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ABSTRACT
Image segmentation is a fundamental topic in image process-
ing and has been studied for many decades. Deep learning-
based supervised segmentation models have achieved state-
of-the-art performance, but most of them are limited by using
pixel-wise loss functions for training without geometrical
constraints. Inspired by the Euler’s Elastica model and re-
cent active contour models introduced into deep learning, we
propose a novel active contour with an elastic (ACE) loss
function. ACE loss function incorporates Elastica knowledge
as geometrically-natural constraints for the image segmen-
tation tasks. In ACE loss function, we introduce the mean
curvature, i.e. the average of all principal curvatures, as a
more compelling image prior to representing curvature. Fur-
thermore, based on the mean curvature definition, we propose
a fast solution (Fast-ACE) to approximate our ACE loss with
Laplace operators for three-dimensional (3D) image segmen-
tation. We evaluate our ACE loss and Fast-ACE loss functions
on two 2D and 3D biomedical image datasets. Our results
show that the proposed loss function outperforms other main-
stream loss functions on different segmentation networks.
Our source code is available at https://github.com/HiLab-
git/ACELoss.

1. INTRODUCTION

Image segmentation is a challenging problem in image
processing and has been studied for many decades. The
snake/active contour model (ACM) was first proposed by
Kass et al. [1] that converts image segmentation prob-
lems into energy minimisation problems where the energy
of snake/active contours is optimised the object’s boundaries.
Following that, Active contour without edge model a.k.a
Chan-Vese (CV) model [2] has been widely developed in the
past two decades [3, 4] which can be formulated as below,

ECV (φ, c1, c2) =

∫
Ω

|∇Hε(φ)|+ λR (1)
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Where the first term of Eq. 1 is the length of the active con-
tour. The second term is the inside and outside regions of the
contour: R =

∫
Ω

(c1 − f)2Hε(φ) + (c2 − f)2(1 − Hε(φ)).
Ω ⊂ Rn is a closed subset of the image f to be segmented.
c1, c2 are the mean value of the inside (foreground) and out-
side (background) regions respectively. φ is a level-set func-
tion where the zero level curve represents the segmentation
boundary. Hε is a smooth approximation of the Heaviside
function. λ is a positive hyper-parameter to control the bal-
ance between the two terms. In the CV model, the level-set
method is often involved in optimising the model by solving
partial differential equations (PDEs) iteratively. To tackle the
local minimum problem in solving CV models, fast global
minimisation-based active contour model (FGM-ACM) was
proposed by Bresson et al. [5]. FGM-ACM model obtains a
global minimum of the ACM with a dual formulation of the
total variation (TV) norm.

Recently, Euler’s Elastica model is employed in the CV
model to segment elongated structures by Zhu et al. [6]. This
model will denote as CVE model hereafter for brevity. The
CVE model can express as the minimisation of the following
functional,

ECV E(φ, c1, c2) =

∫
Ω

[
α+β

(
∇· ∇φ
|∇φ|

)2]
|∇Hε(φ)|+λR

(2)
Where α and β are positive parameters to control the trade-off
between the length and curvature of the segmentation bound-
ary, CVE model has several intrinsic features compared to the
CV model:

• Introducing curvature profile
• Preserving connectedness by connecting broken parts of

segmentation object to form a meaningful segmentation
object

• Reducing missing boundaries interpolation for tubu-
lar/curvilinear structures

However, the common challenge for CVE model is compu-
tational complexity in numerical schemes because it requires
iterative approaches to solve high order PDEs. Inspired by the
general idea of CVE and recent deep learning-based ACMs



[7, 8], our proposed ACE loss function fuses Elastica as a ge-
ometric constraint into a deep learning-based model for im-
age segmentation. Compared to the CVE model, the number
of parameters needs to be converged decreased in our model
due to supervised learning benefits.

2. METHODOLOGY

Our ACE loss function is defined into discrete form in the
case of 3D images as follows,

EACE(y, ŷ) = (α+ βK̄2) |∇ŷ|

+ λ

∣∣∣∣∣∣
H∑
i=1

W∑
j=1

D∑
k=1

ŷi,j,k(c1 − yi,j,k)2

∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣
H∑
i=1

W∑
j=1

D∑
k=1

(1− ŷi,j,k)(c2 − yi,j,k)2

∣∣∣∣∣∣
(3)

The binary ground truth mask and the predicted segmenta-
tion denote as y, ŷ : H,W,D → R3, respectively. K̄ is the
curvature of ŷ; c1 and c2 are the mean intensity of the inside
(foreground) and outside (background) regions respectively
and can be defined as constants in advance as c1 = 1 and
c2 = 0 [8]; λ is usually set to 1. In our ACE loss, we de-
fine K̄ by estimating mean curvature [9, 10]. That can be
a useful and physically-natural constraint to provide a more
precise curvature by taking all principal curvatures [11]. Al-
though mean curvature has attractive features, minimising
mean curvature-based Elastica regularisation term from the
classical CVE model shown in Eq. 2 is still far from practi-
cal given enormous computational resources. In the classical
CVE model, it leads to a fourth-order PDE [12, 10], even in-
volving other efficient solvers, such as the fixed-point method
[13] and the multi-grid method [14], cannot reduce the com-
putational complexity to a satisfactory level for practical pur-
poses. The mean curvature can be derived from Monge
patch in the case of 3D images as follows,

K̄ =
κ1 + κ2 + κ3

3
=

χ√
1 + ŷ2

i + ŷ2
j + ŷ2

k

(4)

Where κ1, κ2, κ3 are the three principal curvatures (eigen-
values) at a given point on a surface; χ = ŷii(1 + ŷ2

j + u2
k) +

ŷjj(1 + ŷ2
i + ŷ2

k) + ŷkk(1 + ŷ2
i + ŷ2

j )−2(ŷiŷj ŷij + ŷiŷkŷik +
ŷj ŷkŷjk); i, j and k are three different directions respec-
tively in the case of 3D images. In the case of 2D images,
mean curvature can be derived as shown in Eq. 5,

K̄2D =
(1 + ŷ2

i )ŷjj + (1 + ŷ2
j )ŷii − 2ŷiŷj ŷij

2(1 + ŷ2
i + ŷ2

j )3/2
(5)

Where ŷi, ŷii, ŷij and the rest are all approximately computed
by central finite differences into discrete form in practice.

However, calculating K̄ in 3D by Eq. 4 is compute-intensive
and time-consuming. The Laplace operator or Laplacian
often use for edge detection by calculating the unmixed ap-
proximations of the second-order derivatives with discrete
and integer-valued convolution kernels to each direction. It
is safe to assume that the shape will have small change, then
the first-order derivatives will be approximated as small as
zero. Laplacian can introduce to simplify the numerator of
Eq. 4 by directly computing ŷii, ŷjj , ŷkk by kernels to boost
DNNs training speed. Our Laplacian-based 3D curvature
approximation can express as follows,

K̄ ≈ ∇2 = ŷ2
ii + ŷ2

jj + ŷ2
kk (6)

Where ∇ is the nabla operation, ∇2 is the Laplace opera-
tor. In practice, Laplacian thus can be estimated by convo-
lution. Our Laplacian-based 3D ACE loss function, denoted
as Fast-ACE, has following advantages, 1) it is relatively in-
expensive in terms of computations because the tremendous
amount of work in 3D convolving operations could be com-
puted by GPUs during the training steps. 2) the 3D mean
curvature of the shape can be driven efficiently at a minimum
of computations loss from the operators.

3. EXPERIMENTS

3.1. Experimental setting

Datasets: In order to evaluate the performance of our ACE
loss function, we have applied it to two biomedical image
datasets: (1) 2D Digital Retinal Images for Vessel Extraction
(DRIVE) retina vessel [15]: DRIVE contains 40 colour fun-
dus images. The 40 resized images (448 × 448) were divided
into 50% of images for training, 25% for validation and the
rest of the images for testing. (2) 3D CT image of Pancreas
from the Medical Segmentation Decathlon (MSD) [16]: This
dataset consists of 281 3D abdominal CT images. We ran-
domly selected 200 cases for the training, 20 for validation
and 61 for testing. Following [17], we used the soft tissue CT
window range of [-125, 275]. Then, we re-sampled all the
cases to the resolution of 1.0 × 1.0 × 3.0 mm3. Finally, we
cropped all images centring at the pancreas region and nor-
malized them to zero mean and unit variance.

Network architectures: To investigate the robustness
and generalizability of the ACE loss function, U-Net [18] and
Context Encoder Network (CE-Net) [19] are used as the 2D
segmentation networks whilst 3D U-Net, and V-Net [20] as
our 3D segmentation networks. All the above networks are
not pre-trained on any image datasets.

Training and inference: All the models were imple-
mented by using Python 3.7 and PyTorch 1.4.0. All training
experiments were done via one node of a cluster with sixteen
8-core Intel CPUs, 8 TESLA V100 GPUs and 1TB memory.
The batch size and total training epochs were set as 8 and
600 respectively. All the models were trained by using Adam



optimizer. For a fair comparison of different loss functions,
we searched the optimal learning rate in [e−1, e−2, e−3, e−4

] for each loss function respectively based on the validation
set [21]. We used the standard on-the-fly data augmentation
methods to enlarge dataset and avoid over-fitting during the
training stage. In the inference phase, we did not use any
post-processing method to boost the performance for a fair
comparison.

Evaluation metrics: Two widely used metrics, dice coef-
ficient score (DSC) and the 95th percentile of Hausdorff Dis-
tance (HD95) are used to evaluate the segmentation results
quantitatively.

Fig. 1. Example 2D segmentation results of our proposed
ACE loss function compared to the other loss functions. The
2nd and 4th row are zoomed retinal vessel segmentation re-
sults cropped by the green rectangles from the 1st and 3rd
row. From left to right are the original image, CE, DC, ClDC,
AC, ACE loss functions and ground truth, respectively.

3.2. Ablation study

We first investigated the optimal value of regularization
weights α and β in our proposed ACE loss in Eq. 3 based on
all validation datasets with 2D- and 3D- U-Net respectively.
We introduced a variable-controlling method to perform this
ablation study to investigate the individual impact of different
α and β values. Firstly, we fixed the β to 1 to investigate
the impact of α for ACE loss function performance. Then,
we set the α to 0.001 in all experiments to investigate the
impact of β on model performance. The results of the seg-
mentation performance in terms of DSC and HD95 on 2D
DRIVE validation set and 3D Pancreas CT validation set
when α and β are with different values, show that increasing
α from 0 to 0.001 leads to improved performance in the 2D
α ablation experiment. When α is greater than 0.001, the
segmentation performance in 2D decreases gradually. In the
2D β ablation experiment, the performance of β=1 is bet-

ter than the performance of β=0 (the curvature constant is
not involved) in terms of HD95. When β is larger than 2,
the segmentation performance decreases significantly. The
α and β of ACE loss affect the 3D Pancreas segmentation
performance similarly. Increasing the α from 0 to 0.1 leads
to improved performance, when α is larger than 0.1, the seg-
mentation performance worse rapidly. For the value of β, it
can be observed that the performance of β=1 is better than the
performance of β=0 (the curvature constant is not involved)
in terms of DSC. Based on our observation from the above
ablation study, our proposed ACE loss function has potential
to be deployed in different DNNs-based image segmentation
tasks by using well-chosen α in the range of [0.0001, 0.1]
and the β values in the structure-wised range of (0, 10]. It has
the best performance on 2D DRIVE when α and β are set to
0.001 and 2, respectively. For the 3D Prances data, it has the
best performance when α = 0.001 and β = 10. All the α and
β were set as optimal values in the following experiments.
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Fig. 2. Example 3D segmentation results of our proposed
ACE and Fast-ACE loss function compared to the other loss
functions. The first and second row are pancreas segmenta-
tion results. The green and yellow contours denote the seg-
mentation and the ground truth, respectively. Red arrows
highlight some mis-segmentation

3.3. Comparison to other loss functions

We further compared the performance of the ACE loss with
five widely used loss functions when appropriate: CE [18],
DC [20], ClDC [22], AC [8]. We evaluated our ACE loss’s ex-
tendibility and effectiveness by training four different DNNs
(U-Net and CE-Net for 2D curvilinear segmentation; 3D U-
Net and V-Net for 3D organ segmentation).

Curvilinear structure segmentation from 2D images:
We compared ACE loss with CE, DC, ClDC and AC func-
tions. CE loss and DC loss are the most widely used loss func-
tions for image segmentation. ClDC loss and AC loss are pro-
posed recently incorporating morphological skeletons and ac-
tive contours to enable DNNs focus on the objects’ geometric
information. ACE loss achieved better performance than all
the other loss functions in terms of DSC of 0.833±0.019 (U-
Net) and 0.806±0.020 (CE-Net), HD95 of 4.068±1.719 pix-
els (U-Net) and 5.802±2.232 pixels (CE-Net), respectively.
Figure 1 shows four segmentation results of using U-Net with
five different loss functions, highlighting the ACE loss can



Table 1. Quantitative 2D and 3D segmentation results (mean ± standard deviation) of our proposed ACE and Fast-ACE loss
functions compared to other loss functions. CE [18], DC [20], ClDC [22], AC [8] and our ACE and Fast-ACE loss function are
evaluated on the DRIVE and Pancreas CT datasets, respectively.

Objects
Model

(Network + loss) DSC ↑ HD95 ↓
Time ↓

(s / epoch)
Model

(Network + loss) DSC ↑ HD95 ↓
Time ↓

(s / epoch)

Retinal Vessels

U-Net+CE 0.413±0.055 10.350±22.655

≈ 2.3

CE-Net+CE 0.152±0.055 71.875±47.765

≈ 2.5
U-Net+DC 0.571±0.046 7.107±26.964 CE-Net+DC 0.594±0.042 7.624±26.874

U-Net+ClDC 0.587±0.039 6.672±27.046 CE-Net+ClDC 0.675±0.043 6.801±28.298
U-Net+AC 0.640±0.039 6.362±27.159 CE-Net+AC 0.664±0.040 6.149±27.947

U-Net+ACE 0.675±0.034 5.742±28.425 CE-Net+ACE 0.683±0.041 5.902±28.281

Pancreas

U-Net+CE 0.804±0.068 6.522±3.965 77.2 V-Net+CE 0.796± 0.081 7.239±4.943 76.5
U-Net+DC 0.813±0.06 6.164±3.674 64.3 V-Net+DC 0.791±0.085 6.703±4.123 61.8
U-Net+HD 0.816±0.062 6.182±3.749 183.0 V-Net+HD 0.816±0.078 6.164±4.041 176.5
U-Net+AC 0.828±0.064 6.243±4.773 59.7 V-Net+AC 0.819±0.096 6.151±5.307 55.5

U-Net+ACE 0.835±0.059 5.521±3.298 78.1 V-Net+ACE 0.827±0.072 6.124±4.494 75.2
U-Net+Fast-ACE 0.837±0.059 5.481±3.354 65.5 V-Net+Fast-ACE 0.832±0.070 6.013±5.314 61.5

preserve curvilinear structure connectedness.
Segmentation of 3D CT images: We compared our pro-

posed ACE, and Fast-ACE loss functions with CE, DC, HD
and AC loss functions on the pancreas CT dataset and the re-
sults are presented in Table 1. For the pancreas segmentation,
the Fast-ACE loss with 3D U-Net and V-Net outperform ex-
isting loss functions in terms of DSC of 0.832±0.070 (U-Net)
and 0.837±0.059 (V-Net), HD95 of 6.013±5.314 voxels (U-
Net) and 5.481±3.354 voxels (V-Net) respectively. For the
computing time during the training stage, the Fast-ACE loss
with U-Net and V-Net spend 65.5s and 61.5s per epoch on the
pancreas dataset, shorter than ACE loss with U-Net and V-Net
in 78.1s and 75.2s per epoch, respectively. There is almost no
difference in predicting the same network as the loss function
will not be used. Figure 2 presents some segmentation results
of different pancreas dataset methods (all results obtained by
V-Net). It can be observed that the segmentation results of
the proposed ACE loss and Fast-ACE loss are more accurate
compared with the other existing methods.

4. DISCUSSION & CONCLUSION

In this work, we proposed and implemented a new ACE loss
for DNNs-based end-to-end image segmentation. Compared
to standard ACMs that require an iterative approach to solve
PDEs for each image, supervised DNNs will hugely reduce
the computational time on segmenting new images after the
training. We found that the regularization weight α in the
Elastica constraints can be fixed to 0.001 for different im-
age segmentation tasks. The regularization weight β is more
sensitive to different images and objects structures. For in-
stance, for curvilinear or tubular structures image segmenta-
tion tasks, a β (0 < β < 2) has a better segmentation result
whilst a β (2 < β < 10) for non-tubular structures. No-
tably, from the quantitative comparison of segmentation per-
formance between AC and our ACE loss, we observe that our
Elastica constraint is more effective to use the geometrical in-
formation to constrain segmentation process than the length

constraint only of the AC loss, which leads to improved seg-
mentation results in terms of DSC and HD95 with four differ-
ent networks on four different image datasets. For the learn-
ing efficiency, when The number of the training set is rela-
tively large, (e.g. the Pancreas dataset), the proposed Fast-
ACE loss can maintain similar results and improve training
efficiency 20% (this improvement may not be significant for
small dataset). The advantage of this new loss function is that
it can seamlessly integrate the geometrical information (e.g.
curvature and length of the target shape) with region similar-
ity, thus leading to more accurate and reliable segmentation.
We introduced mean curvature as a more precise image prior
to representing curvature in our ACE loss. Based on the mean
curvature definition, we propose a fast 3D solution Fast-ACE
to speed up the training process for 3D image segmentation.
We applied both the ACE and Fast-ACE to two datasets, and
the results showed that they outperform state-of-the-art loss
functions.
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