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Abstract

Semantic segmentation, aiming to make dense pixel-level classification, is a core problem
in computer vision. Requiring sufficient and accurate pixel-level annotated data during
training, semantic segmentation has witnessed great progress with recent advances in deep
neural network. However, such pixel-level annotation is time-consuming and highly relies
on human effort, and segmentation performance dramatically drops on unseen classes or
the annotated data is not sufficient.

In order to overcome the mentioned drawbacks, many researchers focus on learn-
ing semantic segmentation with weak and few-shot supervision, i.e., weakly supervised
semantic segmentation and few-shot segmentation. Specifically, weakly supervised se-
mantic segmentation aims to make pixel-level classification with weak annotations (e.g.,
bounding-box, scribble and image level) as supervision while few-shot segmentation at-
tempts to segment unseen object classes with a few annotated samples. In this thesis, we
mainly focus on image label supervised semantic segmentation, bounding-box supervised
semantic segmentation, scribble supervised semantic segmentation and few-shot segmen-
tation.

For weakly supervised semantic segmentation with image level annotation, current
approaches mainly adopt a two-step solution, which generates pseudo pixel masks first
that are then fed into a separate semantic segmentation network. However, these two-
step solutions usually employ many bells and whistles in producing high-quality pseudo
masks, making this kind of methods complicated and inelegant. We harness the image-
level labels to produce reliable pixel-level annotations and design a fully end-to-end net-
work to learn to predict segmentation maps. Concretely, we firstly leverage an image
classification branch to generate class activation maps for the annotated categories, which
are further pruned into tiny reliable object/background regions. Such reliable regions
are then directly served as ground-truth labels for the segmentation branch, where both
global information and local information sub-branch are used to generate accurate pixel-
level prediction. Furthermore, a new joint loss is proposed that considers both shallow
and high-level features.

For weakly supervised semantic segmentation with bounding-box level annotation,
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most existing approaches rely on deep convolution neural network (CNN) to generate
pseudo labels by initial seeds propagation. However, CNN-based approaches only aggre-
gate local features, ignoring long-distance information. We proposed a graph neural net-
work (GNN)-based architecture that takes full advantage of both local and long-distance
information. We firstly transfer the weak supervision to initial labels, which are then
formed into semantic graphs based on our newly proposed affinity Convolutional Neural
Network. Then the built graphs are input to our graph neural network (GNN), in which
an affinity attention layer is designed to acquire the short- and long- distance information
from soft graph edges to accurately propagate semantic labels from the confident seeds
to the unlabeled pixels. However, to guarantee the precision of the seeds, we only adopt
a limited number of confident pixel seed labels, which may lead to insufficient supervi-
sion for training. To alleviate this issue, we further introduce a new loss function and a
consistency-checking mechanism to leverage the bounding box constraint, so that more
reliable guidance can be included for the model optimization. More importantly, our ap-
proach can be readily applied to bounding box supervised instance segmentation task or
other weakly supervised semantic segmentation tasks, showing great potential to become
a unified framework for weakly supervised semantic segmentation.

For weakly supervised semantic segmentation with scribble level annotation, the reg-
ularized loss has been proven to be an effective solution for this task. However, most
existing regularized losses only leverage static shallow features (color, spatial informa-
tion) to compute the regularized kernel, which limits its final performance since such
static shallow features fail to describe pair-wise pixel relationship in complicated cases.
We propose a new regularized loss which utilizes both shallow and deep features that are
dynamically updated in order to aggregate sufficient information to represent the relation-
ship of different pixels. Moreover, in order to provide accurate deep features, we adopt
vision transformer as the backbone and design a feature consistency head to train the pair-
wise feature relationship. Unlike most approaches that adopt multi-stage training strategy
with many bells and whistles, our approach can be directly trained in an end-to-end man-
ner, in which the feature consistency head and our regularized loss can benefit from each
other.

For few-shot segmentation, most existing approaches use masked Global Average
Pooling (GAP) to encode an annotated support image to a feature vector to facilitate
query image segmentation. However, this pipeline unavoidably loses some discriminative
information due to the average operation. We propose a simple but effective self-guided
learning approach, where the lost critical information is mined. Specifically, through
making an initial prediction for the annotated support image, the covered and uncovered
foreground regions are encoded to the primary and auxiliary support vectors using masked
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GAP, respectively. By aggregating both primary and auxiliary support vectors, better seg-
mentation performances are obtained on query images. Enlightened by our self-guided
module for 1-shot segmentation, we propose a cross-guided module for multiple shot
segmentation, where the final mask is fused using predictions from multiple annotated
samples with high-quality support vectors contributing more and vice versa. This module
improves the final prediction in the inference stage without re-training.

Key Words: semantic segmentation, weakly supervised, few-shot annotation, single
stage, graph neural network, regularized loss, end-to-end, prototype, attention mecha-
nism, global average pooling
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Chapter 1

Introduction

1.1 Background

Semantic segmentation has been applying widely in real scenario such as industrial defeat
detection, auto automatic drive and medical image analysis. With recent advances in deep
neural network especially Fully Convolutional Network (FCN) [4], semantic segmenta-
tion has been making great progress.

Previous approaches mainly focus on designing more powerful module to generate
accurate prediction based on FCN architecture. For example, Deeplab-v2 [5] proposed
an ASPP module which utilized dilated convolution to increase respective filed while
Deeplab-v3+ [6] introduced an encoder-decoder structure to up-sample its prediction.
PSPNet [7] designed a pyramid pooling module in an FCN architecture to generate more
refined object details. SegSort [8] proposed a clustering method to segment objects. Tree-
FCN [9] designed a learnable tree filter to utilize the structural property to model long-
range dependencies.

Requiring sufficient and accurate pixel-level annotated data, previous state-of-the-art
semantic segmentation approaches can produce satisfying segmentation masks. However,
the current framework still has two main drawbacks: 1) In order to produce satisfying
segmentation predictions, these approaches heavily rely on massive annotated data, which
is time-consuming and highly relies on human effort. More importantly, in some real-
world scenarios, generating high quality annotation is difficult. For example, it is hard to
label medical images for normal data annotators. 2) Most current approaches can only
remain high level performance on trained categories, once encountering unseen classes
or insufficient annotated data, their performances will drops dramatically. While in most
cases, it is not guaranteed that all classes are trained with massive annotated samples,
even in some special cases such as defeat detection, some defeat annotations can only be
generated with a few samples, which means that using such samples cannot effectively
train a fully-supervised semantic segmentation model.

1
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(b) Weakly supervised semantic segmentation:

Bounding Box Scribble Image level

Car
Car

Car Car

Point

Fig. 1.1: Details of different weak supervisions. Scribble, bounding box and point labels
are stronger supervision signals compared to the image-level class label since both class
and localization information are provided. Whereas image-level labels only provide im-
age class tags with the lowest annotation cost.

To tackle the aforementioned limitations, many researchers focus on two main chal-
lenging sub-tasks: weakly supervised semantic segmentation and few-shot segmentation.
Specifically, weakly supervised semantic segmentation is to make high quality seman-
tic segmentation with weak supervision, while few-shot segmentation concentrates on to
segment on untrained categories.

For weakly supervised semantic segmentation, according to the level of provided weak
annotations, the weak supervision can be divided into scribble level [10, 11, 12], bounding
box level [13, 14, 15, 16], point level [17] and image level [18, 19, 20, 21]. In this thesis,
we focus on image level, bounding-box level and scribble supervision. The details of
different weak supervision can be found in Fig. 1.1

For few-shot segmentation, most approaches [22, 23, 24, 2, 25, 26] adopt a Siamese
Convolutional Neural Network to encode both support and query images. In order to ap-
ply the information from support images, they mainly use masked Global Average Pool-
ing (GAP) [27] or other strengthened methods [28] to extract all foreground [24, 2, 29]
or background [24] as one feature vector, which is used as a prototype to compute cosine
distance [30] or make dense comparison [2] on query images.

Both weakly supervised semantic segmentation and few-shot segmentation are the
effective solutions to solve the case that lacking of the pixel-level labels to train the fully-
supervised model. In the real scenario, it is common that the model cannot generate
massive pixel-level annotation or the distribution of the annotation for different classes
will be different, although weakly supervised semantic segmentation and few-shot seg-
mentation adopt different detailed techniques, they are proposed to deal with the shortage
of the supervision information.
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1.2 Weakly Supervised Semantic Segmentation

1.2.1 Overview of Weakly Supervised Semantic Segmentation

According to the definition of supervision signals, weakly supervised semantic segmen-
tation can be generally divided into the following categories: based on scribble label
[10, 11, 12], bounding box label [13, 14, 15], point label [17] and image-level class label
[18, 19, 20]. Scribble, bounding box and point labels are stronger supervision signals
compared to the image-level class label since both class and localization information are
provided. Whereas image-level labels only provide image class tags with the lowest an-
notation cost.

Different supervisions are processed with different methods to generate pseudo labels.
For image-level supervision, as shown in Fig. 1.2, class activation map (CAM) [27] is the
common strategy that used as seeds to get pseudo labels. Such initial object seeds or re-
gions are converted to generate pseudo labels to train a semantic segmentation model. For
example, Wei et al. [31] proposed to erase iteratively the discriminative areas computed by
a classification network so that more seed regions can be mined which are then combined
with a saliency map to generate the pseudo pixel-level label. Wei et al. [32] also proved
that dilated convolution can increase the receptive filed and improve the weakly segmen-
tation network performance. Besides, Wang et al. [33] trained a region network and a
pixel network to make predictions from image level to region level, and then to pixel level
gradually. Also, this method takes saliency map as extra supervision. Moverover, Ahn
and Suha [18] designed an affinity network to compute the relationship between different
image pixels and exploited this network to get the pseudo object labels for segmentation
model training. Huang et al. [34] deployed a traditional algorithm named seed growing
to iteratively expand the seed regions.

For the bounding box supervision, SDI [14] used the segmentation proposal by com-
bining MCG [35] with GrabCut [36] to generate the pseudo labels. Song et al. proposed
a box-driven method [15], using box-driven class-wise masking and filling rate guided
adaptive loss to generate pseudo labels. Box2Seg [37] attempt to design a segmentation
network which is suitable to utilize the noisy labels as supervision.

For the scribble supervision, ScribbleSup [11] proposed to utilize super pixel [38]
to expand initial annotation and design a loss function to use the expanded supervision.
Tang et.al. [10, 12] proposed Normalized Cut loss and Kernel Cut loss to directly use
initial labels as supervision. However, both Normalized Cut and Kernel Cut need multi-
round training. Gated CRF loss [39] improves the efficiency of Kernel Cut loss through
adding a gate operation. However, only relying static shallow feature cannot build accu-
rate relationship for different pixels. SPML [40] used SegSort [8] as the backbone and
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Class activate map (Zhou et al. 2016)
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Feature maps

Class Activate Map

Fig. 1.2: Details of class activation map (CAM). CAM can locate some object regions
after training a classification network with image level supervision. GAP: global average
pooling. W1,W2, ...,Wn are the weights of the final classifier for “bird”.

HED contour detector [41] as extra supervision. BPG [42] designed an iterative strategy
to produce the fine-grained feature maps, which also applied contour detector [43, 41] to
provide boundary supervision.

1.2.2 End-to-end Approach for Image-level Supervision

To learn semantic segmentation models using image-level labels as supervision, many
existing approaches can be categorized as one-step approaches and two-step approaches.
One-step approaches [44] often establish an end-to-end framework, which augments multi-
instance learning with other constrained strategies for optimization. This family of meth-
ods is elegant and easy to implement. However, one significant drawback of these ap-
proaches is that the segmentation accuracy is far behind their fully supervised counter-
parts. To achieve better segmentation performance, many researchers alternatively pro-
pose to leverage two-step approaches [31, 34]. This family of approaches usually aim to
take bottom-up [45] or top-down [46, 27] strategies to firstly generate high-quality pseudo
pixel-level masks with image-level labels as supervision. These pseudo masks then act
as ground-truth and are fed into the off-the-shelf fully convolutional networks such as
FCN [4] and Deeplab [5, 47] to train the semantic segmentation models. Current state-of-
the-arts are mainly two-step approaches, with segmentation performance approaching that
of their fully supervised counterparts. However, to produce high-quality pseudo masks,
these approaches often employ many bells and whistles, such as introducing additional
object/background cues from object proposals [48] or saliency maps [49] in an off-line
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Fig. 1.3: The common framework of two steps approaches. The current two-step solution
usually adopts several separate CNNs for the image label supervised semantic segmen-
tation, which are usually very complicated and hard to be re-implemented, limiting their
application to research areas such as object localization and video object tracking.

manner. Therefore, the two-step approaches are usually very complicated and hard to
be re-implemented, limiting their application to research areas such as object localiza-
tion and video object tracking. One common two-step framework, adopting in recent
approaches [34, 21, 50, 51, 52, 53, 54] can be found in Fig. 1.3, which contains three
individual networks for solving this task.

We present a simple yet effective one-step approach, which can be easily trained in
an end-to-end manner. It achieves competitive segmentation performance compared with
two-step approaches. Our approach named Reliable Region Mining (RRM) includes two
branches: one to produce pseudo pixel-level masks using image-level annotations, and the
other to produce the semantic segmentation results. In contrast to the previous two-step
methods [18, 55, 56, 57] that prefer to mine dense and integral object regions, our RRM
only leverages those reliable object/background regions that are usually tiny but with high
response scores on the class activation maps. We find these regions can be further pruned
into more reliable ones by augmenting an additional Conditional Random Field (CRF)
operation, which are then employed as supervision for the parallel semantic segmentation
branch. We design two parallel sub-branches for the segmentation branch: one extracts
local information using the regular convolution layer, the other extracts global informa-
tion with our proposed Re-weighting Feature-Attention Module (R-FAM). More impor-
tantly, with limited pixels as supervision, we design a new joint training loss, including
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a pixel-wise cross-entropy loss, a regularized loss named dense energy loss and a Batch-
based Class Distance loss (BCD loss) to optimize the training process. We introduce the
dense energy loss to use the shallow features such as RGB color and spatial information,
and BCD loss to make the high-level semantic features more discriminative for different
classes.

Our one-step RRM achieves 65.4% and 65.3% of mIoU scores on the Pascal VOC
val and test sets, respectively. These results achieve the state-of-the-art performance, and
are even competitive compared with those two-step state-of-the-arts, which usually adopt
complex bells and whistles to produce pseudo masks. We believe that our proposed RRM
offers a new insight to the one-step solution for weakly supervised semantic segmenta-
tion. Furthermore, in order to show the effectiveness of our method, we also extend our
method to a two-step framework and get a new state-of-the-art performance with 69.3%
and 69.2% on the Pascal VOC val and test sets.

1.2.3 Graph-based Approach for Box-level Supervision

For utilizing bounding-box as supervision, Most previous practices [13, 14, 15, 44] use
object proposals [58, 59] to provide some seed labels as supervision. These methods fol-
low a common pipeline of employing object proposals [58, 59] and CRF [60] to produce
pseudo masks, which are then adopted as ground-truth to train the segmentation network.
However, such a pipeline often fails to generate accurate pseudo labels due to the gap
between segmentation masks and object proposals. To overcome this limitation, graph-
based learning was subsequently proposed to use the confident but a limited number of
pixels mined from proposals as supervision. Compared to previous approaches, graph-
based learning especially Graph Neural Network (GNN) can directly build long-distance
edges between different nodes and aggregate information from multiple connected nodes,
enabling to suppress the negative impact of the label noise. Besides, GNN performs well
in semi-supervised tasks even with limited labels.

Recently, GraphNet [1] attempts to use Graph Convolutional Network (GCN) [61] for
the bounding-box supervised semantic segmentation . They convert images to unweighted
graphs by grouping pixels in a superpixel to a graph node [38]. Then the graph is input
to a standard GCN with cross-entropy loss to generate pseudo labels. However, there are
two main drawbacks which limit its performance: (1) GraphNet [1] builds an unweighted
graph as input, however, such a graph cannot accurately provide sufficient information
since it treats all edges equally, with the edge weight being either 0 or 1, though in prac-
tice not all connected nodes expect the same affinity. (2) Using GraphNet [1] will lead to
incorrect feature aggregation as input nodes and edges are not 100% accurate. For exam-
ple, for an image that contains both dogs and cats, the initial node feature of dog fur and
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Fig. 1.4: The difference between our built graph and that of previous approach [1]. (a)
Superpixel based approach [1]. (b) Our approach. The numbers along the edges indicate
the edge values, soft edge allows any edge weights between 0 and 1.

cat fur might be highly similar, which will produce some connected edges between them
as edges are built based on feature similarity. Such edges will lead to a false positive case
since GraphNet [1] only considers the initial edges for feature propagation. Thus, if the
strong correlations among pixels from different semantics can be effectively alleviated, a
better propagation model can be acquired to generate more accurate pseudo object masks.

To this end, we design an Affinity Attention Graph Neural Network (A2GNN) to
address the above mentioned issues. Specifically, instead of using traditional method
to build a unweighted graph, we propose a new affinity Convolutional Neural Network
(CNN) to convert an image to a weighted graph. We consider that a weighted graph is
more suitable than an unweighted one as it can provide different affinities for different
node pairs. Fig. 1.4 shows the difference between our built graph and that of the previous
approach [1]. It can be seen that the previous approach only considers locally connected
nodes, and they build an unweighted graph based on superpixel [38], while we consider
both local and long distance edges, and the built weighted graph views one pixel as one
node.

Secondly, in order to produce accurate pseudo labels, we design a new GNN layer, in
which both the attention mechanism and the edge weights are applied in order to ensure
accurate propagation. So feature aggregation between pair-wise nodes with weak/no edge
connection or low attention can be significantly declined, and thus eliminating incorrect
propagation accordingly. The node attention dynamically changes as training goes on.

However, to guarantee the accuracy of supervision, we only choose a limited number
of confident seed labels as supervision, which is insufficient for the network optimization.
For example, only around 40% foreground pixels are labeled in one image and none of
them is 100% reliable. To further tackle this issue, we introduce a multi-point (MP) loss to
augment the training of A2GNN. Our MP loss adopts an online update mechanism to pro-
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vide extra supervision from bounding box information. Moreover, in order to strengthen
feature propagation of our A2GNN, MP loss attempts to close up the feature distance
of the same semantic objects, making the pixels of the same object distinguishable from
others. Finally, considering that the selected seed labels may not perfectly reliable, we in-
troduce a consistency-checking mechanism to remove those noisy labels from the selected
seed labels, by comparing them with the labels used in the MP loss.

To validate the effectiveness of our A2GNN, we perform extensive experiments on
PASCAL VOC. In particular, we achieve a new mIoU score of 76.5% on the validation
set. In addition, our A2GNN can be further smoothly transferred to conduct the bounding
box supervised instance segmentation (BSIS) task or other weakly supervised semantic
segmentation tasks. According to our experiments, we achieve new state-of-the-art or
comparable performances among all these tasks.

1.2.4 Dynamic Feature Regularized Loss for Scribble Supervision

For scribble supervised semantic segmentation, most recent state-of-the-art approaches
can be divided into two main categories: pseudo-label based approaches [1, 62] and loss
function based approaches [10, 12, 40, 42]. Pseudo-label based approaches focus on
generating more pseudo labels through expanding the initial annotations so that the seg-
mentation model receives more completed pixel-level labels as supervision. But such
approaches usually need multi-stage training process with many bells and whistles. For
example, in A2GNN [62], three different models are used for this task. Loss function
based approaches concentrate on directly utilizing limited labels to train the segmentation
model with well-designed loss functions. However, some approaches [40, 42] rely on
extra dataset [43, 41] to provide edges or boundaries information as supervision, while
some loss function based approaches [10, 12] still need multi-round training procedures.
Although Gated CRF loss [39] can be directly trained in an end-to-end manner, its perfor-
mance is limited as it solely relies on static shallow feature (color and spatial information),
which fails to capture accurate pair-wise pixel relationship. For example, the shallow fea-
tures are similar for a pixel pair which belongs to different objects with similar color and
close spatial positions (e.g., a white dog close to a white cat). In this case, the shallow
features cannot accurately describe the semantic relationship of different pixels. Using
such information to compute the regularized loss enforces the network to be optimized
towards an inaccurate direction. More importantly, since shallow features are static, such
process can not be corrected in the whole training period. Therefore, it is important to
introduce more comprehensive representations for the regularized loss.

We propose a new Dynamic Feature Regularized (DFR) loss function in the semantic
segmentation head to overcome the aforementioned drawbacks. Our DFR loss makes
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full use of both static shallow feature and dynamic deep feature, which provides more
sufficient information to describe the semantic similarity of different pixels. However,
pixel features from the same semantic category may not be sufficient similar, so we design
a feature consistency head to enforce this goal. Our feature consistency head utilizes
the highly confident prediction from our semantic segmentation head as supervision. It
closes up feature distance for pixels from the same semantic category and widens feature
distance for pixels from different categories.

Our semantic segmentation head and feature consistency head are directly coupled as
they enhance each other mutually. On one hand, deep feature from our feature consis-
tency head provides a third dimension of input for the regularized loss of the semantic
segmentation head, so as to produce accurate semantic prediction. On the other hand, ac-
curate semantic prediction provides more reliable supervision for the feature consistency
head, empowering it to build more discriminative features. As a result, compared to solely
relying on static shallow feature to compute regularized kernel, the interaction between
the two heads allows the deep feature to dynamically change, which also enables deep
feature level self-correction and mitigates the negative influence of the inaccurate shallow
feature.

Meanwhile, in order to keep high computational efficiency for our loss functions, a
local window is used to restrict the loss computing region. Thus, in order to provide more
comprehensive information, we adopt vision transformer [63, 64] as our backbone since
such model can extract global feature representations.

Our approach can be directly trained in an end-to-end manner and it does not rely on
any extra dataset to provide supervision. Without applying any post-processing method
such as dense CRF [60] to refine the results, our approach significantly outperforms the
previous state-of-the-art approaches, with an mIoU increase of more than 6%.

1.3 Few-shot Segmentation

1.3.1 Overview of Few-Shot Segmentation

For few-shot segmentation, compared to fully supervised semantic segmentation [47, 65,
66, 67] which can solely segment the same classes in the training set, the objective of few-
shot segmentation is to utilize one or a few annotated samples to segment new classes.
The data for few-shot segmentation is divided into two sets: support set and query set.
This task requires to segment images from the query set given one or several annotated
images from the support set. Thus, the key challenge of this task is how to leverage the
information from the support set.

Most previous approaches adopt a metric learning strategy [68, 69, 70, 71, 72] for
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Fig. 1.5: Motivation of our approach for few-shot segmentation. Even using the same
image as both support and query input, previous approaches cannot generate accurate
segmentation under the guide of its ground-truth mask.

few-shot segmentation. For example, In PL [22], a two-branch prototypical network was
proposed to segment objects using metric learning. SG-One [30] proposed to compute a
cosine similarity between the generated single support vector and query feature maps to
guide the segmentation process. CANet [2] designed a dense comparison module to make
comparisons between the support vector and query feature maps. PANet [24] introduced a
module to use the predicted query mask to segment the support images, where it still relied
on the generated support vector. FWB [28] tried to enhance the feature representation of
generated support vector using feature weighting while CRNet [29] focused on utilizing
co-occurrent features from both query and support images to improve the prediction, and
it still used a support vector to guide the final prediction. PPNet [23] tried to generate
prototypes for different parts as support information. PFENet [3] designed a multi-scale
module as decoder to utilize the generated single support vector.

1.3.2 Self-guided and Cross-guided Learning

As mentioned before, Using a support feature vector extracted from the support image
does facilitate the query image segmentation, but it does not carry sufficient information.
Fig. 1.5 shows an extreme example where the support image and query image are exactly
the same. However, even the existing best performing approaches fail to accurately seg-
ment the query image. We argue that when we use masked GAP or other methods [28] to
encode a support image to a feature vector, it is unavoidable to lose some useful informa-
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tion due to the average operation. Using such a feature vector to guide the segmentation
cannot make a precise prediction for pixels which need the lost information as support.
Furthermore, for the multiple shot case such as 5-shot segmentation, the common practice
is to use the average of predictions from 5 individual support images as the final predic-
tion [30] or the average of 5 support vectors as the final support vector [24]. However,
the quality of different support images is different, using an average operation forces all
support images to share the same contribution.

We propose a simple yet effective Self-Guided and Cross-Guided Learning approach
(SCL) to overcome the above mentioned drawbacks. Specifically, we design a Self-
Guided Module (SGM) to extract comprehensive support information from the support
set. Through making an initial prediction for the annotated support image with the initial
prototype, the covered and uncovered foreground regions are encoded to the primary and
auxiliary support vectors using masked GAP, respectively. By aggregating both primary
and auxiliary support vectors, better segmentation performances are obtained on query
images.

Enlightened by our proposed SGM, we propose a Cross-Guided Module (CGM) for
multiple shot segmentation, where we can evaluate prediction quality from each support
image using other annotated support images, such that the high-quality support image
will contribute more in the final fusion, and vice versa. Compared to other complicated
approaches such as the attention mechanism [2, 73], our CGM does not need to re-train
the model, and directly applying it during inference can improve the final performance.
Extensive experiments show that our approach achieves new state-of-the-art performances
on PASCAL-5i and COCO-20i datasets.

1.4 Overview of This Thesis

1.4.1 Main Contributions

The major contributions of the research reported in this thesis are summarized as follows:

• We design an elegant and efficient end-to-end network for weakly supervised se-
mantic segmentation. Relying on tiny reliable pixel-level pseudo labels, our net-
work can be trained in a one-stage manner given image-level labels, without bells
and whistles. For achieving this, We firstly propose two new loss functions for uti-
lizing the reliable labels, including a new dense energy loss and a batch-based class
distance (BCD) loss. The former relies on shallow features, whilst the latter fo-
cuses on distinguishing high-level semantic features for different classes. Besides,
We design a new attention module (R-FAM) to extract comprehensive global in-

11



formation. By using a re-weighting technique, our R-FAM can suppress dominant
or noisy attention values. Thus our semantic segmentation branch can aggregate
sufficient global information. Our end-to-end approach achieves competitive per-
formance compared to other two-step approaches on PASCAL VOC 2012 dataset.
By extending our network to a two-step solution, our approach achieves a new
state-of-the-art performance

• We propose a new framework that effectively combines the advantage of CNN and
GNN for weakly supervised semantic segmentation. To the best of our knowledge,
this is the first framework that can be readily applied to all existing weakly su-
pervised semantic segmentation settings and the bounding box supervised instance
segmentation setting. Specifically, We design a new affinity CNN network to con-
vert a given image to an irregular graph, where the graph node features and the node
edges are generated simultaneously. Compared to existing approaches, the graphs
built from our method are more accurate for various weakly supervised semantic
segmentation settings. Moreover, We propose a new GNN, A2GNN, where we de-
sign a new GNN layer that can effectively mitigate inaccurate feature propagation
through information aggregation based on edge weights and node attention. We
further propose a new loss function (MP loss) to mine extra reliable labels using the
bounding box constraint and remove existing label noise by consistency-checking.
Our approach achieves state-of-the-art performance for Bounding-box Supervised
Semantic Segmentation as well as Bounding-box Supervised Instance Segmenta-
tion on PASCAL VOC 2012 and COCO. Meanwhile, when applying the proposed
approach to other weakly supervised semantic segmentation settings, new state-of-
the-art or comparable performances are achieved as well.

• We propose a new dynamic feature regularized loss for weakly supervised semantic
segmentation. Our regularized loss combines both static shallow and dynamic deep
features for the regularized kernel, which can better represent the pair-wise pixel
relationship. Meanwhile, we design a new feature consistency head to produce
consistent features for pixels of same semantic category, enabling to build more
accurate pair-wise pixel relationship. Meanwhile, we introduce vision transformer
to strengthen the feature representation. To the best of our knowledge, this is the
first work that uses transformer architecture for this task. Our approach achieves
state-of-the-art performances on PASCAL VOC 2012 (val: 82.8%, test: 82.9%)
and PASCAL CONTEXT (val: 52.9%), outperforming other approaches by a large
margin (more than 6% and 12% mIoU increases on PASCAL VOC 2012 and PAS-
CAL CONTEXT, respectively).
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• We observe that it is unavoidable to lose some useful critical information using the
average operation to obtain the support vector for few-shot segmentation. To miti-
gate this issue, we propose a self-guided mechanism to mine more comprehensive
support information by reinforcing such easily lost information, thus accurate seg-
mentation mask can be predicted for query images. Meanwhile, We also propose
a cross-guided module to fuse multiple predictions from different support images
for the multiple shot segmentation task. Without re-training the model, it can be di-
rectly used during inference to improve the final performance. Our approach can be
applied to different baselines to improve their performance directly. Using our ap-
proach achieves new state-of-the-art performances on PASCAL-5iand COCO-20i

datasets.

1.4.2 Brief Summary of the Remaining Chapters

In this chapter, the final summary of this thesis will be presented, followed by the future
work for the research in relevant domains.

Chapter 2: In this chapter, we will introduce our proposed single-stage framework
for weakly supervised semantic segmentation with image-level annotation. Our approach
includes two branches: one to produce pseudo pixel-level masks using image-level an-
notations, and the other to produce the semantic segmentation results. Besides, We also
propose two new loss functions for utilizing the reliable labels, including a new dense
energy loss and a batch-based class distance (BCD) loss. The former relies on shallow
features, whilst the latter focuses on distinguishing high-level semantic features for dif-
ferent classes. We design a new attention module (R-FAM) to extract comprehensive
global information. By using a re-weighting technique, our R-FAM can suppress dom-
inant or noisy attention values. Thus our semantic segmentation branch can aggregate
sufficient global information. All of them will be introduced in this chapter and exten-
sive experiments will be evaluated to show the effectiveness of our proposed method in
this chapter. Finally, a short conclusion will be given to make a summary of this chap-
ter. This chapter mainly comes from our two papers: the first one is “Reliability does
matter: An End-to-end Weakly Supervised Semantic Segmentation Approach” [74]. The
other is “End-to-End Weakly Supervised Semantic Segmentation with Reliable Region
Mining” [75].

Chapter 3: In this chapter, we will show a new framework that effectively com-
bines the advantage of CNN and GNN for weakly supervised semantic segmentation with
bounding-box annotation. Specifically, We will firstly show how to convert the weakly su-
pervision to initial seed labels, then the designed affinity CNN network will be illustrated,
which aims to convert a given image to an irregular graph, where the graph node features
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and the node edges are generated simultaneously. Moreover, We will show the details of
our proposed new GNN, A2GNN, where we design a new GNN layer that can effectively
mitigate inaccurate feature propagation through information aggregation based on edge
weights and node attention. After that, We will explain the proposed new loss function
(MP loss), which aims to mine extra reliable labels using the bounding box constraint and
remove existing label noise by consistency-checking. Finally, a larger number of experi-
mental results will be shown and there will be a conclusion to make a short summary. This
chapter mainly contains our work “Affinity Attention Graph Neural Network for Weakly
Supervised Semantic Segmentation” [62].

Chapter 4: In this chapter, we will firstly introduce the whole framework for weakly
supervised semantic segmentation with scribble annotation, including a vision transformer
as the backbone, a semantic segmentation head and a feature consistency head. Then we
will introduce the details of these two heads, Specifically, the semantic segmentation head
utilizes two loss functions: partial cross-entropy loss and our proposed dynamic feature
regularized loss. Partial cross-entropy loss uses the scribble-annotation as supervision
while our proposed dynamic feature regularized loss applies the original image informa-
tion and feature map from the feature consistency head to produce regularized kernel. The
feature consistency head also introduces two loss functions: feature distance loss and fea-
ture regularized loss. Feature distance loss uses the predicted highly confident pseudo la-
bels from the semantic segmentation head as supervision. Feature regularized loss solely
uses the shallow feature as the kernel to compute feature distance. In this chapter, the
main work is from our work: “Dynamic Feature Regularized Loss for Weakly Supervised
Semantic Segmentation” [76].

Chapter 5: In this chapter, we will firstly show our observation that it is unavoidable
to lose some useful critical information using the average operation to obtain the support
vector for few-shot segmentation. Then, we will introduce our proposed approach in order
to mitigate this issue through mining more comprehensive support information. After
that, we will show how to fuse multiple predictions from different support images for the
multiple shot segmentation task. Finally, there will be some experiments to evaluate the
effectiveness of our approach and a conclusion section to make a short summary. This
chapter includes our previous work “Self-Guided and Cross-Guided Learning for Few-
Shot Segmentation”, published in CVPR 2021 [77].

Chapter 6: In this chapter, we will make a brief summary relating to the aforemen-
tioned research works, and based on this, I will attempt to give a discussion about the
possible directions/works in the future, including exploring the probability of applying the
vision transformer for weakly supervised semantic segmentation and utilizing the back-
ground information for few-shot segmentation.
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For each of these chapters mentioned above, we have tried to make them self-contained.
Therefore, some of the crucial contents, demonstrations, model definitions and illustra-
tions might be reiterated in the following chapters when necessary.
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Chapter 2

End-to-end Approach for Image label
Supervised Semantic Segmentation

2.1 Motivation

As mentioned in Sect. 1.2.2, most recent approaches [34, 21, 50, 51, 52, 53, 54] lever-
age two-step approaches. These approaches usually aim to firstly generate high-quality
pseudo pixel-level masks based on class activation map [27] with one or two individ-
ual CNNs are employed. After that, the generated pseudo labels are act as ground-
truth and are fed into the off-the-shelf fully convolutional networks such as FCN [4]
and Deeplab [5, 47] to train the semantic segmentation models. However, to produce
high-quality pseudo masks, these approaches often employ many bells and whistles, such
as introducing additional object/background cues from object proposals [48] or saliency
maps [49] in an off-line manner. Therefore, the two-step approaches are usually very
complicated and hard to be re-implemented, limiting their application to research areas
such as object localization and video object tracking.

In order to overcome the drawbacks of the two-step solution, we propose a end-to-
end framework named Reliable Region Mining (RRM) for this task. To achieve this, our
framework mainly includes two parallel branches: one is to online mine reliable pseudo
pixel-level masks using image-level annotations, and the other to produce the semantic
segmentation results using the mined pixel-level masks. In the following parts, we will
give the details of our RRM, including the architectures of our dual branches and the loss
functions.

This chapter mainly comes from our two papers: the first one is “Reliability does
matter: An End-to-end Weakly Supervised Semantic Segmentation Approach” [74]. The
other is “End-to-End Weakly Supervised Semantic Segmentation with Reliable Region
Mining” [75].
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2.2 Proposed method
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2.2.1 Overview

Our proposed RRM can be divided into two parallel branches including a classification
branch and a semantic segmentation branch. Both branches share the same backbone
network, and during training, both of them update the whole network at the same time.
The overall framework of our method is illustrated in Fig. 2.1. The algorithm flow is
illustrated in Algorithm 1.

• The classification branch is used to generate reliable pixel-level annotations. Orig-
inal CAMs will be processed to generate tiny reliable regions. The final remained
reliable regions are regarded as labeled regions, while the other regions as unla-
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beled. These labels are used as supervision information for the semantic segmenta-
tion branch for training.

• The semantic segmentation branch is used to predict pixel-level labels. We designed
two parallel sub-branches, one is named local information sub-branch, which is
used to extract local features using regular convolutional layers. The other one is
named global information sub-branch, which is used to extract global features using
our newly designed R-FAM.

• The overall loss function of our RRM is: L = Lclass + Ljoint−seg, where Lclass

represents a conventional classification softmax loss [18, 57], while Ljoint−seg is
a newly introduced joint loss for the segmentation branch, including a pixel-wise
cross-entropy loss, a newly designed dense energy loss and a novel batch-based
class distance (BCD) loss. The cross-entropy loss mainly considers labeled pix-
els, the dense energy loss takes into account all pixels by making full use of RGB
color and pixel positions, and the BCD loss is used to make the high-level semantic
features more discriminative for different classes.

2.2.2 Classification Branch: Generating Labels for Reliable Regions

High-quality pixel-level annotation has a direct impact on our final semantic segmentation
performance as it is the only ground-truth in the training processing. Original CAMs can
highlight the most discriminative regions of an object, but they still contain some non-
object areas, which are the mislabeled pixels. Therefore, after getting the original CAM
regions, post-processing such as dense CRF [60] is needed. We followed this basic idea
and do further process for generating the reliable labels.

We compute the initial CAMs of the training dataset following [27]. In our network,
Global Average Pooling (GAP) is applied to the last convolution layer, the output of which
is classified with a fully-connected layer. Finally, the fully-connected layer weights are
used on the last convolution layer to obtain the heatmap for each class. Besides, inspired
by the fact that dilated convolution can increase the respective field [32], we add dilated
convolution into the last three layers. Details of our network settings are reported in
Section 2.3.

Mathematically, given an image I, the CAM of class c M c
ocam is:

M c
ocam = RS(

D∑
ch=1

ωc
ch · Fch), (c ∈ Cfg), (2.1)

where D is the channel dimension of Fch, Cfg = {c1, c2, ..., cN} includes all foreground
classes, ωc

ch denotes the weights of the fully-connected layer for class c, and Fch is the
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(a) original images scale = 0.5

(b) CAM of different scales(c) multi-scale CAM

scale = 1

scale = 1.5 scale = 2

Fig. 2.2: An example of computing multi-scale CAM.

feature maps from the last convolution layer of the backbone. RS(·) is an operation to
resize the input to the same width and height as I .

Using multi-scale of original images is beneficial for generating a stable CAM. Given
I and it is scaled by a factor si, si ∈ {s0, s1, ..., sn}, the multi-scale CAM for I is deto-
nated as:

M c
cam =

n∑
i=0

(M c
ocam(si)/(n+ 1)), (2.2)

where M c
ocam(si) is the CAM of class c for the scaled image I with a factor si. Fig. 2.2

shows that compared to original CAM (scale=1), the multi-scale CAM provides more
accurate object localization.

The CAM scores are normalized, so that we can get the classification probabilities for
each pixel in I,

P c
fg = M c

cam/max(M c
cam), (c ∈ Cfg), (2.3)

where max(M c
cam) is the maximum value in the CAM of class cj .

The background score is calculated using a similar way as in [18]:

Pbg(i) = (1− max
c∈Cfg

(pcfg(i))
γ, γ > 1. (2.4)

where i is the pixel position index, γ is the decay rate which helps to suppress back-
ground labels. The overall probability map, namely Pfg bg, is obtained by concatenating
foreground and background probabilities Pfg and Pbg.
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After that, we use the dense CRF [60] as post-processing to remove some mislabeled
pixels, and the CRF pixel label map is:

Icrf = CRF(I, [Pfg, Pbg]). (2.5)

The selected reliable CAM label is:

Icam(i) =


argmax

c∈C
(P c

fg bg(i)), if max
c∈C

(P c
fg bg(i)) > α

255, else

(2.6)

where C = {c0, c1, ..., cN} includes all classes of objects and the background (c0). 255
means the class label is not decided yet.

The final pixel label input to the semantic segmentation branch is:

Ifinal(i) =

Icam(i), if Icam(i) = Icrf (i)

255, else

(2.7)

In Eq. (2.6), max
c∈C

(P c
fg−bg(i)) > α selects the highly confident regions. In Eq. (2.7),

Icrf (i) = Icam(i) considers the CRF constraints. Taking this strategy, highly reliable
regions as well as their labels can be obtained. The regions which are detonated as 255 in
Eq. (2.7) are regarded as unreliable regions.

Fig. 2.3 shows an example of our approach. It is observed that the original CAM
labels (as shown in Fig. 2.3 (c)) contain most foreground labels but introduce a number of
background pixels as foreground. The CRF labels (Fig. 2.3 (d)) can get accurate boundary
of some parts but at the same time, many foreground pixels are regarded as background.
In other words, the CAM label can provide reliable background pixels and CRF label can
provide reliable foreground pixels. Combining the CAM label and CRF label map using
our method, some unreliable pixel-level labels are removed while the reliable regions are
still remained, especially obvious at the object boundaries (a clear difference can be seen
in the object from Fig. 2.3 (e) and (f)).

2.2.3 Semantic Segmentation Branch: Making Predictions

The reliable pixel-level annotations obtained above are then used as labels for our se-
mantic segmentation branch. Different from the other methods which train their semantic
segmentation network with the integral pseudo labels independently, our segmentation
branch, which shares the same backbone network with the classification branch, using
the provided pixel-level annotation to make prediction. In semantic segmentation branch,
there are two parallel sub-branches: one includes two regular convolutional layers, which
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(c) CAM label

(d) CRF label (e) reliable CAM label (f) reliable label

(a) original image (b) ground truth

Fig. 2.3: An example of generating reliable pixel labels. (c) only the corresponding class
labels of Pfg bg are considered. (d) the CRF pixel label map. i.e., Eq. (2.5), (e) and (f) are
generating through Eq. (2.6) and Eq. (2.7), respectively. The white pixels in (e) and (f)
are the unreliable regions.

directly aggregate local information to get the mask score map Pl; the other one includes
a newly designed R-FAM to aggregate the global information, followed by two convolu-
tional layers to get the mask score map Pg. The final predicted probability map Pnet is
generated after computing the mean value of Pl and Pg and passing it to a softmax layer.

In order to improve the final performance, we designed a new joint loss function for
the segmentation branch. In the following part, we will firstly introduce our R-FAM, and
then we will give the details of our joint loss function.

Re-weighting Feature Attention Module

Since the classification branch can only provide a limited number of reliable pixel-level
pseudo labels, and at the same time the provided pixel-level labels usually focus on the
discriminative parts, regular convolution layer cannot make accurate prediction as it can
only aggregate local information. For example, in Fig. 2.3, it can be seen that the pro-
vided reliable labels only focus on the bird heads, regular convolutional layer cannot
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Dot production

Fig. 2.4: The architecture of our proposed Re-weighting Feature Attention Module (R-
FAM). H and W represent height and width of feature map, respectively. C, C1 and Cg

are the channel number of feature maps and Cg = 2 · C1. Note that we set batch size as 1
to simplify description.

extract accurate comprehensive features when the current pixel is far away from those
labels. Therefore, it is necessary to introduce global information in order to utilize the
limited pixel-level pseudo labels. In this chapter, we use a self-attention mechanism to
extract accurate global features. However, the regular attention operation [78] cannot
work effectively in this case since it still produces high response to the similar local parts
without aggregating sufficient global information. To this end, in order to overcome the
drawbacks of the previous attention operations, in this task, we design a Re-weighting
Feature Attention Module (R-FAM) to aggregate accurate global information, as shown
in Fig. 2.4. Our R-FAM can suppress the influence the original high-level attention re-
sponse and reduce the influence of the low-level attention response. At the same time, it
encourages more middle-level attention to produce higher response.

In this section, we set batch size as 1 to simplify the description. Given an image,
after passing through the backbone, suppose the feature map is F ∈ RH×W×C , where H ,
W and C represent height, width and number of channels of feature maps, respectively.
Then three parallel 1 × 1 convolutional layers are used to reduce the dimension of F ,
the three generated feature maps are reshaped as F1 ∈ RHW×C1 , F2 ∈ RHW×C1 and
F3 ∈ RHW×C1 , respectively. In order to extract global information, we firstly compute an
affinity matrix A:

A = F1F
T
2 , (2.8)

where A ∈ RHW×HW and the i-th row (1 ⩽ i ⩽ HW ) in A indicates the relationship
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between the ith pixel and all pixels in the feature map.

Then we sort attention values for each pixel in descending order and generate the
corresponding index. Mathematically, for pixel k, the index of pixel m in A after sorting
is represented as em|k, then the corresponding re-weighting coefficient Aw(m|k) is defined
as:

Aw(m|k) =


e(m|k)
Nk+

, if A(m|k) > 0√
|Nk+1−e(m|k)|

Nk+
, else

, (2.9)

where A(m|k) is the attention value of pixel m in A for pixel k (the mth value in the kth
row). Nk is the number of all attention in A for pixel k, i.e., Nk = HW . Nk+ is the
number of all positive attention in A for pixel k:

Nk+ =
HW∑
m=1

[A(m|k) > 0] , (2.10)

where [·] is Iverson bracket, which equals to 1 if the inside condition is true, otherwise
equals to 0.

The re-weighting coefficient matrix Aw will produce small coefficients for both high
and low-level attention values, which suppress the influence of both cases. At the same
time, it will produce large coefficients for those middle-level attention values, making the
whole attention be more democratic.

We then can generate the affinity feature map Fa.

Fa = RS((softmax(A)⊙ Aw)F3), (2.11)

where Fa ∈ RH×W×C1 . softmax(·) denotes the softmax layer. ⊙ means element-wise
multiplication. Each pixel aggregates information from the whole feature map, and the
final modified global feature map is defined as:

Fg = concat([Fa,RS(F3)]), (2.12)

where Fg ∈ RH×W×2C1 . Then we can use regular convolutional layer to generate the
predicted score map Pg. The final probability map is the output of a softmax layer, which
takes the average of two score maps from two sub-branches as input:

Pnet = softmax(
Pl + Pg

2
), (2.13)

where Pl is the predicted score from the local information sub-branch.
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Algorithm 1: Algorithm flow of our proposed RRM.
Input:
Images I
image-level class labels Cfg

Output:
The trained end-to-end network, Net

while iteration is true do
Use the classification Network branch to get the original CAMs;

Get the multi-scale CAMs with Eq. (2.2) for each class;
Use Eq. (2.3) and Eq. (2.4) to get foreground probability Pfg and background
probability Pbg;

Get the overall CAM probability map Pfg bg by combining Pbg and Pfg;
Calculate reliable CAM label Icam and CRF label Icrf ;
Get the reliable regions and label Ifinal from Icam and Icrf using Eq. (2.6) and
Eq. (2.7);

Produce predictions using segmentation branch and update the whole
network using loss function L = Lclass + Lce + Lenergy + LBCD;

end

2.2.4 Loss Functions

Loss Function of the Classification Branch

In the classification branch, we adopt the same loss function used in [18, 57], which is a
multi-label soft margin loss:

Lclass(ŷ, y) = − 1

Cfg

Cfg∑
c=1

(yclog(
1

1 + e−ŷc
)

+ (1− yc)log(1− 1

1 + e−ŷc
))

, (2.14)

where y is the image-level annotation, and ŷ is the output of GAP layer.

Loss Functions of the Segmentation Branch

In order to adapt to the tiny reliable labels, we design a new joint loss function Ljoint−seg,
including three parts: the first one is a cross-entropy loss Lce, focusing on utilizing the
labeled data; the second one is the dense energy loss Lenergy, utilizing the shallow features
such as RGB and spatial information; the third one is a BCD loss LBCD for considering
the high-level semantic features. As a result, the joint loss is:

Ljoint−seg = Lce + λ1Lenergy + LBCD. (2.15)
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Cross-Entropy Loss In our approach, cross-entropy loss is based on the provided pseudo
labels from our classification branch,

Lce = −
∑

c∈C,i∈Φ

Bc(i)log(P
c
net(i)), (2.16)

where Bc(i) is a binary indicator, which equals to 1 if the label of pixel i is c and otherwise
0; Φ denotes the labeled regions, Φ = {i|Ifinal(i) ̸= 255}; P c

net(i) is the output probability
of being class c from the trained network.

Dense Energy Loss So far, all labeled pixels have been used for training with cross-
entropy loss, but there are a large number of unlabeled pixels. In order to make predic-
tions for those unlabeled regions, we design a new shallow loss named dense energy loss
considering both RGB colors and spatial positions.

Given an image I , we firstly define the energy formulation between pixel i and j based
on [79]:

E(i, j) =
∑

ca,cb∈C
ca ̸=cb

G(i, j)P ca
net(i)P

cb
net(j). (2.17)

In Eq. (2.17), both ca and cb are the class labels, P ca
net(i) and P cb

net(j) are the softmax
output of our segmentation branch at pixel i and j, respectively. G(i, j) is a Gaussian
kernel bandwidth filter:

G(i, j) =
1

W
exp(−∥Is(i)− Is(j)∥2

2σ2
d

− ∥Irgb(i)− Irgb(j)∥2

2σ2
r

), (2.18)

where 1
W

is the normalized constant, Is(·) is the pixel spatial position while Irgb(·) is the
RGB color of the corresponding pixel. σd and σr are hyper parameters which control the
scale of Gaussian kernels. Eq. (2.17) can be simplified using Potts model [12]:

E(i, j) =
∑

ca,cb∈C
ca ̸=cb

G(i, j)P ca
net(i)P

cb
net(j)

= G(i, j)
∑
c∈C

P c
net(i)(1− P c

net(j)).

(2.19)

Finally, our dense energy loss Lenergy can be written as:

Lenergy =
N∑
i=0

N∑
j=0
j ̸=i

S(i)E(i, j). (2.20)

In Eq. (2.20), N is the pixel number of the given image I . Considering the fact
that cross-entropy loss is designed for supervised learning with label information 100%
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accurate, but in this task, all pixel labels are not 100% reliable, which means that using
cross-entropy loss might introduce some errors. Thus, our dense energy loss is applied to
mitigate this problem. Based on this idea, we design a soft filter S(i) for pixel i:

S(i) =


1−max

c∈C
(P c

net(i)), i ∈ Φ

1, else

(2.21)

Batch-based Class Distance Loss Dense energy loss attempts to utilize shallow fea-
tures. In fact, the network also provides high-level features. Thus, we designed a new
BCD loss to use the high-level features. The BCD loss is based on the following three
motivations. Firstly, the feature embedding for different classes should be distinct, if the
feature distance between different classes can be increased in the embedding space, they
are more distinguishable. Secondly, as observed in [80, 81], features extracted in lower
CNN layer are more related to the low-level cues such as edge and color, while in higher
layer features are more related with semantic meaning. Thus, the high-level semantic
features are considered for our BCD feature. Thirdly, directly computing feature distance
for all pixels requires high computational cost, we only consider all images in a batch for
efficiency.

Mathematically, before passing to the final convolution layer, the feature map in the
local information sub-branch is Fl ∈ RB×H×W×Cl and the one in the global information
sub-branch (after R-FAM) is Fg ∈ RB×H×W×Cg , where B is the batch size. The final
high-level feature Fm is the concatenation of Fl and Fg,

Fm = concat([Fl, Fg]). (2.22)

As previously defined in Eq. (2.13), the final output of the segmentation branch is
Pnet, then the predicted mask is:

Mp = argmax
c∈C

(P c
net), (2.23)

where Mp ∈ RB×H×W , the predicted foreground class set in Mp is defined as Cp,
which is a subset of Cfg and Cp =

{
c1p, c

2
p, ..., c

K
p

}
. For an arbitrarily predicted class cip

from Cp, we can always get that cip ∈ Cfg.

Then we can use the feature map Fm and the predicted mask Mp to compute a loss
function, so that features for different classes can be pulled apart in the embedding space.
Directly calculating distance among all different pixels is the most intuitive solution, but it
needs high computing cost. Therefore, we rely on class centers to improve the computing
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efficiency:

F
cip
ctr =

1

Ncip

BHW∑
j=1

[Mp(j) = cip]Fm(j), c
i
p ∈ Cp. (2.24)

F c0
ctr(b) =

1

N b
c0

HW∑
j=1

[M b
p(j) = c0]F

b
m(j), b ∈ {1, ..., B} . (2.25)

In Eq. (2.24) and Eq. (2.25), F
cip
ctr is the feature center for foreground class cip in the

given batch while F c0
ctr(b) is the feature center for background of the b-th image in the

batch, [·] is z Iverson bracket. Ncip
is the pixel number for class cip in the batch and N b

c0

is the pixel number for background in the b-th image of the batch. In Eq. (2.25), M b
p

and F b
m denote the b-th predicted mask and its corresponding feature map in the batch,

respectively. Note that for foreground class center, all pixels belonging to the same class
in the batch are used, while for the background center, for each image we calculate one
center. This is because the semantic feature should be similar for the same foreground
class, but it could be different for the background in different images. Then the BCD loss
is defined as follows:

LBCD =
1

Nff

K∑
i=1

K∑
j=1

[cip ̸= cjp](1 + cos(F
cip
ctr, F

cjp
ctr))︸ ︷︷ ︸

LBCD(F fg
ctr,F

fg
ctr)

+
1

Nfb

K∑
i=1

B∑
b=1

(1 + cos(F
cip
ctr, F

c0
ctr(b)))︸ ︷︷ ︸

LBCD(F fg
ctr,F

bg
ctr)

+
1

Nfg

K∑
i=1

BHW∑
j=1

[Mp(j) = cip](1− cos(Fm(j), F
cip
ctr))︸ ︷︷ ︸

LBCD(Fm,F fg
ctr)

+
1

Nbg

B∑
b=1

HW∑
j=1

[M b
p(j) = c0](1− cos(F b

m(j), F
c0
ctr(b)))︸ ︷︷ ︸

LBCD(Fm,F bg
ctr)

,

(2.26)

where cos(·) means the cosine similarity operator. LBCD(F
fg
ctr, F

fg
ctr) aims to pull apart

the feature centers of all foreground classes, while LBCD(F
fg
ctr, F

bg
ctr) try to pull apart

the foreground class centers and the background class centers. LBCD(Fm, F
fg
ctr) and

LBCD(Fm, F
bg
ctr) pull all features close to theirs corresponding centers. Nff, Nfb, Nfg and

Nbg are the number of pairs involved in distance computing for the four scenarios.
Through closing up the distance between features and their corresponding center and

pulling apart the distance between different feature centers, the high-level features are
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more discriminative for different classes. More importantly, compared to calculating dis-
tance for all pixels directly, LBCD is more efficient.

2.3 Experiments

2.3.1 Dataset and Implementation Details

Dataset. Our RRM mdoel is trained and validated on PASCAL VOC 2012 [82] as well
as its augmented data, including 10, 582 images for training, 1, 449 images for validating
and 1, 456 images for testing. The Mean Intersection over Union (mIoU) is considered as
the evaluation criterion.

Implementation Details. The backbone network is a ResNet model with 38 convolution
layers [83]. We remove all the fully connected layers of the original network and engage
dilated convolution for the last three ResNet blocks (a ResNet block is a set of residual
units with the same output size), the dilated rate is 2 for the last third layer, and 4 for
the last 2 layers. For the semantic segmentation branch, we add two dilation convolution
layers of the same configuration for the local information in the segmentation branch after
the backbone [83], with kernel size 3, dilated rate 12, and padding size 12. The channel
size is set to 512 and 21, respectively. For R-FAM, the channel size of three 1× 1 convo-
lution layers is 256, then we added two convolution layers, with kernel size 3, dilated rate
1, and padding size 1. The number of channels are set as 256 and 21, respectively. The
cross-entropy loss is computed for background and foreground individually. σd and σr in
our dense energy loss are set as 100 and 15, respectively.

The training learning rate is 1e-3 with weight decay being 5e-4. The training images
are resized with a ratio randomly sampled from (0.7, 1.3), and they are randomly flipped.
Finally, they are normalized and randomly cropped to size 321× 321. Batch size is set to
8, and the maximum iteration is 40K.

To generate reliable regions, the scale ratio in Eq. (2.2) is set to {0.5, 1, 1.5, 2}, γ in
Eq. (2.5) is set to 4 for Pfg bg. The CRF parameters in Eq. (2.5) follow the setting in
[18]. In Eq. (2.6), α is chosen with 40% pixels selected as labeled pixels for each class.
During validating and testing, dense CRF is applied as a post-processing method, and
the parameters are set as the default values given in [34]. The weighting parameter λ1 in
Eq. (2.15) is set as 1. During training, both two branches update the backbone network.
During testing, only the segmentation branch is used to produce the predictions.

In order to show the effectiveness and scalability of our idea, we also extend our
method to a two-step framework. We firstly used our network to produce the pseudo
masks for the training dataset. After that, we train and evaluate based on the fully-
supervised segmentation Deeplab-v2 (ResNet-101 is used as backbone) [47] with those
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generated pixel labels. All parameters follows the default setting in [47].

2.3.2 Analysis of Our Approach

Table 2.1: Performance on PASCAL VOC 2012 val set based on different mined region.
Ratio means the proportion of reliable regions mined by our method to the whole pixels.
“CE loss” means only cross-entropy loss was used for our segmentation branch. “Joint
loss” means that our joint loss function is used for the segmentation branch.

Ratio
mIoU (%)

0.1 0.2 0.3 0.4 0.6 0.8 1.0

CE loss 52.2 52.3 52.7 51.9 52.9 54.2 55.4

Joint loss 53.0 63.7 64.7 65.4 63.4 62.8 62.9

Our RRM has several important aspects: using the tiny reliable pseudo masks for su-
pervision, a new segmentation branch and a new joint loss function for end-to-end train-
ing. Ablation studies are conducted to illustrate their individual and joint effectiveness,
with results reported in Table 2.1, Table 2.2 and Table 2.3.

Table 2.2: Analysis of the provided pseudo label from classification branch on perfor-
mance using PASCAL VOC 2012 val dataset. “CAM” refers to the case that class acti-
vate maps are directly used as pseudo masks, and Ours-RRM refer to the case that mined
reliable regions are used as pseudo masks. “CE loss” means only cross-entropy loss was
used for our segmentation branch and “Joint loss” means that cross-entropy loss, dense
energy loss and BCD loss are applied. Both CAM and ours-RRM use top 40% pixels
according to Table 2.1.

CE loss (mIoU) (%) Joint loss (mIoU) (%)

CAM 48.3 58.5

Ours-RRM 52.0 65.4

We firstly validate the influence of different pseudo mask size by changing α. Table
2.1 reports the results. A smaller pseudo mask size means that less regions are selected
but all selected regions are more reliable, while a larger size means that more pixels are
labeled with less reliability. Table 2.1 demonstrates that 20%-60% labeled pixels lead to
the best performance. If there are too few labeled pixels, satisfactory performance cannot
be obtained since the segmentation network cannot get enough labels for learning. On
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the other hand, too many labeled pixels means more incorrect labels are used, which are
noise for the training processing.

Table 2.3: Analysis of different loss functions and components in our segmentation branch
with performance on PASCAL VOC 2012 val dataset. Ours-RRM (local) means that
only local information sub-branch is used to produce pseudo masks. Ours-RRM (global)
means that only global information sub-branch is used to produce pseudo masks. Ours-
RRM (full) is that we used the whole segmentation branch. “CE loss” means only cross-
entropy loss was used for our segmentation branch and “CE+DE loss” means our dense
energy loss was combined with cross-entropy loss was used. “CE+BCD loss” means that
cross-entropy loss and BCD loss are used. “Joint loss” means that besides cross-entropy
loss, dense energy loss and BCD loss are used.

mIoU (%)

CE loss CE+DE loss CE+BCD loss Joint loss

Ours-RRM (local) 48.5 62.6 49.9 63.6

Ours-RRM (global) 51.3 61.6 51.9 62.2

Ours-RRM (full) 52.0 64.8 52.9 65.4

Table 2.2 shows the effectiveness of provided pseudo label. First of all, the results
obtained using original CAM regions and the mined reliable regions with RRM are com-
pared. It is observed that the pseudo label generated by RRM outperforms original CAM
labels. If we remove the joint loss from our segmentation branch (see the performance of
“CE loss”), it also shows that the reliable pseudo labels generated by RRM improves the
segmentation performance.

In Table 2.3, we firstly make an ablation study for analyzing the loss function of
our segmentation branch. The comparison between Ours-RRM (full) with CE loss and
Ours-RRM (full) with the joint loss illustrates the effectiveness of the introduced joint
loss. Without the joint loss, the mIoU obtained with RRM with CE loss gets lower.
This is because the mined reliable regions with RRM cannot provide sufficient labels for
segmentation model training when only considering cross-entropy loss. Compared to the
performance of cross-entropy loss, both dense energy loss and BCD loss improve the
performance, with 12.8% and 0.9% improvement, respectively. After adopting the joint
loss, segmentation performance improves with a big margin from 52.0% to 65.4%, which
is a 13.4% increase. Besides, from Ours-RRM (local) and Ours-RRM (global), and it
can also be found that no matter what the structure of our segmentation branch is, the
introduced joint loss can improve the final performance .

In addition, Table 2.3 shows the influence of different components in our network.
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Table 2.4: Analysis of different components in our approach for the training seed and
performance. Conf.: select confident seeds as pseudo labels. Loc.: local information
sub-branch. Glo.: global information sub-branch. Speed: training speed (time costing per
iteration)

CAM CRF Conf. Loc. Glo. DE BCD Speed mIoU

✓ ✓ 1.26s 46.1

✓ ✓ ✓ 1.40s 47.3

✓ ✓ ✓ ✓ 4.59s 48.5

✓ ✓ ✓ ✓ ✓ 4.68s 52.0

✓ ✓ ✓ ✓ ✓ ✓ 4.77s 63.6

✓ ✓ ✓ ✓ ✓ ✓ 1.53s 58.3

✓ ✓ ✓ ✓ ✓ ✓ 4.82s 64.8

✓ ✓ ✓ ✓ ✓ ✓ ✓ 4.86s 65.4

It can be seen that when the local information sub-branch or global information sub-
branch are used separately to predict the mask, their performance are 63.6% and 62.2%
(with joint loss), respectively. Using both of them for predicting, the performance of
“Ours-RRM (full)” is improved to 65.4%, with 1.8% and 3.2% improvement, respectively.
From the all results of “CE loss”, “CE+DE loss” and “CE+BCD loss”, it is observed that
combining the local information sub-branch or global information sub-branch leads to
better performance than using them individually.

In Table. 2.4, we show the influence of different components in our approach for the
training speed and the performance. It can be seen that with all our proposed compo-
nents, it has the highest performance but with the low training speed. Using CRF [60] to
refine the CAM label requires high computing cost as it is a dense and global pixel-level
operation. Note that only global information sub-branch is used during inference (the
classification branch and CRF is not used during inference), so the proposed components
only has no influence on the inference speed (about 0.15s per image on Nvidia 2080Ti).

In Table. 2.5, we compare our R-FAM with the regular attention module [78], “FAM”
means that we do not generate the re-weighting coefficient matrix Aw and we directly use
the original attention matrix A in Eq. (2.11). It can be seen that using our re-weighting
module generates a higher performance than the regular attention module, obtaining mIoU
increases of 0.9% and 0.7% for cross-entropy loss and our joint loss, respectively. Be-
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Table 2.5: Analysis of our proposed R-FAM. FAM means that there is no Aw in Eq. (2.11).
FAM is also can be seen as the non-local module in [78].

FAM R-FAM CE loss DE+BCD loss mIoU (%)

✓ ✓ 51.1

✓ ✓ 52.0

✓ ✓ ✓ 64.7

✓ ✓ ✓ 65.4

sides, we also conduct ablation study on the influence of the shared backbone. Specifi-
cally, we divide our end-to-end framework into two individual networks: the classifica-
tion network and the segmentation network. Then we train them separately. Finally, we
find that sharing a backbone significantly improves the performance. Without a shared
backbone, mIoU on PASCAL VOC val set is 61.7%, while with a shared backbone, the
performance is 65.4%, which is a 3.7% mIoU increase. We think the classification branch
provides extra pre-train to the segmentation branch. The feature map from the shared
backbone has to provide more discriminative information to distinguish each class in the
classification branch, which also benefits the segmentation branch to conduct pixel-level
classification.

2.3.3 Comparisons with Previous Approaches

In order to show the effectiveness and scalability of our idea, we also extend our method
to a two-step framework. The difference is that for our one-step method, i.e., Ours-

RRM (one-step), we produce the predictions through our segmentation branch directly.
Whereas for our two-step method, we firstly used our Ours-RRM (one-step) network to
produce the pseudo masks for the training dataset. Following that, we train and evaluate
Deeplab-v2 (ResNet-101 is used as the backbone) [47] with those generated pixel labels,
called Ours-RRM-ResNet (two-step). The final results can be found in Table 2.6. It is
observed that among existing methods solely using image-level label without extra data,
most approaches apply multiple different DNNs with many bells and whistles, while we
get equivalent results with only one end-to-end network (Ours-RRM (one-step)) and our
two-step approach (ours-RRM-ResNet (two-step)) outperforms them significantly. More
importantly, it should be noticed that AffinityNet [18], SSDD [56] and SEAM [57] all
used ResNet-38 [83] as baseline, which is more powerful than ResNet-101 [55], and even
in this case ours-RRM-ResNet (two-step) still outperforms them with a big margin.
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To the best of our knowledge, the previous state-of-the-art, RIB [54], achieves the
mIoU score of 68.3% and 68.6% on PASCAL VOC val and test set, but it uses at least
three individual networks separately during both training and testing, making both of
them being complicated and time-costing. Ours-RRM-ResNet (two-step) gives a better
performance with mIoU scores of 69.3% and 69.2% on PASCAL VOC val and test set,
which represents 1.0% and 0.6% improvement. Note that we do not use extra data or
information.

Furthermore, compared to all our baselines, the performance of our one-step and two-
step solution are boosted to 65.4% and 69.3% on val set, achieving new state-of-the-art
performances for one-step and two-step image-level label weakly supervised semantic
segmentation, respectively. It is also interesting to find that our two-step solution even
performs better than fully supervised semantic segmentation model DeepLab [5] on PAS-
CAL VOC 2012 val set.
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Table 2.6: Comparison with the state-of-the-art approaches on PASCAL VOC 2012 val
and test dataset. Sup.-supervision information, GT-ground truth, F-full supervision, L-
image-level class label.

Method Baseline Sup. Extra Data End-to-end val (mIoU) (%) test (mIoU) (%)

Deeplab-v2 [47] ResNet-101 F - - 76.8 79.7

Model A1 [83] ResNet-38 F - - 80.8 82.5

DSRG (CVPR’18) [34] ResNet-101 L MSRA-B [84] × 61.4 63.2

FickleNet (CVPR’19) [55] ResNet-101 L MSRA-B [84] × 64.9 65.3

zhang et.al (ECCV’20) [85] ResNet-101 L MSRA-B [84] × 66.6 66.7

EME (ECCV’20) [86] ResNet-101 L MSRA-B [84] × 67.2 66.1

MCIS (ECCV’20) [87] ResNet-101 L MSRA-B [84] × 66.2 66.9

ICD (CVPR’20) [50] ResNet-101 L MSRA-B [84] × 67.8 68.0

ILLD (TPAMI’20) [51] ResNet-101 L 24K ImageNet [51] × 67.8 68.3

ISISU (PR’21) [88] ResNet-101 L MSRA-B [84] × 62.5 62.7

OAA (TPAMI’21) [89] ResNet-101 L MSRA-B [84] × 66.1 67.2

EPS (CVPR’21) [52] ResNet-101 L MSRA-B [84] × 67.0 67.3

Group-wise (AAAI’21) [90] ResNet-101 L MSRA-B [84] × 68.2 68.5

EM-Adapt (ICCV’15) [44] VGG-16 L - ✓ 38.2 39.6

AffinityNet (CVPR’18) [18] ResNet-38 L - × 61.7 63.7

IRN (CVPR’19) [91] ResNet-50 L - × 63.5 64.8

SSDD (ICCV’19) [56] ResNet-38 L - × 64.9 65.5

SEAM (CVPR’20) [57] ResNet-38 L - × 64.5 65.7

ICD (CVPR’20) [50] ResNet-101 L - × 64.1 64.3

SubCat (CVPR’20) [92] ResNet-101 L - × 66.1 65.9

BES (ECCV’20) [93] ResNet-101 L - × 65.7 66.6

CONTA (NeurIPS’20) [94] ResNet-101 L - × 66.1 66.7

ECS-Net (ICCV’21) [95] ResNet-38 L - × 66.6 67.6

A2GNN (TPAMI’21) [62] ResNet-101 L - × 66.8 67.4

AdvCAM (CVPR’21) [53] ResNet-101 L - × 68.1 68.0

CGNet (ICCV’21) [96] ResNet-101 L - × 68.4 68.2

RIB (NeurIPS’21) [54] ResNet-101 L - × 68.3 68.6

Ours-RRM (one-step) ResNet-38 L - ✓ 65.4 65.3

Ours-RRM-ResNet (two-step) ResNet-101 L - × 69.3 69.2
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2.5: Qualitative segmentation results on PASCAL VOC 2012 val set. (a) Original
images. (b) Ground-truth. (c) EM-Adapt results [44]. (d) The baseline results [97]. (e)
Ours-RRM (one-step) results. (f) Ours-RRM-ResNet (two-step) results.

In Figure 2.5, we report some subjective semantic segmentation results of ours meth-
ods, which are compared with EM-Adapt [44], the state-of-the-art end-to-end network.
Ours-RRM (one-step) obtains much better segmentation results on both large and small
objects, with much accurate boundaries. We also show some results of our two-step ap-
proaches, and it can be seen that among our three methods, ours-RRM-ResNet (two-step)

obtains the best performance duo to the powerful network architecture.

2.4 Discussion

Both one-step and two-step solutions have their own strengths and weaknesses. For the
one-step solution, the most advantage is the simpler architecture with less training pro-
cedure compared to the two-step solution. But at the same time, its performance is still
limited. For the two-step solution, the main advantage is that it can divide the task into
several sub-tasks, which means some advanced techniques can be applied flexibly and
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rapidly. Besides, it can achieve better performance than the one-step solution. However,
the longer training processes with more manual parameters make it harder to be used and
implemented.

2.5 Conclusion

We proposed the Reliable Region Mining model, an end-to-end network for image-level
weakly supervised semantic segmentation. We revisited drawbacks of the state-of-the-art
methods, which adopt the two-step approach. We proposed a one-step approach through
mining tiny reliable regions and used them as ground-truth labels directly for our segmen-
tation branch training. With limited pixels as supervision, we designed a dense energy loss
and a batch-based class distance loss, which consider shallow features (RGB colors and
spatial information) and high-level feature, respectively. The two new losses cooperate
with the pixel-wise cross-entropy loss to optimize the training process. Furthermore, we
design a new feature attention module to extract global information, which also proves to
be effective for the final prediction. Based on our one-step RRM, we extended a two-step
method. Both our one-step and two-step approaches achieve the state-of-the-art perfor-
mance. More importantly, our RRM offers a different perspective from the traditional
two-step solutions. We believe that the proposed one-step approach could further boost
research in this direction.
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Chapter 3

Graph based Framework for
Bounding-Box Supervised Semantic
Segmentation

3.1 Motivation

As mentioned in Sect. 1.2.3, for utilizing bounding-box as supervision, there are two
kinds main solutions: CNN-based approaches and GNN-based approaches. CNN-based
approaches [13, 14, 15, 44] mainly use object proposals [58, 59] to produce pseudo masks,
which are then adopted as ground-truth to train the segmentation network. However,
such a pipeline often fails to generate accurate pseudo labels due to the gap between
segmentation masks and object proposals. Graph-based approaches are proposed to use
the confident but a limited number of pixels to generate the pseudo labels. Compared
to previous approaches, graph-based learning can directly build the relationship among
different pixels, enabling to suppress the negative impact of the label noise. However,
current graph-based approaches such as GraphNet [1] mainly has two drawbacks: (1) they
built an unweighted graph as input which cannot accurately provide edge information
since it treats all edges equally. (2) They used standard GCN [61], which will lead to
incorrect feature aggregation as input nodes and edges are not 100% accurate. Thus, if the
strong correlations among pixels from different semantics can be effectively alleviated, a
better propagation model can be acquired to generate more accurate pseudo object masks.

We design an Affinity Attention Graph Neural Network (A2GNN) to address the above
mentioned issues. Firstly, in order to produce accurate graph, we propose a new affinity
Convolutional Neural Network (CNN) to convert an image to a weighted graph. We
consider that a weighted graph is more suitable than an unweighted one as it can provide
different affinities for different node pairs. Secondly, we design a new GNN layer to
produce accurate pseudo labels. Our GNN layer considers both the attention mechanism
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and the edge weights to make accurate propagation. So feature aggregation between pair-
wise nodes with weak/no edge connection or low attention can be significantly declined,
and thus eliminating incorrect propagation accordingly. Finally, considering that we only
use a limited number of confident seed labels as supervision, which is insufficient for the
network optimization, we introduce a multi-point (MP) loss and a consistency-checking
mechanism to augment the training of A2GNN. Our MP loss adopts an online update
mechanism to provide extra supervision from bounding box information. Meanwhile, it
also attempts to close up the feature distance of the same semantic objects, making the
pixels of the same object distinguishable from others. The proposed consistency-checking
mechanism attempt to remove the noisy labels from the selected seed labels, by comparing
them with the labels used in the MP loss. In the following parts, we will introduce the
details of our A2GNN.

This chapter mainly contains our work “Affinity Attention Graph Neural Network for
Weakly Supervised Semantic Segmentation”, which is published in TPAMI [62].

3.2 Generate Pixel-level Seed Label

The common practice to initialize weakly supervised task is to generate pixel-level seed
labels from weak supervision [1, 57, 50]. For the bounding-box supervised semantic
segmentation task, both image-level and bounding box-level labels are available. We use
both of them to generate the pixel-level seed labels since image-level label can generate
foreground seeds while bounding box-level label can provide accurate background seeds.
To convert the image-level label to pixel-level labels, we use a CAM-based method [27,
57, 18, 21]. To generate pixel-level labels from bounding box supervision, Grab-cut [36]
is used to generate the initial labels, and the pixels which do not belong to any box are
regarded as background labels. Finally, these two types of labels are fused together to
generate the pixel-level seed labels.

Specifically, we use SEAM [57], which is a self-supervised classification network, to
generate the pixel-level seed labels from image-level supervision. Suppose a dataset with
category set C = [c0, c1, c2, ..., cN−1], in which c0 is background with the rest representing
foreground categories. The pixel-level seed labels from image-level supervision are:

MI = NetSEAM(I), (3.1)

where MI is the generated seed labels. NetSEAM(·) is the classification CNN used in
SEAM [57].

For the Bound-box Supervised Semantic Segmentation (bounding-box supervised se-
mantic segmentation) task, as it provides bounding box-level label in addition to image-
level label. We also generate pixel labels from the bounding box label as it can provide
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Image label

Bounding box 
label

𝑀𝐼

𝑀𝐵

𝑀𝐹

Classification 
CNN

Grab-Cut

Fig. 3.1: An example of generating pixel-level seed labels. Given an image with its label,
we firstly generate MI from image-level label using a classification CNN and SEAM [57]
method. Meanwhile, bounding box label is transferred to pixel-level label MB using
Grab-cut. Finally, MI and MB are integrated together to get the pixel-level seed label
MF . Each color represents one class and “white” means the pixel label is unknown.

accurate background labels and object localization information. Given an image, suppose
the bounding box set is B = {B1, ..., BM}. For a bounding box Bk with label LBk

, its
height and width are h and w, respectively. We use Grab-cut [36] to generate the seed
labels from bounding box supervision, the seed labels for each bounding box are defined
as:

MBk
(i) =

{
Grab(i), if i ∈ Bk and Grab(i) ̸= c0

255, else
, (3.2)

where Grab(·) is the Grab-cut operator and 255 means the pixel label is unknown.
Pixels not belonging to any bounding box are expressed as background, and the final

seed labels generated from bounding box are:

MB(i) =

{
c0, if i /∈ B

MBk
(i), if i ∈ B

. (3.3)

For pixel i in the image, the final pixel-level seed label is defined as :

MF (i) =


MB(i), if i /∈ B

MI(i), if i ∈ B and MB(i) = MI(i)

MBk
(i), if i ∈ Bk and LBk

/∈ S(MI-Bk
)

255, else

, (3.4)

where S(MI-Bk
) is the set of predicted categories in MI for bounding box Bk. LBk

/∈
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S(MI-Bk
) indicates that there is no correct predicted label in MI for bounding box Bk and

we therefore use the prediction from MBk
as the final seed labels.

In Fig. 3.1, an example is given to demonstrate the process to convert bounding box
supervision to pixel-level seed labels. After combing MI and MB, we can get the pixel-
level seed label.

3.3 The Proposed A2GNN

3.3.1 Overview

In order to utilize GNN to generate the accurate pixel-level pseudo labels, there are three
main problems: (1) How to provide useful supervision information and reduce the label
noise as much as possible. (2) How to convert the image data to accurate graph data. (3)
How to generate accurate pseudo labels based on the built graph and the supervision.

In this section, we will elaborate on the proposed A2GNN to address the above men-
tioned three main problems. To generate an accurate graph, we propose a new affinity
CNN to convert an image to a graph. To provide accurately labeled nodes for the graph,
we select highly confident pixel-level seed labels as node labels, and at the same time,
we introduce extra online updated labels based on the bounding box supervision, mean-
while, the pixel-level seed labels are further refined by consistency-checking. To generate
accurate pseudo labels, we design a new GNN layer since the previous GNN, such as
GCN [61] or AGNN [98] is designed based on the assumption that labels are 100% accu-
rate, while in this case, there is no foreground pixel label being 100% reliable.

In Fig. 3.2, we show the main process of our approach, which can be divided into
three steps:

(1) Generating confident seed labels. In this step, both image-level labels and bounding
box-level labels are converted to initial pixel-level seed labels, as explained in sec-
tion 3.2. Then the pixel-level seed labels with high confidence will be selected as
confident seed labels (section 3.3.2).

(2) Converting images to graphs. In this step, we propose a new affinity CNN to gen-
erate the graph. Meanwhile, the selected confident seed labels will be converted to
corresponding node labels.

(3) Generating final pixel-level pseudo labels. A2GNN is trained using the converted
graph as input, and it makes the prediction for all nodes in the graph. After converting
node pseudo labels to pixel labels, we generate the final pixel-level pseudo labels.
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The while algorithm can be found in algorithm 2.
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After that, a FCN model such as Deeplab [99, 6] for bounding-box supervised seman-
tic segmentation or MaskR-CNN [100] for bounding-box supervised instance segmenta-
tion is trained using above pixel-level pseudo labels as supervision.

In the following section, we will firstly introduce how to provide useful supervision,
and then we will give an explanation about how to build a graph from the image (sec-
tion 3.3.3). Finally, we will introduce A2GNN, including its affinity attention layer (sec-
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tion 3.3.4) and its loss function (section 3.3.5).

Algorithm 2: Algorithm flow of our proposed A2GNN for bounding-box super-
vised semantic segmentation.

Input:
Images
image level class labels
bounding-box labels
Output:
Pixel-level pseudo labels

while iteration is true do
Train a classification network using the image level class labels;

end
Generate the confident seed labels using the image level class labels and
bounding-box labels following section 3.2 and section 3.3.2;

while iteration is true do
Convert the confident seed labels to corresponding node labels using Eq. (3.6)
and Eq. (3.7);

Train the affinity CNN following section 3.3.3;
end
Convert the image to graph using Eq. (3.14) and Eq. (3.15);

while iteration is true do
Train A2GNN using the convert graph as input and the confident seed labels
as supervision following section 3.3.4 and section 3.3.5;

end
Generate the final pseudo labels using the trained A2GNN.

3.3.2 Confident Seed Label Selection

An intuitive solution is to use the pixel-level seed label MF obtained from Eq. (3.4) as
the seed labels. However, MF is noisy and directly using it will be harmful to train a
CNN/GNN. As a result, in this chapter, we only select those highly confident pixel-level
seed labels in MF as the final seed labels. Specifically, we use a dynamic threshold
to select top 40% confident pixel labels M ′

I following [97] from the pixel label MI in
Eq. (3.1). Then the selected seed labels are defined as:

Mg(i) =

{
MF (i), if MF (i) = MB(i) or MF (i) = M ′

I(i)

255, else
, (3.5)

where 255 means that the label is unknown. MB and MF are obtained from Eq. (3.3) and
Eq. (3.4), respectively. Fig. 3.2 (top-right) illustrates the confident label selection.
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Although noisy labels can be removed considerably, the confident label selection has
two main limitations: 1) it also removes some correct labels, making the rest labels scarce
and mainly focus on discriminative object parts (e.g., human head) rather than uniformly
distributed in the object; 2) there still exist non-accurate labels.

To tackle the label scarcity problem in the bounding-box supervised semantic segmen-
tation task, we propose to mine extra supervision information from the available bounding
box. Assuming all bounding boxes are tight, for a random row or column pixels inside a
bounding box, there is at least one pixel belonging to the object. Identifying these nodes
can provide extra foreground labels. And using the online updated labels, we introduce
a new consistency-checking mechanism to further remove some noisy labels from Mg.
We will describe the detailed process in section 3.3.5 since they rely on the output of our
A2GNN.

3.3.3 Graph Construction
Affinity CNN

We propose a new affinity CNN to produce an accurate graph from an image using the
available affinity labels as supervision. This is because affinity CNN has the following
merits. Firstly, instead of regrading one superpixel as a node, it views a pixel as one
node which introduces less noise. Secondly, the affinity CNN uses node affinity labels
as training supervision, which ensures to generate suitable node features for this specific
task, while previous GraphNet [1] uses classification supervision for training. Thirdly,
compared to the short distance unweighted graph (edges are only represented as 0 and
1) built in GraphNet [1], an affinity CNN can build a weighted graph with soft edges
covering a long distance, which gives more accurate node relationship.

Different from prior works [18, 21, 101, 102] that use all noisy labels in Eq. (3.4) as
supervision, our affinity CNN only uses the confident seed labels as defined in Eq. (3.5)
as supervision to predict the relationship of different pixels.

In order to train our affinity CNN, we firstly generate class-agnostic labels from the
confident pixel-level seed labels Mg from Eq. (3.5):

LA(i, j) =


1, (i, j) ∈ Rpair and M ′

g(i) = M ′
g(j)

0, (i, j) ∈ Rpair and M ′
g(i) ̸= M ′

g(j)

255, else

, (3.6)

where both i and j are pixel indices and 255 means that this pixel pair is not considered.
M ′

g is the down-sampled result of Mg in order to keep the same height and width with
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the feature map. Rpair is the pixel pair set to train the affinity CNN, and it satisfies the
following formula:

Rpair =
{
(i, j)|M ′

g(i) ̸= 255 and M ′
g(j) ̸= 255

and ||Pos(i)− Pos(j)||2 ⩽ r} ,
(3.7)

where || · ||2 is an Euclidean distance operator, Pos(·) represents the coordinate of the
pixel. r is the radius, which is used to restrict the selection of a pixel pair.

Given an image I , suppose the feature map from the affinity CNN is FA, following
[18], L1 distance is applied to compute the relationship of the two pixels i and j in FA:

D(i, j) = exp(−∥FA(i)− FA(j)∥
dA

), (3.8)

where dA is the channel dimension of feature map FA.

The training loss of affinity CNN is defined as:

LAff = LAc + λLAr. (3.9)

In Eq. (3.9), LAc is a cross-entropy loss which focuses on using the annotated affinity
labels as supervision:

LAc =− 1

|A+|
∑

(i,j)∈A+

LA(i, j)log(D(i, j))

− 1

|A−|
∑

(i,j)∈A−

(1− LA(i, j))log(1−D(i, j)),
(3.10)

where A+ is the node pair set with LA(i, j) = 1, A− is the node pair set with LA(i, j) = 0.
Operator | · | defines the number of elements.

Note that only using the confident labels as supervision is insufficient to train a CNN
when only considering LAc as loss function. In order to expand the labeled region to
unlabeled region, we propose an affinity regularized loss LAr to encourage propagating
from labeled pixels to its connected unlabeled pixels. In other words, instead of only
considering pixel pairs in Rpair, we consider all pixel pairs which satisfy the following
formula:

RAr = {(i, j)| ∥Pos(i)− Pos(j)∥2 ⩽ r} . (3.11)

Then the affinity regularized loss is defined as:

LAr =
HW∑
i=1

∑
(i,j)∈RAr

G(i, j)
∥(FA(i)− FA(j))∥

dA
, (3.12)
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A node and its
feature

An edge

Graph

𝐻 × 𝑊 ×512 𝐻 × 𝑊 ×1024 𝐻 × 𝑊 ×4096

𝐻 × 𝑊 ×5632

1*1 Conv 1*1 Conv

𝐻 ×𝑊 ×448

Edges (adjacency matrix)

Concat

𝐻𝑊

𝐻𝑊

1*1 Conv 1*1 Conv

Concat𝐻 ×𝑊 × 64 𝐻 × 𝑊 ×128 𝐻 × 𝑊 ×256

Ac loss

Ar loss

Confident seed labels

Affinity   labels

Training

Inference

Fig. 3.3: Converting an image to a graph using our affinity CNN. During inference, the
given image will be converted to a graph, in which a node is a pixel in the concatenated
feature maps from the last three blocks and its feature is the corresponding pixel feature.
The weight of graph edges is defined as the predicted affinity and they are represented as
an adjacency matrix, in which each row corresponds to all edges between one node and
all nodes.

where G(·, ·) is a Gaussian bandwidth filter [10], which utilizes the color and spatial
information:

G(i, j) = exp(−∥Pos(i)−Pos(j)∥2
2σ2

xy
− ∥Cor(i)−Cor(j)∥2

2σ2
rgb

) · [i ̸= j] , (3.13)

where Pos(i) and Pos(j) are the spatial positions of i and j, respectively. Cor(·) is the
color information and [·] is Iverson bracket.

Convert Image to Graph

Usually, a graph is represented as G = (V,E) where V is the set of nodes, and E is
the set of edges. Let vi ∈ V denote a node and Ei,j represents the edge between vi and
vj . X ∈ RNg∗Dg is a matrix representing all node features, where Ng is the number of
nodes and Dg is the dimension of the feature. In X , the ith feature, represented as xi,
corresponds to the feature of node vi. The set of all labeled nodes is defined as V l, and
the set of remaining nodes is represented as V u, and V = V l ∪ V u.

During training, our affinity CNN uses the class-agnostic affinity labels as supervision
and learns to predict the relationship of pixels. During inference, given an image, our
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affinity CNN will output V , X and E simultaneously for a graph as shown in Fig. 3.3.
Specifically, the node vi and its feature xi corresponds to ith pixel and its all-channel
features in the concatenated feature map from the backbone. For two nodes vi and vj ,
their edge Eij is defined as:

Eij =

{
D(i, j), if D(i, j) > σ

0, else
, (3.14)

where i and j are pixels in the feature map, and D(i, j) is obtained from Eq. (3.8). Here
we use a threshold σ (set as 1e-3 in our experiment) to make some low affinity edges be
0. Finally, we generate the normalized features:

xi,j = xi,j/

Dg∑
j=1

(xi,j), (3.15)

where xi,j represents the jth value of feature xi and Dg is the feature dimension.

3.3.4 Affinity Attention Layer

Effective GNN architectures have been studied in existing works [61, 98], where most
of them are designed based on the assumption that the graph node and edge information
is 100% accurate. However, in the bounding-box supervised semantic segmentation task,
it is not the case. We propose a new GNN layer with attention mechanism to mitigate
this issue. As shown in Fig. 3.2, in the proposed A2GNN, an affinity attention module is
applied after the embedding layer. The affinity attention module includes three new GNN
layers named affinity attention layers. Finally, an output layer is followed to predict class
labels for all nodes.

Specifically, we use a feature embedding layer followed by a ReLU activation function
in the first layer to map the initial node features to the same dimension of the assigned
feature:

H1 = ReLU(XW 0), (3.16)

where X is the feature matrix defined in section 3.3.3 and W 0 is the parameter set of the
embedding layer. Then we design several affinity attention layers to leverage the edge
weights:

H l+1 = P lH l, (3.17)

where P l ∈ RNG×NG , NG is the number of nodes. For node vi, the affinity attention
P l(i, j) from node vj is defined as:

P l(i, j) = softmax(wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij)

=
exp

{
wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij

}∑
vj∈S(i)

exp {wl cos(H l(i), H l(j)) + β[cos(H l(i), H l(j)) > 0]Eij}
, (3.18)
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where l ∈ {1, 2, ..., L} is the layer index (L is set as 3 in our model) of A2GNN and wl is
the learning parameter. S(i) is the set of all the nodes connected with vi (including itself).
[·] equals 1 when cos(·, ·) > 0 and otherwise equals 0. H l(i) and H l(j) correspond to
the features of vi and vj at layer l, respectively. cos(·, ·) is used to compute the cosine
similarity, which is a self-attention module. Eij is the predicted edge in Eq. (3.14). β is a
weighting factor. The final output is:

O = softmax(HL+1WL+1), (3.19)

where WL+1 is the parameter set of the output layer.
Fig. 3.4 shows the flowchart of our affinity attention layer. Compared to GCN layer [61]

and AGNN layer [103], our affinity attention layer makes full advantage of node similarity
and edge weighting information.

3.3.5 Training of A2GNN

As described in section 3.3.2, we only select confident labels as supervision, which is
insufficient for the network optimization. In order to address this problem, we impose
multiple supervision on our A2GNN. Specifically, we design a new joint loss function,
including a cross-entropy loss, a regularized shallow loss [12] and a multi-point (MP)
loss:

LG = Lce + Lmp + λ1Lreg, (3.20)

where Lce is the cross-entropy loss to use the labeled nodes Mg generated in section 3.3.2.
Lreg is the regularized loss using the shallow feature, i.e., color and spatial position. Lmp

is the newly proposed MP loss to use the bounding box supervision.

Cross-Entropy Loss

Lce is the cross-entropy loss, which is used to optimize our A2GNN based on the labeled
nodes Mg:

Lce = − 1

|V l|
∑
ci∈C
vj∈V l

[ci = Mg(vj)]log(O
ci(vj)), (3.21)

where V l is the set of all labeled nodes. Mg(vj) means the label of node vj . |·| is used to
compute the number of elements. Oci(vj) is the predicted probability of being class ci for
node vj . V l is the set of labeled nodes.

Regularized Loss

Lreg is the regularized loss which explores the shallow features of images. Here we
use it to pose constraints based on the image-domain information (e.g., color and spatial
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cosine distance for connected nodes

element-wise addition matrix multiplication

Hl

E

wl

Hl+1

softmaxPl

𝛽

Hl

Hl

[cos>0]

Fig. 3.4: Our proposed affinity attention layer. E is the adjacent matrix which provides
soft edges information. H l is the input feature of the layer and H l+1 is the output feature.
P l is the computed affinity attention matrix. wl is the learning parameter and β is the
weighting factor. With the attention mechanism and the soft edges, it can ensure accurate
feature propagation.

position).

Lreg =
∑
ci∈C
va∈V

∑
cj∈C
vb∈V

G(va, vb)O
ci(va)O

cj(vb). (3.22)

In Eq. (3.22), va and vb represent two graph nodes. V is the set including all nodes,
and G(va, vb) is defined in Eq. (3.13).

Multi-Point Loss

Inspired by [16], we design a new loss term named multi-point (MP) loss to acquire
extra supervision from bounding boxes. This is because the labeled nodes generated
in section 3.3.2 are scarce and not perfectly reliable, which could be complemented by
the bounding box information. The MP loss is based on the following consideration.
Assuming all bounding boxes are tight, for a random row or column pixels inside one
bounding box, there is at least one pixel belonging to the object, if we can find out all
these nodes, then we can label them with the object class and close up their distance in
the embedding space. Thus, MP loss makes the object easy to be distinguished.
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Specifically, for each row/column in the bounding box, the node with the highest
probability to be classified to the bounding box class label is regarded as the selected
node. Following the same definition in section 3.2, suppose the bounding box set in one
image is B, then for arbitrary bounding box Bj in B, firstly we need to select the highest
probability pixel for each row/column:

ilmmax = index(max
i∈Blm

j

(OBj(i))), (3.23)

where lm means the mth row/column, max
i∈Blm

j

(OBj(i)) means that for each row/column, we

select the node which has the highest probability to be classified as the same label with
Bj , index (·) returns the index of selected node. ilmmax is the index of the selected node in
the mth row/column.

Then the set that contains all selected nodes for the bounding box Bj are defined as
Kj:

Kj =
{
il1max, i

l2
max, i

l3
max, ..., i

l(w+h)
max

}
, (3.24)

where w and h represents the width and height of Bj , respectively. Then all selected
nodes for all bounding boxes are defined as K:

K = {K1, K2, ..., KM} , (3.25)

where M is the number of bounding boxes. Finally, the MP loss is defined as:

Lmp = − 1

Np

∑
Kj∈K

∑
ki∈Kj

log(OBj(ki))+

1

Nf

∑
Kj∈K

∑
km∈Kj

kn∈Kj

[km ̸= kn](d(H(km), H(kn))).
(3.26)

In Eq. (3.26), d(·, ·) is used to compute feature distance, where we set d(·, ·) = 1 −
cos(·, ·). H(km) and H(kn) correspond to the features from the last affinity attention layer
HL+1 for node km and kn, respectively. Both Np and Nf are the number of sum items.
MP loss tries to pull the selected nodes closer in the embedding space, while all other
nodes connecting with them will benefit from this loss. This is because GNN layer can
be regarded as a layer to aggregate features from the connected nodes, it will encourage
the other connected nodes to share a similar feature with them. In other words, MP loss
will make the nodes belonging to the same object easy to be distinguished since they are
assigned to a similar feature in the embedding space. In our model, we only enforce MP
loss on Kj (Eq. (3.24)) rather than all labeled nodes. This is because other nodes from
Mg still have noisy labels, and at the same time, the labeled foreground nodes in Mg focus
more on discriminative parts of the object.
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Consistency-Checking

As mentioned in section 3.3.2, although we select some confident seed labels as super-
vision, noisy labels are still inevitable. Considering that we provide some extra online
labels in our MP loss, which selects the highest probability pixel in each row/column in
the box as additional labels, we assume that most additional labels in MP loss are correct,
then for each box, we firstly generate a prototype using the feature of all additional labels
inside the box:

H
Kj

P =
1

NKj

∑
ki∈Kj

H(ki), (3.27)

where H
Kj

P represents the prototype of the jth bounding box and NKj
is the number of

the selected pixel.

Then for each bounding box, we compute the distance between all selected confident
seed labels in Eq. (3.5) and the prototype, and finally the seed labels which are far away
from the prototype are considered as noisy label and removed in each iteration:

MKj
g (i) =


M

Kj
g (i), if d(HKj(i), H

Kj

P ) > 0

and M
Kj
g (i) = LBj

255, else

, (3.28)

where M
Kj
g is the selected confident label map of the jth bounding box (section 3.3.2),

HKj is the corresponding feature map for the jth bounding box from the last affinity
attention layer HL+1, and d(·, ·) is the operator to compute the cosine distance.

3.4 Implement Details

To generate pixel-level seed label from image-level label, we use the same classification
network as SEAM [57], which is a ResNet-38 [83]. All the parameters are kept the same
as in [57].

Our affinity CNN adopts the same backbone with the above classification network.
At the same time, dilated convolution is used in the last three residual blocks and their
dilated rates are set as 2, 4 and 4, respectively. As in Fig. 3.3, the output channels of these
three residual blocks are 512, 1024 and 4096. A node feature is a concatenated feature of
these three outputs, so the feature dimension for one node is 5632. Since we need to use
feature to compute distance, three 1×1 convolution kernels are used to reduce the feature
dimensions of these three residual blocks and the output channels are set as 64, 128 and
256, respectively. Finally, a 1× 1 convolution kernel with 448 channels is used to get the
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Table 3.1: Comparison with other approaches on PASCAL VOC 2012 val and test sets
for bounding-box supervised semantic segmentation. F: fully supervised. S: scribble
supervised. B: bounding-box supervised. Seg.: fully-supervised segmentation model

Method Pub. Seg. Sup.
val mIoU (%) test mIoU (%)

w/o CRF w/ CRF w/o CRF w/ CRF

Deeplab-V1 [5] - - F 62.3 67.6 - 70.3

Deeplab-Vgg [99] TPAMI’18 - F 68.8 71.5 - 72.6

Deeplab-Resnet101 [99] TPAMI’18 - F 75.6 76.8 - 79.7

PSPNet [104] CVPR’17 - F 79.2 - 82.6 -

ScribbleSup [11] CVPR’16 Deeplab-Vgg S - 63.1 - -

RAWKS [105] CVPR’17 Deeplab-V1 S - 61.4 - -

Regularized Loss [12] ECCV’18 Deeplab-Resnet101 S 73.0 75.0 - -

Box-Sup [13] CVPR’15 Deeplab-V1 B - 62.0 - 64.6

WSSL [44] CVPR’15 Deeplab-V1 B - 60.6 - 62.2

GraphNet [1] ACMM’18 Deeplab-Resnet101 B 61.3 65.6 - -

SDI [14] CVPR’17 Deeplab-Resnet101 B - 69.4 - -

BCM [15] CVPR’19 Deeplab-Resnet101 B - 70.2 - -

Lin et al. [106] ECCV’18 PSPNet B - 74.3 - -

Box2Seg [37] ECCV’20 UperNet [107] B 74.9 76.4 - -

Box2Seg-CEloss [37] ECCV’20 UperNet [107] B 72.7 - - -

A2GNN (ours) - Deeplab-Resnet101 B 72.2 73.8 72.8 74.4

A2GNN (ours) - PSPNet B 74.4 75.6 73.9 74.9

A2GNN (ours) - Tree-FCN [9] B 75.1 76.5 74.5 75.2

final feature map FA. Following [18], we set r = 5 for both training and inference. λ in
Eq. (3.9) is set to 3 and σxy = 6, σrgb = 0.1.

Our A2GNN has five layers as mentioned in section 3.3.4, the output channel number
for the first layer and three affinity attention layers are 256. λ1 in Eq. (3.20) are set as 0.01.
In Lreg, we adopt the same parameters with Eq. (3.13). We use Adam as optimizer [108]
with the learning rate being 0.03 and weight decay being 5 × 10−4. During training, the
epoch number is 100 and the dropout rate is 0.5. The training process will be divided
into two stages: In the first stage (the first 50 epochs), Lreg and consistency-checking are
not used while in the second stage, all losses and consistency-checking are used. We use
dropout after the first layer. We use bilinear interpolation to achieve the original resolution
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during training and inference. CRF [60] is used as the post-processing method during
inference. The unary potential of CRF uses the final output probability O in Eq. (3.19)
while pair-wise potential corresponds to the color and spatial position of different nodes.
All CRF parameters are the same as [18, 97]. Note that for the bounding-box supervised
instance segmentation task, we need to convert the above pseudo labels to instance masks.
Given a bounding box, we directly assign pixels which locate inside a bounding box and
share the same class with it to one instance.

For the bounding-box supervised semantic segmentation task, we take the Deeplab-
Resnet101 [99], PSPNet [104] and Tree-FCN [9] as our fully supervised semantic seg-
mentation models for fair comparison. For the bounding-box supervised instance seg-
mentation task, MaskR-CNN [100] is taken as the final instance segmentation model and
we use Resnet-101 as the backbone. Following the same post-processing with [16], we
use CRF [60] to refine our final prediction.

All experiments are run on 4 Nvidia-TiTan X GPUs. For Pascal VOC 2012 dataset,
generating the pixel-level seed label takes about 12 hours, training affinity CNN spends
about 12 hours and generating the pseudo labels using A2GNN takes about 16 hours.

3.5 Experiment

3.5.1 Datasets

We evaluate our method on PASCAL VOC 2012 [109] and COCO [110] dataset. For
PASCAL VOC 2012, the augmented data SBD [111] is also used, and the whole dataset
includes 10,582 images for training and 1,449 images for validating and 1,456 images for
testing. For COCO dataset, we train on the default train split (80K images) and then test
on the test-dev set.

For Pascal VOC 2012 dataset, mean intersection over union (mIoU) is applied as the
evaluation criterion for weakly supervised semantic segmentation, and the mean average
precision (mAP) [112] is adopted for weakly supervised instance segmentation. Follow-
ing the same evaluation protocol as prior works, we reported mAP with three thresh-
olds (0.5, 0.7, 0.75), denoting as mAPr

0.5, mAPr
0.7 and mAPr

0.75, respectively. For COCO
dataset, following [113], mAP, mAPr

0.5, mAPr
0.75, mAPs, mAPm and mAPl are reported.

3.5.2 Comparison with State-of-the-Art

Weakly supervised semantic segmentation: In Table 3.1, we compare the performance
between our method and other state-of-the-art approaches for bounding-box supervised
semantic segmentation. For using deeplab as the segmentation model, it can be seen that
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Table 3.2: Comparison with other approaches on PASCAL VOC 2012 val dataset for
bounding-box supervised instance segmentation.

Method Pub. Sup. mAPr
0.5 mAPr

0.7 mAPr
0.75

SDS [112] ECCV’14 F 49.7 25.3 -

MaskR-CNN [100] ICCV’17 F 67.9 52.5 44.9

PRM [114] CVPR’18 I 26.8 - 9.0

IRN [21] CVPR’19 I 46.7 23.5 -

SDI [14] CVPR’17 B 44.8 - 16.3

BBTP [16] NeurIPS’19 B 58.9 30.4 21.6

A2GNN (ours) - B 59.1 35.5 27.4

our approach obtains 96.1% of our upper-bound with pixel-level supervision (Deeplab-
Resnet101 [99] with CRF). Compared to the other approaches, our approach gives a new
state-of-the-art performance. Specifically, our approach with deeplab-resnet101 [9] out-
performs Box-Sup [13], WSSL [44] by big margins, approximately 11.8% and 13.2%,
respectively. Besides, compared to GraphNet [1], the only graph learning solution, our
method with Deeplab-Resnet101 performs much better than it, with an improvement of
10.9% for mIoU (without CRF). We can also observe that our performance is even better
than SDI [14], which uses MCG [58] and BSDS [59] as extra pixel-level supervision.
When using PSPNet [104] as the segmentation model, our approach obtains 74.4% mIoU
without CRF as post-processing, which is even higher than the results in [106] with CRF.
Finally, our method with Tree-FCN [9] outperforms the state-of-the-art Box2Seg [37] in
this task. Note that Box2Seg focused on designing a segmentation network using noisy
label from bounding box, thus our performance could be further improved using their
network as the final segmentation network.

Weakly supervised instance segmentation: In Table 3.2, we compare our approach
to other state-of-the-art approaches on bounding-box supervised instance segmentation.
It can be seen that our approach achieves a new state-of-the-art performance among all
evaluation criteria. Specifically, our approach performs much better than SDI [14], in-
creasing 14.3% and 11.1% on mAPr

0.5 and mAPr
0.75, respectively. It can also be found

that compared to BBTP [16], which is the state-of-the-art approach on this task, our ap-
proach significantly outperforms it by large margins, around 5.1% on mAPr

0.7 and 5.8% on
mAPr

0.75. The performance is increased more on mAPr
0.75 than mAPr

0.7 and mAPr
0.5, which
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Table 3.3: Comparison with other approaches on COCO test-dev dataset for weakly su-
pervised instance segmentation. E: extra dataset [115] with instance-level annotation.
S4Net: salient instance segmentation model [116].

Method Pub. Sup. mAP mAPr
0.5 mAPr

0.75 APs APm APl

MNC [117] CVPR’16 F 24.6 44.3 24.8 4.7 25.9 43.6

Mask-RCNN [100] ICCV’17 F 37.1 60.0 39.6 35.3 35.3 35.3

Fan et.al. [113] ECCV’18 I+E+S4Net 13.7 25.5 13.5 0.7 15.7 26.1

LIID [51] PAMI’20 I+E+S4Net 16.0 27.1 16.5 3.5 15.9 27.7

A2GNN (ours) - B 20.9 43.9 17.8 8.3 20.1 31.8

also indicates that our approach can produce masks that preserve the object structure de-
tails. One interesting observation is that our approach even achieves better performance
than the fully supervised method SDS [112].

In Fig. 3.5, we compare some qualitative results between our approach and other state-
of-the-art approaches for which the source code is publicly available. Specifically, we
compare our results with SDI [14]1 for the bounding-box supervised semantic segmenta-
tion task and BBTP [16]2 for the bounding-box supervised instance segmentation task. It
can be seen that compared to other approaches, our approach produces better segmenta-
tion masks covering object details.

In Table 3.3, we make a comparison between our approach and others on COCO test-
dev dataset. It can be seen that our approach performs much better than LIID [51], with
an increase of 16.8% on mAPr

50. Furthermore, our approach even performs competitive
with fully-supervised approach MNC [117], which also indicates the effectiveness of our
approach.

In Fig 3.6, we show some qualitative results of our A2GNN on COCO val set for
bounding box supervised instance segmentation. It can be seen that our approach can
remain segmentation details for both large and small objects.

1we use a re-implement code from: github.com/johnnylu305
2github.com/chengchunhsu/WSIS BBTP
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Fig. 3.5: Qualitative results of our A2GNN and other state-of-the-art approaches on PAS-
CAL VOC 2012 val dataset. (a) Original image. (b) Ground truth of semantic segmen-
tation. (c) SDI [14] for bounding-box supervised semantic segmentation. (d) Our results
for bounding-box supervised semantic segmentation. (e) BBTP [16] for bounding-box
supervised instance segmentation. (f) Our results for bounding-box supervised instance
segmentation.

3.5.3 Ablation Studies

Since the pseudo labels for bounding-box supervised instance segmentation are generated
from the bounding-box supervised semantic segmentation task, in this section, we will
conduct ablation studies only on the bounding-box supervised semantic segmentation
task. We simply evaluate the pseudo label mIoU on the training set, without touching
the val and test set.

In Fig 3.7, we make a comparison between our A2GNN and others for bounding-box
supervised semantic segmentation. It can be seen that our A2GNN performs much better
than other GNNs, with an improvement of 1.9% mIoU over AGNN [98] when only using
the cross-entropy loss, and the full A2GNN outperforms AGNN [98] by a large margin
(6.9%).
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Fig. 3.6: Qualitative results of our A2GNN on COCO val set for bounding-box supervised
instance segmentation.
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GCN [22] GAT [61] AGNN [32] A2GNN (CE) A2GNN (full)
Different GNN Approaches
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Fig. 3.7: Comparison between our A2GNN and other GNNs (GCN [61], GAT [118],
AGNN [98]) on Pascal VOC 2012 training set. “CE” means only cross-entropy loss is
used.

Table 3.4: Evaluation for different modules in our approach. RW:random walk [57]. H:
affinity attention layer. C.C.: consistency-checking.

Baseline
affinity CNN

RW
A2GNN

mIoU
LAc LAr H Lreg Lmp C.C.

✓ 62.3

✓ ✓ ✓ 70.3

✓ ✓ ✓ ✓ 71.3

✓ ✓ ✓ ✓ 73.8

✓ ✓ ✓ ✓ ✓ 74.9

✓ ✓ ✓ ✓ ✓ ✓ 78.1

✓ ✓ ✓ ✓ ✓ ✓ ✓ 78.8

In Table 3.4, we explore the influence of different modules in our approaches to gen-
erate pseudo labels. Baseline means that we use SEAM [57] to generate the foreground
seed labels and then use bounding box supervision to generate the background. RW means
that we follow SEAM [57] to use random walk for pseudo label generation. It can be seen
that the proposed approach outperforms the baseline by a large margin. And each module
significantly improves the performance.
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Table 3.5: Evaluation for the loss functions of our A2GNN. C.C.: consistency-checking.

Lce Lreg Lmp C.C. mIoU (%)

✓ 73.8

✓ ✓ 74.9

✓ ✓ 75.9

✓ ✓ ✓ 77.2

✓ ✓ ✓ 78.1

✓ ✓ ✓ ✓ 78.8

In Table 3.5, we study the effectiveness of our joint loss function. It can be seen that
compared to A2GNN which only adopts cross-entropy loss, our MP loss can improve
its performance by 2.1%, validating the effectiveness of our MP loss. With consistency-
checking, the performance is improved to 77.2%, indicating the effectiveness of our pro-
posed consistency-checking mechanism. When jointly optimized by these three losses
with our consistency-checking mechanism, the performance is further improved to 78.8%.

Table 3.6: Evaluation for different methods to build the graph. S.P.: superpixel. Feat.:
feature map. Dis.: distance. Aff: affinity CNN.

S.P. Feat. Dis. Aff. mIoU(%)

✓ ✓ 73.3

✓ ✓ 74.7

✓ ✓ 78.8

In Table 3.6, we study different ways to build our graph. Superpixel (S.P.) means
that we adopt [1] to produce graph nodes and their features. Distance (Dis.) means
that we build the graph edge using L1 distance of feature map [1]. It can be seen that
the performance is improved when directly using pixel in the feature map as the node,
suggesting that it is more accurate than using superpixel. When we use our affinity CNN
to build the graph, the performance is significantly improved by 4.1%, which shows that
our approach can build a more accurate graph than other approaches.
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Table 3.8: Performance comparison for using different seed labels on affinity CNN and
the loss functions.

LAc LAr MF Mg mIoU

✓ ✓ 74.5

✓ ✓ 71.7

✓ ✓ ✓ 76.1

✓ ✓ ✓ 78.8

Table 3.7: Evaluation of the affinity attention layer in A2GNN.

A2GNN layer
mIoU(%)

cos(·) edge

✓ 73.1

✓ 77.3

✓ ✓ 78.8

In Table 3.7, we study the effectiveness of our affinity attention layer. It can be found
that if we use either the attention module or the affinity module separately, the mIoU score
is lower than that of the full A2GNN, which indicates the effectiveness of our designed
GNN layer.

In Table 3.8, we show the joint influence of the loss functions and labels for our
proposed affinity CNN. It can be seen that when only using LAc, MF labels perform
better than Mg. This is because that Mg only provides limited pixels and these pixels
are usually located at the discriminative part of an object (such as the human head). Such
limited labels are not sufficient when only using LAc. When we use both LAc and LAr, Mg

performs much better than MF , indicating that LAr can accurately propagate the labeled
regions to unlabeled regions.

In addition, we also analyze the influence of supervision for our A2GNN. Specifically,
we make a comparison of the results when using MF (in Eq. (3.4)) and Mg (in Eq. (3.5))
as supervision for our A2GNN, respectively. Compared to MF , Mg has fewer annotated
nodes but each annotation is more reliable. The mIoU score on Pascal VOC 2012 training

set is 73.2% and 78.8% for MF and Mg, respectively. This result validates the effective-
ness of the leverage of the high-confident labels.
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Fig. 3.8: Qualitative Results of the generated pseudo labels on PASCAL VOC 2012
training set for bounding box supervised semantic segmentation. (a) original im-
ages. (b) ground-truth. (c) A2GNN (Lce). (d) A2GNN (Lce+Lreg). (e) A2GNN
(Lce+Lreg+Lmp (without feature operator)). (f) A2GNN (Lce+Lreg+Lmp). (g) A2GNN
(Lce+Lreg+Lmp+c.c.).

In Fig 3.8, we report some qualitative comparison of our proposed A2GNN on the
PASCAL VOC 2012 training dataset for bounding box supervised semantic segmentation.
“Without feature operator” means we do not introduce the feature distance operator in our
MP loss. “C.C” means the consistency-checking mechanism. From (e) and (f), it can be
found that using feature operator can retain more object details, and without the feature
operator in the MP loss, some foreground pixels are misclassified. And it can be found in
(g) that using consistency-checking mechanism significantly removes many noisy labels.

3.6 Application to Other Weakly Supervised Semantic Seg-
mentation Tasks

In order to use our approach on other weakly supervised semantic segmentation tasks,
e.g., scribble, point and image-level, we need to ignore our proposed MP loss (sec-
tion 3.3.5) and the consistency-checking (section 3.3.5) as they rely on bounding box
supervision. Besides, we need to convert different weak supervised signals to pixel-level
seed labels. All other steps and parameters are the same as that in the bounding-box su-
pervised semantic segmentation task. In the following section, we will introduce how to
convert the different weakly supervised signal to pixel-level seed labels, and then we will
report experimental results on these tasks.
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Algorithm 3: Algorithm flow of our proposed A2GNN for other weakly super-
vised semantic segmentation.

Input:
Images
Weak labels (scribble, point and image level class labels)
Output:
Pixel-level pseudo labels

while iteration is true do
Train a classification network using the image level class labels;

end
Generate the confident seed labels using the weak labels following section 3.6.1;

while iteration is true do
Convert the confident seed labels to corresponding node labels using Eq. (3.6)
and Eq. (3.7);

Train the affinity CNN following section 3.3.3;
end
Convert the image to graph using Eq. (3.14) and Eq. (3.15);

while iteration is true do
Train A2GNN using the convert graph as input and the confident seed labels
as supervision, using Eq. (3.21) and Eq.( 3.22);

end
Generate the final pseudo labels using the trained A2GNN.

3.6.1 Pixel-level Seed Label Generation

As mentioned in section 3.2, the common practice to initialize weakly supervised task is
to generate pixel-level seed labels from the given weak supervision. For different weakly
supervision, we use different approaches to convert them to pixel-level seed labels.

Image-level supervision: We directly use M ′
I defined in Eq. (3.5) to train our affinity

CNN and use it as Mg to train our A2GNN. The final pseudo labels are generated using
the ratio (1:3) to fuse our results and the results of random walk.

Scribble supervision: For the scribble supervised semantic segmentation task, for
each class in an image (including background), it provides one or more scribbles as labels.
Superpixel method [38] is used to get the expanded labels MS from the initial scribbles.
To get seed label to train our affinity CNN, we merge MS with M ′

I using the following
rule: if the pixel label in MS is known (not 255), the corresponding label in Mg will be the
same label as MS . Otherwise, the pixel label will be treated as the same label as M ′

I . To
generate the node labels for A2GNN, we directly use Mg = MS since it provides accurate
labels for around 10% pixels in an image.

Point supervision: For point supervised semantic segmentation, for each object in an
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image, it provides one point as supervision and there is no annotation for background. To
train our affinity CNN, we used M ′

I directly. To generate node supervision for A2GNN,
we use a superpixel method [38] to get the expanded label MP from initial point labels.
Then Mg is generated using the same setting with the scribble task.

For our affinity CNN and our A2GNN, we use the same setting with our bounding box
task.

The whole algorithm can be found in algorithm 3.

Table 3.9: Performance comparison in mIoU (%) for evaluating the pseudo labels on the
PASCAL VOC training data set.

Method Pub. Sup. mIoU (%)

PSA [18] CVPR’18 I 58.4

ICD [50] CVPR’20 I 62.2

SubCat [92] CVPR’20 I 63.4

SEAM [57] CVPR’20 I 63.6

A2GNN (ours) - I 65.3

A2GNN (ours) - I+E 66.5

Box2Seg [37] ECCV’20 B 73.6*

A2GNN (ours) - B 78.8
* Reproduce by ourself.

3.6.2 Experimental Evaluations

In Table 3.9, we present a comparison to evaluate the pseudo labels on the PASCAL
VOC training set. It can be seen that our approach outperforms other approaches. Com-
pared to the state-of-the-art approach SEAM [57], our approach obtains 1.7% mIoU im-
provement. We also compare the quality of the pseudo labels between our approach and
Box2Seg [37]. It can be seen that our method outperforms Box2Seg [37] by a large mar-
gin, with 5.2% mIoU improvement.

In Fig. 3.9, we also present more qualitative results for the above three tasks. It can be
seen that stronger supervision leads to better performance and preserves more segmenta-
tion details.
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Input image

Ground truth

Image-level

Point-level

Scribble-level

Image-salient

Fig. 3.9: Qualitative results of our A2GNN on PASCAL VOC 2012 val dataset. We show
the results from different levels of supervision signals (3rd – 6th rows). Stronger supervi-
sion signals (e.g., scribble) produce more accurate results than weaker signals (e.g., point,
image-level label).

In Table 3.10 and 3.11, we compare the performance between our method and other
state-of-the-art weakly supervised semantic segmentation approaches.
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Table 3.10: Comparison with other state-of-the-arts on PASCAL VOC 2012 val and test
datasets for scribble and ponit level supervision. Sup.: Segmentation model. F: fully
supervised. S: scribble. P: point. “highlight” means the best performance for a specific
task.

Method Pub. Seg. Sup. val test

(1) Deeplab-V1 [5] - - F 67.6 70.3

(2) Deeplab-Vgg [99] TPAMI’18 - F 71.5 72.6

(3) Deeplab-Resnet [99] TPAMI’18 - F 76.8 79.7

(4) Tree-FCN [9] NeurIPS’19 - F 80.9 -

RAWKS [105] CVPR’17 (1) S 61.4 -

ScribbleSup [11] CVPR’16 (2) S 63.1 -

GraphNet [1] ACMM’18 (3) S 73.0 -

Regularized loss [12] ECCV’18 (3) S 75.0 -

A2GNN (ours) - (3) S 74.3 74.0

A2GNN (ours) - (4) S 76.2 76.1

What’s the point [17] ECCV’16 (2) P 43.4 43.6

Regularized loss [12] ECCV’18 (3) P 57.0 -

A2GNN(ours) - (3) P 66.8 67.7

For point supervision, our method achieves state-of-the-art performance with 66.8%
and 67.7% mIoU on the val and test set of PASCAL VOC, respectively. Compared to
other two approaches [17] and [12], our method increases 23.4% and 9.8% in mIoU on
PASCAL VOC 2012 val dataset, respectively.

For the image-level supervision task, our A2GNN achieves mIoU of 66.8% and 67.4%
on val and test set, respectively. It should be noticed that PSA [18], SEAM [57] and
CONTA [94] apply Wider ResNet-38 [83] as segmentation model, which has a higher
upper-bound than Deeplab-Resnet101 [99]. Using Deeplab-Resnet101 [99] as the seg-
mentation, Subcat [92] is the state-of-the-art approach on this task, but it require multi-
round training processes. Moreover, our method achieves 66.8% mIoU using Deeplab-
Resnet101 [99], being 87.0% of our upper-bound (76.8% mIoU score with Deeplab-
Resnet [99]) on val set.
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Table 3.11: Comparison with other state-of-the-arts on PASCAL VOC 2012 val and test
datasets for image level supervision. Sup.: Segmentation model. F: fully supervised. I:
image-level label. E: extra salient dataset. “highlight” means the best performance for a
specific task.

Method Pub. Seg. Sup. val test

(1) Deeplab-V1 [5] - - F 67.6 70.3

(2) Deeplab-Resnet [99] TPAMI’18 - F 76.8 79.7

(3) WiderResnet38 [83] PR’19 - F 80.8 82.5

AE-PSL [31] CVPR’17 (1) I+E 55.0 55.7

DSRG [34] CVPR’18 (2) I+E 61.4 63.2

FickleNet [55] CVPR’19 (2) I+E 64.9 65.3

Zhang et.al [85] ECCV’20 (2) I+E 66.6 66.7

ICD [50] CVPR’20 (2) I+E 67.8 68.0

EME [86] ECCV’20 (2) I+E 67.2 66.7

MCIS [87] ECCV’20 (2) I+E 66.2 66.9

ILLD [51] TPAMI’20 (2) I+E 66.5 67.5

ILLD [51] TPAMI’20 (2)† I+E 69.4 70.4

A2GNN(ours) - (2) I+E 68.3 68.7

A2GNN(ours) - (2)† I+E 69.0 69.6

PSA [18] CVPR’18 (3) I 61.7 63.7

SEAM [57] CVPR’20 (3) I 64.5 65.7

ICD [50] CVPR’20 (2) I 64.1 64.3

BES [93] ECCV’20 (2) I 65.7 66.6

SubCat [92] CVPR’20 (2) I 66.1 65.9

CONTA [94] NeurIPS’20 (3) I 66.1 66.7

A2GNN(ours) - (3) I 66.8 67.4
† means using Res2Net [119] as the backbone.
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Besides, for the image-level supervision, some approaches [34, 55, 50, 51] used salient
model with extra pixel-level salient dataset [45] or instance pixel-level salient dataset [115]
to generate more accurate pseudo labels. Follow these approaches, we also use saliency
models. Specifically, we use the saliency approach [120] following ICD [50] to pro-
duce the initial seed labels, and then use our approach to produce the final pseudo labels.
It can be seen from Table 3.11 that our approach outperforms other approaches (using
ResNet101 as the backbone). Following ILLD [51], we also evaluate our approach using
Res2Net [119] as the segmentation backbone, and our performance is further improved to
69.0% and 69.6%. For this setting, we have not designed any specific denoising scheme
for the seed labels. Nevertheless, our performance is comparable with other state-of-the-
art methods, e.g., [51], which also proves that our method can be well generalized to all
weakly supervised tasks.

For the scribble supervision task, our method also achieves a new state-of-the-art per-
formance.

3.7 Conclusion

We have proposed a new system, A2GNN, for the bounding box supervised semantic seg-
mentation task. With our proposed affinity attention layer, features can be accurately ag-
gregated even when noise exists in the input graph. Besides, to mitigate the label scarcity
issue, we further proposed a MP loss and a consistency-checking mechanism to provide
more reliable guidance for model optimization. Extensive experiments show the effective-
ness of our proposed approach. In addition, the proposed approach can also be applied
to bounding box supervised instance segmentation and other weakly supervised semantic
segmentation tasks. As future work, we will investigate how to generate more reliable
seed labels and more accurate graph, so that the noise level in the input graph can be
alleviated and therefore our A2GNN can produce more accurate pseudo labels.
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Chapter 4

Dynamic Feature Regularized Loss for
Scribble Supervised Semantic
Segmentation

4.1 Motivation

As mentioned in Sect. 1.2.4, for scribble supervised semantic segmentation, most recent
approaches can be divided into two main categories: pseudo-label based approaches [1,
62] and loss function based approaches [10, 12, 40, 42]. Pseudo-label based approaches
focus on generating accurate pseudo labels through expanding the initial annotations. But
such approaches usually need multi-stage training process with many bells and whis-
tles. Loss function based approaches concentrate on directly utilizing limited labels to
train the segmentation model with well-designed loss functions. However, some ap-
proaches [40, 42] rely on extra dataset [43, 41] to provide edges or boundaries information
as supervision, while some loss function based approaches [10, 12] still need multi-round
training procedures.

In order to overcome the aforementioned drawbacks, we propose a new end-to-end
network where a new Dynamic Feature Regularized (DFR) loss function is introduced to
provide more sufficient information to describe the semantic similarity of different pixels.
Specifically, our network has two branches: one is the semantic segmentation head and
the other one is the feature consistency head. The semantic segmentation head aims to
make semantic segmentation with our proposed DFR loss, also it will provide reliable
supervision for the feature consistency head. While the feature consistency head aims
to ensure that the pixels which have the same semantic category can share the similar
features, at the same time, it will provide accurate feature relationship for the DFR loss in
the semantic segmentation head. Next, we will introduce the details of our framework.

In this chapter, the main work is from our work: “Dynamic Feature Regularized Loss
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Fig. 4.1: The framework of our proposed approach. Firstly, an image is input to the vi-
sion transformer to generate its feature maps, then the feature maps from all blocks are
fused to generate a shared feature map, which is input to both the semantic segmentation
head and the feature consistency head. The semantic segmentation head is used to make
semantic prediction and provide highly confident regions as pseudo labels for the feature
consistency head. Meanwhile, the feature consistency head is used to produce consistent
features for pixels with the same semantic category, which are in turn used in the regu-
larized loss of the semantic segmentation head. Note that both the semantic segmentation
head and feature consistency head are used during training while only the semantic seg-
mentation head is used during inference.

for Weakly Supervised Semantic Segmentation” [76].

4.2 Methodology

4.2.1 Overview

Fig. 4.1 shows the overall framework of our approach. Firstly, we use vision transformer
as the backbone to generate the feature maps. Then the feature maps are input to the
feature fusion module to generate the shared feature map for the semantic segmentation
head and feature consistency head. The semantic segmentation head is to make semantic
prediction and provide supervision for the feature consistency head. The feature consis-
tency head enforces feature consistency for pixels with the same semantic category based
on the supervision from the semantic segmentation head, which in turn provides reliable
dynamic feature for the semantic segmentation head.

The semantic segmentation head utilizes two loss functions: partial cross-entropy loss
and our proposed dynamic feature regularized loss. Partial cross-entropy loss uses the
scribble-annotation as supervision while our proposed dynamic feature regularized loss
applies the original image information and feature map from the feature consistency head
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to produce regularized kernel.

The feature consistency head also introduces two loss functions: feature distance loss
and feature regularized loss. Feature distance loss uses the predicted highly confident
pseudo labels from the semantic segmentation head as supervision. Feature regularized
loss solely uses the shallow feature as the kernel to compute feature distance.

The whole framework is trained in an end-to-end manner, the loss function is defined
as:

L = Lpce + λ1Ldfr︸ ︷︷ ︸
semantic head

+λ2(Lfd + Lfr︸ ︷︷ ︸
feature head

), (4.1)

where λ1 and λ2 are loss weights. Lpce and Ldfr are the loss functions for the semantic
segmentation head. Lpce is the partial cross-entropy loss, which uses the scribble annota-
tion as supervision. Ldfr is our proposed regularized loss. Both of them will be introduced
in Sect. 4.2.2. Lfd and Lfr are the loss functions for the feature consistency head, Lfd is
the feature distance loss, which uses the prediction of the semantic segmentation head as
supervision. Lfr is the feature regularized loss. Both Lfd and Lfr will be introduced in
Sect. 4.2.3.

4.2.2 Semantic Segmentation Head

The semantic segmentation head is to make semantic prediction, which includes several
convolution layers to produce the final probability map P , a partial cross-entropy loss
to utilize the scribble annotation and our proposed dynamic feature regularized loss to
restrict the prediction of the whole map.

Specifically, the partial cross-entropy loss is:

Lpce = − 1

Ns

hw∑
i=1

[Ms(i) ̸= 255]log(P t(i)), (4.2)

where P t(i) is the probability of pixel i to be classified to the ground truth class. Ns is
the annotated pixel number. h and w correspond to the height and width of the feature
map, respectively. Ms is the provided scribble annotation and 255 means that there is no
annotation. [·] is the Iverson bracket operation, which equals to 1 if the inside condition
is true, otherwise it equals to 0.

For scribble annotation, the main limitation is that very few pixel-level labels are
provided, e.g., 3% pixels are annotated in PASCAL VOC 2012 dataset [12]. In this case,
using partial cross-entropy loss is not enough. Therefore, we design a new DFR loss to
impose restriction on the prediction of the model. Our intuition is that for two different
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pixels i and j, if their features are highly similar, the probability for them to belong to the
same category is high.

In order to impose the above restriction and keep high computing efficiency, for two
different pixels i and j, we only compute the loss when both of them locate within a local
window:

R =

{
(i, j)

∣∣∣∣ |ix − jx| ⩽ r and |iy − jy| ⩽ r

}
, (4.3)

where R is the effective pixel pair set. ix and jx represent the x-coordinate, iy and jy

represent the y-coordinate. r is the window size.
Then our proposed DFR loss is:

Ldfr =
1

hw

hw∑
i=1

∑
(i,j)∈R

[i ̸= j]φ(i, j), (4.4)

where φ(i, j) is the loss for pixels i and j, which follows the definition:

φ(i, j) =
∑
c∈C

∑
c′∈C

[c ̸= c′]K(i, j)P c(i)P c′(j)

= K(i, j)
∑
c∈C

P c(i) (1− P c(j))

= K(i, j)

(
1−

∑
c∈C

P c(i)P c(j)

)
,

(4.5)

where C is the class set, i.e., C = {c1, c2, ..., cN}. P c(i) and P c′(j) are the probabilities
for pixels i and j to be classified to class c and c′, respectively, which are provided by
the network (after softmax layer). K(i, j) is the regularized kernel, which is defined as a
Gaussian kernel:

K(i, j) = exp

(
−∥Si − Sj∥2

2σ2
1

− ∥Ii − Ij∥2

2σ2
2

− ∥Fi − Fj∥2

2σ2
3

)
, (4.6)

where || · ||2 is the L2 distance. Si and Sj correspond to the pixel positions for pixel i and
j. Ii and Ij are the RGB information of pixel i and j. Fi and Fj are the deep features of
pixels i and j from the feature consistency head.

The previous regularized loss functions [10, 12, 39] only adopt the position and RGB
information to compute the kernel. However, both position and RGB information in
Eq. (4.6) are static, once the two types of features fail to correctly describe the true re-
lationship of a pixel pair, the network will be optimized towards an inaccurate direction,
and such a problem cannot be addressed during the whole training period.

Different from the previous approaches, we introduce the dynamic deep feature, which
is provided by the feature consistency head (as described in Sect. 4.2.3), to compute the
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regularized kernel. Note that when using deep features to compute the regularized ker-
nel, they are regarded as non-gradient values. Through introducing dynamic feature to
compute regularized kernel, on one hand, more comprehensive representation for pixel
relationship is provided. On the other hand, dynamic features allow the network to cor-
rect its previous results. The remaining task is how to guarantee deep features accurately
representing the relationship of different pixels, which is addressed in Sect. 4.2.3.

4.2.3 Feature Consistency Head

In order to provide correct relationship for deep features of different pixels, we design
a feature consistency head. Our motivation is that for two pixels i and j, if they belong
to the same class, their features should have high similarity. If they belong to different
classes, the similarity of their features should be low.

Based on above analysis, we need to provide supervision for the feature relationship.
We select the predicted labels with highly confident scores from the semantic segmenta-
tion head as supervision:

M(i) =

argmax
c∈C

(P c(i)), max
c∈C

(P c(i)) > γ

255, else
, (4.7)

where M(i) is the semantic label for pixel i, 255 means that it is not annotated to any
class. P c(i) is the predicted probability for class c.

Then the supervision is converted to the pair-wise pixel relationship. Following the
operation in Sect. 4.2.2, we use the same local window to restrict the computing region.
Considering that some pixels are not annotated, so the effective pixel pairs are:

RA = {(i, j)|M(i) ̸= 255 and M(j) ̸= 255

and (i, j) ∈ R} ,
(4.8)

where RA is the effective pixel pair set. R is the set defined in Eq. (4.3). After that, the
supervision M is converted to the pair-wise pixel relationship label:

A(i, j) =


1, (i, j) ∈ RA and M(i) = M(j)

0, (i, j) ∈ RA and M(i) ̸= M(j)

255, else

. (4.9)

Eq. (4.9) indicates that when pixels i and j belong to the same class, they have strong
relationship (set as 1). If they belong to different classes, they should have weak relation-
ship (set as 0). 255 means the pixel pair is ignored. In order to utilize such supervision,
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we compute the feature distance as the feature relationship for the pixel pair in RA:

D(i, j) = exp

(
−||Fi − Fj||

d

)
, (4.10)

where || · || is L1 distance. d is the channel dimension of the feature map. Both Fi and Fj

are the final features of pixels i and j from the feature consistency head.

Finally, the feature distance loss is:

Lfd =− 1

|A+
bg|

∑
(i,j)∈A+

bg

A(i, j)log(D(i, j))

− 1

|A+
fg|

∑
(i,j)∈A+

fg

A(i, j)log(D(i, j))

− 2

|A−|
∑

(i,j)∈A−

(1− A(i, j))log(1−D(i, j)),

(4.11)

where A+
bg is the pixel pair set that A(i, j) = 1 and the label of i and j is background. A+

fg

is the pixel pair set that A(i, j) = 1 and the label of i and j is foreground. A− corresponds
to the pixel pair set that A(i, j) = 0. | · | indicates the number of elements in a set.

Following the same strategy in our semantic segmentation head, we also introduce fea-
ture regularized loss since the supervision only provide limited annotations. The feature
regularized loss is defined as:

Lfr =
1

hw

hw∑
i=1

∑
(i,j)∈RA

[i ̸= j]Kf(i, j)

(
||Fi − Fj||

d

)
, (4.12)

where Kf(i, j) have the similar formation with Eq. (4.6):

Kf(i, j) = exp

(
−∥Si − Sj∥2

2σ2
1

− ∥Ii − Ij∥2

2σ2
2

)
. (4.13)

From Sect. 4.2.2 and Sect. 4.2.3, it can be found that both the semantic segmentation
and feature consistency heads receive the online updated information. Specifically, the
semantic segmentation head receives the dynamically updated feature from the feature
consistency head, while the feature consistency head receives the updated supervision
from the semantic segmentation head. On one hand, better supervision enables the feature
consistency head to provide more accurate feature relationship. On the other hand, more
accurate feature relationship facilitates to produce better semantic segmentation. Thus,
we argue that with such an interaction mechanism two heads benefit from each other and
the final performance is boosted accordingly.
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Fig. 4.2: Details of the backbone and the feature fusion process. To fuse features from
all stages, we use the same architecture with Swin-transformer [64] and UperNet [107],
both of which use Pyramid Pooling Module (PPM) [7] and Feature Pyramid Network
(PPN) [121] to fuse feature maps.

4.3 Experiment

4.3.1 Datasets and Evaluation Metric

We evaluate our method on PASCAL VOC 2012 [109] and PASCAL CONTEXT [122]
dataset. For PASCAL VOC 2012 dataset, following the previous approaches [10, 12,
39, 40] in weakly supervised semantic segmentation, the augmented data SBD [111] is
also used and the whole dataset contains 10,582 images for training, 1,449 images for
validating and 1,456 images for testing with 20 foreground classes. For PASCAL CON-
TEXT dataset, it includes 4,998 images for training and 5,105 images for validating with
59 foreground categories. For the scribble annotation, we also follow the previous ap-
proaches [10, 12, 39, 40] to use the supervision provided by ScribbleSup [11]. Mean
Intersection over Union (mIoU) is adopted as the evaluation metric.

4.3.2 Implementation Details

Our approach mainly includes three network modules: the backbone, the semantic seg-
mentation head and the feature consistency head. For the backbone, we choose Swin-
Transformer-Base [64] (with UperNet head [107] to fuse the features from 4 stages). The
details can be found in Fig. 4.2. After passing the backbone and the feature fusion stage,
a fused feature map with a dimension of 2048 is generated. For the semantic segmenta-
tion head, we also use the same setting as in Swin-Transformer-Base [64], which uses the
scene head in [107]. For the feature consistency head, we utilize a 1 × 1 convolutional
layer followed by a ReLU function to produce the final feature, and the dimension d of
the feature in this head is set as 128. In Eq. (4.1), λ1, λ2 are set as 1× 10−2 and 1× 10−3,
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Table 4.1: Comparison with other state-of-the-art on PASCAL VOC 2012 dataset. Pub.:
Publication. Sup.: Supervision. F: Fully-supervised. B: bounding-box level supervision.
I: Image-level supervision. S: scribble-level. “ss” means single scale inference. “ms”
means multi-scale inference. Multi-scale inference is used without explicit indication.
“S.S.” means single stage training

Method Pub. Sup. Backbone S.S. CRF
mIoU(%)

val test

(1) Deeplab-v2 [99] TPAMI’18 F vgg16 ✓ ✓ 71.5 72.6

(2) DeepLab-v2 [99] TPAMI’18 F resnet101 ✓ ✓ 76.8 79.7

(3) Deeplab-v3+ [65] ECCV’18 F resnet18 ✓ - 76.7 -

(4) SegSort [8] ICCV’19 F resnet101 ✓ - 77.3 -

(5) Tree-FCN [9] NeurIPS’19 F resnet101 ✓ - 82.3 -

(6) Swin-Base (ss) [64]* - F transformer ✓ - 82.9 82.9

(7) Swin-Base (ms) [64]* - F transformer ✓ - 84.6 84.4

ScribbleSup [11] CVPR’16 S (1) - ✓ 63.1 -

RAWKS [105] CVPR’17 S resnet101 ✓ ✓ 61.4 -

NormalizedCut [10] CVPR’18 S (2) - ✓ 74.5 -

GraphNet [1] ACMM’18 S (2) - ✓ 73.0 -

KernelCut+CRF [12] ECCV’18 S (2) - ✓ 75.0 -

GatedCRF [39] NeurIPS’19 S (3) ✓ - 75.5 -

BPG+CRF [42] IJCAI’19 S (2) ✓ ✓ 76.0 -

SPML+CRF [40] ICLR’21 S (4) - ✓ 76.1 -

A2GNN [62] TPAMI’21 S (5) - ✓ 76.2 76.1

DFR-ours (ss) - S (6) ✓ - 81.5 82.1

DFR-ours (ms) - S (7) ✓ - 82.8 82.9
* Reproduced by ourselves.
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respectively. The window size for Eq. (4.3) and Eq. (4.8) is set as 5. γ in Eq. (4.7) is 0.98.
σ1 and σ2 are shared for Eq. (4.6) and Eq. (4.13). σ1, σ2 and σ3 are set as 6, 0.5 and 50,
respectively. Note that the RGB is normalized before inputting to the network to compute
the kernel.

We use the weights pretrained on ImageNet-22K [123] to initialize the model of Swin-
Transformer-Base [64]. AdamW [108] is used as the optimizer with an initial learning
rate of 3 × 10−5 and weight decay of 0.01. Models are trained on 8 Nvidia Tesla V100
GPUs with batch size of 16 for 40K iterations. During training, we adopt the default
settings in mmseg [124], including random flipping, random rescaling (range is [0.5, 2.0])
and random photometric distortion. The input size is 512 × 512. During inference, the
feature consistency head is not used and multi-scale strategy is used with resolution ra-
tios of {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}. Other settings follow that in Swin-Transformer-
Base [64].

4.3.3 Comparison with State-of-the-Art

In Table 4.1, we compare our approach with other approaches on PASCAL VOC 2012
dataset. It can be seen that our approach significantly outperforms other approaches.
Specifically, A2GNN [62] achieves 76.2% mIoU with dense CRF [60] as post-processing,
while we achieve 82.8% mIoU without using CRF, which brings 6.6% mIoU gain. Note
that A2GNN [62] is a multi-stages method which uses more than three individual net-
works during training, while our approach is a single-stage method. Besides, for the
single-stage method, BPG [42] achieves the best performance, but it used extra dataset
(HED contour detector [43], pretrained on BSDS500 dataset [41]) to provide edge super-
vision. We do not rely on any extra dataset and outperform it by 9.6% mIoU without CRF
(82.8% v.s. 73.2%). SPML used the same extra dataset as BPG [42] with multi-round
training process, and we also significantly outperform it (82.8% v.s. 76.1%). More impor-
tantly, our approach reaches 98.3% of the upper-bound performance (the fully-supervised
case for the single scale setting), showing its effectiveness for this task. It can also be
found that using multi-scale strategy brings 1.3% mIoU increase. For the test set, our
approach outperforms A2GNN with a clear gain of 6.8%. Generally, without using any
extra-dataset and post-processing, our approach outperforms other approaches by a large
margin through single-stage training.

In Table 4.2, we report the per-class results on PASCAL VOC 2012 val set. It can be
seen that our approach generates new state-of-the-art performances for each class. Note
that we do not use dense CRF while the other reported approaches use dense CRF as
post-processing.

In Fig. 4.3, segmentation performance comparisons with different scribble lengths
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Fig. 4.3: Comparison with other state-of-the-art approaches on PASCAL VOC 2012 val
set for different scribble lengths. “ration 1.0” means that we use the original length pro-
vided by the dataset. A smaller ratio value means that we use fewer annotated pixels as
supervision.

are reported. Our approach consistently outperforms other approaches using different
scribble lengths. Even only provided with 30% of original scribble length, our approach
still obtains an mIoU of 80.0%.

In Table 4.3, we compare our approach with others on the PASCAL CONTEXT
dataset, it can be seen that our approach also achieves a new state-of-the-art performance,
with an mIoU gain of 12.7%.

In Fig. 4.4, we show qualitative comparisons between our approach and the previ-
ous state-of-the-art approaches. It can be seen that our approach keeps more details with

Table 4.2: Per-class comparison between our approach and others on PASCAL VOC 2012
val set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

KernelCut [12] - 86.2 37.3 85.5 69.4 77.8 91.7 85.1 91.2 38.8 85.1 55.5 85.6 85.8 81.7 84.1 61.4 84.3 43.1 81.4 74.2 75.0

BPG [42] 93.4 84.8 38.4 84.6 65.5 78.8 91.4 85.9 89.5 41.0 87.3 58.3 84.1 85.2 83.7 83.6 64.9 88.3 46.0 86.3 73.9 76.0

SPML [40] - 89.0 38.4 86.0 72.6 77.9 90.0 83.9 91.0 40.0 88.3 57.7 87.7 82.8 79.1 86.5 57.1 87.4 50.5 81.2 76.9 76.1

DFR-ours (ss) 95.0 90.8 39.0 89.8 76.4 82.9 93.8 87.3 94.9 49.4 92.7 66.2 90.9 89.9 86.8 87.8 71.8 90.4 64.0 92.4 79.4 81.5
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Table 4.3: Comparison with other state-of-the-art on PASCAL CONTEXT dataset.

Method Pub. Sup. CRF mIoU (%)

ScribbleSup [11] CVPR’16 S ✓ 36.1

RAWKS [105] CVPR’17 S ✓ 37.4

GraphNet [1] ACMM’18 S - 33.9

GraphNet+CRF [1] ACMM’18 S ✓ 40.2

DFR-ours (ss) - S - 50.9

DFR-ours (ms) - S - 52.9

(a)

(b)

(c)

(d)

Fig. 4.4: Qualitative comparison between our method and other state-of-the-art ap-
proaches on PASCAL VOC 2012 val dataset. (a) Original image (b) Ground-truth (c)
Results of A2GNN [62] with dense CRF [60] as post-processing (d) Our results.

refined boundaries. Even for complicated cases, our approach still obtains accurate seg-
mentation results.

4.3.4 Ablation Studies

In this section, we conduct our ablation studies on PASCAL VOC 2012 val dataset, and
we use the single scale results.

Table. 4.6 reports the results on applying different elements to compute the regularized
kernel. By adding the deep feature, the final performance increases to 81.5%, being 0.7%
higher than only using static information (80.8%), which proves the effectiveness of the
dynamic deep feature. It can also be found that RGB is an essential element, without it,
the performance drops rapidly (from 80.8% to 72.8%). Nevertheless, it can also be found
that adopting deep feature over spatial position can also improve the performance, with
an mIoU increase of 2.1%. Note that when deep feature is not used in Ldfr (Eq. (4.6)), we
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Table 4.4: Ablation study about the influence of the selected share feature for both seman-
tic segmentation head and feature consistency head on PASCAL VOC 2012 val dataset.
“Block” is shown in Fig. 4.2.

Feature
mIoU (%)

Block-1 Block-2 Block-3 Block-4

✓ 81.1

✓ 81.1

✓ 81.3

✓ 81.3

✓ ✓ 81.2

✓ ✓ 80.9

✓ ✓ ✓ 80.8

✓ ✓ ✓ 80.5

✓ ✓ ✓ ✓ 81.5

simply remove the full feature consistency head.

In Table 4.5, we evaluate the influence of the loss functions. It can be seen that without
using any loss of the feature consistency head, our proposed regularized loss brings 12.1%
mIoU increase (81.0% v.s. 68.9%). Using our feature consistency head further improves
the final performance, with 0.5% mIoU growth. Besides, it can also be found that two loss
functions of the feature consistency head are both useful to improve the final performance.

In Table. 4.7, we explore the influence of different supervision for the feature consis-
tency head. It can be found that if only the ground truth scribble annotations are used as
supervision, the performance is limited (only 80.6%) since the ground truth can only pro-
vide limited annotations (about 3% pixels are labeled), thus a local window will receive
very few negative labels, which is insufficient for the feature distance loss Lfd. Besides,
using the confident prediction (M defined in Eq. (4.7)) from the semantic segmentation
head performs better than using both ground truth and M , with an mIoU gain of 0.4% .
This is because when the ground truth and M are merged, it is unavoidable to introduce
some incorrect pixel relationship. Specifically, there are some noisy labels in M , while
the labels in ground truth are all correct, thus it will lead to incorrect negative pixel pairs
as supervision, which is harmful for training.
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Table 4.5: Ablation study about the influence of the loss functions on PASCAL VOC
2012 val dataset.

Semantic Head Feature Head
mIoU (%)

Lce Ldfr Lfd Lfr

✓ 68.9

✓ ✓ 81.0

✓ ✓ ✓ 81.1

✓ ✓ ✓ ✓ 81.5

Table 4.6: Ablation study about the influence of the shallow feature and deep feature for
our regularized loss (Eq. (4.6)) on PASCAL VOC 2012 val dataset. “XY” is the spatial
position. “RGB” is the color information. “Feature” is the dynamic feature from the
feature consistency head.

Kernel
mIoU (%)

XY RGB Feature

✓ 72.8

✓ ✓ 80.8

✓ ✓ 74.9

✓ ✓ ✓ 81.5

It is interesting to notice that even the feature consistency head is not used, directly
using deep feature in Ldfr can improve the performance (81.0% in Table. 4.5 v.s. 80.8%
in Table. 4.6), which also proves the positive influence of the introduced deep feature.

Table. 4.4 shows the influence of the selected feature, which is a shared feature for
both the semantic segmentation head and the feature consistency head. It can be seen that
the obtained performance using the feature from each block individually is sightly limited.
Finally, using all features together generates the best performance. Considering that the
feature map from lower block contains more low-level information and the feature map
from the higher block contains more high-level information, using all of these features can
supply more comprehensive representations to build accurate relationship for different
pixels.
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Table 4.7: The influence of the supervision for the feature consistency head on PASCAL
VOC 2012 val dataset. “GT” means the provided scribble annotation. “M” is our selected
confident labels from the semantic segmentation head, defined in Eq. (4.7).

Supervision
mIoU (%)

GT M

✓ 80.6

✓ 81.5

✓ ✓ 81.1

4.4 Conclusion

In this chapter, we have proposed a dynamic feature regularized loss for weakly super-
vised semantic segmentation with scribble annotation. Our regularized loss makes full
use of the static shallow feature and dynamic deep feature to build the regularized kernel,
which is more accurate to describe relationship of different pixels. Meanwhile, in order
to provide more powerful deep features, we introduce vision transformer as the backbone
and design a feature consistency head to restrict the pair-wise pixel relationship under
the supervision of the prediction from the semantic segmentation head. We found that
both our regularized loss and the feature consistency head can benefit from each other
and lead to a better performance. Extensive experiments show that our approach achieves
new state-of-the-art performances with large margins. In the future, we plan to apply our
approach on other weakly supervised semantic segmentation tasks.
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Chapter 5

Self-guided and Cross-guided Learning
for Few-shot Segmentation

5.1 Motivation

As mentioned in Sect. 1.3, most approaches used masked GAP [27] or some more ad-
vanced methods such as FWB [28] to fuse all foreground or background features as a
single vector, which unavoidably loses some useful information, using such a feature vec-
tor to guide the segmentation cannot make a precise prediction for pixels which need the
lost information as support. Furthermore, for the multiple shot case, the common practice
is to use the average of predictions from multiple individual support images as the final
prediction [30] or the average of multiple support vectors as the final support vector [24].
However, the quality of different support images is different, using an average operation
forces all support images to share the same contribution.

In order to overcome the aforementioned drawbacks, we propose a simple yet effective
Self-Guided and Cross-Guided Learning approach (SCL). Specifically, we design a Self-
Guided Module (SGM) to extract comprehensive support information from the support
set. Through making an initial prediction for the annotated support image with the initial
prototype, the covered and uncovered foreground regions are encoded to the primary and
auxiliary support vectors using masked GAP, respectively. By aggregating both primary
and auxiliary support vectors, better segmentation performances are obtained on query
images.

Enlightened by our proposed SGM, we propose a Cross-Guided Module (CGM) for
multiple shot segmentation, where we can evaluate prediction quality from each support
image using other annotated support images, such that the high-quality support image
will contribute more in the final fusion, and vice versa. Compared to other complicated
approaches such as the attention mechanism [2, 73], our CGM does not need to re-train
the model, and directly applying it during inference can improve the final performance.
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In the following parts, we will introduce our approach in details.

This chapter includes our previous work “Self-Guided and Cross-Guided Learning for
Few-Shot Segmentation”, published in CVPR 2021 [77].

5.2 Problem Setting

The purpose of few-shot segmentation is to learn a segmentation model which can seg-
ment unseen objects provided with a few annotated images of the same class. We need to
train a segmentation model on a dataset Dtrain and evaluate on a dataset Dtest. Suppose the
classes set in Dtrain is Ctrain and the classes set in Dtest is Ctest, there is no overlap between
training set and test set, i.e., Ctrain ∩ Ctest = ∅.

Following the previous definition in [125], episodes are applied to both training set
Dtrain and test set Dtest to set a K-shot segmentation task. Each episode is composed of
a support set S and a query set Q for a specific class c. For one episode, the support set
contains K images and their masks, i.e., S = {(I is,M i

s)}
K
i=1, where I is represents the ith

image and M i
s indicates its binary mask for the class c. A query set contains N images

and their binary masks for the class c, i.e., Q =
{
(I iq,M

i
q)
}N
i=1

, where M i
q is only used for

training. For clear description, we use Strain and Qtrain to represent the training support set
and query set, while Stest and Qtest for the test set. A model is learned using the training
support set Strain and query set Qtrain. Then the model is evaluated on Dtest using the test
support set Stest and query set Qtest.

5.3 Methodology

5.3.1 Proposed Method

Fig. 5.1 shows our framework for 1-shot segmentation, which can be divided into the
following steps:

1) Both support and query images are input to the same encoder to generate their feature
maps. After that, an initial support vector is generated using masked GAP from all
foreground pixels of the support image.

2) With the supervision of the support image mask, our SGM produces two new feature
vectors including the primary and auxiliary support vectors, using the initial support
vector and support feature map as input.

3) In this step, the primary and auxiliary support vectors are concatenated with the query
feature map to guide the segmentation of query images. Through a query Feature
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Fig. 5.1: The framework of our SCL approach for 1-shot segmentation. We firstly use
an encoder to generate feature maps Fs and Fq from a support image and a query image,
respectively. Then masked GAP is used to generate the initial support vector vs. After
that, our proposed self-guided module (SGM) takes vs and Fs as input and output two new
support vectors vpri and vaux, which are then used as the support information to segment
the query image. Encoders for support and query images share the same weights.

Processing Module (FPM) and a decoder, the segmentation mask for the query image
is generated. Note that all encoders and decoders are shared.

5.3.2 Self-Guided Learning on Support Set

Self-Guided module (SGM) is proposed to provide comprehensive support information
to segment the query image. The details of our SGM can be found in Fig. 5.2.

Suppose the support image is Is, after passing through the encoder, its feature maps
is Fs. Then we use masked GAP to generate the initial support vector following previous
approaches [2, 30, 126]:

vs =

hw∑
i=1

Fs(i) · [Ms(i) = 1]

hw∑
i=1

[Ms(i) = 1]

, (5.1)

where i is the index of the spatial position. h and w are the height and width of the feature
map, respectively. [·] is Iverson bracket, which equals to 1 if the inside condition is true,
otherwise equals to 0. Ms is a binary mask and Ms(i) = 1 indicates the ith pixel belongs
to class c. Note that Ms needs to be downsampled to the same height and width as Fs.

Both Fs and vs are input to our proposed self-guided module (SGM). The initial fea-
ture vector vs is firstly duplicated and expanded to the same size with Fs following [3, 2],
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represented as Vs, which is then concatenated with Fs to generate a new feature map:

Fsv = Concat([Fs, Vs, Vs]), (5.2)

where Concat(·) is the concatenation operator.
Then, the probability map for the support image is generated after passing through the

support FPM and the decoder:

Ps1 = softmax(D(FPMs(Fsv))), (5.3)

where Ps1 is the predicted probability map, i.e., Ps1 ∈ Rh×w×2. D(·) means the decoder
and details can be found in Sec. 5.4.1. softmax is the softmax layer. FPMs(·) is the sup-
port FPM, as shown in Fig. 5.2. According to the requirements of different decoders,
we design two kinds of support FPMs: one for providing single-scale input to the de-
coder [2, 25] and the other one for providing multi-scale input to the decoder [3]. Note
that we use a residual block in single-scale support FPM while only use convolution op-
erator in multi-scale support FPM. This is for keeping consistent with the architecture
of the corresponding query FPM. For example, in single-scale approach such as [2, 25],
they adopted the residual block in query FPM while in multi-scale approach [3], only
convolution operator is adopted in the query FPM.

Then the predicted mask is generated from Ps1:

M̂s = argmax(Ps1), (5.4)

where M̂s is a binary mask, in which element 0 is the background and 1 is the indicator
for being class c.

Using the predicted mask M̂s and the ground-truth mask Ms, we can generate the
primary support vector vpri and the auxiliary support vector vaux:

vpri =

hw∑
i=1

Fs(i) · [Ms(i) = 1] · [M̂s(i) = 1]

hw∑
i=1

[Ms(i) = 1] · [M̂s(i) = 1]

, (5.5)

vaux =

hw∑
i=1

Fs(i) · [Ms(i) = 1] · [M̂s(i) ̸= 1]

hw∑
i=1

[Ms(i) = 1] · [M̂s(i) ̸= 1]

. (5.6)

In Eq. (5.5), [Ms(i) = 1] · [M̂s(i) = 1] indicates the correctly predicted foreground
mask using the initial support vector vs as support. In Eq. (5.6), [Ms(i) = 1] · [M̂s(i) ̸= 1]

indicates the missing foreground mask. From Eq. (5.5) and Eq. (5.6), it can be found that
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vpri keeps the main support information as it focuses on aggregating correctly predicted
information, vaux focuses on collecting the lost critical information which cannot be pre-
dicted using vs. Fig. 5.3 shows more examples about the masks to produce vpri and vaux.
It can be seen that vpri ignores some useful information unavoidably while vaux collect all
the lost information in vpri.

In order to guarantee vpri can collect most information from the support feature map,
a cross-entropy loss is used on Ps1 predicted in Eq. (5.3) :

Ls1
ce = − 1

hw

hw∑
i=1

∑
cj∈{0,1}

[Ms(i) = cj]log(P
cj
s1 (i)), (5.7)

where 0 is the background class and 1 is the indicator for a specific foreground class c.
P

cj
s1 (i) denotes the predicted probability belonging to class cj for pixel i.

Then we duplicate and expand vpri and vaux to the same height and width with Fs,
represented as V s

pri and V s
aux, respectively. Following previous process, Fs, V pri

s and V aux
s

are concatenated to generate a new feature map FA
s :

FA
s = Concat(

[
Fs, V

pri
s , V aux

s

]
). (5.8)

After that, the predicted probability map Ps2 is generated based on the new feature
map FA

s :
Ps2 = softmax(D(FPMs(F

A
s ))). (5.9)

Similar with Eq. (5.7), we use a cross-entropy loss to ensure aggregating vpri and vaux

together can produce accurate segmentation mask on the support image:

Ls2
ce = − 1

hw

hw∑
i=1

∑
cj∈{0,1}

[Ms(i) = cj]log(P
cj
s2 (i)). (5.10)

We only use foreground pixels to produce support vectors since background is more
complicated than the foreground. Therefore, we cannot guarantee the support vector from
background is far away from that of the foreground.

5.3.3 Training on Query Set

Using our proposed SGM, we generate the primary support vector vpri and auxiliary sup-
port vector vaux, where vpri contains the primary information of support image and vaux

collects the lost information in vpri.
Using the same encoder with Is, we also generate the query feature map Fq, then vpri

and vaux are duplicated and expanded to the same height and width as Fq, both of which
are then concatenated with Fq to generate a new feature map:

FA
q = Concat(

[
Fq, V

pri
q , V aux

q

]
), (5.11)
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(a)

(b)

(c)

(d)

Fig. 5.3: Visualization of the masks for generating vpri and vaux. (a) original images.
(b) ground-truth (masks for generating vs). (c) masks for generating vpri. (d) masks for
generating vaux. In most cases, vpri aggregates the main information of the support image
and vaux mainly collects edge information. In some special cases (the last two columns),
vpri loses some body information and vaux encodes all the lost information.

where Fq is the feature map of query image Iq, which is generated using the same encoder
with the support image Is. V pri

q and V aux
q correspond to expanded results of vpri and vaux,

respectively.
Then FA

q is input to a query FPM followed by a decoder to obtain the final prediction:

Pq = softmax(D(FPMq(F
A
q ))), (5.12)

where FPMq(·) is the query FPM. Pq is the predicted probability map. (More details about
the query FPM and decoder can be found in Sec. 5.4.1.)

We use a cross-entropy loss to supervise the segmentation of the query image:

Lq
ce = − 1

hw

hw∑
i=1

∑
cj∈{0,1}

[Mq(i) = cj]log(P
cj
q (i)), (5.13)

where P
cj
q (i) denotes the predicted probability belonging to class cj for pixel i.

The overall training loss is defined as:

L = Ls1
ce + Ls2

ce + Lq
ce, (5.14)

where Ls1
ce , Ls2

ce are the loss functions defined by Eq.(5.7) and Eq.(5.10) in Sec. 5.3.2.
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5.3.4 Cross-Guided Multiple Shot Learning

Enlightened by our SGM for 1-shot segmentation, we extend it to Cross-Guided Module
(CGM) for the K-shot (K > 1) segmentation task. Among the K support images, each
annotated support image can guide the query image segmentation individually. Based on
this principle, we design our CGM where the final mask is fused using predictions from
multiple annotated samples with high-quality support images contributing more and vice
versa.

For K-shot segmentation task, there are K support images in one episode, i.e., the
support set S =

{
(I1s ,M

1
s ), (I

2
s ,M

2
s ), ..., (I

K
s ,MK

s )
}

. For the kth support image Iks , we
can firstly use it as the support image and all K support images as query images to input
to our proposed 1-shot segmentation model G. The predicted mask for the ith support
image I is is:

M̂ i|k
s = argmax(G(I is|Iks )), (5.15)

where M̂
i|k
s is the predicted mask of I is under the support of Iks . G(I is|Iks ) outputs the

predicted score map of I is using Iks as the support image and I is as the query image.
The ground-truth mask M i

s for image I is is available. Thus, we can evaluate the con-
fident score of Iks based on the IOU between the predicted masks and their ground-truth
masks:

Uk
s =

1

K

K∑
i=1

IOU(M̂ i|k
s ,M i

s), (5.16)

where IOU(·, ·) is used to compute the intersection over union score. Then the final
predicted score map for an given query image Iq is:

P̂q = softmax(
1

K

K∑
k=1

Uk
s G(Iq|Iks )). (5.17)

A support image with a larger Uk
s makes more contribution to the final prediction, and

the generated support vector is more likely to provide sufficient information to segment
query images, and vice versa.

Using CGM does not need to re-train a new model, and we can directly use the seg-
mentation model from 1-shot task to make predictions. Thus, CGM can improve the
performance during inference without re-training.

5.4 Experiments

5.4.1 Implementation Details

Our SCL approach can be easily integrated into many existing few-shot segmentation ap-
proaches, and the effectiveness of our approach is evaluated using two baselines: CANet [2]

90



Ta
bl

e
5.

1:
C

om
pa

ri
so

n
w

ith
ot

he
r

st
at

e-
of

-t
he

-a
rt

s
us

in
g

m
Io

U
(%

)
as

ev
al

ua
tio

n
m

et
ri

c
on

Pa
sc

al
-5

i
fo

r
1-

sh
ot

an
d

5-
sh

ot
se

gm
en

ta
tio

n.
“P

.”
m

ea
ns

Pa
sc

al
.“

ou
rs

-S
C

L
(C

A
N

et
)”

an
d

“o
ur

s-
SC

L
(P

FE
N

et
)”

m
ea

ns
C

A
N

et
[2

]a
nd

PF
E

N
et

[3
]a

re
ap

pl
ie

d
as

ba
se

lin
es

,r
es

pe
ct

iv
el

y.

M
et

ho
d

B
ac

kb
on

e
1-

sh
ot

5-
sh

ot

P.
-5

0
P.

-5
1

P.
-5

2
P.

-5
3

M
ea

n
P.

-5
0

P.
-5

1
P.

-5
2

P.
-5

3
M

ea
n

O
SL

SM
(B

M
V

C
’1

7)
[1

25
]

vg
g1

6
33

.6
55

.3
40

.9
33

.5
40

.8
35

.9
58

.1
42

.7
39

.1
44

.0

SG
-O

ne
[3

0]
vg

g1
6

40
.2

58
.4

48
.4

38
.4

46
.3

41
.9

58
.6

48
.6

39
.4

47
.1

PA
N

et
(I

C
C

V
’1

9)
[2

4]
vg

g1
6

42
.3

58
.0

51
.1

41
.2

48
.1

51
.8

64
.6

59
.8

46
.5

55
.7

PG
N

et
(I

C
C

V
’1

9)
[7

3]
re

sn
et

50
56

.0
66

.9
50

.6
50

.4
56

.0
57

.7
68

.7
52

.9
54

.6
58

.5

C
R

N
et

(C
V

PR
’2

0)
[2

9]
re

sn
et

50
-

-
-

-
55

.7
-

-
-

-
58

.8

R
PM

M
s

(E
C

C
V

’2
0)

[1
27

]
re

sn
et

50
55

.2
65

.9
52

.6
50

.7
56

.3
56

.3
67

.3
54

.5
51

.0
57

.3

FW
B

(I
C

C
V

’1
9)

[2
8]

re
sn

et
10

1
51

.3
64

.5
56

.7
52

.2
56

.2
54

.8
67

.4
62

.2
55

.3
59

.9

PP
N

et
* (E

C
C

V
’2

0)
[2

3]
re

sn
et

50
47

.8
58

.8
53

.8
45

.6
51

.5
58

.4
67

.8
64

.9
56

.7
62

.0

D
A

N
(E

C
C

V
’2

0)
[1

28
]

re
sn

et
10

1
54

.7
68

.6
57

.8
51

.6
58

.2
57

.9
69

.0
60

.1
54

.9
60

.5

C
A

N
et

(C
V

PR
’1

9)
[2

]
re

sn
et

50
52

.5
65

.9
51

.3
51

.9
55

.4
55

.5
67

.8
51

.9
53

.2
57

.1

PF
E

N
et

(T
PA

M
I’

20
)[

3]
re

sn
et

50
61

.7
69

.5
55

.4
56

.3
60

.8
63

.1
70

.7
55

.8
57

.9
61

.9

ou
rs

-S
C

L
(C

A
N

et
)

re
sn

et
50

56
.8

67
.3

53
.5

52
.5

57
.5

59
.5

68
.5

54
.9

53
.7

59
.2

ou
rs

-S
C

L
(P

FE
N

et
)

re
sn

et
50

63
.0

70
.0

56
.5

57
.7

61
.8

64
.5

70
.9

57
.3

58
.7

62
.9

*
W

e
re

po
rt

th
e

pe
rf

or
m

an
ce

w
ith

ou
te

xt
ra

un
la

be
le

d
su

pp
or

td
at

a.

91



and PFENet [3], both of which use masked GAP to generate one support vector for a sup-
port image. All decoders in our SGM share the same weights with the decoder in the
baseline.

We use single-scale support FPM in our SGM when using CANet [2] as the baseline
since its decoder adopted single-scale architecture. Besides, the query FPM in CANet [2]
used the probability map Pq(t−1) from the previous iteration in the cache to refine the
prediction. Fig. 5.4 shows details of the query FPM and decoder in CANet [2].

𝐹𝑞
𝐴

ℎ × 𝑤 × 3𝑑

conv conv

conv

𝑃𝑞(𝑡−1)

query FPM

𝐹𝑞
𝐴

pooling

…

conv

conv

…

conv

𝑃𝑞(𝑡)

Residual 
operator*2

Decoder

ASPP Module

ℎ × 𝑤 × 𝑑
ℎ × 𝑤 × 2

ℎ × 𝑤 × (𝑑 + 2)

Fig. 5.4: Architecture of the query FPM and decoder in CANet [2]. CANet used the
predicted probability map Pq(t−1) from the previous iteration in its query FPM, and its
decoder adopts single-scale residual layers following an ASPP module [6].

We use multi-scale support FPM in our SGM when using PFENet [3] as the base-
line since its decoder adopted a multi-scale architecture. Additionally, the query FPM
in PFENet [3] used a prior mask from the pre-trained model on ImageNet [129] as extra
support, as shown in Fig. 5.5. Note that none of Pq(t−1) or the prior mask is used in the
support FPM in our SGM.

All training settings are the same as that in CANet [2] or PFENet [3]. The channel
size d in Fig. 5.1 and Fig. 5.2 is set to 256. The batch size is 4 with 200 epochs used. The
learning rate is 2.5×10-4 and weight decay is 5×10-4 if CANet [2] is the baseline. The
learning rate is 2.5×10-3 and weight decay is 1×10-4 if PFENet [3] is the baseline.

During inference for the 1-shot task, we follow the same settings as in CANet [2] or
PFENet [3]. For 5-shot segmentation, we directly use the segmentation model trained on
1-shot task. Following [24], we average the results from 5 runs with different random
seeds as the final performance. All experiments are run on Nvidia RTX 2080Ti.

5.4.2 Dataset and Evaluation Metric

We evaluate our approach on PASCAL-5i and COCO-20i dataset. PASCAL-5i is pro-
posed in OSLSM [125], which is built based on PASCAL VOC 2012 [82] and SBD
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𝐹𝑞
𝐴

ℎ × 𝑤 × 3𝑑

Average 
pooling

conv

conv

conv

conv

Resize

M

M

M

conv conv conv

Downsample

Downsample

Downsample

C

prior mask

conv conv conv

C conv conv

operator M

C

element-wise addition

concatenation

Query FMP Decoder

h×𝑤 × 4𝑑 h×𝑤 × 𝑑 ℎ × 𝑤 × 2

Downsample

ℎ × 𝑤 × 1

Fig. 5.5: Architecture of the multi-scale query Feature Processing Module (FPM) and
decoder in PFENet [3]. PFENet [3] used a prior mask which is generated from the pre-
trained model on ImageNet [129] in its query FPM. The height (the width shares the same
size) of the feature map after the average pooling is set as {60, 30, 15, 8}.

dataset [112]. COCO-20i is proposed in FWB [28], which is built based on MS-COCO [110]
dataset.

In PASCAL-5i, 20 classes are divided into 4 splits, in which 3 splits for training and 1
for evaluation. During evaluation, 1000 support-query pairs are randomly sampled from
the evaluation set. For more details, please refer to OSLSM [125]. In COCO-20i , the only
difference with PASCAL-5i is that it divides 80 classes to 4 splits. For more details, please
refer to FWB [28]. For PASCAL-5i, we evaluate our approach using both CANet [2] and
PFENet [3] as baselines. For COCO-20i, we evaluate our approach based on PFENet [3].

Following [24], mean intersection-over-union (mIoU) and foreground-background
intersection-over-union (FB-IoU) are used as evaluation metrics.

5.4.3 Comparisons with State-of-the-art

In Table 5.1, we compare our approach with other state-of-the-art approaches on PASCAL-
5i. It can be seen that our approach achieves new state-of-the-art performances on both
1-shot and 5-shot tasks. Additionally, our approach significantly improves the perfor-
mances of two baselines on 1-shot segmentation task, with mIoU increases of 2.1% and
1.0% for CANet [2] and PFENet [3], respectively. For the 5-shot segmentation task, our
approach achieves 59.2% and 62.9% mIoU using CANet [2] and PFENet [3], respectively,
both of which are direct improvement without re-training the model.

In Table 5.2 and Table 5.3, we compare our approach with others on the COCO-20i

dataset. Our approach outperforms other approaches by a large margin, with mIoU gain
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Table 5.2: Comparison with other state-of-the-arts using mIoU (%) as evaluation met-
ric on COCO-20i for 1-shot. “C.” means COCO-20. “ours-SCL (PFENet)” means
PFENet [3] is applied as the baseline.

Method Backbone
1-shot

C.0 C.1 C.2 C.3 Mean

FWB (ICCV’19) [28] resnet101 19.9 18.0 21.0 28.9 21.2

PPNet (ECCV’20) [23] resnet50 28.1 30.8 29.5 27.7 29.0

DAN (ECCV’20) [128] resnet101 - - - - 24.4

PFENet (TPAMI’20) [3] resnet101 34.3 33.0 32.3 30.1 32.4

ours-SCL (PFENet) resnet101 36.4 38.6 37.5 35.4 37.0

of 4.6% and 1.4% for 1-shot and 5-shot tasks, respectively.

Table 5.4 shows FB-IoU results between ours and other state-of-the-art methods on
COCO-20i. It can be seen that using our approach achieves new state-of-the-art perfor-
mance. Compared to the baseline, our approach obtain a large gain of 3.3% and 1.8%
FB-IoU for 1-shot and 5-shot segmentation, respectively.

In Table 5.5, we make a comparison between ours and other approaches on COCO
(2017)-20i. The difference between COCO (2017)-20i and COCO-20i is that COCO-20i

is built based on MS-COCO 2014 [110] while COCO (2017)-20i is built based on MS-
COCO 2017. It can be seen that compared to the state-of-the-art method RPMMs [127],
our approach obtains a mIoU gain of 1.9% and 0.3% for 1-shot and 5-shot segmentation,
respectively. Note that RPMMs [127] also adopted CANet [2] as its baseline.

In Table 5.6, we show the influence of using the multi-scale method during inference,
it can be seen that using our method can improve the performance with or without using
multi-scale. Besides, it can also be found that the improvement is more obvious for single
scale inference.

In Fig. 5.6, we report more qualitative results using CANet [2] as the baseline on
Pascal-5i. It can be seen that our approach produces integral segmentation masks covering
object details.

In Fig. 5.7, we report some qualitative results generated by our approach using PFENet [3]
as the baseline. It can be seen that our approach produces integral segmentation masks
covering object details. More experimental and qualitative results can be found in our
supplement material.

In Fig. 5.8, we report the 5-shot results using PFENet [3] as the baseline on Pascal-5i.
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(a)

(b)

(c)

(d)

Fig. 5.6: Qualitative results of our proposed approach using CANet [2] as the baseline on
Pascal-5i. (a) Support images for the 1-shot task and their masks. (b) Query images and
their ground-truth. (c) ours-SCL (CANet) 1-shot results. (d) ours-SCL (CANet) 5-shot
results.

(a)

(b)

(c)

(d)

(e)

Fig. 5.7: Qualitative results of our approach on Pascal-5i. (a) Support images for the 1-
shot task and their masks. (b) Query images and their ground-truth. (c) PFENet [3] 1-shot
results. (d) Ours-SCL (PFENet) 1-shot results. (e) Ours-SCL (PFENet) 5-shot results.

95



Table 5.3: Comparison with other state-of-the-arts using mIoU (%) as evaluation metric
on COCO-20i 5-shot segmentation. “C.” means COCO-20. “ours-SCL (PFENet)” means
PFENet [3] is applied as the baseline.

Method Backbone
5-shot

C.0 C.1 C.2 C.3 Mean

FWB (ICCV’19) [28] resnet101 19.1 21.5 23.9 30.1 23.7

PPNet (ECCV’20) [23] resnet50 39.0 40.8 37.1 37.3 38.5

DAN (ECCV’20) [128] resnet101 - - - - 29.6

PFENet (TPAMI’20) [3] resnet101 38.5 38.6 38.2 34.3 37.4

ours-SCL (PFENet) resnet101 38.9 40.5 41.5 38.7 39.9

Table 5.4: Comparison with other state-of-the-art methods using FB-IoU (%) on COCO-
20i for 1-shot and 5-shot segmentation.

Method Backbone
FB-IoU (%)

1-shot 5-shot

PANet (ICCV’19) [24] vgg16 59.2 63.5

A-MCG (AAAI’19) [68] resnet101 52.0 54.7

PFENet (TPAMI’20) [3] resnet101 58.6 61.9

ours-SCL (PFENet) resnet101 61.9 63.7

It can be seen that our approach produces integral segmentation masks covering object
details.

In Fig. 5.9, we report more qualitative results using PFENet [3] as the baseline on
COCO-20i. It can be seen that our approach retains integral object details for both large
and small objects.

5.4.4 Ablation Study

In this section, we conduct ablation studies on PASCAL-5i using CANet [2] as the base-
line and all results are average mIoU across 4 splits.

We firstly conduct an ablation study to show the influence of our proposed SGM and
CGM in Table 5.7. For 1-shot, compared with the baseline, using SGM improves the
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(b)

(c)

(a)

Fig. 5.8: Qualitative results of our proposed approach using PFENet [3] as the baseline on
Pascal-5i. (a) Query images and their ground-truth. (b) PFENet [3] 5-shot segmentation.
(c) ours-SCL (PFENet) 5-shot results.

(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 5.9: Qualitative results of our proposed approach using PFENet [3] as the baseline on
COCO-20i. (a) Support images for the 1-shot task and their masks. (b) Query images and
their ground-truth. (c) ours-SCL (PFENet) 1-shot results. (d) ours-SCL (PFENet) 5-shot
results.
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Table 5.5: Comparison with other state-of-the-art methods using mIoU (%) on COCO
(2017)-20i for 1-shot and 5-shot segmentation.

Method Backbone
mIoU (%)

1-shot 5-shot

CANet (CVPR’19) [2] resnet50 - -

RPMMs (ECCV’20) [127] resnet50 30.6 35.5

ours-SCL (CANet) resnet50 32.5 35.8

Table 5.6: Comparison with the baseline (CANet [2]) about multi-scale inference on
Pascal-5i. MS: multi-scale inference.

Method MS
mIoU (%)

1-shot 5-shot

CANet (CVPR’19) [2] - 54.0 55.8

CANet (CVPR’19) [2] ✓ 55.4 57.1

ours-SCL (CANet) - 56.3 58.2

ours-SCL (CANet) ✓ 57.5 59.2

performance by a large margin, being 2.1% and 4.1% for mIoU and FB-IoU, respectively.
For 5-shot, using both SGM and CGM together obtains a 59.2% mIoU score, which
is 3.3% higher compared to the baseline with the average method. Compared with the
average method, our CGM directly increases the mIoU score by 0.5% when SGM is
adopted. It is worth to notice that our CGM does not need to re-train the model and the
gain is obtained in the inference stage.

Table 5.9: Ablation study of loss functions in the SGM on PASCAL-5i for 1-shot segmen-
tation. Ls1

ce means the loss function in Eq. (5.7). Ls2
ce means the loss function in Eq. (5.10).

Ls1
ce Ls2

ce mIoU (%) FB-IoU (%)

✓ 55.6 67.3

✓ 56.8 69.6

✓ ✓ 57.5 70.3
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Table 5.7: Ablation study of our proposed SGM and CGM on PASCAL-5i for both 1-
shot and 5-shot segmentation. “Avg.” means we use the average score of predictions from
multiple support images. “base.” means the baseline, which only uses the initial support
vector without Ls1

ce .

shot base. SGM Avg. CGM mIoU FB-IoU

1 ✓ - - 55.4 66.2

1 ✓ ✓ - - 57.5 70.3

5 ✓ ✓ 55.9 66.7

5 ✓ ✓ 56.9 69.7

5 ✓ ✓ ✓ 58.7 70.3

5 ✓ ✓ ✓ 59.2 70.7

Table 5.8 shows the influence of the support vectors on the proposed SGM for 1-shot
segmentation. If only vs is adopted, the mIoU and FB-IoU scores are 55.6% and 67.3%
respectively. Using SGM (with both vpri and vaux) achieves 57.5% and 70.3% on mIoU
and FB-IoU, with a significant gain of 1.9% and 3.0% on mIoU and FB-IoU, respectively.
Besides, It can also be seen that when using vpri and vaux individually, it only achieves
56.6% and 51.4% on mIoU, both of which are much lower than using them jointly. Solely
using vaux even performs worse than the baseline (only using vs). Furthermore, we also
evaluate the performance when using all support vectors (vs, vpri and vaux) together, it can
be seen that it does not improve the results, which also proves that vpri and vaux already
provide sufficient information as support, demonstrating the effectiveness of our SGM.
Note that when using all support vectors, channels of FA

q should be increased to 4d.

Table 5.9 studies the influence of loss functions Ls1
ce and Ls2

ce in SGM. Using both Ls1
ce

and Ls2
ce significantly outperforms the baseline. If only Ls1

ce is adopted without Ls2
ce , the

obtained mIoU score is 55.6%, being 1.9% lower than using both loss functions together.
This is because Ls2

ce provides one more step of training by treating the support image as
query image, where both support vectors vpri and vaux are deployed. Similarly, if only
Ls2

ce is adopted without Ls1
ce , the obtained performance is also lower than using both loss

functions together. This is because using Ls1
ce can ensure primary support vector vpri focus

on extracting the main information while vaux focus on the lost information. Without Ls1
ce ,

the roles of vpri and vaux get mixed and vague.
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Table 5.8: Ablation study of the support vectors in our proposed SGM on PASCAL-5i for
1-shot segmentation. vs, vpri and vaux are initial, primary and auxiliary feature vectors
generated by our SGM, respectively. Note that Ls1

ce is used for vs.

vs vpri vaux mIoU (%) FB-IoU (%)

✓ 55.6 67.3

✓ 56.6 69.5

✓ 51.4 65.2

✓ ✓ ✓ 57.1 69.9

✓ ✓ 57.5 70.3

5.5 Conclusion

We propose a self-guided learning approach for few-shot segmentation. Our approach en-
ables to extract comprehensive support information using our proposed self-guided mod-
ule. Besides, in order to improve the drawbacks of average fusion for multiple support
images, we propose a new cross-guided module to make highly quality support images
contribute more in the final prediction, and vice versa. Extensive experiments show the
effectiveness of our proposed modules. In the future, we will try to use the background
information as extra support to improve our approach.
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Chapter 6

Conclusions

In this chapter, the final summary of this thesis will be presented, followed by some future
works in relevant research directions.

6.1 Summary

Semantic segmentation has been boosting a lot with the rapidly development of deep neu-
ral network, to improve the limitation that current fully supervised semantic segmentation
heavily rely on massive accurate pixel-level annotation and increase the generalization
ability of the model, in this thesis, we focus on weakly supervised semantic segmenta-
tion and few-shot segmentation, in which the weakly supervised semantic segmentation
concentrates on providing accurate pixel-level prediction utilizing weak annotation as su-
pervision, while few-shot aims to segment unseen categories during inference given a few
support samples.

For weakly supervised semantic segmentation with image label as annotation, we pro-
posed the Reliable Region Mining model, an end-to-end network for image-level weakly
supervised semantic segmentation. We revisited drawbacks of the state-of-the-art meth-
ods, which adopt the two-step approach. We proposed a one-step approach through min-
ing tiny reliable regions and used them as ground-truth labels directly for our segmenta-
tion branch training. With limited pixels as supervision, we designed a dense energy loss
and a batch-based class distance loss, which consider shallow features (RGB colors and
spatial information) and high-level feature, respectively. The two new losses cooperate
with the pixel-wise cross-entropy loss to optimize the training process. Furthermore, we
design a new feature attention module to extract global information, which also proves
to be effective for the final prediction. Based on our one-step approach, we extended a
two-step method. Both our one-step and two-step approaches achieve the state-of-the-art
performance. More importantly, our approach offers a different perspective from the tra-
ditional two-step solutions. We believe that the proposed one-step approach could further
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boost research in this direction.

For weakly supervised semantic segmentation with bounding-box as annotation, we
have proposed a new system, Affinity Attention Graph Neural Network, With our pro-
posed affinity attention layer, features can be accurately aggregated even when noise exists
in the input graph. Besides, to mitigate the label scarcity issue, we further proposed a MP
loss and a consistency-checking mechanism to provide more reliable guidance for model
optimization. Extensive experiments show the effectiveness of our proposed approach. In
addition, the proposed approach can also be applied to bounding box supervised instance
segmentation and other weakly supervised semantic segmentation tasks. Extensive exper-
iments show the great potential that our approach can be regarded as an unified framework
to handle different weak supervisions.

For weakly supervised semantic segmentation with scribble as annotation, we have
proposed a dynamic feature regularized loss for weakly supervised semantic segmenta-
tion with scribble annotation. Our regularized loss makes full use of the static shallow
feature and dynamic deep feature to build the regularized kernel, which is more accurate
to describe relationship of different pixels. Meanwhile, in order to provide more power-
ful deep features, we introduce vision transformer as the backbone and design a feature
consistency head to restrict the pair-wise pixel relationship under the supervision of the
prediction from the semantic segmentation head. We found that both our regularized loss
and the feature consistency head can benefit from each other and lead to a better per-
formance. Extensive experiments show that our approach achieves new state-of-the-art
performances with large margins. In the future, we plan to apply our approach on other
weakly supervised semantic segmentation tasks.

For few-shot segmentation, we firstly observe that it is unavoidable to lose some useful
critical information using the average operation to obtain the support vector. Then we
propose a self-guided learning approach to mitigate this issue. Our approach enables
to extract comprehensive support information using our proposed self-guided module.
Besides, in order to improve the drawbacks of average fusion for multiple support images,
we propose a new cross-guided module to make highly quality support images contribute
more in the final prediction, and vice versa. Extensive experiments show the effectiveness
of our proposed modules.

6.2 Future works

At the time of concluding this manuscript, several exciting perspectives can be proposed
to further continue the work done in this thesis.

Vision transformer architecture for weakly supervised semantic segmentation. Re-
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cently, inspired by the success of vision transformer [63] for image classification, some
new vision transformer architectures [64, 130] were introduced for fully supervised se-
mantic segmentation, which led to clear performance improvement. However, there is
few researches attempting to design or apply such architecture to weakly supervised se-
mantic segmentation. More importantly, since one of the most advantages for vision
transformer is that it can build the global relationship for each pixel and produce the at-
tention matrix in each attention layer, we need to study how to utilize these information
for weakly supervised semantic segmentation. Besides, the difference between CNN and
vision transformer should also be analyzed. Finally, designing a end-to-end architecture
based on vision transformer is also import research area.

Utilizing background information for few-hot segmentation. Current State-of-the-art
approaches mainly encode the foreground information as prototypes. In the future, we
will attempt to encode background information to support the segmentation. There are
two main challenges: the first one is that background usually is complicated, encoding
it as single prototype is not suitable. One possible solution is to encode the background
information as several prototypes. The second challenge is that some background con-
tains the classes which is used during inference, once such information is encoded as
background, it will do harmful for the model. So it is important that only the real back-
ground information should be encoded. To achieve, we will try to use prior mask based
on pre-trained model or probability model.
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[112] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simulta-
neous detection and segmentation. In Proceedings of the European Conference on

Computer Vision, pages 297–312, 2014.

[113] Ruochen Fan, Qibin Hou, Ming-Ming Cheng, Gang Yu, Ralph R Martin, and Shi-
Min Hu. Associating inter-image salient instances for weakly supervised semantic
segmentation. In Proceedings of the European Conference on Computer Vision,
pages 367–383, 2018.

[114] Yanzhao Zhou, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Weakly super-
vised instance segmentation using class peak response. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3791–3800, 2018.

[115] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-level salient object
segmentation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2386–2395, 2017.

[116] Ruochen Fan, Ming-Ming Cheng, Qibin Hou, Tai-Jiang Mu, Jingdong Wang, and
Shi-Min Hu. S4net: Single stage salient-instance segmentation. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 6103–
6112, 2019.

[117] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via
multi-task network cascades. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3150–3158, 2016.
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