schedule used in Taihu NLB for 2019 experiments. 

 N a P b Cu c Fe d 
Control 2.0 mg·L-1 N 0.2 mg·L-1 P No added Cu No added Fe 

 
CuLo “ “ 20 µg·L-1 Cu  

 
No added Fe 

 
CuLoFeHi “ “ 20 µg·L-1 Cu 200 µg·L-1 Fe 

 
CuHiFeHi “ “ 100 µg·L-1 Cu  200 µg·L-1 Fe 
a added as KNO3; b added as K2HPO3·3H2O; c added as CuSO4·5H2O; d added as FeCl3·6H2O. 

Additionally, however, my work in Chapter 3 suggests that the other form of Fe 

that I used there rapidly becomes un- or less bioavailable over the time periods 

and conditions of my mesocosm experiments. As listed in Table 4-1, all 

mesocosms had NP added to ensure that these are non-limiting and to focus on 

the effects of the different concentrations of Cu and Fe amended. Concentrations 

of N and P were the same as used previously (Zhang et al., 2019; Li et al., 2020, 
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and references therein). 

The three different types of mesocosm trial that I performed for this work, with 

reference to initial algal assemblages, were mesocosms initially dosed with 1.)  

Microcystis spp. to reach an initial OD ~ 0.05 (Mmeso), 2.) a 1:1 mixture of OD ~ 

0.05 Desmodesmus and OD ~ 0.05 Chlorella spp. (Gmeso) and 3.) a 1:1 mixture, 

by volume, of the algae used to dose Mmeso and Gmeso (Bmeso, i.e. dosed with “both” 

types of algae in mesocosm types 1 and 2 above). The NLBs were performed 

following the method described in Chapter 3, Section 3.2 with an initial OD of ~ 

0.05. As before, for each NLB permutation (algae dosed, amendment type), 

triplicate subsamples were placed into 1-L transparent, chemically inert, 

cubitainers, which were then spiked to achieve the final concentrations of NP 

and MN (Table 4-1). The cubitainers were then incubated in situ in Taihu near 

the surface at TLLER. Subsamples for analysis were collected from initial water, 

initial algal suspensions (t0), and then each cubitainer was subsampled four 

times, at days 2, 4, 6 and 8 (t2, t4, t6 and t8). Experimental measurements on 

mesocosm subsamples were as described in detail in Chapter 3, Section 3.2. 

4.3 ADVANCES IN APPROACH TO COMMUNITY TRAJECTORY 

ANALYSIS 

Some methods of data analysis were also as described in Chapter 3 (e.g., 

descriptive statistics), however, for the CTA I took a different approach for this 

work. For the work in Chapter 3, I used the simplest approach possible to CTA, 

as this was the first time that I, or others, had applied this to data such as mine. 

The approach that I used in Chapter 3 had the advantage of being simple, 

however, the simplest methods are not always the most powerful ones. For the 
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work here, I wanted to evaluate two different tools. One involves the use of 

multivariate trajectory distances, and the other is time-lagged cross correlation 

of trajectories.  

Calculating multivariate distances between trajectories is a technique in 

multivariate analysis to quantify the similarities/differences in trajectories 

(McCune and Grace, 2002). Among methods for calculating multivariate 

distance, Euclidian distance is a common, perhaps the simplest and common, 

form of multivariate distance used. It is well-known, for instance, to calculate 

the hypotenuse of two sides of a triangle in 2-D Cartesian space, however it is 

often not that powerful in multivariate space. This is likely for the kind of 

biological data that I have, for instance, since Euclidian distance is often not the 

shortest distance between two points in hyperspace and it has no inherent 

capacity to deal with phase-shifts. There are a large number of distance 

functions that I could have used for this work, however, after reviewing the 

literature on time-dependent trajectories, with an emphasis on those used in 

biological CTA applications, I decided to focus on using the Fréchet distance (FD, 

for example, Jiang et al., 2008; Cleasby et al., 2019) and a distance metric based 

on dynamic time warping (DTW, e.g., Bar-Joseph et al., 2003; Yuan et al., 2011; 

Cleasby et al., 2019). The FD is a measure of similarity between multivariate 

trajectories that takes into account the location and ordering of the points along 

the curves. The algorithm is usually described in terms of a person walking a 

dog on a leash, illustrated schematically in Figure 4-3. The person walks on one 

path (i.e., multivariate trajectory) while the dog walks on another (Alt and 

Godau, 1995). The dog and the person will likely vary their speeds, or even stop. 

While in real life, either has the option to go backwards, in the algorithm, the 
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mathematical equivalent of this is not tenable. In this analogy, the FD is the 

minimum leash length required for both the person and dog to complete their 

individual trajectories. 

 

Figure 4-3. Schematic diagram illustrating Fréchet distance. The conceptual basis of 

uses the analogy of a person walking their dog (uncopyrighted graphic from Shah, 

2021). 

DTW is its own algorithm, however, for conceptual purposes it has been 

compared to an outcome that would occur when minimizing Euclidean distance 

between time series that have a phase difference, under all admissible temporal 

alignments (Tavenard, 2021). Figure 4-4 is a schematic representation of how 

DTW distance works according to this conceptualization, i.e., in comparison 

with Euclidian distance. While the schematic analogies used here oversimplify 

the actual algorithms, nonetheless, even schematically it is evident that 

Euclidean distance is the simplest, and, for my application, least powerful. I 

chose FD because it is able has been used in analysis of biological time-series 

data such as mine (Fernando and Miriam, 2021), which exhibit evolving 

characteristics. Because of the synchronization (per Kassidas et al., 1998) 

inherent in DTW and its past use in analysis of phase-differenced time-series 
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data, from the outset I thought that DTW seems ideal for my application. I used 

the SimilarityMeasures package (Kevin, 2015) in R to calculate FD and DTW. 

 

Figure 4-4. Schematic diagram comparing Euclidean and DTW distances. Conceptually, 

the DTW algorithm achieves temporal matching of features resulting in a smaller DTW 

distance/higher similarity result for a close feature match and vice versa 

(uncopyrighted graphic from Tavenard, 2021). 

The other technique that I wanted to explore for this work is time-lagged cross 

correlation of trajectories (Kushkevych and Beno, 2013). Figure 4-5 shows a 

conceptual example of how this approach works. Panel 4-5A shows two well-

known examples of time-dependent functions (i.e., in wave physics), cosine, ycos 

= f(t) = Acos(2πft), and sine, ysin = f(t) = Asin(2πft). While the functions 

themselves are continuous, the abscissa is plotted in discretized units such as I 

use here, and, generally, for these types of calculations, some form of indexing is 

used; in my example, the amplitude, A = 1, the initial value is assumed to occur 

at t = 0, and the indices (i.e., corresponding to a product of frequency and time, ft) 

roughly correspond to radians. The phase shift between the two functions is 

π/2, hence if I shift the indices for ysin by an amount that corresponds to this 

phase shift, and then test the correlation between ycos and ysin, the Pearson’s R2 

will be 1.0. Panel B, then, shows the R2 that I will obtain as a function of the 

percent phase shift. Figure 4-5 shows how, for some functions/trajectories, one 

can detect correlations within data that are related to each other via a phase-
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shift. From the outset, I thought that there might be a time-lagged cross 

correlation for my biomolecule data in view of the effects of Cu and Fe in 

stimulating biomolecule production and that the environmental half-life of some 

MN-binding ligands and microcystin may be relatively low, as I discussed in 

Chapter 3, Section 3.1. 

Figure 4-5. Example of the relationship between phase-shift and correlation. (A) Two 

time-dependent functions that are related through a phase shift, and (B) R2 as a 

function of the percent phase shift, i.e., time-lagged cross correlation of the functions in 

panel A. 

In order to conduct the time-lagged cross correlation and discover if indeed 

there could be optimum lag-adjusted correlations for my biomolecule data, I 

had a problem. Due to the nature of my experiments, it would be impossible for 

me to sample at the intervals realistically desirable based on the number of 

helpers I had available for my experiments and the volume of sample available. 

This problem of needing to reformat discretization is very common in biological 

time-series data and is handled using resampling or sample-rate conversion, 

which in this application refers to changing the frequency of time-series 

observations (Oppenheim et al., 1999; Sundararajan, 2021). Resampling includes 

upsampling and downsampling. I needed to first upsample my data, since the 

sampling time of my field experiments is limited to every two days for a total 
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time of 8 days. After upsampling, I performed lagged cross-correlation analysis, 

after which I downsampled again to recover the original discretization of my 

data. 

Upsampling typically consists of two steps, one involves inserting the extra 

indices desired to produce the desired sample rate, sometimes referred to as 

zero-stuffing since no information exists in these inserted indices, followed by 

some form of interpolation to populate the inserted indices with data (Bar-

Joseph et al., 2003). In my case, both of these steps were achieved in one step 

using function calls in R, and I used two commonly used approaches for 

interpolation, linear and spline. Panels A and B in Figure 4-6 show two examples 

of data that I made up for illustrative purposes here, for which I plot linear and 

spline functions that achieve upsampling. As the figure illustrates, linear 

interpolation results in an upsampled discretization that tacitly accepts the 

structure of the data collected as being representative of all time points. 

Because of the relatively long intervals between actual sampling times, however, 

the lowest or highest measured results measured may not reflect the actual 

minima or maxima of biomolecule in the mesocosm, and there is also the issue 

of noise in measurement. For the graph in panel A, a maximum occurs after t2 

and before t8. For linear interpolation, this occurs at t6, however, the spline fit 

effectively uses the time intervals of observation with the relative response 

observed to project this maximum to a time between t4 and t6, and closer to t6. 

In this case, the spline fit, when compared to linear interpolation, is likely a 

better reflection of what the “real” results would be if I had more measurements, 

and this will be the case much of the time. In contrast, an example where the 

spline may not perform as well is given in panel B. When I observe the behavior 



128 
 

of the data t6–t8, the spline suggests that there is a small minima just after t6, 

however, given measurement uncertainty (noise), it may be that the actual 

response in this interval is flat. In other words, it could be that random 

experimental uncertainties and the coarse measurement interval result in the 

appearance of a minima at t6, when in actual fact the measurements at t6 and t8 

are slightly low and slightly high, respectively, as a result of random 

measurement error. If the apparent small minimum is an artefact of noise, this 

means that linear interpolation is somewhat better in such cases as it does not 

project values below the measured low at t6. 

 
Figure 4-6. Two examples of upsampling. The examples use linear and spline 

interpolation of artificial example data. 

Time-lagged cross correlation for paired trajectories was performed after 

upsampling via the two methods. The phase-shifted trajectories were then 

downsampled again to recover the original discretization of my data. 

Downsampling addresses two considerations. First, the signal frequency 

inherent in the original structure of my data is recovered, and second, 

downsampling is performed via averaging across the original indices of 

measurement, thereby ensemble averaging errors that might have been 

introduced. To perform the calculations needed for time-lagged cross correlation, 
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I used the caret, stats, graphics, and grid packages in R (Max, 2021; R Core Team, 

2021). The spline algorithm employed the Catmull-Rom option.  

4.4 CORRELATION MATRIX PLOT OVERVIEW OF RESULTS FROM 

BIOMOLECULE-FOCUSED EXPERIMENTS 

Figure 4-7 is a bivariate correlation matrix plot that gives an overview of inter-

parameter associations. Time is plotted as the first variable, followed by the 

primary indicators of algal growth, including OD, Cts.m, and the counts for the 

different algal groups at the top of the matrix. The counts for the different algal 

groups (described in Li et al., 2021/Chapter 3, as determined from Cts.m) 

include BG, Des, UG, TotG, Dia, and Rest. These are followed by the dissolved 

metals DCu, and DFe, total metals, TCu and TFe, and the ratios DCu/DFe and 

TCu/TFe, all normalized to maxima as in Chapter 3. The biomolecules 

(chalkophore, siderophore and microcystin), are shown at the bottom. As this 

plot is intended as an overview of the data, I will primarily mention what I 

consider to be notable or points that relate to discussion later. The size and 

degree of coloration of each circle in the matrix of Figure 4-7 is proportional to 

Spearman’s ρ, according to the color legend at the bottom of the figure. For |ρ|  

0.3, the associated p-values are all  0.05. 

The growth indicators OD and Cts.m correlate with each other, and both 

positively correlate to Des and TotG. Des and TotG both negatively correlate to 

BG, ergo reflecting the increasing dominance of Des at the relative expense of 

BG, generally, across the experiments/treatments. The Rest group positively 

correlates with time, and not much else, which makes sense because Algis grew 

in my mesocosms over time and with no clear Cu or Fe effect.  
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Figure 4-7. Correlation matrix plot showing pairwise-correlation analysis for results 

from mesocosm experments in the year of 2019. Plot shows the results of pairwise-

correlation analysis. The size and degree of coloration of each circle in the matrix is 

proportional to Spearman’s ρ, according to the color legend at the bottom of the figure. 

For |𝜌| 0.4, the associated p-values are all  0.05. 

Regarding correlations with metals, TCu negatively correlates with BG, 

accompanied by a reduction in Cts.m, reflecting the differential BG sensitivity to 

the level of Cu amended, notably as I discuss below, for high Cu. I find that the 

2019 results are nominally consistent with 2018 results; for both, there is a 

significant negative correlation between BG and TCu, with less or no correlation 

for DCu. I discuss this in more detail below. A strong negative correlation occurs 

between TFe and BG, however this is a kind of artificial correlation. It results 



131 
 

because Fe is only amended with Cu (CuLoFeHi and CuHiFeHi), and I observe 

TCu inhibition of BG is strong with CuHi (discussed below), so this correlation is 

weighted by the CuHiFeHi results for BG. UG exhibits a weak positive 

correlation for all metal forms, whereas Des is only weakly correlated with TFe. 

The significant correlations between the quantities DCu, TCu, DFe, TFe, 

DCu/DFe, and TCu/TFe and chalkophore and siderophore are all negative for 

chalkophore (TCu, TFe) and positive for siderophore (DCu, TCu, TFe, DCu/DFe, 

TCu/TFe). The negative correlation for chalkophore with TCu is discussed in 

Section 4.5. The negative correlation for chalkophore with dissolved metals and 

TFe is also further discussed in Section 4.5, though, the correlation with TFe 

arises in large part because Fe amendments are always amended with Cu. 

Siderophore correlations occur because production increased with both Cu and 

Fe, which I discuss in more detail in Section 4.7. The positive correlation of 

siderophore with UG is misleading as is arises from a small number of points 

(see discussion on t6 and t8 Mmeso CuHiFeHi below).  

Interestingly, microcystin correlates negatively with TFe, which is consistent 

with my findings in Chapter 3, discussed in more detail in Section 3.9. For 

correlation between the biomolecules, siderophore and microcystin do not 

correlate significantly (slightly negative, as for Chapter 3), however chalkophore 

specifically correlates positively with microcystin and BG, consistent with my 

findings in Chapter 3 and discussed in more detail in Sections 4.6 and 4.7. 

Chalkophore and siderophore both develop with time as experiments progress, 

less so for microcystin since microcystin is present in BG/Microcystis initially 

and Microcystis is decreasing in some cases. 
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4.5 TEMPORAL CHANGES IN MESOCOSMS AS A RESULT OF CU AND 

FE AMENDMENT 

Changes in OD 

Examining the raw data in greater detail, Figure 4-8 shows OD versus time for 

all mesocosm experiments. For Mmeso Ctl, there is a small but monotonic 

increase in OD from t0 to t4, with a maximum increase of 24% by t6 at the onset 

of stationary phase. The remaining Mmeso amendments all contain Cu and all 

show a marked drop in OD by t2, with subsequent increases in OD thereafter. 

Interestingly, concerning the drop in OD at t2, Fe is consistently associated with 

a larger t2 decrease. Both FeHi amendments, CuLoFeHi and CuHiFeHi, OD 

decrease by 58% and 61%, respectively, irrespective of Cu level, whereas OD for 

the CuLo amendment only decreases by 40% at t2 relative to the start of the 

experiment. While the initial OD drops for metals amended mesocosms were 

similar, to within ~20%, the Mmeso OD recovery for CuLo, CuLoFeHi and 

CuHiFeHi from t2 to t8 followed the order CuLo > CuLoFeHi > CuHiFeHi, with 

the former two reaching stationary phase by the end of the experiment, whereas 

CuHiFeHi did not. For Gmeso, ODs for all four amendments were similar, 

increasing to stationary phase by t4–t6 and declining in post-stationary by t8, 

except for the significant decrease in OD for CuHiFeHi by t2 (p < 0.05). The 

trend of OD versus time for Bmeso is similar as for Gmeso, except that a relatively 

flat OD at stationary phase persists to the end of the experiment for all but the 

Ctl. Comparing the CuHiFeHi amendment across all mesocosms in Figure 4-8, 

the decreases in OD from t0–t2, are, respectively, 61%, 32%, and 48% for Mmeso, 

Gmeso, and Bmeso, i.e., while the microscopic counts tell me a detailed story about 
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how the high Cu amendment is affecting the algal assemblages, I nonetheless see 

that all mesocosms were affected by the high Cu concentration. I also note that 

the drop in OD for Gmeso by t2 is half that of Mmeso, and that the OD decrease for 

Bmeso averages that of Mmeso and Gmeso. Though the high Cu did decrease the 

growth of green algae by t2, the OD recovery for the high Cu amendment is 

quicker for green algae in Gmeso compared to Microcystis in Mmeso. That the trend 

of the OD change with time is similar for Gmeso and Bmeso is explainable from 

microscopic examination, wherein I found that the percentage of BG/Microcystis 

in Bmeso was overtaken by green algae during the course of the experiment, 

which I discuss in more detail later in this section.  

 
Figure 4-8. Changes in OD (750 nm) with time for mesocosm experiments in the year of 

2019. Results are plotted as a function of mesocosm type and amendment (amendment 

without Fe are present in solid lines and amendment with Fe are present in dash lines).  

How Amendments Affect Changes in Algal Assemblages 

As I discussed in Chapter 3, Cts.m remain the dependable standard for simple 

determination of species density/assemblage changes and cell condition 

(Butterwick et al., 1982), and, also as I discussed in Chapter 3, there was the 

possibility that Algis present in very small numbers initially might cause algal 

assemblage changes over the course of my field experiments and that Algis 



134 
 

changes might reflect initial conditions or Cu/Fe amendment from my 

experimental design. Certainly, in my work and the work of my colleague Dr. 

Zhang in which I participated, I previously found that Cu and Fe mediate algal 

assemblage changes (Zhang et al., 2019; Li et al., 2021). Figure 4-9 shows time-

dependent changes in Cts.m of algae groups by amendment. At t0, algal species 

and Cts.m are as expected. Since the mixture Des and UG in Gmeso was effected 

according to OD, Des in Gmeso constitute larger, but fewer, individuals, while UG 

in Gmeso constitute smaller, but more numerous, individuals. I was therefore 

reasonably satisfied that the t0 ratio that I found for Gmeso (41% Des, 59% UG) 

was reasonably close to 50:50, with the percentage of UG being larger, as 

expected, since the cells are smaller. Similar comments pertain to Bmeso given 

the relatively small size of Microcystis cells.  

A striking feature in Figure 4-9 is that, by t4, the Mmeso CuHiFeHi amendment 

began to demonstrate the replacement of BG/Microcystis by UG, which persisted 

through to t8. This replacement of Microcystis by UG for the high Cu amendment 

(100 µg·L-1) is consistent with my results from 2018 in Chapter 3, Section 3.6, 

where I amended 50 µg·L-1 Cu. The percentage of UG in Mmeso, on average, 

follows CuHiFeHi > CuLoFeHi > CuLo > Ctl over time, with only 2% UG in Mmeso 

Ctl by t8. The replacement of BG/Microcystis by UG is strongly associated with 

Cu, and secondarily with Fe as well since UG in CuLoFeHi > CuLo. For the three 

Mmeso amendments other than CuHiFeHi, Des increases over t4–t8 to become the 

dominant species by t8, however, the process occurs more slowly for Ctl, and is 

similar for CuLo versus CuLoFeHi. The percentage of BG remaining in Mmeso Ctl, 

CuLo and CuLoFeHi by t8 is 46%, 29% and 21%, respectively. That Des slowly 

took over the Mmeso Ctl mesocosms over the course of the experiment suggests 
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that Cu amendment alone is not responsible for the change, however, the 

persistence of BG/Microcystis being highest in Ctl, followed by CuLo and 

CuLoFeHi suggests that inhibition of BG/Microcystis growth by Cu did happen 

under my experimental setting with low Cu as well as high. The change for the 

high Cu amendment is much larger, with only 4.8% Microcystis remaining by t8. 

For Gmeso, I started with a 1:1 mixture, by OD, of Des and UG, however, Des 

rapidly became the major species by t2 for all amendments. Despite the rapid 

decrease in UG counts in Gmeso, I do not think that algal acclimation was an issue. 

I regard algal acclimation in Gmeso as successful when considering the OD results 

above in Figure 4-8, as there is not a drop in OD for Gmeso Ctl, while compared to 

my results in Chapter 3, Section 3.5, I did observe a large decrease in OD for 

green algae that, as I discussed there, did appear to result from insufficient algal 

acclimation.4 The rapid dominance by Des in Gmeso is not specific to any of the 

amendments, it is general. In fact, for Gmeso, this is the only large change. UG, as 

compared to Ctl (an average of 1.6% over t2–t8) is somewhat more persistent 

for all amendments (averaging 4.5% over t2–t8).  For Gmeso, I did not see large 

UG differences with amendment as I saw I for Mmeso, however, there is still an 

order, following CuHiFeHi (7%) > CuLo ~CuLoFeHi 3% > Ctl 2%. The only other 

differences of note in Figure 4-9 for Gmeso is that at t8, the percentage of BG 

increased to 18% for Gmeso CuHiFeHi. This higher BG count was almost 

completely comprised of Pseudoanabaena. 

 
4 Considering that I suspected insufficient algal acclimation in Chapter 3, Section 3.5. I added 
stricter condition control to the algal acclimation to the work here in this chapter including 
longer algal acclimation time (increased from 3 days in Chapter 3 to 14 days), and stricter 
temperature control (measuring and adjusting the water temperature used for acclimation 
several times per day). 
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The Bmeso share some commonalities with both Mmeso and Gmeso. The persistence 

of BG/Microcystis being highest in Ctl, followed by CuLo, CuLoFeHi and 

CuHiFeHi reported above in Mmeso was also found in Bmeso. Averaging the 

percentage of BG/Microcystis in Bmeso over t2–t8, it is 17%, 14%, 13% and 12% 

for Ctl, CuLo, CuLoFeHi and CuHiFeHi, respectively, albeit the difference is small 

and not statistically significant. Though the differences of the persistence of 

BG/Microcystis for Bmeso is not obvious as in Mmeso, however the trend follows, 

suggesting that inhibition of BG/Microcystis growth by Cu also happened in 

Bmeso with low Cu, and the inhibition is greater with higher Cu. 

 
Figure 4-9. Pie charts showing changing algal assemblages in time for mesocosm 

experiments in the year of 2019. Percentages are plotted for algae by group for 

different amendments (BG = Blue-green algae; Des = Desmids; UG = Unicellular green 

algae; Dia = Diatoms; Rest = remaining, less common algae). 

Like Gmeso, Des rapidly displace UG by t2, and the percent of Des by count 

increases from 21%, at t0, to 66%, 76%, 73%, and 56% by t2 for Ctl, CuLo, 

CuLoFeHi, and CuHiFeHi, respectively, with the majority of the remainder in all 
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cases being Microcystis. The average amount of UG over t2–t8 in Bmeso was again 

higher for CuHiFeHi, though again, not statistically significant. The transition of 

algal assemblages in Bmeso, compared Mmeso and Gmeso, showed an apparent 

resurgence of UG in the Ctl by t8. The OD results above in Figure 4-8 indicate 

that the Ctl culture is crashing at t8, and the UG in Bmeso Ctl by t8 was constituted 

of an equal amount of Carteria (47%) and Chlamydomonas (53%), i.e., not the 

Chlorella that was present at t0, and therefore the apparent resurgence of UG in 

Bmeso Ctl by t8 is not comparable to the persistence of t0 UG/Chlorella in other 

mesocosms. 

Changes in Amended Metals 

Regarding Cu and Fe, as for Chapter 3, I first evaluated QA/QC. Recoveries for 

TM QA/QC spike checks were 102 and 95% and for the CRM were 97% and 97% 

for TCu and TFe, respectively. The average respective recoveries (eq. 3-1, 

Chapter 3) for TCu and TFe were 102% and 107%, with an RSD of 17% in each 

case. Values of 𝐶algae, t0
TCu  were 2 µg·L-1, 6 µg·L-1 and 4 µg·L-1, respectively, for Mmeso, 

Gmeso and Bmeso, and values of 𝐶algae, t0
TFe  were 122 µg·L-1, 308 µg·L-1 and 236 µg·L-1, 

respectively, for Mmeso, Gmeso and Bmeso. The concentration of 𝐶spike, t0
TDCu  in CuLo and 

CuHi amendment were 21 µg·L-1 and 102 µg·L-1, respectively (105% and 102% 

recovery, respectively), and the concentration of 𝐶spike, t0
TDFe  in FeHi amendment 

was 182 µg·L-1 (91% recovery). For TDCu and TDFe, QA/QC results were also 

within acceptable limits, with the average spike recovery being ≥ 96% and the 

average RSD being 9%. 

Subsequent to the QA/QC results, I verified that TCu/TFe were conserved for 

t0–t8. Changes in TDM over time are shown in Figure 4-10. The dissolved forms, 
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TDCu/TDFe, arrived at or near steady-state by t2, except TDCu for the CuHiFeHi 

Mmeso, which exhibits very different behavior, seemingly bi-phasic, in accord 

with changes in algal assemblages, whereby a “Microcystis steady-state” of ~59 

µg·L-1, or 46% uptake, is achieved by t2, persistent to t4, and subsequently as 

the shift to UG dominance by t6 occurs, these mesocosms arrive at a second 

TDCu steady-state of 31 µg·L-1, 74% uptake, by t8. For high Cu amendments, the 

t8 uptake for Mmeso, Gmeso and Bmeso is similar, being, respectively, 75, 76 and 72 

µg·L-1, averaging 74 µg·L-1 or 73% uptake. Assuming that 31 µg·L-1 is the t4 

TDCu steady-state for the Microcystis-dominated Mmeso CuHiFeHi and that 74 

µg·L-1 is representative for the CuHiFeHi mesocosms, which are all green-algae 

dominated by t8, this suggests that Microcystis uptake is ~40% that of green 

algae. This observation agrees with what I reported in Chapter 3 with a 

significant ~ 50% greater uptake of Dmeso as compared to Mmeso. 

Regarding the similarity of the dissolved Cu uptake results here in Figure 4-10, 

and with the results previously reported in Chapter 3, Figure 3-11, the results 

could be explained in terms of sorption theory. Some research on algal-metal 

interactions reports that Microcystis (even dead cells) apparently sorbs metals 

quite well due to mucilage (Parker et al., 1998; Tien et al., 2004; Alwaleed et al., 

2021). For green algae, high sorption of metals was also reported as a function 

of the cell wall structure (Kumar et al., 2015; Saavedra et al., 2018; Buayam et al., 

2019; Spain et al., 2021). I also notice that the uptake rates for DCu for low Cu 

amendments (CuLo and CuLoFeHi) are more similar; the maximum uptake of Cu 

was 58%, 76% and 63% for Mmeso, Gmeso and Bmeso, respectively. Here again, 

uptake for Mmeso is lower than that for Gmeso, with uptake for Bmeso being the 

average of the two, approximately. These results, taken together, suggest a 
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sorption phenomenon wherein sorption of Cu by Microcystis is lower than that 

for green algae. The differential is greater for high Cu comparatively because 

sorption is a function of metal concentration, and it may be as well that the 

specific sorption capacity of Microcystis in the high Cu Mmeso is closer to 

saturation than for the green algae. That Bmeso should roughly approximate an 

average of Mmeso and Gmeso would also be consistent with sorption. 

For TDFe, results were as expected because the experimental design involved 

using aged forms of Fe (Section 4.2). As I had anticipated, by t2, all amended Fe 

had become TFe of some form. This could be sorbed, or unsorbed, Fe-

oxyhydroxides. Comparing the TDCu results for TDFe results, while I saw 

differences for DCu behavior for different algae, the DFe is similar in all cases. 

Chemical equilibria governing oxyhydroxide formation are almost certainly the 

cause of DFe behavior and the consistent baseline by t2 and after. These values 

of DFe are well above what chemical equilibria would allow, and instead 

probably represent the fraction of colloids that pass through the filter that is 

used for the operational standard for dissolved. 

In Chapter 3 I found that correlations between metals and BG were in alignment 

with reasonable expectation, with smaller values of ρ for correlations between 

BG and DCu, as compared to TCu, but nonetheless, the negative correlations 

were all significant. Here, in Figure 4-7, I do not see a DCu-BG correlation. This 

lack of correlation may be misleading due to process kinetics resulting from 

what I discussed above. The correlations in Figure 4-7 were analyzed for all 

mesocosms together, however, the timing of DCu changes is phased in this work 

and probably there is a phase-shift for some processes as well. 



140 
 

 
Figure 4-10. Changes in TDCu and TDFe as a function of time for mesocosm 

experiments in the year of 2019. Results are plotted as a function of mesocosm type 

and amendment (amendment without Fe are present in solid lines and amendment 

with Fe are present in dash lines). 

 I saw strong positive correlation for DCu with TCu, but no correlation between 

DFe and TFe. This may explained as the form of Fe amended quickly became 

insoluble, i.e., DFe was invariant for all mesocosms by t2, while changes in 

DCu/TCu were more variable. Both TCu and TFe negatively correlated to BG, 

chalkophore and microcystin, but positively correlated to siderophore. Those 

correlations that I observed in Figure 4-7 are reasonable as the Cu and Fe I 

amended did relate to the production of biomolecules; the effect of amended 

metals on the production of those biomolecules I discuss below.  

Changes in Biomolecule Production 

Figure 4-11 shows changes in chalkophore and siderophore over time. Even 

more than my prior work, there are distinct patterns resulting from 

amendments. The changes in chalkophore with time in Mmeso follow the order 
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Ctl > CuLo ~ CuLoFeHi > CuHiFeHi (differences indicated by > all significant), 

resulting in negative correlation. The large decrease in chalkophore production 

by as early as t2 for CuHiFeHi may relate in part to the decrease of Microcystis 

by t2, however, the decrease in chalkophore production (83%), is substantially 

greater than the decrease in OD (62%) or Cts.m (31%) by t2. For Gmeso the order 

is Ctl ~ CuLo > CuHiFeHi > CuLoFeHi, which is quite different than that of Mmeso, 

with additional differences being that the initial level of chalkophore is zero and 

the maximum level of chalkophore production is around half that of Mmeso 

(52%). For Gmeso, the order Ctl ~ CuLo > CuHiFeHi ~ CuLoFeHi, is significant at 

t2; by t4, only the difference Ctl > CuLoFeHi is significant. Bmeso t0 chalkophore 

is, approximately, the average of that of Mmeso and Gmeso, then follows the order 

of Gmeso chalkophore production, having higher chalkophore in all cases by t8, 

presumably because of the persistence of some Microcystis in these Bmeso by that 

time (Figure 4-9). A common feature of the chalkophore production for all 

mesocosms is that chalkophore production is always highest in Ctl, i.e., the algae, 

depleted of Cu and Fe during acclimation, seem to have sensed the low Cu in 

their environment, thus increased the chalkophore production. 

The change in siderophores with time as a function of mesocosm type and 

amendment was quite different compared to chalkophores. First, the order of 

siderophore production level, CuHiFeHi > CuLoFeHi > CuLo > Ctl, is the same for 

all mesocosms. Second, the basal t0 level is the same for all mesocosms. Third, 

the maximum siderophore production is for Gmeso, rather than Mmeso, and for 

Gmeso, at t4, when production maximizes and begins to level off, and at the same 

time the OD for all four amendments is approximately the same (Figure 4-8). By 

t8, Bmeso siderophore behavior reflects that of Gmeso. Siderophore, then, seems to 
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be very different from chalkophore. Based on these results I think of 

chalkophore as being a sort of primary domain of Microcystis, for which, if there 

is too much Cu, production stops, and when there is no Cu, production is highest. 

Siderophore, in contrast, appears to be more subject to the rule of TotG, and in 

all cases, in agreement with my speculations in Chapter 3, despite the relative 

biounavailability of Fe in the form in which I amended it, the algae can sense 

when Fe is present, and modulate their siderophore production in response. In 

fact, unlike Fe for chalkophore, the non-cognate metal, Cu, seems to stimulate 

siderophore production as well as the cognate metal, relevant to findings of 

others that some siderophores can strongly bind to Cu as well as Fe (McKnight 

and Morel, 1980; Nair et al., 2007; Holden and Bachman, 2015, see Section 4.7 

for further discussion). 

 
Figure 4-11. Changes in chalkophore and siderophore as a function of time for 

mesocosm experiments in the year of 2019. Results are plotted as a function of 

mesocosm type and amendment (amendment without Fe are present in solid lines and 

amendment with Fe are present in dash lines). 
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In Chapter 3, Section 3.4, I saw some correlations between chalkophore/ 

siderophore and OD/Cts.m, however, as I discussed in Section 3.9 relationships 

between the two are not consistent and often not proportionate or 

simultaneous. For this work, in Figure 4-7 I did not find any significant 

correlations between chalkophore/siderophore and OD/Cts.m. I did find 

positive correlations between chalkophore with BG, and siderophore with UG. 

As I observed a previously unreported link between chalkophore and 

microcystin production in Chapter 3, the positive correlation that I see in Figure 

4-7 for chalkophore and BG, seems likely to relate to this chalkophore-

microcystin link. The positive correlation between siderophore and UG may be 

misleading, as the greatest increase of UG with time came from the Mmeso 

CuHiFeHi discussed above, where high Cu inhibited Microcystis simultaneous 

with UG ingrowth. 

Concerning microcystin, as the work in Chapter 3 was highly exploratory, my 

microcystin data was limited to t0 and the terminal mesocosm subsampling, i.e., 

I did not have a complete time series. While I tried different techniques for 

microcystin analysis, I was not able to obtain satisfactory performance from 

these, and therefore I used the highly reliable/ US EPA-approved commercial 

ELISA kit, however, each kit cost in excess of 500 ₤, hence the decision in 

Chapter 3 work not to collect a full time series. Based on Chapter 3 results, 

however, I analyzed microcystin for the full time series here. Figure 4-12 shows 

changes in microcystin over time (Gmeso results omitted due to being below 

LOD). Microcystin production has been reported to change with different 

concentrations of iron (Sevilla et al., 2008; Zakhia et al., 2008), thus it has been 

proposed that microcystin perhaps serves as a siderophore (Martin-Luna et al., 
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2006; Alexova et al., 2011). The Fe-binding stability constant of microcystin 

reported by Klein et al. (2013), is orders of magnitude lower than the value of 

~1021 regarded by many as the level of high affinity that characterizes Fe-

siderophore binding (Zhang et al., 2020a), and thus they proposed that 

microcystin is unlikely to serve as an extracellular siderophore. Consistent with 

my results in Chapter 3, I again find no microcystin-siderophore correlation 

here (see Figure 4-7).  

The t0 microcystin results for Mmeso are almost four times higher than for those 

in Chapter 3. The t0 result for Bmeso was as expected, being just under half that of 

Mmeso. There were no statistically significant differences between Ctl, CuLo and 

CuLoFeHi amendments for Mmeso or Bmeso. The only significant difference was for 

CuHiFeHi, versus all other amendments, in both Mmeso and Bmeso from t2–t8 

(note, for Bmeso this finding is not apparent from the scale of the graph, which 

compresses the appearance of Bmeso results; I plotted the graph on this scale to 

show the relative differences with Mmeso). There is no significant correlation 

between microcystin and OD/Cts.m. While I see some changes in microcystin 

that appear to mimic those in OD, for instance, the dip at t2 for CuLo, CuLoFeHi, 

the dip does not occur in OD for the t2 Ctl, however is present for microcystin. 

Similarly, microcystin production shows a marked decrease between t6 and t8, 

while OD does not, though this change in microcystin is undoubtedly associated 

with the algal assemblage shift toward green algae for Mmeso by t8. The most 

notable feature of Figure 4-12 could be the remarkable uniformity of Ctl, CuLo 

and CuLoFeHi results for both Mmeso and Bmeso. 
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Figure 4-12. Changes in microcystin as a function of time for mesocosm experiments in 

the year of 2019. Results are plotted as a function of mesocosm type and amendment 

(amendment without Fe are present in solid lines and amendment with Fe are present 

in dash lines). 

4.6 RESULTS FROM EXTENDED CTA ANALYSIS OF BIOMOLECULES 

I began this analysis as for Chapter 3, Section 3.9, by plotting chalkophore 

versus siderophore trajectories. Figure 4-13 shows community trajectories 

based on raw results (A–C) and OD/normalized results (D–E). While the latter 

may be in some way misrepresentative, according to comments in Chapter 3, 

Section 3.3, I was interested to compare the two types of results to see if they 

would agree with each other or not. In general, the trajectories of 

chalkophore/siderophore for Mmeso are very different than for Gmeso and Bmeso. 

The trajectories are a very different type of data than raw time series, however, 

I also observe a similar contrast between Mmeso and Gmeso/Bmeso results for raw 

data such as OD and algal assemblages reported in Section 4.5. 
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Figure 4-13. Chalkophore/siderophore bivariate community trajectories for mesocosm 

experiments in the year of 2019. Results are plotted as a function of mesocosm type 

and amendment for raw results (A–C) and after OD normalization (D–F). 

 In Figure 4-13A–C, there is an evolution of the trajectories for all mesocosms, 

from one spatial behavior (Ctl) through the progression to CuLo, then CuLoFeHi, 

and then CuHiFeHi. For Mmeso, for all mesocosms the chalkophore/siderophore 

showed circular trajectories, clockwise for Ctl, CuLo and CuLoFeHi and counter-

clockwise for CuHiFeHi, mainly caused by the differences of the decreased 

chalkophores from t0 to t2 which is only found in CuHiFeHi. The rotation in 

these trajectories (wide red arc) for Mmeso reflect an adaptive strategy, whereby 

there are preferential changes in one direction or another, according to whether 

Cu or Cu-and-Fe is present. When amended with high Cu, the direction of change 

in Mmeso totally changed due to the immediate decrease/cessation of 

chalkophore production from t0 to t2. When comparing Mmeso Ctl with CuLo and 

CuLoFeHi, a differential chalkophore increase from t0 to t2 resulted in a higher 

initial trajectory along the chalkophore/y-axis. In fact, for the Ctl, and to a lesser 
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extent CuLo, the only other amendment without Fe, the initial chalkophore 

production is accompanied by a decrease in siderophore; siderophore 

production only begins as chalkophore production tapers. In contrast, there is 

no decrease of siderophore from t0 to t2 for Fe-amended mesocosms, which 

exhibit longer trajectories on the siderophore/x-axis. 

The trajectories for Gmeso are all much different than those for Mmeso in that, 

rather than being described in terms of rotation, they could all be approximated 

in polar coordinates as vectors (e.g., wide red arrow), the angle and magnitude 

of which varies relative to the amounts of Cu or Fe amendment at t0. While I 

describe Mmeso as seeming adaptive to me, changing chalkophore/siderophore 

differentially, in contrast Gmeso chalkophore/siderophore trajectories could be 

approximated as vectors in polar coordinates because levels changed 

simultaneously. For Gmeso, as no chalkophores were measured for the t0 samples, 

the trajectories for all mesocosms start from y = 0. The major differences in 

trajectories for Gmeso correspond to changes, resulting in longer trajectories, on 

the siderophore/x-axis. 

For Bmeso, even t0–t2 when there is still an appreciable amount of Microcystis 

present, I do not see the rotation-type trajectory shape that I see for Mmeso. 

When amended with Cu and having a lower amount of Microcystis relative to the 

Ctl, Bmeso trajectories become more similar to those of Gmeso, consistent with the 

changes in algal assemblages. Bmeso chalkophore increases are most pronounced 

when greater quantities of Microcystis are present, which may relate to the 

interesting chalkophore-microcystin link discussed in Chapter 3, Section 3.9. 

For Gmeso and Bmeso, siderophore is for the most part increasing (longer x-axis 



148 
 

trajectories), with no substantive decrease at any point. The trajectory view of 

chalkophore/siderophore interactions, is, to my thinking, a more informative 

way to consider the inter-relationship between the two, as compared to Figure 

4-11. 

Comparing the chalkophore/siderophore trajectories from work in Chapter 3 to 

those here in Figure 4-13, clockwise trajectories dominate in Figure 4-13 for 

Mmeso, but a counter-clockwise behavior was found for the work in Chapter 3. 

Though Mmeso showed different phasing, the trajectories in Chapter 3 versus 

here are all adaptive/rotational when compared to those trajectories for green 

algae. Trajectories for green algae of the work in Chapter 3 are even more 

heavily siderophore dominated. When comparing chalkophore/siderophore 

trajectories for Bmeso from the work in Chapter 3 to Figure 4-13, the trajectories 

of Bmeso in Figure 4-13 are more similar with trajectories of green algae, 

however, trajectories of Bmeso in Chapter 3 were more like Mmeso, which is 

sensible to me based on the different changes in algal assemblages. For Chapter 

3; some of the Bmeso were dominated by Microcystis, while the progression has 

instead favored green algae in all cases for Bmeso in this work.  

I described in Chapter 3, Section 3.3, the dangers of conducting the type of 

analysis that I do here on data normalized to growth indicators such as OD. 

Caveats aside, whether this is best practice or not, it is certainly common 

practice, so I decided to try that with the data here. Figure 4-13D–F shows the 

same results as in panels A–C, only normalized to OD for each axis. After 

normalization, I still see clear differences between different mesocosms and 

different amendments within mesocosm type. OD-normalized, 
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chalkophore/siderophore trajectories for Mmeso still showed bigger differences 

in shape/behavior when compared to Gmeso and Bmeso trajectories, which are 

again more similar to each other, as I saw in panels A–C. Compared to Figure 4-

13A–C, Mmeso trajectories are “flattened” and have more the appearance of 

returning to the point of origin. After normalization, the trajectory distance of 

Mmeso CuLoFeHi was more distinct. 

OD normalization is probably only really sensible for Gmeso due to the way the 

other mesocosm assemblages change, discussed in Section 4.5, No clear 

differences were found between raw results and the OD normalized results of 

the chalkophore/siderophore trajectories for Gmeso, however, if these 

trajectories would be expressed as vectors, on a normalized basis the slope of 

the vectors is much higher, i.e., chalkophore production is dominating over 

siderophore for lower Cu/Fe amendments. For Bmeso the Ctl trajectory appears 

magnified relative to the others. This is due in large part to the OD drop for Bmeso 

Ctl at t8. Otherwise, for the most part, these trajectories more closely resemble 

those of Gmeso, as was also the case for non-normalized Bmeso trajectories. 

The trajectories in Figure 4-13, in contrast to those in Figure 3-14, vary more in 

behavior than in absolute length, and hence are suited to a more sophisticated 

measure than those I used in Chapter 3 CTA. I trialed both FD and DTW 

techniques to test for trajectory similarities or differences. As expected, as 

compared to the approaches used in Chapter 3, which I also tested, these 

distance measures were far superior to detect differences in trajectories. Of the 

two, DTW was more powerful at discriminating differences than FD, as I has 

suspected it might be for reasons discussed in Section 4.3, so my focus here will 
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be CTA with DTW. As with the analysis for Figure 4-13 above, I wanted to 

compare trajectory distances based on non-normalized and OD-normalized 

input data, and now, since I have a full data set for microcystin, I also compared 

DTW distances in 2-D (chalkophore and siderophore) and 3-D (2-D plus 

microcystin) community space. Results are presented in Figure 4-14. The 

microcystin results for Gmeso are not reported since they all measure below LOD 

(0.1 µg·L-1 according to the Microcystins-ADDA ELISA kit as discussed in 

Chapter 3, Section 3.2), such that in Figure 4-14, there are no 3-D plots for Gmeso 

According to DTW, trajectories for all amendments save two are significantly 

different from each other (p < 0.05, Tukey’s HSD). 

For simplicity in plotting, the DTW distances in Figure 4-14 have all been 

normalized to the maximum DTW per mesocosm. In all cases this is the DTW 

distance between Ctl and CuHiFeHi, so all distances are normalized to this 

maximum such that the normalized CuHiFeHi is 1.0 in all cases. For the two 

DTW distances in Figure 4-14 that are not different at p < 0.05, the associated p-

values, (p = 0.068 and 0.056) are shown in red text. Considering the multiplicity 

of uncertainties and complexity of the environmental field experiments that 

produced these data, I regard these DTW distances as still being significant.  
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Figure 4-14. DTW distance matrix plots. Plots show the results of pairwise comparisons. 

DTW for each mesocosm (Mmeso, Gmeso, and Bmeso) is normalized to 1.0 as described in 

the text.  Result are plotted in array form, wherby columns correspond to mesocosm 

type (column 1 being Mmeso, column 2 Gmeso, and column 3 Bmeso), while rows correspond 

to different types of calculation input (row 1 is 2-D chalkophore/siderophore data not 

normalized to OD; row 2 is 2-D chalkophore/siderophore data normalized to OD; row 3 

is 3-D chalkophore/siderophore/microcystin data not normalized to OD). The size and 

degree of coloration of each circle in the matrix is proportional to the normalized DTW 

distance, according to the color legend at the bottom of the figure. From Tukey’s HSD 

test, p-values of all distances are < 0.05, except for those in Panel I where p-values are 

shown in red text.  

Figure 4-14 shows how, in all cases, no matter how I analyze the data, CuHiFeHi 

is always most different from all other trajectories. For Mmeso and Bmeso the 
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greatest similarities/smallest DTW distances occur for CuLo versus CuLoFeHi 

(Figure 4-14A, C, D, F, G and H). For Gmeso the greatest similarity is consistently 

for Ctl versus CuLo (Figure 4-14B, and E). It is remarkable to me that the 

findings in Figure 4-14 present such differences, and so consistently, whether 

OD-normalized or not, 2-D or 3-D. This suggests to me that the approach I take 

here is far more powerful than others I tried. Within the consistency, one 

interesting point of difference that I observe in is that, when comparing the 3-D 

DTW distances, the largest distance observed shifts from Ctl versus CuHiFeHi to 

CuLoFeHi versus CuHiFeHi for Mmeso, reflecting the largest univariate distance 

for microcystin. 

A major motivation for me in this work was to discover if I would again observe 

the microcystin-chalkophore link that I had in Chapter 3. In Figure 4-7, there is a 

Spearman’s ρ of 0.68 for the microcystin-chalkophore correlation, and the 

corresponding Pearson’s R2 was 0.47, greater than what I previously found (see 

correlation matrix plot in Chapter 3, Figure 3-2) of Spearman’s ρ of 0.28 and a 

corresponding Pearson’s R2 of 0.27. Looking only at Mmeso and Bmeso mesocosms 

(those with Microcystis), I had found a R2 = 0.61 in Chapter 3, Figure 3-15, for 

the correlation between microcystin and chalkophore at t6. Clearly timing 

should be relevant to the relationship, and of course, I had already anticipated 

that year-on-year differences would occur. The matter is further complicated by 

what I now know to be the inherent (and likely varying) phase-dependencies in 

the data. As a result of these considerations, I decided to try time-lagged cross 

correlation to examine a possible microcystin-chalkophore link. The results 

from my analysis of time-lagged cross correlations for Mmeso and Bmeso 

chalkophore and microcystin using the spline interpolation method are shown 
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in Figure 4-15; the optimum time-lagged Pearson’s R2 is plotted for each 

amendment, as noted on the plots. 

 
Figure 4-15. Time-lagged cross correlation for chalkophore and microcystin. Results 

are given for (A) Mmeso, (B) Bmeso, and (C) and combining Mmeso and Bmeso together. The 

R2 value is reported for each amendment in the same color as the corresponding 

symbol (see legend). The dashed line in each panel indicates the trend line for all the 

data in the panel, with R2 given in black. 

Combining data from different amendments, the correlation between 

chalkophore and microcystin is R2 = 0.72 for Mmeso, R2 = 0.48 for Bmeso, and R2 = 

0.76 for all the data from the two mesocosm types together. The time-lagged 

cross correlations of chalkophore and microcystin in each amendment were 

quite strong, ~ 0.9 or above, except for Mmeso CuHiFeHi. As discussed in Section 

4.3, I used two common approaches for interpolation, linear and spline, for 

upsampling. I find slightly higher correlations using the spline approach (e.g., I 
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obtain an R2 = 0.70 with linear interpolation compared to R2 = 0.72 for spline in 

Figure 4-15A), consistent with literature commentary on the advantage of 

spline methods to better reflect “real” results (Bar-Joseph et al., 2003). The 

important point is that I obtain the same results either way, i.e., any distortions 

in data that might occur from sample-rate conversion are minor enough as to 

lead to a consistent conclusion.  

Table 4-2. Slopes for optimum time-lagged correlation of chalkophore and microcystin. 

Mesocos
m 

Amendments Slope Mesocosm  Amendments Slope 

Mmeso Ctl 2.53  Bmeso Ctl 1.21 

 CuLo 5.42  CuLo 1.63 

 CuLoFeHi 5.56  CuLoFeHi 2.32 

 CuHiFeHi 1.15  CuHiFeHi 0.44 

Aside from the strong correlations, another interesting trend was the 

progression in the slopes, reported in Table 4-2, where we see that, for slope, 

CuLoFeHi > CuLo > Ctl > CuHiFeHi for both Mmeso and Bmeso. As discussed in 

Section 4.1, the design of this experiment was, in part, to see if any chalkophore-

microcystin link observed is related to Fe limitation. For the slopes of the 

chalkophore-microcystin correlations reported in Table 4-2, a higher slope 

reflects a smaller microcystin production for a given increment of chalkophore 

production (or vice versa). Tukey’s HSD was performed to check the differences 

of those slopes between amendments were significant or not, and the results 

showed all the slopes are significantly different (p < 0.05) for Mmeso and Bmeso 

between amendments, except the differences between Mmeso CuLo / CuLoFeHi 

(where slopes differ by only ~3%) and Mmeso Ctl / CuHiFeHi (though with the 

slope for Mmeso Ctl being greater than that of Mmeso CuHiFeHi by a factor of more 
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than two, and at p < 0.26, it might not be appropriate to term this as an 

insignificant difference). 

That the slope of CuHiFeHi is lowest for both Mmeso and Bmeos is because of 

inhibition of chalkophore production in both cases, as shown in Figure 4-11. For 

both Mmeso and Bmeso, when comparing CuLoFeHi with CuHiFeHi, i.e., the amount 

of Cu is variable, and much more chalkophore is produced when the amount of 

Cu is low. When comparing CuLo with CuLoFeHi, where the amount of Fe is 

variable, the Fe results in a higher chalkophore production per unit microcystin 

in Bmeso, albeit the difference is effectively negligible for Mmeso. Taking further 

into account the significant slope difference whereby the CuLo is greater than 

that for the Ctl is suggestive that Microcystis increased chalkophore production 

to capture Cu when the amended Cu is low, but decreased chalkophore 

production when the amended Cu is too high. 

4.7 DISCUSSION OF POSSIBLE CONTROLS ON BIOMOLECULE 

PRODUCTION 

With respect to chalkophore and siderophore production, the acclimation 

strategy that I used for this work was not just more stringent with respect to 

duration and duplicating as much as possible the irradiance and temperature of 

the field site. Because I used a type of minimal media without Cu or Fe, and I 

used high purity reagents to make the media, the algae would have been much 

more Cu and Fe starved at the outset of experiments for this work as compared 

to the work I report in Chapter 3. Revisiting comments from Chapter 3, under 

MN-limited conditions, cellular Cu requirements for microalgae may increase up 

to ten-fold (Quigg, 2008; Schoffman et al., 2016). After being in placed in St 28 



156 
 

water, which did have some Cu and Fe (3 and 128 µg·L-1, respectively), the Mmeso 

slope for chalkophore production between t0 and t2 suggests that it began 

rapidly, consistent with specific production to capture Cu; with low Cu amended, 

chalkophore production relative to the Ctl decreased, and the striking 

agreement between Mmeso CuLo and CuLoFeHi indicates that chalkophore 

production is not related to Fe. The Pearson’s R2 for chalkophore versus the 

amount of Cu amended varies from 0.97 to > 0.99 (plotted at t2, t4, or using the 

extrema in the interval from t2 to t4). For siderophores, there is a direct 

proportionality between siderophore production and the sum of Cu and Fe 

amended. Testing all time points for correlation between siderophore and the 

sum of Cu and Fe amended, the largest Pearson’s R2 are as follows: 0.98 for 

Mmeso at t4 (Microcystis dominated); 0.93 for Mmeso at t8 (UG dominated); 0.92 

for Gmeso at t2; and 0.92 for Bmeso at t2. 

Considering these points relating to MN starvation, I reviewed my data for 

𝐶algae, t0
TCu  and 𝐶algae, t0

TFe  from Chapter 3/2018 as compared to Section 4.5/2019 

above. I find that, on average, 𝐶algae, t0
TM  for all algae in 2018 are ~380% higher 

than for 2019. For Mmeso 𝐶algae, t0
TFe  and Gmeso 𝐶algae, t0

TCu  and 𝐶algae, t0
TFe , the average is 

270% with a relatively modest RSD of 22%, whereas, for Mmeso 𝐶algae, t0
TCu  was 700% 

times higher in 2018 than in 2019. The Mmeso relative Cu starvation is 

exceptional, i.e., one could say that algae are ~270% more MN starved in 2019 

compared to 2018, except for Mmeso Cu, where the differential between Gmeso Cu / 

Gmeso Fe / Mmeso Fe versus Mmeso Cu, at 270%, is almost a factor of three, and 

Microcystis Cu-starvation is in turn a factor of 2.6 greater than this 270% 

average. The relative MN depletion of Microcystis itself may be differentially 
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higher than for green algae. The 2018 ratio of 𝐶algae, t0
TCu  in Gmeso compared to Mmeso 

was 1.1, and the corresponding ratio for 𝐶algae, t0
TFe  was 1.6, i.e., the Cu content of 

the Microcystis and green algae at t0 were similar in 2018, while the Fe content 

of green algae was higher, by approximately 60%. In contrast, for 2019, these 

two ratios for Cu and Fe are, respectively, 3 and 2.5, i.e., as compared to 2018, 

green algae have 300% more Cu and 250% more Fe than do Microcystis. Viewed 

from this perspective, the initial Cu and Fe status of algae is easily sufficient to 

explain the differences in trajectories that I observed in 2018 versus 2019. Since 

both Microcystis and the green algae started their acclimation in the same media, 

this is also an indication of the relatively higher copper needs of Microcystis. 

Based on literature, and in accord with my results, it seems reasonable that 

chalkophore and siderophore, while both binding with very high affinity for 

their respective cognate metals of Cu and Fe, have nonetheless somewhat 

different purposes. Much has been written concerning how bacteria (including 

cyanobacteria) navigate the divide between nutrition and toxicity for Cu. In a 

review by Porcheron et al. (2013), the authors note that bacteria need highly 

sensitive regulatory factors responding to metal concentration to allow rapid 

and sufficient metal uptake, ensuring that physiological needs for MNs are met, 

however, these authors also note a general trend whereby intracellular 

concentrations of metals (Fe, Cu, zinc, and manganese specifically mentioned) 

are higher, sometimes much higher than extracellular concentrations. In gram-

negative bacteria, including examples of cyanobacteria, Badarau and Dennison 

(2011) have noted that production of chalkophores is one Cu uptake mechanism, 

and Andrei et al. (2020) have described toxicity management via Cu-binding, 



158 
 

commenting “the virtual absence of free Cu in the bacterial cytosol is achieved by 

Cu-chaperones, Cu-storage proteins and low-molecular weight thiol-containing 

molecules”. A thermodynamic study of very high affinity (chalkophoric) 

intracellular cognate binding with Cu for one cyanobacteria demonstrated how 

it is managed to protect the bacterium from Cu toxicity, while also facilitating 

rapid and efficient relocation to plastocyanin and cytochrome c oxidase as 

needed (Badarau and Dennison, 2011). The behaviour that I observe for Mmeso 

chalkophore in this work is entirely consistent with a process of Cu uptake for 

Cu-starved cells, and discontinuation of production of Cu uptake/storage 

biomolecules when there is an excess of Cu. 

Comparing chalkophore binding with siderophore, Porcheron et al. (2013) note 

that bacterial regulators, including the copper-dependent regulator CueR, have 

very strong binding with Cu, ensuring that all cytoplasmic copper is 

bound/buffered to achieve very low intracellular concentrations. In contrast, 

the Fe-uptake regulator Fur binds Fe much less tightly, leaving much more Fe 

free-ion in the cytoplasm to bind with other weaker metal-binding proteins. 

They go on to say that the Fur family of regulatory proteins is implicated in the 

regulation network of several metals (also see details in Kaushik et al., 2016). 

These points, taken together with reports that siderophores in some instances 

can also bind Cu strongly (Nicolaisen et al., 2010; Hofmann et al., 2020), cause 

me to hypothesize that the chalkophores are being produced by Microcystis as 

part of a specific cognate response system, whereas siderophores and different 

parts of the Fe-regulating cellular machinery are more complex and involve 

numerous metals besides Fe, and including Cu (Chen et al., 2020). 
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The production of chalkophore in green algae/Gmeso is quite different than for 

Mmeso and does exhibit differences based on Fe. Overall, results suggest, 

consistent with literature, that the Cu needs of green algae are less, and are 

ameliorated by the presence of Fe. I do not have an explanation for why Gmeso 

CuHiFeHi chalkophore production is generally higher than for CuLoFeHi, 

however, this apparent difference may be deceiving since it is not statistically 

significant. Concerning the effect of Fe on Gmeso chalkophore production, one 

recent report found that the green alga C. reinhardtii requires Cu for high 

affinity Fe uptake, and it may be that the high Fe amendments therefore reduce 

Cu requirements to effect Fe uptake (Herbik et al., 2002). 

I find that these very different behaviors of Microcystis and green algae with 

respect to chalkophore and siderophore production are very well reflected by 

the different trajectories. For green algae, it seems indeed that chalkophore 

production is an ancillary process, with siderophore production being in all 

cases more prominent, whereas for Microcystis, the response, here and in 

Chapter 3, is much more consistent with high cellular Cu requirements, and, 

based on the inter-relationship with siderophore production, there does appear 

to be an active interplay between Cu and Fe management. While the results here 

in this chapter concerning the relative timing of chalkophore and siderophore 

production vary from those in Chapter 3, the dynamics and magnitude of effects 

are similar, despite the quite different initial Cu and Fe status of algae from 

those used in the work that I describe here. 

Despite a vast amount of research, the ecological function behind production of 

the cyanobacterial toxin microcystin has not been elucidated (Omidi et al., 2019 
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and references therein). I did not find a microcystin-siderophore link for work 

in Chapter 3 or here in this chapter, and, despite speculations of some authors, 

Klein et al. (2013) demonstrated that microcystin is not a siderophore. In any 

case, Martin-Luna et al. (2006) one of the most highly cited works on the 

siderophore-microcystin link, state that evidence concerning the link is “widely 

discussed, with contradictory results”. 

While microcystin is not a siderophore, it is not a chalkophore either (Humble et 

al., 1997; Yan et al., 2000). The issue of whether microcystin is a siderophore (or 

chalkophore) has been raised and is of interest because, if it were, this would 

serve as an important intracellular detoxification mechanism. In their research 

on Cd toxicity to Microcystis, Huang et al. (2015) recently compared a strain 

producing microcystin to a microcystin-lacking mutant and demonstrated that 

microcystin cannot affect metal toxicity either by regulating metal accumulation 

or by altering the detoxification ability of the cyanobacteria. Wang et al. (2012) 

found that, microcystin did not affect the bioaccumulation of Cd or Cu exposure 

in C. reinhardtii. Since Cu bears some binding similarities with Cd as divalent 

metals, and since microcystin does not have a high binding affinity for, e.g., Cd, 

Cu, Fe (Yan et al., 2000; Pochodylo et al., 2017) means that it is unlikely that 

microcystin’s function is to reduce metal toxicity. 

Why microcystin is produced is harder to say. There are two ways that I can 

think of to address this, phenomenological and molecular. Phenomenologically, 

consistent with Chapter 3, but especially as clearly revealed by the time-lagged 

cross correlation analysis that I did, microcystin production appears to occur at 

a point where cells could well be becoming stressed. There are reports that 
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microcystins affect other species by causing photosynthesis inhibition, growth 

inhibition, and oxidative stress induction (Legrand et al. 2003, Gantar et al. 

2008). Omidi et al. (2018) have summarized microcystin’s allelopathic function 

to other phytoplankton and zooplankton, including growth inhibition for algae 

including Chlamydomonas, Haematococcus, Navicula, Cryptomonas, and other 

cyanobacteria. At a molecular level, Chen et al. (2020) recently published work 

showing that microcystin synthesis genes were indirectly activated by Cu via 

Cu’s affecting the expression of the Fur-related genes, i.e., Cu affected the 

expression of Fur-related genes, genes that directly regulate microcystin 

synthesis (the latter effect has been discussed by other authors, also see 

Kaushik et al., 2016). Chen et al. observed that copper stress resulted in 

increased microcystin production, as I see here, after a lag time. Mathematically 

speaking, I can say with certainty based on the preliminary results in Chapter 3 

and results from more detailed study given in Figure 4-15 that chalkophore is a 

predictor of microcystin production. In result of the recent work from Chen et al. 

(2020), I now have some insight as to the causative effects as well. Linking 

molecular results to ecological meaning will no doubt be an interesting area of 

future research. 
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 Conclusions and Further 
Work 

This chapter revisits and draws together the key findings of Chapters 2 to 4, and 

additionally, I consider further work in my research area that I believe to hold 

most promise for the future. 

5.1 CONCLUSIONS 

Chapter 2:  From speciation to toxicity: using a “two-in-one” whole-cell 

bioreporter approach to assess harmful effects of Cd and Pb 

This is the first work to use a lights-on bioreporter combining the study of 

speciation and toxicity simultaneously and within the BLM framework for risk 

assessment of hazardous materials. Major findings are as follows: 

• No reports have been found for detailing the use of a lights-on 

bioreporter to measure toxicity; these lights-on reporters have thus far 

been used for speciation measurement. My results showed that the 

lights-on bioreporter zntA can also be used to measure toxicity, as 

benchmarked by an independent toxicity assay, thus providing a “two-in-

one” functionality for toxic metal risk assessment work. 
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• The results reported herein are the first for use of a bioreporter to 

predicted both speciation and toxicity. The predicted speciation and 

toxicity for the test metals, Cd and Pb, are well within BLM validation 

guidelines for agreement between predicted and measured results. 

• The FAV WQC represents genera in the lowest rank P5%. In comparison, 

toxicity endpoints for other Cd and Pb BLMs reported in literature 

average P71% and P44% rank percentile sensitivity (i.e., insensitive) for Cd 

and Pb, respectively, and in consequence could not be regarded in any 

context as fit-for-purpose for toxic metal environmental risk assessment 

according to WQCs based on protection of 95% of aquatic species. Since 

the LODs of Cd and Pb for zntA are below the relevant Cd and Pb CMCs, 

zntA is able to measure the speciated values of Cd and Pb that 

correspond to the toxicity endpoints of the most sensitive half of species 

(from the CMC WQC to the P50%).   

• The results reported for zntA as a “two-in-one” bioreporter for Cd and Pb 

measurements and BLM predictions are theoretically generalizable to 

any lights-on bioreporter, substantially broadening the use of other 

lights-on bioreporters for risk assessment and ecotoxicity studies of 

other toxic elements and hazardous substances.  

Chapter 3:  A new perspective of copper-iron effects on bloom-forming 

algae in a highly impacted environment 

The results presented in Chapter 3 show the following with respect to Cu-Fe 

effects on bloom-forming algae in a highly impacted environment: 
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• The 50 µg·L-1 levels of Cu used, with or without Fe, favors changes to green 

algae as dominant species over Microcystis spp. This starkly contrasts 

previous work in which I participated, wherein 20 µg·L-1 Cu strongly 

stimulated growth and affected algal assemblages changes that sometimes 

favored Microcystis spp. Given this narrow concentration difference with 

two very different outcomes, responsible whole-lake management of algae 

using Cu is untenable. 

• I observe neither dramatic Cu-modulation of Fe demand (for algae that can 

switch from Fe-based Cyt-c6 to Cu-based plastocyanin in electron 

transfer), nor evidence of an Fe-protective effect from Cu toxicity, as 

observed in multiple lab studies, underscoring the desirability of relatively 

more complex field experimentation.  

• I report a first example of coupled chalkophore/siderophore production 

and using CTA. Using CTA represents an important innovation since 

chalkophore and siderophore production is not cotemporaneous. My 

results support a concept-model wherein, for Microcystis-dominated 

mesocosms, siderophore production is differentially increased in the 

presence of bioaccessible Fe and subsequent chalkophore production is 

Fe-modulated—lower Fe increases Cu demand/chalkophore production. 

• Though reports show that microcystin can function as a siderophore, I find 

no microcystin-siderophore correlation, however I find that microcystin 

production is lower with Fe and a hitherto unreported discovery of a 

microcystin-chalkophore link. Microcystin and chalkophore production 

both accompany Fe-shortage, indicating response to Fe-limitation. 
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• Despite rapid diminution of amended bioavailable/TDFe, there are 

multiple significant differences in individual parameters for Fe that are 

more pronounced for St 28. PCA also shows that St 28 behavior is 

differentiable from St 3 and St 13 across all mesocosms that are 

Microcystis-dominated by t6. The explanation that is consistent with other 

literature reports involves the different bacterial communities known to 

be in this part of the lake and how these affect 1) Fe status—t0 TDFe in St 

28 is half that of the other stations and amended TDFe declines more 

rapidly than for St 3/St 13, and 2) more intense chalkophore/siderophore 

CTA trajectories in consequence.  

The evidence presented in Chapter 3, implicating variable MN bioavailability 

and demonstrating coupled chalkophore, siderophore and microcystin 

production in response to varying MN, is a first step and warrants further 

research, including expression profiles of genes involved in synthesis of 

chalkophore, siderophore, and microcystin, and how these are activated in 

response to environmental conditions. 

Chapter 4:  Chalkophore is a predictor of microcystin toxin production by 

harmful cyanobacteria 

In Chapter 4, I report my follow-up work to that of Chapter 3 with revised Cu/Fe 

amendments, an increased level of algal acclimation and more advanced 

algorithms within the family of techniques used in trajectory analysis. From this 

work, I draw the following conclusions: 

• The effect of Cu/Fe amendments on chalkophore and siderophore 

production is very different, more so for Microcystis where chalkophore 
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production has a very strong correlation with Cu but not with Fe, while 

siderophore production for all mesocosms with different algal types all 

showed strong correlation with the sum of Cu and Fe.  

• The exact form of trajectories observed for this work differ from those that 

I reported in Chapter 3, more so for Microcystis, and especially the 

production of chalkophore is higher here, likely caused by a more intense 

MN starvation during algal acclimation; however, I again see a very similar 

dynamical phased behavior between chalkophore/siderophore 

production that shows significant differences in trajectories according to, 

and in response to, specific differences in Cu and Fe amendments.  

• I again observe a microcystin-chalkophore relationship, for this work 

being much stronger than that reported in Chapter 3. With the additional 

data to perform analysis of time-lagged cross correlation, I found even 

stronger evidence of a microcystin-chalkophore relationship. As the 

optimum time-lagged cross correlation of microcystin-chalkophore entails 

a time-lag for microcystin, chalkophore is a predictor of microcystin 

production. 

• Recent molecular biological work (Chen et al., 2020) confirms the 

activation of microcystin synthesis genes indirectly by Cu via a pathway 

involving a genetic regulatory pathway primarily known for regulating 

cellular Fe status, confirming my earlier hypotheses (Zhang et al., 2019) 

regarding a fundamental Cu-Fe link. Contrary to some published 

speculation, nothing in my work suggests that microcystin acts as a 

siderophore (or chalkophore), and other published work that I cite shows 

that it is neither a siderophore nor a chalkophore. While the ecological 
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function behind the cyanobacterial production of microcystin has not been 

elucidated, my results are consistent with published results implicating an 

allelopathic response from stressed cells. 

5.2 FURTHER WORK  

A future direction for the “two-in-one” approach developed in Chapter 2 would 

include work with other reporters/toxic analytes, and work to test proof-of-

principle calibrating lights-on reporters to chronic toxicity endpoints.  

Regarding Chapters 3 and 4, this this is the first work to specifically study 

chalkophore in a freshwater setting. Using HAB-forming algae, I find interesting 

results, with a confirmed microcystin-chalkophore link and chalkophore as a 

predictor of microcystin production. Isolating and structurally characterizing 

chalkophores produced by Microcystis spp. and further studies on genetics of 

chalkophore production would help to understand more regarding this link and 

would also hold promise to advance our understanding of the ecological 

function behind production of the cyanobacterial toxin, microcystin.   
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