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Abstract  

 

Over the past decades, meshless methods have become an essential 

numerical tool for simulating a wide range of science and engineering 

problems. The key idea of the meshless methods is to provide accurate and 

stable numerical solutions, where the computation domain is discretized 

using particles instead of using conventional meshes. In this thesis, 

developments on the Meshless Local Petrov-Galerkin (MLPG) method and 

incompressible smoothed particle hydrodynamics (ISPH) have been 

carried out for rigid boundary condition implementation and simulation of 

dispersed two-phase flows, respectively. 

 

For rigid boundary condition implementation in the MLPG method, an 

improved boundary scheme is developed through a weak formulation for 

the boundary particles based on Pressure Poisson Equation (PPE). In this 

scheme, the wall boundary particles simultaneously satisfy the PPE in the 

local integration domain by adopting the MLPG method with the Rankine 

source solution (MLPG_R) integration scheme (Ma, 2005b) and the 

pressure Neumann boundary condition. The new weak formulation 

vanishes the derivatives of the unknown pressure at wall particles and is 

discretized in the truncated support domain without extra artificial treatment. 

This improved boundary scheme is validated by analytical solutions, 

numerical benchmarks, and experimental data in the cases of patch tests, 

lid-driven cavity, flow over a cylinder and monochromic wave generation. 

The numerical results show higher accuracy in pressure and velocity, 

especially near the boundary, compared to the existing boundary treatment 

methods that directly discretize the pressure Neumann boundary condition.  
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For two-phase meshless model development, the incompressible SPH 

method is developed for simulating suspended sediment transport 

problems. The fluid and sediment are treated as two continuous phases 

described by two sets of Navier-Stokes equations with interactions between 

two phases achieved by the drag force. The computational domain is 

discretized into a single set of SPH particles which move with the fluid 

velocity but carry the local properties of both phases, including sediment 

velocity and its volume fraction. In addition, large eddy simulation (LES) is 

employed for representing the turbulent effect, in which the eddy viscosities 

are defined by the Smagorinsky model. The pressure Neumann boundary 

condition is imposed on the rigid solid walls and the zero pressure boundary 

condition on the free water surface. The two-phase model is verified by the 

analytical solutions for two idealized problems of still water with neutrally 

buoyant sediment and still water with naturally settling sediment in a two-

dimensional water tank. The model is then applied to the study of sand 

dumping. It is shown that the characteristics of the settling sand cloud, the 

pressure field, and the flow vortices are in good agreement with 

experimental results. The proposed two-phase model is proven to be 

effective for the numerical study of suspended sediment problems. 
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Chapter 1: Introduction 

 

1.1 Background  

 

In order to meet the requirements of simulating complicated physical 

phenomena in nature and industrial processes, computer-based numerical 

modelling methods have been widely used in various fields of research 

areas and engineering applications. In the field of fluid dynamics and 

hydrodynamics, computational fluid dynamics (CFD) creates a digital 

simulation that uses computer-based numerical algorithms and analysis to 

solve fluid flow problems. Benefiting from the sustained development of 

computing power, these numerical methods can simulate an extensive 

range of applications from free-surface flows to complex multiphase 

sediment transport problems and have had remarkable successes 

(Vacondio et al., 2021). 

 

The numerical methods can roughly be grouped into mesh-based methods 

and meshless methods. The traditional mesh-based methods include the 

Finite Volume Method (FVM, Hirt & Nichols, 1981), the Finite Element 

Method (FEM, Neuman & Witherspoon, 1970) and the Finite Difference 

Method (FDM, Harlow & Welch, 1965). Over the past decades, these mesh-

based methods have been developed as practical tools and employed in 

most well-established commercial CFD packages.  

 

The meshless methods were proposed with the objective of bypassing the 

use of conventional meshes and eliminating difficulties associated with 
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mesh generation or distortion where boundaries deform. By using a set of 

discrete particles to represent the whole continuous system, several novel 

meshless methods have been developed in recent decades, including the 

smoothed particle hydrodynamics (SPH, Lucy, 1977; Gingold & Monaghan, 

1977), the element free Galerkin method (EFG, Belytschko et al. 1994), the 

reproducing kernel particle method (RKPM, Liu et al., 1995), the meshless 

local Petrov-Galerkin method (MLPG, Atluri & Zhu, 1998), etc. Sriram & Ma 

(2021) summarized some significant advantages of meshless methods like 

better performance in handling problems with large deformation (e.g., 

breaking free water surface), moving discontinuities (e.g., wave 

propagation), etc. Despite the massive progress in developing meshless 

methods since the middle of the 20th century, some subsections still need 

to be further explored, including the solid boundary implementation and 

multiphase flow simulation addressed in this thesis.  

 

According to Wang et al. (2016), solid boundary implementation plays a 

significant role in flow-structure interaction but remains less developed. 

With this respect, solid boundary implementation can significantly affect the 

computational accuracy and cost. The solid boundary condition in MLPG 

was initially implemented by the weak formulation of flow governing 

equations over the incomplete sub-domains of the boundary particles in 

Atluri & Zhu (1998). Ma (2005a) further developed the solid boundary 

scheme by direct discretization of the pressure Neumann boundary 

condition. It has been proven to be effective in preventing inner fluid 

particles from penetrating the solid walls. However, such an approach does 

not have a consistent weak formulation throughout the simulation domain. 

Additionally, the errors introduced at the boundary can creep into the inner 
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flow domain as the calculation of the first-order term (i.e., the gradient 

operator of pressure) is involved. 

 

Suspended sediment transport by flows with a free surface is a classic but 

not yet fully understood subject of the river, coastal and estuary engineering. 

Over the past few decades, many two-phase models have been proposed 

to study the mechanics of sediment motions (Finn et al., 2016; Fonty et al., 

2019). Specifically, the most existing two-phase models are based on the 

mesh-based Eulerian scheme (Dong & Zhang, 2002; Chang & Hsieh, 2003; 

Jha & Bombardelli, 2009; Chen et al., 2011; Shi & Yu, 2015; Lee & Huang, 

2018), which suffers specific drawbacks in tracking the complicated free 

surface deformation. As the meshless methods have been rapidly 

popularized in recent years, some attempts have been made through the 

SPH formulations to solve two-phase fluid flow problems, with some 

questionable assumptions (Ran et al., 2015; Pahar & Dhar, 2017, Shi et al., 

2017; Shi et al., 2019). So far, a general formulation following the 

incompressible SPH scheme has not been established. Besides, an 

improved understanding of intergranular stresses and interphase forces 

with a two-phase model is still required (Shi et al., 2019). 

 

In this work, two numerical developments associated with meshless 

methods of MLPG_R and ISPH are achieved, including a new scheme for 

solid boundary conditions implementation for the MLPG_R method and a 

multiphase ISPH model for simulating suspended sediment motion 

problems. 
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1.2 Aims and objectives 

 

The main aim of this thesis is developing the existing meshless methods of 

MLPG and ISPH to improve boundary condition implementation and 

achieve two-phase sediment transport simulation, respectively. Four main 

objectives are identified as below: 

 

1. Develop an improved impermeable solid boundary scheme for the  

     MLPG method based on Rankine source solution (MLPG_R), which can  

     achieve higher accuracy through a weak formulation for the boundary   

     particles based on Pressure Poisson Equation (PPE). 

 

2. Implement the code of the newly developed boundary scheme, and  

     further validate the boundary scheme by analytical solutions, numerical  

     benchmarks, and experimental data. 

 

3. Develop a two-phase ISPH model for simulating suspended sediment  

    motion, in which the fluid and sediment are treated as two continuous  

    phases and described by two sets of governing equations.      

    Besides, this model aims to provide a general ISPH formulation in the  

    two-phase framework. 

 

4. Implement the code of the two-phase ISPH model and further validate    

    the model by idealized problems and the application of sand dumping  

    case.  
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1.3 Structure of the thesis 

 

The structure of the thesis is organised as follows: 

Chapter 2 presents the literature review relative to the current study, 

including a brief history of CFD and meshless methods, existing boundary 

treatment methods used in meshless methods, and existing numerical 

methods in modelling multiphase flows. 

Chapter 3 shows the methodology of meshless methods. This chapter 

starts with the derivation of the governing equations in the Lagrangian 

frame; a numerical procedure for solving pressure is presented; finally, 

formulations of the MLPG_R  method and general SPH method are 

provided. 

Chapter 4 presents an improved solid boundary scheme based on the 

MLPG_R method. The new formulation has been validated by the analytical 

solution of the patch test and numerical benchmarks. 

Chapter 5 introduces a newly developed two-phase model based on the 

SPH method. Validation for idealized cases and application of the proposed 

model to the sand dumping problem are discussed. 

Chapter 6 summarises the numerical results and concluding remarks on 

the overall research outcomes. Additionally, potential recommendations for 

future research are also highlighted.  

 

In addition, Appendices A & B aim to provide the mathematical derivation 

process of the improved boundary scheme for wall particles and the 

governing equations of the two-phase ISPH model, respectively.   
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Chapter 2: Literature review    

 

2.1 Computation Fluid Dynamics  

 

Computational fluid dynamics (CFD) is a branch of fluid mechanics that 

uses computer-based numerical algorithms and analysis to solve fluid flow 

problems. It can be described as the mathematical modelling process that 

can numerically simulate fluid flows using high-speed computers. For 

example, the Navier-Stokes equations are specified as the mathematical 

model that can describe the changes in physical properties for fluid flows. 

Anderson & Wendt (1995) indicated that the basic principles that can 

determine the motion of any fluid flows are the mass, momentum, and 

energy conservation laws expressed in partial differential equations. In 

other words, CFD is the computational tool for replacing the mathematical 

governing equations with numerical descriptions.  

 

An early example of the application of computational fluid dynamics can be 

tracked in the work of Kopal (1947), which compiled massive tables of the 

supersonic flow over different geometries by solving the governing partial 

differential equations. With the development of high-performance 

computers, some pioneering applications appeared during the last century 

of the 60s and 70s, including the boundary layer flow simulation by Fay & 

Riddell (1958) and Blottner (1964), inviscid flow modelling by Hall et al. 

(1962), to name but a few. Since then, the CFD has become a powerful tool 

for a wide range of engineering applications, bridging the gap between 

classic experimental studies and analytical theories. Moreover, computer 

power is utilized to solve relatively complicated problems involving high-
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velocity, high-temperature, turbulent fluid flows etc. The modern CFD 

technology was initially applied in wind tunnel studies as the experimental 

expense increased rapidly; for instance, Chapman (1979) demonstrates its 

relatively low cost and high accuracy of using CFD as an assistant tool for 

aeroplane design. More recently, modern CFD packages can deal with 

complex problems in a wide range of research and industrial areas, 

including aerodynamics, hydrodynamics, power or industrial systems, 

chemical process engineering, biological engineering, environmental 

engineering, coastal and coastal marine engineering, electrical and 

electronic engineering, etc.  

 

CFD codes are structured around numerical algorithms which can deal with 

fluid flow problems. The main elements of the methodology in most mesh-

based CFD codes include space discretization, equation discretization and 

solution algorithm (Gosman, 1999). In addition, some CFD codes also cater 

for mesh generation and setup options along with solution control and 

results display. Currently, there are three distinct streams of numerical 

solution techniques: the Finite Volume Method (FVM, Hirt & Nichols, 1981), 

the Finite Element Method (FEM, Neuman & Witherspoon, 1970) and the 

Finite Difference Method (FDM, Harlow & Welch, 1965). The finite volume 

methodology is employed in most well-established commercial CFD 

packages, e.g., CFX, ANSYS/FLUENT, STAR-CCM+, FLOW3D etc. The 

key feature of these mesh-based numerical methods is to divide a 

continuum computational domain into discrete subdomains (i.e., meshes). 

Then, the governing equations are converted to algebraic equations with 

field variables based on these properly defined meshes. In particular, it is 

noted that the accuracy of CFD results is primarily dominated by the quality 

of meshes (Beall et al., 2004). Taha (2005) further pointed out that over half 
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of the time spent on CFD simulations is devoted to mesh generation. Thus, 

one of the major issues of using CFD is to access robust meshing 

techniques. While the generation of meshes continuously poses challenges 

to computational scientists, meshless methods applied to CFD have 

become a relatively new field of research.  

 

Through developments in informatics, the usage of CFD is virtual in almost 

every sector. Nevertheless, it is still too early to think it has become a 

mature technology. Moreover, according to Bhatti et al. (2020), specific 

gaps need to be fulfilled; for instance, there are challenging questions linked 

with turbulence, heat transfer and combustion modelling, discretization and 

solution methods, etc. In summary, the research on CFD and relevant 

disciplines is still ongoing.  

 

 

2.2 Meshless methods applied to CFD 

 

2.2.1 Motivation for developing meshless methods 

 

According to Zienkiewicz et al. (2000), the simulation of fluid flow problems 

relies on mesh-based schemes with most existing numerical methods. Over 

the past decades, mesh-based numerical schemes like FDM, FVM and 

FEM have achieved great success in simulating a wide range of fluid flow 

problems. For example, Yan & Ma (2010) developed FEM models to study 

potential flow problems, showing satisfactory results for 3-dimensional 

wave interactions with floating bodies and fixed structures. The well-
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established open-source FVM fluid package OpenFOAM has been widely 

used to simulate wave propagation, wave generation, and wave-structure 

interaction problems (Higuera et al., 2013; Chen et al., 2014).  Tran & Kim 

(2016) used the STAR-CCM+ package to investigate the hydrodynamics of 

floating structures (e.g., offshore wind turbine platforms). More recently, 

Gong et al. (2021) developed a hybrid model, which is based on the CFD 

tool OpenFOAM coupling with the FNPT-based (fully nonlinear potential 

flow theory) QALE-FEM (quasi arbitrary Lagrangian Euler finite element 

method) and the viscous flow method, is used to simulate the motion of 

trimaran in the stern waves. While the mesh-based methods are already 

widely used to study fluid flow problems, the motivation behind developing 

meshless methods is worthwhile to be discussed. 

 

Specifically, above mentioned mesh-based methods have certain 

limitations for treating problems involving free surfaces. According to 

Agarwal et al. (2021), these mesh-based models require additional 

numerical treatment and extra computational expense to compute breaking 

and overturning waves. The meshes need to be of sufficient quality in 

specific regions to ensure the deformed free surface is well identified and 

tracked. According to Agarwal et al. (2021), earlier mesh generation 

techniques, such as the adaptive meshing method, are computationally 

expensive for ensuring body-conforming meshes at each time step. 

Moreover, additional complexity can be introduced for modelling problems 

with moving or complex geometries. Some advanced mesh generation 

techniques have been developed in recent years, including the overset 

method (Ma et al., 2018), the Cartesian cut-cell method (Xie & Stoesser, 

2020), etc. However, Agarwal et al. (2021) pointed out that implementing 
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boundary conditions in these techniques and controlling the mesh size 

around the geometry might still be challenging.  

 

Bypassing the use of meshes, the meshless methods do not require 

connection between nodes of the computational domain, i.e., the meshes, 

but are rather based on interactions of each node and its neighbours. 

Compared with mesh-based methods, meshless methods have become a 

focus in the past few decades due to the following unique advantages. 

Firstly, the process of generating meshes is costly and time-consuming in 

earlier mesh-based methods, while meshless methods have no such 

consideration. Secondly, using meshless methods can improve accuracy 

for simulating cases with sophisticated or over-deformed geometry. Liu 

(2002) indicated that using mesh-based methods is unsuitable for studying 

the propagating wave with the largely-deformed free water surface. Yan et 

al. (2020) further indicated that meshless methods are superior to mesh-

based methods in dealing with fluid flow problems with large deformation. 

Thirdly, meshless methods have a distinct advantage when the main 

concern is about discrete particles rather than continuums (Hockney & 

Eastwood, 1988).  Finally, another distinguishing feature of developing 

meshless methods is that the implementation of the Lagrangian approach 

can omit the potential numerical diffusions, which are mainly caused by the 

mesh skewness (Yan & Ma, 2020; Michalcová & Kotrasová, 2020).  

 

By using a set of particles to represent the whole continuous system, 

several novel meshless methods have been developed in recent decades; 

these include the Moving-particle Semi-implicit Method developed by 

Koshizuka & Oka (1996), the Finite Point Method (Oñate et al. 1996), the 

Element-free Galerkin Method (Belytschko et al. 1994), the Diffusion 
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Element Method (Nayroles et al. 1992), to name but a few. Due to the 

limitation of the scope of this thesis, two meshless methods, i.e., Smoothed 

Particle Hydrodynamics (SPH) and the Meshless Local Petrov-Galerkin 

(MLPG) method, are further introduced in the following sections. 

 

 

2.2.2 Meshless Local Petrov-Galerkin method 

 

Meshless Local Petrov-Galerkin (MLPG), as a Langrangian meshless 

method, was developed by Atluri & Zhu (1998) and Atluri & Shen (2002). 

As its name suggests, the MLPG method does not use any mesh to 

discretize the problem domain, and the local weak form of governing 

equations is applied over the local subdomains. In addition, the test or trial 

functions can differ from the same functional domain in the Petrov-Galerkin 

method, which makes MLPG effective in solving numerous fluid flow 

problems with high feasibility (Ma, 2005a). Recently, an excellent article by 

Sriram & Ma (2021) has reviewed the developments and applications of the 

MLPG method. Herein, some numerical developments in the MLPG 

method are introduced in the following context. 

 

Since the MLPG method was proposed, a number of studies have shown 

that the MLPG method is very suitable for the simulation of fluid flow 

problems without free water surface (Atluri & Zhu, 1998; Lin & Atluri, 2000). 

Ma (2005a) is reported to be the first to develop the MLPG method for 

simulating water waves. Ma (2005a) adopted the simple Heaviside step 

function as the test function to formulate the weak form over local domains, 

which produced encouraging results in terms of solving pressure gradient. 
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After that, Ma (2005b) changed the test function from the Heaviside step 

function to the solution for Rankine sources and formed the new MLPG_R 

method, which is particularly suitable for simulating nonlinear waves.  

Remarkably, it is reported that using the MLPG_R method can save half of 

the CPU time compared with using the MLPG method. In Ma (2008), a new 

numerical discretization scheme, called the simplified finite-difference 

interpolation (SFDI), was proposed for the MLPG_R method, which can 

achieve the same or better results as that of using the classic Moving Least 

Square (MLS) interpolation scheme but cost less computational time. The 

MLPG_R method is further applied for simulating 2D breaking waves (Ma 

& Zhou, 2009; Sriram & Ma, 2010), 3D breaking waves and wave-cylinder 

interactions (Zhou & Ma, 2010). In Sriram et al. (2014), a hybrid model, 

which involves different governing equations for the different regions of 

computational domains, was introduced for modelling breaking and non-

breaking waves. More recently, Zhou et al. (2017) firstly attempted to use 

the MLPG_R method for simulating 2D flows of two immiscible fluids. In 

Zhou & Dong (2018), the MLPG_R method was extended to be used for 

wave porous modelling. 

 

Despite massive progress in developing the MLPG method, it can still be 

improved in terms of turbulence and boundary layer, boundary treatment 

methods, variable particle resolution, 3D modelling and coupling, 

computational aspects, particle shifting strategy, and benchmark studies 

(Sriram & Ma, 2021). In particular, the implementation of solid boundary 

conditions should be further improved because the commonly used solid 

boundary scheme, which directly discretizes the pressure Neumann 

boundary condition, remains inconsistent in the formulations for boundary 

particles and inner fluid particles. Additionally, numerical errors cannot be 
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ignored in the calculation of a gradient term. Linked with the research 

purpose of the present study, a numerical improvement regarding the solid 

boundary scheme will be proposed for the development of MLPG.  

 

 

2.2.3 Smoothed Particle Hydrodynamics 

 

Smoothed Particle Hydrodynamics (SPH) was initially developed by 

Gingold & Monahgan (1977) and Lucy (1977) to study astrophysical 

computations and later extended to many other fields such as coastal and 

ocean engineering (Gotoh & Khayyer, 2018; Luo et al., 2021; Lyu et al., 

2022), free-surface flows (Gómez-Gesteira et al., 2010; Violeau & Rogers, 

2016), multiphase flows (Wang et al., 2016) etc. Lind et al. (2016) 

summarized the diversification of SPH by focusing on its applications and 

challenges.  

 

Since the fluid phase is usually considered incompressible (Liu et al., 2013), 

the incompressible condition was realized by treating the flow as weakly 

compressible with an appropriate equation of state (Monaghan, 1994) or 

strictly incompressible through solving the Poisson equation for pressure 

(Cummins & Rudman, 1999; Shao & Lo, 2003 ). In the weakly compressible 

SPH (WCSPH) method, the explicit solution of pressure is conveniently 

parallelizable (Luo et al., 2021). However, Meringolo et al. (2017) pointed 

out that early studies using the WCSPH scheme may suffer from the 

problem of spurious pressure fluctuations due to acoustic perturbations and 

local approximations. In the incompressible SPH (ISPH) method, the 

pressure is solved by the pressure Poisson equation derived based on the 
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projection scheme. According to Luo et al. (2021), a major advantage of 

ISPH compared with the WCSPH is that the spurious pressure fluctuations 

can be significantly alleviated by adopting the projection-based scheme.  

 

A recent review article by Vacondio et al. (2021) introduced some 

challenges of the SPH method, including convergence, consistency, 

stability, boundary conditions etc. Regarding consistency, Monaghan (1989) 

pointed out that particle inconsistency may lead to poor accuracy of the 

SPH solution. Monaghan (1994) thus developed symmetrisation 

formulations to improve the accuracy through the restoration of consistency, 

and satisfactory results were reported by using such formulations in Morris 

(1996). Bonet & Kulasegaram (2002) provided a corrective SPH (i.e., CSPH) 

method aiming to increase the computational accuracy both in the problem 

domain and around the solid boundary. It is reported by Liu et al. (2003) 

that CSPM has better particle consistency performance. Furthermore, Liu 

et al. (2005) introduced a new technique to approximate field variables 

using the basis function at particles. This idea was further developed by 

Fang et al. (2006) to the free surface flow with incomplete support domains. 

Other notable corrections or modifications of the SPH method include the 

reproducing kernel particle method (Chen et al., 1996), the moving-least 

square-particle hydrodynamics (Dilts, 1999), the integration kernel 

correction (Bonet & Kulasegaram, 2000), stable particle method (Rabczuk 

et al., 2004), etc. For more details of the challenges of SPH method, 

readers are referred to Vacondio et al. (2021). 

 

Overall, researchers have made great efforts to develop the SPH method 

over the past few decades, and it shows promising potential for simulating 

fluid flow problems. In Section 2.4.3, a further discussion of SPH in the 
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application of multiphase flows will be presented. In Chapter 5, a newly 

developed two-phase ISPH model for studying suspended sediment motion 

problems will be proposed. 

 

 

2.3 Boundary treatment in meshless methods 

 

2.3.1 Free surface 

 

In most simulation cases, the free surface can be recognised as the 

interface between the water surface and open air. In hydrodynamics, the 

capacity to track large-deformed free surfaces is an evident advantage of 

meshless particle methods (Liu & Liu, 2003). According to Luo et al. (2021), 

the water surface is governed by the kinematic or dynamic boundary 

condition. The kinematic boundary condition represents the zero-mass 

transfer across the interface on a macroscopic scale. The dynamic 

boundary condition, i.e., the Dirichlet pressure condition, implies continuous 

pressure at the interface without considering the surface tension. 

 

Golagrossi et al. (2009) pointed out that the kinematic boundary condition 

is automatically satisfied in some single-phase meshless methods like 

WCSPH. However, its implementation might have difficulties due to 

possible numerical errors and perturbative particle motions (Luo et al., 

2021). This is because the explicitly solved pressure cannot guarantee the 

continuity of stress through the continuous free surface. With this respect, 

Wang et al. (2019) applied a background mesh scheme to enhance the 
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solution of pressure at the free surface. You et al. (2021) has reported that 

using the background mesh scheme can improve the satisfaction of 

kinematic free surface boundary condition in the WCSPH framework. 

 

In incompressible particle methods, the Dirichlet pressure condition (i.e., 

the zero pressure condition) is generally imposed on the free surface for 

the single-phase flow problems (Shao & Lo, 2003). As problems associated 

with numerical errors and perturbative particle motions remain, the dynamic 

free surface boundary condition can be improved by applying the 

background mesh scheme. In addition, for projection particle methods, 

some misjudgements can happen due to the problematic identification of 

free surface particles as the free surface can deform violently. According to 

Luo et al. (2021), three approaches for identifying free surface particles are 

widely employed. The first approach applies a kernel-based interpolated 

indicator at the target particle and its neighbouring particles. The indicators 

can be defined by particle density, particle position or summation of 

coordinates (Lee et al., 2008; Khayyer et al., 2009). The second approach 

uses the geometrical indicator by analysing the geometrical relationship 

between particles (Koh et al., 2012; Suchde, 2021).  And the third approach 

is a combination of using the kernel-based interpolated indicator and 

geometrical indicator (Marrone et al., 2012; Liu et al., 2014; Sun et al., 

2017). A more detailed discussion related to the advantages and 

applications of using kinematic and dynamic boundary conditions is 

reported in Luo et al. (2021). 
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2.3.2 Solid wall 

 

Reliable solid boundary treatment methods can significantly impact the 

performance of meshless particle methods (Lind et al., 2020). Although 

some commonly used solid boundary treatment methods have been 

proposed along with the development of particle methods, challenges 

linked with stability and accuracy still exist. For example, Vacondio et al. 

(2021) addressed relevant issues caused by kernel truncations, the solid 

boundary with complex geometries, and boundary conditions under 

complex flow regimes. 

 

There are two boundary conditions to be considered on the impermeable 

solid boundaries (Morikawa et al., 2019). The first one is to prevent the fluid 

particles from penetrating the solid walls, which can be named as the 

pressure wall boundary condition (i.e., the pressure Neumann boundary 

condition). The pressure Neumann boundary condition states that the 

acceleration of the inner fluid particles approaching the solid walls in the 

direction of the wall should be zero. The second condition is to choose the 

correct slip condition (i.e., velocity wall boundary condition). In general, the 

velocity wall boundary condition contains the free slip boundary condition, 

no-slip boundary condition and partial slip boundary condition. The no-slip 

means that the fluid velocity in direct contact with the solid boundary is 

identical to the velocity of this solid boundary, and relative movement is not 

existing between the fluid layer in direct contact and the solid wall. For 

viscous flows, the fluid particles should adhere to the solid boundaries. 

Thus the Neumann boundary condition for pressure and the no-slip 

boundary condition for velocity is usually applied. In particular, Rijas et al. 

(2019) pointed out that problems involving wave-structure interactions 
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should employ the no-slip condition for higher accuracy. In general, the 

free-slip boundary condition can be used in most engineering simulations 

because of lower computational expense without resolving the rapid 

change of tangential velocities on the solid walls (Luo et al., 2021). However, 

it is noted that the free-slip boundary condition should not be imposed for 

modelling fluid flow problems involving the boundary layer effects (Sriram 

& Ma, 2021).  

 

So far, several boundary treatment approaches have been developed for 

the SPH method. According to Chen (2020), boundary treatment methods 

in SPH can be categorized into the particle representation type and the 

geometrical representation type. For the particle representation type, the 

fixed boundary particles are assigned additional forces to prevent fluid 

particles from penetrating and thus producing specific boundary conditions. 

The typical particle representation approaches include the repulsive force 

approach (Monaghan, 1994; Monaghan & Kajtar, 2009; Shadloo & Yildiz, 

2011; Monaghan & Mériaux, 2018), the ghost or image particle approach 

(Morris et al., 1997; Liu et al. 2012; Bierbrauer et al., 2009) and the dynamic 

particle approach (Liu & Liu, 2003; Gómez-Gesteira & Dalrymple, 2004; 

Gong et al., 2009). Another type is represented by the semi-analytical 

approach, which redefines the solid boundary by edge particles 

(Kulasegaram et al., 2004).  

 

In the repulsive force approach, the wall boundary condition is imposed by 

applying the repulsive force on fluid particles approaching solid walls to 

prevent them from penetrating the boundaries. This approach is capable of 

dealing with complex geometries at the boundary, but errors can be 

introduced due to the kernel truncation near the boundaries (Fourtakas et 
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al., 2019). It is also reported that, in the static fluid test, particles near the 

wall boundaries undergo spurious movement (Ferrand et al., 2013). In the 

image particle approach, extra particles are generated beyond the wall 

boundaries with prescribed physical quantities (e.g., pressure and density) 

the same as fluid particles. The velocities and positions of the image and 

fluid particles are set to be symmetrical with respect to the tangent of the 

boundary. The image particle approach can effectively prevent non-

physical behaviours (Leroy et al., 2014) and improve the overall accuracy 

(Hosseini & Feng, 2011). However, challenges still remain in generating 

and adopting those particles, especially for computational domains with 

complex geometries. Furthermore, the computational cost for this approach 

is considerable due to image particle generation and movement (Wang et 

al., 2016). The dynamic particle approach uses virtual particles fixed 

beyond the wall boundaries with flow properties obtained from neighbouring 

fluid particles through linear extrapolation (Chen, 2020). According to Wang 

et al. (2016), the problem related to boundary deficiency for virtual particles 

still exists and may lead to inaccurate results in solving the pressure field. 

The semi-analytical approach is proposed by introducing a renormalization 

factor for fluid particles close to the wall boundaries (Kulasegaram et al., 

2004; Ferrand et al., 2013; Mayrhofer et al., 2015). This approach improves 

the interpolation accuracy at the wall boundaries, but the difficulties in 

applications for complex boundary geometries remain (Valizadeh & 

Monaghan, 2015).  

 

Although MLPG has many similarities with some meshless methods like 

ISPH or MPS (i.e., moving particle semi-implicit method) regarding gradient 

estimation, projection scheme or free surface identification etc., Sriram & 

Ma (2021) indicated that the implementation of solid boundaries is different 
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in MLPG. Specifically, Zhou et al. (2008) figured out that many solid 

boundary approaches in SPH mainly ensure the velocities to satisfy the 

boundary conditions on the solid walls. Nevertheless, the pressure is not 

guaranteed to satisfy the solid boundary conditions. According to Ma 

(2005a), solid boundary approaches in MLPG were initially based on the 

weak formulation of flow governing equations over the incomplete sub-

domains of the boundary particles but were only applied to solve the 

potential flow (Atluri & Zhu, 1998) and inviscid flow with artificial stabilizing 

term to suppress spurious pressure (Lin & Atluri, 2001). When the MLPG 

method was extended to simulate non-linear waves (Ma, 2005a), the wall 

boundary condition was imposed by direct discretization of the pressure 

Neumann boundary condition. This wall boundary treatment approach 

excludes artificial stabilizing terms and prevents fluid particles from 

penetrating the wall with flow viscosity considered. Considering the 

pressure Neumann boundary condition, a numerical study of three 

schemes regarding the direct discretizing approach is investigated by Zhou 

et al. (2008), including two in MPS with single and three layers of boundary 

particles (Koshizuka & Oka, 1996; Hibi & Yabushta, 2004; Zhang et al., 

2006) and one in MLPG based on simplified finite-difference interpolation 

(SFDI) (Ma, 2008). In Koshizuka & Oka (1996), the solid boundary 

approach directly discretizes the boundary particles for solving pressure. 

The formulation and discretized equations for solid boundary particles and 

inner fluid particles remain the same. It is reported that the approximation 

of the Laplacian operator of pressure term is not very accurate on the solid 

boundaries since incomplete influence domain (i.e., truncated influence 

domain) and irregularly distributed fluid particles (Zhou et al., 2008). Zhou 

et al. (2008) also addressed that this approach cannot ensure the solved 

pressure to satisfy the solid boundary condition based on a simple analysis. 

Hibi & Yabushta (2004) and Zhang et al. (2006) further developed the 
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discretizing boundary approach by setting additional layers of solid particles 

in the outer region along the solid walls. In this approach, three layers of 

solid particles are included for solving the pressure, while only a single layer 

of solid particles is solved in Koshizuka & Oka (1996). Zhou et al. (2008) 

figured out that although the accuracy has been improved to a certain 

degree in this approach and the solid boundary condition can be roughly 

satisfied, spurious wiggles of solved pressure are observed.  

 

In summary, current solid boundary approaches have their own advantages 

and disadvantages, and the careful choice of a suitable approach under 

various flow conditions is essential to accurate simulations. The 

development of boundary treatment methods is still ongoing and crucial, 

with increasing attention to a universe approach. An improved boundary 

scheme for treating solid boundaries will be presented in Chapter 4 with 

validations on accuracy, convergence and adaptability. 

 

 

2.4 Multiphase flow 

 

2.4.1 Multiphase flow  

 

Multiphase flow describes a wide range of natural and industrial problems. 

In the context of fluid mechanics, multiphase flow is usually defined as a 

system where different phases (i.e., liquids, solids, gases) are flowing 

simultaneously. The most used categorization of multiphase flows, referring 

to Yeoh & Tu (2019), depends on the state of different phases. 
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Nevertheless, according to Prosperetti & Tryggvason (2007), a precise 

definition of multiphase flow should be formulated based on its specific 

situation and intrinsic characteristics. For example, fluids can be considered 

as multiphase flow with the same substance, such as the mixture of liquid 

and its vapour. Consequently, the classification of the multiphase phase 

should not be limited to a single set of standards. Herein, four types of 

multiphase flow are introduced in the following context.  

 

Liquid-gas flow 

 

An example of liquid-gas flow is the motion of bubbles in a flow. The gas 

phase (i.e., bubbles) features considerable difficulties as bubbles deform 

freely within the liquid phase and present different geometrical shapes (e.g., 

spherical, ellipsoidal, distorted, etc.). Bubble interactions like coalescence 

or break-up can change the interfacial structure and further reflect the 

ubiquitous challenges. Hibiki et al. (2006) investigated existing liquid-gas 

two-phase flow systems with particular attention to the interfacial area and 

further classified general liquid-gas flows as the dispersed type (e.g., gas 

bubbles in liquid), the mixed or transitional type (e.g., gas pocket in liquid) 

and the separated type (e.g., the liquid film in gas).  

 

Gas-solid flow 

 

Gas-solid flow (e.g., sandstorms, smoke with fine soot particles etc.) is 

generally concerned with the motion of solid particles suspended in the gas 

phase. A key feature of gas-solid flows is that the mass transfer can be 
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neglected. Yeoh & Tu (2019) demonstrated that the gas-solid flow could be 

divided into dilute and dense flows. According to the critical value linked 

with particle density, the motion of solid particles is dominated by the gas 

phase in dilute flows. In contrast, the particle-particle interactions can 

significantly affect the flow regime of the dense flows (Li et al., 1998).  

 

Liquid-solid flow 

 

Common natural phenomena related to liquid-solid flow include sediment 

transport, mudslides, soil erosion in rivers, estuaries, or other coastal areas. 

Many industrial applications, such as fluidised and slurry transportation 

flotation, are also involved. Many studies of liquid-solid flow problems 

fundamentally solve the motion of individual solid particles. According to 

Yeoh & Tu (2019), both phases in the liquid-solid flows are driven by the 

pressure gradient due to their relatively low ratio of density. Furthermore, 

Prosperetti & Tryggvason (2007) pointed out that more attention should be 

paid to the balance of drag and lift forces, which can significantly affect the 

motion of particles.  

 

Liquid-liquid flow 

 

Liquid-liquid flows are generally considered as immiscible flows. Some 

examples like the fuel-cell system or the extraction system have already 

been intensively applied in industries. According to Quan et al. (2009), an 

appropriate liquid-liquid two-phase model should demonstrate the 
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capability to accurately simulate the interface of liquid-liquid two-phase 

flows and handle its possible large deformation.  

 

Despite above mentioned multiphase flow classification, Brennen (2014) 

proposed a more general classification according to two topologies of 

multiphase flow, namely the disperse flow and the separated flow. In 

disperse flows, the flow pattern is one phase consisting of discrete elements 

(e.g., drops, bubbles or particles) distributed in the continuous phase, such 

as particles in a liquid or droplets in a gas. According to Godino et al. (2020), 

the disperse flow is characterized by the volume of discrete elements, and 

the motion of discrete components is affected mainly by the interfacial 

forces rather than the inertial forces. In contrast, the separated flow, which 

is recognised as a continuous-continuous system, is characterized by large 

interfacial length scales. In addition, according to the presence of heat 

transfer, flow direction or the number of phases, other classifications of 

multiphase flow can be found in Yadigaroglu & Hetsroni (2018). Some other 

classifications related to the multiphase flow problems can be found in 

Prosperetti & Tryggvason (2007) and Yeoh & Tu (2019). 

 

It is clear that above mentioned physical phenomena involving multiphase 

flows have little in common. As a result, each multiphase flow system needs 

to be specifically and solely analysed. According to Ishii & Hibiki (2010), 

experiments, theoretical analysis, and computational modelling are the 

essential tools throughout the study of multiphase flows. Herein, these three 

research approaches are worth to be discussed, as shown in the following 

context. 

Experimental approach 
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The experimental approach has made significant contributions for 

understanding the dynamic behaviours of multiphase flows and is 

commonly used to validate empirical equations or numerical models (Kiger 

& Pan, 2000; Khalitov & Longmire, 2002; Powell, 2008; and Balachandar & 

Eaton, 2010). It is evident that obtained experimental data is the 

fundaments of all research methods. In the past several decades, 

numerous laboratory experiments have been conducted to explore such 

complex physical processes like sediment transport under various flow 

conditions (Dohmen-Janssen & Hanes, 2002; Noguchi & Nezu, 2009; 

O'Donoghue & Ribberink, 2010), sediment deposition and suspension 

problems (Nakasuji et al., 1990; McNamee, 2000; Bühler & Papantoniou, 

2001), submarine landslide and granular collapse (Lacaze et al., 2008; 

Rondon, 2011), etc. 

 

Theoretical approach  

 

In general, theoretical studies of multiphase flow aim to use mathematical 

equations to predict the flow behaviours and explore the flow characteristics 

based on obtained experimental data (Drew & Segel, 1971; Delhaye, 1978; 

Drew, 1983; Bouré, 1987; Liu & Zhu, 1988). At the early stage of research 

on multiphase flows, diverse mechanisms are obtained based on data from 

laboratory test facilities (Gidaspow, 1994). Drew (1983) presents a good 

review of mathematical modelling of two-phase fluid flows among 

numerous theoretical studies. 

Computational approach 
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The computational approach uses the size and power of modern computers 

to address the complexity of multiphase flows (Brennen, 2014), and it has 

become an essential tool for solving practical multiphase flow problems 

(Prosperetti & Tryggvason, 2007). Building full-size experimental models 

might be available in some applications on the laboratory scale, but it can 

also be very time-consuming and expensive. Furthermore, the lack of 

necessary control in many instances is another significant challenge in 

setting up an experimental model. Compared with the single-phase flow 

simulation, the complexity of multiphase flows involves immiscible or 

miscible phases, change of volume fraction of different phases, relative 

velocities among phases, changing interface, different flow regimes, 

thermodynamic disequilibrium, heat transfer, turbulence etc., arises as a 

critical feature. Consequently, these realistic difficulties limit the usage of 

the pure theoretical or experimental approaches for understanding the 

mechanism of some multiphase flow problems. With this respect, the 

development of computational capacities has marked a decisive moment 

for the applications of computational methods. Thanks to the high-speed 

computers and improved understanding of multiphase flow mechanics, 

modelling every detail under various flow conditions has no longer been an 

unattainable goal by using the computational approach.  

 

 

2.4.2 Modelling of sediment transport 

 

In the estuaries, ports, and other coastal environments, understanding 

sediment transport has been a critical focus for many decades. Knowledge 
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of the process of sediment transport is vital for managing and developing 

water and land resources (Davidson-Arnott et al., 2019). The erosion, 

deposition, and movement of sediments in the water column represent the 

main physical processes of sediment transport (James et al., 2010). By 

definition, erosion means the sediment particles enter the water column 

from the sediment bed, whereas deposition is the process of sediment 

particles back to the sediment bed from the water column (Dronkers, 2005 

Yeganeh-Bakhtiary). The movement of sediments involves the process of 

settling, turbulent dispersion etc. The early study of sediment transport was 

mainly conducted by field experiments and supporting mechanics (Vanoni, 

1946; Einstein,1950; Vanoni, 1975; Van Rijn, 1984;  Dyer, 1995; Dibajnia 

& Watanabe, 1998; Chien & Wan, 1999; Noguchi & Nezu, 2009; 

O'Donoghue & Ribberink, 2010). In the aspects of extendibility and 

accuracy, the numerical modelling approach based on modern computers 

has been developed as an effective tool for studying sediment transport 

mechanisms (Ishii & Hibiki, 2010).  

 

As the process of sediment transport can be naturally treated as a two-

phase flow problem, various two-phase models have been proposed over 

the past few decades (Dong & Zhang, 2002; Chang & Hsieh, 2003; Jha & 

Bombardelli, 2009; Chen et al., 2011; Shi & Yu, 2015; Lee & Huang, 2018). 

Among most existing simulations, the mesh-based Eulerian framework 

might be the most commonly used numerical method (Fonty et al., 2019). 

Depending on how they treat the sediment phase, these mesh-based 

Eulerian methods can be categorized into the Eulerian-Eulerian and 

Eulerian-Lagrangian type. 
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In the Eulerian-Eulerian type, each phase is described as a continuum and 

satisfies the conservation laws for mass, momentum, and energy. 

Computing the statistical properties of the sediment phase is its main 

feature. Since the less required computational resources, the Eulerian-

Eulerian method has been intensively employed for the sediment transport 

problems; some examples can be found in Dong & Zhang (1999), Dong & 

Zhang (2002), Jha & Bombardelli (2009), Chen et al., (2011) etc. Unlike the 

pure Eulerian type, the Eulerian-Lagrangian method treats the solid phase 

as a dispersed phase and tracks the motion of the individual solid particle. 

Emphasizing fluid-particle or interparticle interactions is a crucial feature of 

the Eulerian-Lagrangian two-phase model. In recent years, applications of 

the Eulerian-Lagrangian model have received extra attention. In a practical 

problem, Shi & Yu (2015) developed an Eulerian-Lagrangian model for 

simulating suspended sediment transport in a steady open channel. An 

empirical formula is used for computing the fluid velocities for simplicity, and 

sediment particles are solved based on the equation of motion. The 

implementations of the Eulerian-Lagrangian model have been an ongoing 

concern in Drake & Calantoni (2001), Schmeeckle & Nelson (2003), 

Yeganeh-Bakhtiary et al. (2009), Ji et al. (2013), Shi & Yu, (2015), etc. 

 

In summary, it is undeniable that the mesh-based Eulerian method plays a 

dominant role in the simulation of sediment transport and other relevant 

research fields. Although using mesh-based Eulerian methods remains 

difficult in terms of large deformation or discontinuities, it still offers 

satisfactory accuracy and efficiency to many researchers under significant 

efforts devoted.  
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2.4.3 Multiphase SPH model 

 

As the requirement for accurate modelling increases, the popularization of 

the meshless method has attracted more attention in recent years. SPH, as 

a pure meshless Lagrangian method, is naturally extended to the 

multiphase simulation (Zhang et al., 2017). According to Chen (2020), two-

phase SPH modelling provides a more suitable solution for issues like 

discontinuities and large interfacial deformations. Based on the continuous 

description, different phases in the multiphase SPH model are followed by 

the volume fraction representation. With this respect, two models are used 

to address the phase representation.  

 

The first one is the so-called two-phase or two-fluid model, which treats two 

phases separately with a distinct interface (Stewart, 1979; Ishii & Mishima, 

1984; Gidaspow,1994). According to Ishii & Mishima (1984), each phase 

should be considered separately, and the two phases, considering liquid-

solid two-phase flow as an example, are coupled by interaction terms (i.e., 

the drag term) which are generally explicitly solved. Monaghan & 

Kocharyan (1995) generalised the equations for the two-phase model using 

the SPH method and extended the model to liquid-gas and liquid-liquid 

simulations in such SPH implementations. The interphase interactions are 

closed by employing a simplified constant drag law. In Monaghan (2005), 

such a model based on SPH is extended to the dense multiphase flow 

problems like the fluidization of granular materials. Similarly, Xiong et al. 

(2011) proposed a two-phase SPH model to solve fluidization problems, 

emphasising the critical shear stress and drag force.  
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In the SPH mixture models, the fluid is seen as a single-fluid flow with only 

one set of discretized SPH particles. Each SPH particle combines two-

phase properties and is governed by one continuity equation and 

momentum equation. The volume fraction is introduced in this model to 

define the field variables (e.g., pressure, velocity, etc.). It is naturally 

possible to evaluate the evolutions of changes in the volume fraction of 

each SPH particle. Ren et al. (2014) implemented the SPH mixture model 

to capture various physical phenomena by the closure of drift velocities. 

The nonuniformly distributed velocity fields lead to the change of volume 

fraction of each phase. More recently, a mixture model was proposed by 

Wang et al. (2017) to investigate the submerged granular column collapse. 

Fonty et al. (2019) extended the two-phase SPH mixture model to high-

density ratio problems (i.e., sand dumping in a tank).  

 

The coupling of SPH with other discrete methods or mesh-based methods 

remains a potential option. Potapov et al. (2001) developed a SPH model 

coupling with the discrete element method (DEM) for simulating fluid-solid 

flow problems. Huang & Nydal (2012) presented the SPH-DEM model for 

simulating the motion of solids in a sedimentation tank. Marrone et al. (2016) 

demonstrated a SPH model coupling with the finite volume method for 

simulating free surface flows, and Zhang et al. (2018) coupled SPH with the 

finite element method for particle sedimentation. 
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Chapter 3: Methodology 

 

3.1 Governing equations and numerical procedure 

 

The purpose of this section is to introduce the governing equations following 

the basic physical principles (i.e., the mass and momentum conservation 

laws). The single-phase governing equations used for solving the 

incompressible fluid domain are continuity and momentum equations, 

which are given by, 

 

∇ ∙ 𝒖 = 0 (3.1) 

𝐷𝒖

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝒈 + 𝑣∇2𝒖 (3.2) 

 

where 𝒖  is the fluid velocity vector, 𝜌  is the fluid density, 𝑝  is the fluid 

pressure, 𝒈  is the gravitational acceleration, and 𝑣  is the kinematic 

viscosity of the fluid. 

 

The above governing equations Eqs (3.1) and (3.2) are employed in various 

meshless methods for modelling the single-phase fluid flows. Similar to the 

two-step projection method proposed by Chorin (1968), the prediction-

correction numerical scheme is widely used in the MLPG and SPH methods 

to solve the Navier-Stokes equations based on the assumption of 

incompressible fluid. This numerical procedure consists of two steps. The 

first prediction step is an explicit solution accounting for the gravity and 

viscous stresses without enforcing the incompressible conditions. Then, the 
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pressure is implicitly solved based on the pressure Poisson equation (PPE) 

formulated by combining the continuity and momentum equations. Finally, 

the particle velocities and positions are updated based on the solved 

pressure. Herein, the numerical procedure during each time step contains 

the following steps: 

 

(1) Prediction step (evaluate intermediate velocities and positions) 

 

𝒖∗ = 𝒖𝒏 + (𝑣∇2𝒖𝒏 + 𝒈 )∆𝑡 (3.3) 

𝒓∗ = 𝒓𝒏 + 𝒖∗ ∆𝑡 (3.4) 

 

where 𝒓  is the position vector; ∆𝑡  is the time step; the superscripts 𝑛 

represents the physical values at the 𝑛𝑡ℎ time step; notion * represents the 

intermediate time step between 𝑡𝑛 and 𝑡𝑛+1. 

 

(2) Implicitly evaluate pressure 𝑝𝑛+1 from the pressure Poisson equation  

 

∇2𝑝𝑛+1 = 𝑎
𝜌𝑛+1 − 𝜌∗

∆𝑡2
+ (1 − 𝑎)

𝜌

∆𝑡 
∇ ∙ 𝒖∗ (3.5) 

 

where 𝑎 is an artificial coefficient with a value ranging from 0 to 1; 𝜌𝑛+1 and 

𝜌∗ is the fluid density at (𝑛 + 1)𝑡ℎ  time step and intermediate time step, 

respectively;   

 



33 
 

(3) Correction step (update particle velocities and position) 

𝒖𝒏+𝟏 = 𝒖∗ −
1

𝜌
∇𝑝𝑛+1∆𝑡 (3.6) 

𝒓𝒏+𝟏 = 𝒓𝒏 + 𝒖𝒏+𝟏∆𝑡 (3.7) 

  

In the above modelling procedure, the adaption of Eq. (3.5) needs to be 

further discussed. In Ma (2005a), 𝑎 is set to be zero for non-linear wave 

problems, and Zhou & Ma (2009) suggested 𝑎 as 0.1 to 0.2 for breaking 

wave applications. Later, this problem was further investigated by Sriram & 

Ma (2010), and reported that 𝑎  is better to be taken as zero. In the 

subsequent work, the value of 𝑎 is taken as zero. 

 

Besides, it is worth mentioning that a carefully controlled size of a time step 

is essential for accurate and stable computations in meshless methods. In 

general, the following Courant condition needs to be satisfied, and a 

detailed review can be found in De Moura & Kubrusly (2013). 

 

𝐶 =
𝑢∆𝑡

∆𝑙
≤ 𝐶𝑚𝑎𝑥 (3.8) 

 

where 𝑢 is the magnitude of the velocity, ∆𝑙  is the initial particle spacing 

and 𝐶𝑚𝑎𝑥 is the maximum value of the Courant stability condition, which is 

typically equal to 𝐶𝑚𝑎𝑥 = 1.  
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3.2 Methodology of MLPG_R  

 

3.2.1 MLPG_R formulations 

 

 

Figure 3.1. Illustration of nodes, integration domain and support domain 

(Ma, 2005b).  

 

Replacing the test function from the Heaviside step function by the solution 

for Rankine sources, the original formulations of the MLPG_R method are 

given by Ma (2005b). As illustrated in Fig. 3.1, the computational domain is 

discretized by a set of randomly distributed nodes. At each of the inner fluid 

nodes, Eq. (3.19), i.e., the PPE, is integrated over a circular integration 

domain after multiplying by the Rankine source test function 𝜑 and yields 

                                                            

∫ (∇2𝑝𝑛+1 −
𝜌

∆𝑡
∇ ∙ 𝒖∗)𝜑

𝛺𝐼

𝑑Ω = 0 (3.9) 
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𝜑 =
1

2𝜋
ln (

𝑟

𝑅𝐼
) (3.10) 

 

where 𝛺𝐼 is the area of the integration domain, r is the distance between 

the concerned node and the centre of the integration domain; 𝑅𝐼  is the 

radius of the integration domain. The test function 𝜑 is made to satisfy 

∇2𝜑 = 0 in 𝛺𝐼  and 𝜑 = 0 on its boundary ∂𝛺𝐼 . More features of the test 

function (i.e. Rankine source solution) are demonstrated in Chapter 4. 

 

The unknown Laplacian pressure operator, i.e., ∇2𝑝 in Eq. (3.23), can be 

reduced by adding a zero term 𝑝∇2𝜑 and applying the Gauss’s theorem 

 

∫ 𝜑∇2𝑝
𝛺𝐼

𝑑Ω = ∫ (𝜑∇2𝑝 − 𝑝∇2𝜑)
𝛺𝐼

𝑑Ω (3.11) 

 

and gives: 

 

∫ 𝜑∇2𝑝
𝛺𝐼

𝑑Ω = ∫ [𝒏 ∙ (𝜑∇𝑝) − 𝒏 ∙ (𝑝∇𝜑)]
∂𝛺𝐼+∂𝛺𝜀

𝑑𝑆 (3.12) 

 

where 𝜕𝛺𝐼  is the boundary of the integration domain and 𝜕𝛺𝜀  is a small 

surface surrounding the centre of  𝛺𝐼 with a radius of 𝑅𝜀. The reason for 

adding 𝜕𝛺𝜀 is that the test function 𝜑 becomes infinite at 𝑟 = 0, so Gauss’s 

theorem cannot be used otherwise (Ma, 2005b).  
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Further applying Gauss’s theorem to the intermediate velocity term of Eq. 

(3.23) yields  

 

∫
𝜌

∆𝑡
𝜑𝛻 ∙ 𝒖∗𝑑𝛺 =  ∫

𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)

𝜕𝛺𝐼+𝜕𝛺𝜀𝛺𝐼

𝑑𝑆 − ∫
𝜌

∆𝑡
𝒖∗𝛻𝜑

𝛺𝐼

𝑑𝛺 (3.13) 

 

By eliminating the second-order derivatives in Eq. (3.9), it becomes 

 

∫ [𝒏 ∙ (𝜑∇𝑝) − 𝒏 ∙ (𝑝∇𝜑)]
∂𝛺𝐼+∂𝛺𝜀

𝑑𝑆

= ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)

𝜕𝛺𝐼+𝜕𝛺𝜀

𝑑𝑆 − ∫
𝜌

∆𝑡
𝒖∗𝛻𝜑

𝛺𝐼

𝑑𝛺 (3.14)

 

 

as 휀 → 0, it can be easily proven that 

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺𝐼+∂𝛺𝜀

𝑑𝑆 = 0  

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺𝜀

𝑑𝑆 = −𝑝  

∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝐼+∂𝛺𝜀
= 0  

 

Finally, Eq. (3.9) can be manipulated to the following form  

∫ 𝒏 ∙ (𝑝∇𝜑)
∂𝛺𝐼

𝑑𝑆 − 𝑝 = ∫
𝜌

∆𝑡
𝒖∗∇𝜑

𝛺𝐼

𝑑Ω (3.15) 
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It is noted that the above MLPG_R formulations and the corresponding Eq. 

(3.15) have remarkable features compared with the original MLPG 

formulations (Atluri & Zhu, 1998; Atluri & Shen, 2002; Ma, 2005a). For 

example, calculating the pressure gradient and divergence of intermediate 

velocities is not required in the current formulation, significantly improving 

overall accuracy. In this section, only inner fluid particles are discussed.  

 

 

3.2.2 The MLS approximation scheme 

 

According to Atluri & Zhu (1998), the meshless method can use a local 

interpolation or approximation to construct the original function with known 

values at randomly distributed particles to preserve the local character of 

the numerical implementation. The Moving Least Square (MLS) scheme is 

considered to be such a scheme and is commonly used in meshless 

methods, including the MLPG. In this section, the main purpose is to 

illustrate the MLS approximation scheme briefly. More details are given by 

Lancaster & Salkauskas (1981) and Belytschko et al. (1994).  

 

The MLS approximation scheme can be expressed as 

 

𝑝(𝒙) ≈∑Φ𝑗(𝒙)𝑝𝑗

𝑁

𝑗=1

(3.16) 
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where 𝑁  is the neighbouring particles which can affect the pressure at 

position 𝒙; 𝑝𝑗 is the nodal pressure and Φ𝑗(𝒙) is the interpolation function, 

i.e., the shape function. 

 

The shape function can be formulated as below, referring to Ma (2005b): 

 

Φ𝑗(𝒙) = ∑ 𝛹𝑚(𝒙)[𝑨
−1(𝒙)𝑩(𝒙)]𝑚𝑗 = 𝛹𝑇(𝒙)𝑨−1(𝒙)𝑩𝑗(𝒙)

𝑀

𝑚=1

 (3.17) 

 

with the base function 𝛹𝑇(𝒙) = [1, 𝑥, 𝑦] for 2-dimensional cases, and the 

matrixes 𝑩 and 𝑨 can be defined as 

 

𝐵(𝒙) = 𝛹𝑇𝑾(𝒙) (3.18) 

𝐴(𝒙) = 𝛹𝑇𝑾(𝒙)𝛹 = 𝐵(𝒙)𝛹 (3.19) 

 

and the matrix 𝑾(𝒙) is given by  

 

 𝑾(𝒙) = [

𝑤1(𝒙 − 𝒙𝒋) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑤𝑁(𝒙 − 𝒙𝒋)

] (3.20) 

 

where 𝑤(𝒙 − 𝒙𝒋) is the weight function. 
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 𝛹𝑇 is given by  

 

𝛹𝑇 = [
1 ⋯ 1
𝑥1 ⋯ 𝑥𝑁
𝑦1 ⋯ 𝑦𝑁

] (3.21) 

 

The MLS approximation can also be applied to partial or second-order 

partial derivatives, see Atluri & Shen (2002). In addition, the choice of the 

weight function is flexible as long as it is continuous and positive.  

 

 

3.3 Methodology of SPH  

 

3.3.1 Kernel approximation  

 

The kernel approximation in SPH contains the representation of a function 

and its derivatives using the smooth function (Liu & Liu, 2010). The integral 

representation of a function 𝑓(𝒙) of the position vector 𝒙 can be expressed 

as 

 

𝑓(𝒙) = ∫ 𝛿(𝒙 − 𝒙′)𝑓(𝒙′)
𝛺

𝑑𝛺𝑥′  (3.22) 

 

where the function 𝑓(𝒙) is defined on the domain Ω that contains 𝒙; and 

𝛿(𝒙 − 𝒙′) is the Dirac delta function given by 
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𝛿(𝒙 − 𝒙′) =  {
  1, 𝒙 = 𝒙′  
0, 𝒙 ≠ 𝒙′

(3.23) 

 

Eq. (3.22) illustrates that the function 𝑓 can be represented in an integral 

form. However, it is noted that the integral representation of function 𝑓 

cannot be used for constructing discrete models by simply introducing the 

Dirac delta function. This is because the Dirac delta function lacks some 

required properties like continuity and differentiability. As a result, the 

smoothing function 𝑊 is introduced to replace the Dirac delta function, and 

the kernel approximation of function 𝑓 becomes 

 

〈𝑓(𝒙)〉 = ∫ 𝑊(𝒙 − 𝒙′, ℎ)𝑓(𝒙′)
𝛺

𝑑𝛺𝑥′ (3.24) 

 

where ℎ denotes the smoothing length that defines the influence area of the 

smoothing function 𝑊.  

 

The smoothing function 𝑊 should satisfy three basic conditions. The first 

one is the normalization condition (i.e., unity condition) which states 

 

∫ 𝑊(𝒙 − 𝒙′, ℎ)𝑓(𝒙′)
𝛺

𝑑𝛺𝑥′ = 1 (3.25) 
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The second condition is the Delta function property as 

 

lim
ℎ→0

𝑊(𝒙 − 𝒙′, ℎ) = 𝛿(𝒙 − 𝒙′) (3.26) 

 

The third condition is the compact condition as 

 

𝑊(𝒙 − 𝒙′, ℎ) = 0 ∀ |𝒙 − 𝒙′| > 𝑘ℎ (3.27) 

 

where 𝑘 is a constant related to the smoothing function for point at 𝒙, and 

defines the effective (non-zero) area (i.e., the support domain or influence 

domain) of the smoothing function.  

 

Despite the above three basic conditions, some properties of the smoothing 

function are also worth to be mentioned. For example, the positivity property 

states that the smoothing function should be non-negative within the 

support domain since it is important to ensure a meaningful physical 

phenomenon; the decay property indicates that a nearer particle should 

have a more significant influence on the concerning particle based on the 

physical consideration; the symmetric property means that particles from 

same distance but different positions should have equal effect on a given 

particle; the smoothness states that the smoothing function needs to be 

sufficiently continuous to obtain satisfactory computational results. 

Choosing a suitable smoothing function is very important in the SPH 

method since it can determine the pattern to interpolate and further define 

the computational accuracy and efficiency. A very good review related to 
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the SPH smoothing functions can be found in Liu & Liu (2010). Here,  only 

two commonly used smoothing functions are given below: 

 

The 2-dimensional cubic spline function used by Monaghan & Lattanzio 

(1985): 

 

𝑊(𝑞, ℎ) =

{
 
 

 
 
2

3
− 𝑞2 +

1

2
𝑞3                          0 ≤ 𝑞 < 1

1

6
(2 − 𝑞)3                                1 ≤ 𝑞 < 2

0                                                         𝑞 ≥ 2

        (3.28) 

 

The 2-dimensional quintic kernel function proposed by Wendland (1995): 

 

𝑊(𝑞, ℎ) =
21

16𝜋ℎ3
{(1 −

𝑞

2
)
4

(2𝑞 + 1)               0 ≤ 𝑞 ≤ 2

0                                       2 < 𝑞
 (3.29) 

 

In which 𝑞 =
|𝒙−𝒙′|

ℎ
. 
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3.3.2 Particle approximation  

 

The particle approximation uses a set of particles to represent the 

computational domain and then estimates field variables based on these 

particles.  

 

 

Figure 3.4. Particle approximations in a two-dimensional problem domain 

𝛺  with a surface 𝑆  (Liu & Liu, 2010). 𝑊  is the smoothing function to 

approximate the field variables at particle 𝑖 based on neighbouring particles 

like particle 𝑗 with the distance of 𝑟𝑖𝑗.  

 

As shown in Fig. 3.4, the discrete form of the integral approximation for the 

set of particles (e.g., particle 𝑗) representing the discretized continuum can 

be obtained by the particle approximation 〈𝑓(𝒙𝒊)〉: 
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  〈𝑓(𝒙𝒊)〉 = ∫ 𝑊(𝑟𝑖𝑗, ℎ)
𝛺𝑖

𝑓(𝒙𝒋)𝑑𝛺𝑥𝑗 ≅∑𝑓(𝑥𝑗)𝑊(𝑟𝑖𝑗, ℎ)
𝑚𝑗

𝜌𝑗

𝑁

𝑗=1

 (3.30) 

 

where 𝑊 is the smoothing function to approximate the field variables at 

particle 𝑖 based on neighbouring particles like particle 𝑗 with the distance of 

𝑟𝑖𝑗 = |𝒙𝒊 − 𝒙𝒋|. The estimation of the function 𝑓(𝒙𝒊) is thus carried out as the 

sum of the values at its neighbouring particles by the smoothing function 𝑊.  

 

It is worth to mention that the particle approximation, as shown in Eq. (3.30), 

converts the integral form of a field function to the discretized form based 

on the summations over a set of neighbouring particles. This approximation 

is the key to making the SPH method bypass the use of meshes for 

numerical integration. In addition, introducing the mass and density in Eq. 

(3.43) makes the SPH method particularly suitable for fluid dynamic 

problems since density is a crucial variable.  

 

 

3.3.3 SPH formulations 

 

Based on the above mentioned integral approximation and particle 

approximation, the SPH formulations can be obtained by interpolating from 

a set of neighbouring particles. A function 𝑓 of an arbitrary particle 𝑖 can be 

approximated by the direct summation of the quantities of its neighbouring 

particles𝑗 as follows 
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𝑓𝑖 =∑
𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊

𝑁

𝑗=1

 (3.31) 

 

where 𝑁 is the total number of neighbouring particles within the support 

domain of particle 𝑖; the smoothing function 𝑊 = (𝑟𝑖𝑗, ℎ) is writing as 𝑊. 

 

A straightforward way of deriving the derivative of function 𝑓 is given by 

 

∇𝑓𝑖 = −∑
𝑚𝑗

𝜌𝑗
𝑓𝑗∇𝑊

𝑁

𝑗=1

 (3.32) 

 

where the derivatives of the smoothing function ∇𝑊 can be obtained using 

the chain rule. 

 

The second-order derivative of the weight function gives: 

 

∇𝑊𝑎𝑏 =
𝜕𝑊

𝜕𝑟

𝒙𝑎 − 𝒙𝑏
|𝒙𝑎 − 𝒙𝑏|

 (3.33) 

 

where 𝑞 =
𝑟

ℎ
 with 𝑟 = |𝒙𝑎 − 𝒙𝑏|  being the distance between the 

interpolating particle 𝑏 and the concerning particle 𝑎. 
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It should be noted such discretization of derivatives is too crude in practical 

modelling cases, especially for the second derivatives. Wang et al. (2016) 

summarized existing discretization techniques used in SPH with good 

features.  
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Chapter 4: An improved impermeable solid boundary 

scheme for meshless Local Petrov-Galerkin method 

 

 

4.1 Introduction  

 

The way by which the impermeable solid boundary condition is 

implemented can significantly affect the accuracy of the results and 

computational cost. The solid boundary treatment method, which plays a 

significant role in flow-structure interaction, remains less developed 

compared to that for fluid particles, either requiring artificial terms or having 

a lower accuracy.  

 

So far, several boundary treatment approaches have been developed for 

the SPH method, including the repulsive force approach (Monaghan, 1994; 

Monaghan & Kajtar, 2009; Shadloo & Yildiz, 2011; Monaghan & Mériaux, 

2018), the ghost or image particle approach (Morris et al., 1997; Liu et al. 

2012; Bierbrauer et al., 2009), the dynamic particle approach (Liu & Liu, 

2003; Gómez-Gesteira & Dalrymple, 2004; Gong et al., 2009) and the semi-

analytical approach, which redefines the solid boundary by edge particles 

(Kulasegaram et al., 2004). As an alternative to the SPH method, another 

type of meshless method based on the Galerkin formulation, i.e., the 

meshless local Petrov-Galerkin (MLPG) method, has also been developed 

and widely applied. Unlike the SPH method that directly discretizes the 

strong form of the PPE, this method integrates over a local subdomain, 

which reduces the order of the pressure derivative in the PPE (Ma, 2005a). 

Although MLPG has many similarities with SPH or MPS regarding gradient 
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estimation, projection scheme or free surface identification etc., the 

implementation of wall boundary conditions remains different in MLPG, as 

indicated by Sriram & Ma (2021).  

 

According to Ma (2005a), solid boundary treatment approaches in MLPG 

were initially based on the weak formulation of flow governing equations 

over the incomplete sub-domains of the boundary particles but were only 

applied to solve the potential flow (Atluri & Zhu, 1998) and inviscid flow with 

artificial stabilizing term to suppress spurious pressure (Lin & Atluri, 2001). 

When the MLPG method was extended to simulate non-linear waves (Ma, 

2005a), the wall boundary condition was imposed by direct discretization of 

the pressure Neumann boundary condition instead of its weak formulation. 

This wall boundary treatment approach excludes artificial stabilizing terms 

and prevents fluid particles from penetrating the wall with flow viscosity 

considered. Three schemes for directly discretising the Neumann boundary 

condition were compared in Zhou et al. (2008), including two in MPS with 

single and three layers of boundary particles (Koshizuka & Oka, 1996; Hibi 

& Yabushta, 2004; Zhang et al., 2006) and one in MLPG based on 

simplified finite-difference interpolation (SFDI) (Ma, 2008). It was found that 

SFDI enabled more stable and accurate simulations. However, such an 

approach does not have a consistent weak formulation throughout the 

simulation domain. The flow governing equation near the boundary was not 

implemented at the particle distance scale. MLPG method was further 

improved by introducing the Rankine source solution (MLPG_R), instead of 

the Heaviside step function, as the test function for the fluid particles, in 

which the pressure derivative was entirely replaced by the pressure itself to 

be numerically solved (Ma, 2005b). The weak formulation for inner fluid 

particles in the MLPG_R improves the stability and accuracy in solving the 
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PPE by entirely omitting Laplacian or gradient operator of the unknown 

pressure (Ma et al., 2016) and was successfully applied to problems such 

as 2D breaking waves (Ma & Zhou, 2009) and violent water waves (Zheng 

et al., 2014). As the treatment of wall boundary condition was unchanged 

with the gradient operator of the pressure being discretized directly, the 

errors introduced at the boundary can creep into the inner flow domain, 

especially in regions close to the solid walls. 

 

In this chapter, using the local integration scheme of the MLPG_R method, 

a weak formulation for the wall boundary condition is developed, and it has 

a consistent weak formulation throughout the simulation domain for both 

fluid and boundary particles. The proposed boundary scheme can satisfy 

simultaneously the incompressible fluid governing equation in the local 

integration domain and the pressure Neumann boundary condition. The 

pressure gradient is eliminated for wall particles, leaving only the unknown 

pressure itself to be numerically discretized. The new formulation has been 

validated by the analytical solution of the patch test with particles randomly 

distributed, numerical benchmarks of lid-driven cavity cases at various 

Reynolds numbers and monochronic waves. Validation on the curved 

boundary will also be carried out for flow over a cylinder in which pressure 

acting on the cylinder and wakes after the cylinder will be discussed. 

 

 

4.2. Governing equations 

 

The governing equations are the incompressible and viscous Navier–

Stokes equations in the Lagrangian form as follows: 
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∇ ∙ 𝒖 = 0 (4.1) 

𝐷𝒖

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝒈 + 𝑣∇2𝒖 (4.2) 

 

where 𝜌 is the density, which is a constant for the incompressible fluid, 𝒖 is 

the velocity, 𝒈 is the gravitational acceleration, 𝑝 is the pressure, and 𝑣 is 

the kinematic viscosity.  

 

At the wall boundary, the impermeability condition is applied by enforcing 

the normal component of the fluid velocity equal to that of the boundary 

velocity as 

 

𝒖 ∙ 𝒏 = 𝑼 ∙ 𝒏 (4.3) 

By substituting Eq. (4.3) into Eq. (4.2), the pressure at the wall satisfies 

 

𝒏 ∙ ∇𝑝 = 𝜌(𝒏 ∙ 𝒈 − 𝒏 ∙ �̇� + 𝑣𝒏 ∙ ∇2𝒖 ) (4.4) 

 

where 𝑼  and �̇�  are the velocity and the acceleration of the solid wall 

particles, respectively. 
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4.3 Numerical method 

 

4.3.1 Modelling procedure 

 

In this work, the projection-based scheme is employed to solve the pressure 

Poisson equation.  

 

(1) Explicitly find out the intermediate velocity 𝒖∗ and position 𝒓∗ using 

 

𝒖∗ = 𝒖𝑛 + (𝑣∇2𝒖𝑛 + 𝒈)∆𝑡 (4.5) 

𝒓∗ = 𝒓𝑛 + 𝒖∗∆𝑡 (4.6) 

 

(2) Implicitly evaluate pressure 𝑝𝑛+1 from the pressure Poisson equation 

Eq. (4.7) by taking the artificial coefficient to zero 

 

∇2𝑝𝑛+1 =
𝜌

∆𝑡 
∇ ∙ 𝒖∗ (4.7) 

 

(3) Update velocity 𝒖𝑛+1 and position 𝒓𝑛+1 at the next step 

 

𝒖𝑛+1 = 𝒖∗ + (−
1

𝜌
∇𝑝𝑛+1) ∆𝑡 (4.8) 

𝒓𝑛+1 = 𝒓𝑛 + 𝒖𝑛+1∆𝑡 (4.9) 
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where 𝒖 is the fluid velocity vector, 𝒓 is the position vector, 𝜌 is the fluid 

density, 𝑝 is the fluid pressure, 𝒈 is the gravitational acceleration, and 𝑣 is 

the kinematic viscosity of the fluid, ∆𝑡 is the time step, the superscripts 𝑛 

represents the 𝑛𝑡ℎ time step and notion * represents the intermediate time 

step. 

 

 

4.3.2 MLPG_R formulation for fluid particles 

 

For fluid particles, such as nodes I and J, as demonstrated in Fig. 4.1(a), 

the weak formulation for numerical discretization involves the integration of 

PPE over local subdomains as  

 

∫ (∇2𝑝𝑛+1 −
𝜌

∆𝑡
∇ ∙ 𝒖∗)𝜑

𝛺𝐼

𝑑Ω = 0 (4.10) 

 

where 𝜑 is the test function and 𝛺𝐼 is the integration sub-domain that can 

be of any arbitrary shape (Atluri & Shen, 2002). In the developed MLPG_R 

method (Ma, 2005b), the circular sub-domain with a radius of  𝑅𝐼 =

0.8 × ∆𝑙 is adopted, where ∆𝑙 is the initial particle distance. 
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(a) 

 

 

(b) 𝜕𝛺𝐾 = 𝜕𝛺ℎ ∪ 𝜕𝛺𝑏 ∪ 𝜕𝛺𝜀 

 

Figure 4.1. (a) Local sub-domain 𝛺𝐼 for fluid particles I, support domain for 

fluid particle J with a radius of 𝑅𝐽 and two domains for wall boundary particle 

K. (b) Demonstration of sub-domain for the wall boundary particle K, which 

is a semi-circle with the centre semi-circle 𝛺휀, having the radius of 𝑅𝜀, being 

taken out. 
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The 2D Rankine source solution (i.e., the test function) adopted here is  

 

𝜑 =
1

2𝜋
ln (

𝑟

𝑅𝐼
) (4.11) 

 

where r is the distance away from particle I, since the weak formulation is 

only applied on fluid particles, the integration sub-domain is entirely located 

in the fluid domain forming a complete circle. The test function 𝜑 satisfies 

∇2𝜑 = 0 in 𝛺𝐼 and 𝜑 = 0 on its circular boundary of 𝜕𝛺𝐼.  

 

By applying Gauss’s theorem to Eq. (4.10), the final weak formulation for 

fluid particles yields: 

 

∫ 𝒏 ∙ (𝑝∇𝜑)
∂𝛺𝐼

𝑑𝑆 − 𝑝 = ∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐼

𝑑Ω (4.12) 

 

where ∂𝛺𝐼 is the boundary of 𝛺𝐼 which is a complete circular curve, and 𝒏 

is the normal vector of the subdomain pointing to the outside.  
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4.3.3 MLPG_R formulation for wall particles 

 

 

In this work, instead of direct discretization of the impermeable wall 

boundary condition involving normal pressure gradient as in the previous 

MLPG_R method (Ma, 2005b), a new weak formulation will be derived for 

wall particles based on the PPE with impermeability condition of Eq. (4.3) 

imposed. As shown in Fig. 4.1(b), the sub-domain for the wall particle, K, is 

a semi-circle. By adopting the same test function as for the fluid particles, 

a zero term 𝑝∇2𝜑  is added to the left-hand side of the PPE and then 

integrated over the sub-domain 𝛺𝐾. To apply Gauss’s theory and to avoid 

the singularity of the test function at the centre of the sub-domain, a semi-

circle with a radius being 𝑅𝜀  is extracted from the sub-domain and the 

integration becomes 

 

∫ [(∇2𝑝)𝜑 − 𝑝∇2𝜑]
𝛺𝐾

𝑑Ω  = ∫ [𝒏 ∙ (𝜑∇𝑝) − 𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝐾

𝑑𝑆 (4.13) 

 

where 𝜕𝛺𝐾 is the boundary of the sub-domain consisting of a semi-circular 

boundary 𝜕𝛺ℎ , a flat boundary 𝜕𝛺𝑏 = 𝜕𝛺𝑏1 ∪ 𝜕𝛺𝑏2  representing the wall 

boundary, and a semi-circular boundary  𝜕𝛺𝜀 for avoiding the singularity at 

the centre, which will be taken as infinitesimal in the following derivation. 

 

By taking 𝑅𝜀 → 0, the first term of the right-hand side of Eq. (4.13), can be 

expressed as 
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∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ+𝜕𝛺𝑏+𝜕𝛺𝜀

𝑑𝑆 = ∫ [𝒏 ∙ (𝜑∇𝑝)] 𝑑𝑆
𝜕𝛺𝑏

(4.14) 

 

as it can be easily proven that  

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ

𝑑𝑆 = 0 as 𝜑 vanishes on ∂𝛺ℎ and 

∫ (𝒏 ∙ ∇𝑝)
1

2𝜋
ln (

𝑟

𝑅𝐾
)

∂𝛺𝜀
𝑑𝑆 = ∫ (𝒏 ∙ ∇𝑝)

1

2𝜋
ln (

𝑅𝜀

𝑅𝐾
) 𝑅𝜀

𝝅

0
𝑑𝜃 = 0   

as lim
𝑅𝜀→0

𝑙𝑛 (
𝑅𝜀

𝑅𝐾
) 𝑅𝜀 = 0 

 

The second term can be manipulated to become  

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ+𝜕𝛺𝑏+𝜕𝛺𝜀

𝑑𝑆 = ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
   (4.15) 

 

as  ∫ 𝒏 ∙ (𝑝∇𝜑)
∂Ωε

𝑑𝑆 = −
𝑝

2
  and ∫ [𝒏 ∙ (𝑝∇𝜑)]

𝜕𝛺𝑏
𝑑𝑆 = 0  

 

Combining Eqs. (4.14) and (4.15) gives the weak formulation of the 

Laplacian pressure as 

 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω  = ∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 +
𝑝

2
− ∫ [𝒏 ∙ (𝑝∇𝜑)]

∂𝛺ℎ

𝑑𝑆 (4.16) 
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Gauss theory is also applied to the integration of the term associated with 

the divergence of the intermediate velocity, and it reads 

 

∫
𝜌

∆𝑡
𝜑(∇ ∙ 𝒖∗)

𝛺𝐾

𝑑Ω = ∫
𝜌

∆𝑡
∇ ∙ (𝜑𝒖∗)

𝛺𝐾

𝑑Ω −∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω

                                       

                                       = ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏

− ∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω (4.17)

 

 

in which the integration over the subdomain boundary ∂𝛺𝐾 is reduced to 

∂𝛺𝑏  as it can be easily proven that ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺ℎ
= 0 and ∫

𝜌

∆𝑡
𝒏 ∙

∂𝛺𝜀

(𝜑𝒖∗)𝑑𝑆 = 0. 

 

Combining Eqs. (4.16) and (4.17), the final weak formulation for the wall 

boundary particles is expressed as  

 

∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 +
𝑝

2
− ∫ [𝒏 ∙ (𝑝∇𝜑)]

∂𝛺ℎ

𝑑𝑆 

= ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏

−∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω (4.18)

 

 

In Eq. (4.18), the first terms at the left- and right-hand sides are integrals 

over the boundary 𝜕𝛺𝑏, where the pressure Neumann condition satisfies. 

Thus Eq. (4.4) in the format of 𝒏 ∙ ∇𝑝 =
𝜌

∆𝑡
𝒏 ∙ (𝒖∗ −𝑼) (Ma & Zhou, 2009) is 

implemented, and the two terms involving pressure gradient and 
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intermediate velocity vanish.  The final formulation for the wall boundary 

particles yields 

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω −∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝑼)𝑑𝑆

∂𝛺𝑏

(4.19) 

 

For the scenarios that only involve fixed or tangentially moving boundaries, 

i.e., 𝒏 ∙ 𝑼 = 0, Eq. (4.19) can be further simplified as 

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω (4.20) 

 

This new formulation for wall particles satisfies the PPE in the local sub-

domain and has the impermeable wall boundary condition implemented for 

both fixed and moving walls. Furthermore, because all terms involving 

derivatives of the unknown pressure are removed, the accuracy and 

efficiency of solving for pressure at the wall boundary can be much 

improved as it has been approved for fluid particles (Ma, 2005a, b). A 

complete MLPG_R formulations for wall particles can be found in Appendix 

A. 

 

It should be noted that the semi-circular sub-domain used in the derivation 

assumes that the wall boundary truncating the sub-domain is a straight line 

and is the diameter of the sub-domain. This can be justified by the fact that 
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the size of the sub-domain is small with the same scale of the particle 

distance, and the error induced by the assumption, when applied to curved 

boundaries, can be reduced by increasing the number of particles on the 

boundary. Simulations of flow over a cylinder will be presented in Section 

4.5.3, in which the proposed scheme will be applied on the curved wall 

boundary with various particle distances tested. 

 

 

4.3.4 Discretized equations 

 

For both fluid and wall particles governed by the weak formulations of Eqs. 

(4.12) and (4.19), respectively, the unknown pressure will be approximated 

by a set of neighbouring particles and discretized as 

 

𝑝(𝒙𝒊) ≈ ∑𝛷𝑗(𝒙)

𝑁

𝑗=1

�̂�𝑗   (4.21) 

 

where 𝛷𝑗 is the interpolation function in terms of neighbour particle 𝑗, which 

is located within the support domain of particle 𝑖 and will be formulated by 

the first-order Moving Least Square (MLS) method in this paper, which is 

detailed in Belytschko et al. (1994) and Atluri et al. (1999), 𝑁 is the total 

number of neighbour particles affecting the pressure at 𝒙, and �̂�𝑗  is the 

pressure of each neighbour particle.  
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In this work, the size of the supporting domain is chosen to be 1.85 × ∆𝑙 as 

it was taken in the MLPG_R method (Ma, 2005b), where ∆𝑙 is the initial 

particle distance. The linear equation set for pressures of all the particles 

with the total number of 𝑛, 𝑷 = [𝑝1, 𝑝2, … 𝑝𝑛], is written as 

 

𝑺𝑲 ∙ 𝑷 = 𝑭𝑩 (4.22) 

  

where 

 

𝑺𝑲𝑖𝑗 =

{
 
 

 
 ∫ 𝛷𝑗(𝒙𝑖)𝒏 ∙ ∇𝜑

∂𝛺𝐼

𝑑𝑆 − 𝛷𝑗(𝒙𝑖)                      fluid particles

∫ 𝛷𝑗(𝒙𝑖)𝒏 ∙ (∇𝜑)
∂𝛺ℎ

𝑑𝑆 −
𝛷𝑗(𝒙𝑖) 

2
                 wall particles

  (4.23) 

 

and 

 

𝑭𝑩𝑖 =

{
 
 

 
 ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐼

𝑑Ω                                                      fluid particles 

∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω −∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝑼)𝑑𝑆

∂𝛺𝑏

           wall particles

  (4.24) 

 

By keeping the same formulation for the fluid particles, the direct 

discretization of the wall boundary condition, as in Ma & Zhou (2009), is 

presented in Eqs. (4.25) and (4.26) for comparison, which shows that the 

newly developed weak formulation removes the gradient approximation for 
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the unknown pressure. The derivation process also fulfils the mass and 

momentum conservation and the impermeable wall condition. 

 

𝑺𝑲𝑖𝑗 = 𝒏 ∙ ∇𝛷𝑗(𝒙𝑖)  (4.25) 

𝑭𝑩𝑖 =
𝜌

∆𝑡
𝒏 ∙ (𝒖∗ − 𝑼) (4.26) 

 

In Eq. (4.23), for terms involving line integration over ∂𝛺𝐼 and ∂𝛺ℎ for fluid 

and boundary particles, respectively, Gaussian quadrature is adopted for 

each quarter segment of the circular integration surface using two Gaussian 

points (Ma, 2005b). Domain integration of explicitly calculated intermediate 

velocity will be carried out for fluid and wall particles. As for the intermediate 

velocity calculation in Eq. (4.5), the viscous term involving velocity 

Laplacian is obtained by the second-order MLS method. Alternative 

Laplacian operators such as QSFDI and CSPM are discussed in Korzilius 

et al. (2016), Yan et al. (2020) and Zhang et al. (2021).  

 

 

4.3.5 Numerical approach for domain integration  

 

As can be seen from the discretized equations Eqs. (4.23) and (4.24), the 

domain integration of intermediate velocity requires to be evaluated for the 

code implementation. There are several numerical techniques involving the 

integral evaluation, like the classic Gaussian quadrature method or the 

semi-analytical method (Atluri et al., 1999; Sellountos & Polyzos, 2003; Ma, 

2005b). According to Ma (2005b), the Gaussian quadrature method, which 
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is usually stated as a summation of function values at specific points within 

the integration domain, is relatively time-consuming due to the required 

number of specified Gaussian points. For example, Ma (2005b) figured out 

that at least 16 Gaussian points are needed for a 2D simulation case to 

achieve satisfactory results.  

 

In this work, the semi-analytical method, introduced by Ma (2005b),  is 

employed for evaluating the intermediate velocities in the current study with 

higher computational efficiency. The main features of the semi-analytical 

method are to divide the domain of integration (e.g., a circular domain for 

inner fluid particles or a semi-circular domain for wall boundary particles) 

into several parts (i.e., quarters of subdomains) and assume that the field 

values (e.g., intermediate velocities) have a linear variation over the 

integration domain; then, analytically perform the integration over 

subdomains. It is worth mentioning that a more efficient integration 

technique was developed for 3D simulation with only 6 points needed and 

quantified the order of the error (Agarwal et al., 2021, Sriram and Ma, 2021). 

In this study, the domain integration technique follows that proposed in Ma 

(2005b), dividing the domain into four divisions and requiring 4 points in 

total, which is sufficiently efficient for 2D simulations.  

 

As discussed in 4.3.2 and 4.3.3, the domain integration for fluid particles is 

over a complete circle while it is over a semi-circle for a single layer of the 

wall particles. Once Eq. (4.22) is solved and the pressure field is obtained, 

velocity and particle position updates will be explicitly carried out according 

to Eq. (4.8) and (4.9) with the SFDI scheme (Ma, 2008) adopted for 

pressure gradient estimation. In this section, the semi-analytical method for 
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evaluating intermediate velocities for inner fluid particles will be 

demonstrated, and the same approach can also be applied to wall particles. 

 

Figure 4.2. Illustration of a circular integration domain with four divisions 

(i.e., subdomains). 

 

As shown in Fig. 4.2, a circular integration domain for an inner fluid particle 

is divided into four subdomains, i.e., quarter 0-1-2, 0-2-3, 0-3-4 and 0-4-1. 

Based on the linear variation assumption, the intermediate velocity 

components can be expressed as: 

 

𝑢 = 𝑢0 + 𝑐𝑢𝑥
(𝑥 − 𝑥0)

𝑅𝐼
+ 𝑐𝑢𝑦

(𝑦 − 𝑦0)

𝑅𝐼
 (4.27) 

𝑣 = 𝑣0 + 𝑐𝑣𝑥
(𝑥 − 𝑥0)

𝑅𝐼
+ 𝑐𝑣𝑦

(𝑦 − 𝑦0)

𝑅𝐼
 (4.28) 
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where 𝑅𝐼  is the radius of the circular integration domain; 𝑢, 𝑣  are the 

intermediate velocity components at a random point with a position vector  

(𝑥, 𝑦)  within the integration domain; 𝑢0, 𝑣0  are the intermediate velocity 

components at the centre of the integration domain with position vector  

(𝑥0, 𝑦0); and 𝑐𝑢𝑥 , 𝑐𝑣𝑥 , 𝑐𝑢𝑦 , 𝑐𝑣𝑦  are coefficient defined by the intermediate 

velocity components at specific points 1, 2, 3 or 4.  

 

Using 𝑥 – direction velocity component 𝑢 within the quarter 0-1-2 as an 

example gives:  

 

𝑐𝑢𝑥(𝑥1 − 𝑥0) + 𝑐𝑢𝑦(𝑦1 − 𝑦0) = (𝑢1 − 𝑢0)𝑅𝐼 (4.29) 

𝑐𝑢𝑥(𝑥2 − 𝑥0) + 𝑐𝑢𝑦(𝑦2 − 𝑦0) = (𝑢2 − 𝑢0)𝑅𝐼 (4.30) 

   

And combining Eqs. (4.29) and (4.30) yields: 

 

𝑐𝑢𝑥 =
(𝑢1 − 𝑢0)(𝑦2 − 𝑦0) − (𝑢2 − 𝑢0)(𝑦1 − 𝑦0)

(𝑥1 − 𝑥0)(𝑦1 − 𝑦0) − (𝑥2 − 𝑥0)(𝑦2 − 𝑦0)
𝑅𝐼 (4.31) 

𝑐𝑢𝑦 =
(𝑢2 − 𝑢0)(𝑥1 − 𝑥0) − (𝑢1 − 𝑢0)(𝑥2 − 𝑥0)

(𝑥1 − 𝑥0)(𝑦1 − 𝑦0) − (𝑥2 − 𝑥0)(𝑦2 − 𝑦0)
𝑅𝐼 (4.32) 

 

Another two coefficients 𝑐𝑣𝑥 and 𝑐𝑣𝑦 can be obtained in the same way by 

taking  𝑦 – direction velocity component 𝑣. In brief, the linear relationship at 

any position within the circular integration domain is estimated based on 

the velocities at only five specific points (i.e., Point 0, 1, 2, 3 and 4).  
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In Eq. (4.24), the integral term of intermediate velocity can be written as 

 

∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐼

𝑑Ω =
𝜌

2𝜋∆𝑡
∫ ∫ 𝑢𝑟

∗(𝑟, 𝜃)𝑑𝑟𝑑𝜃
𝑅𝐼

0

2𝜋

0

 (4.33) 

 

According to Eqs. (4.29) to (4.32), the integral term of Eq. (4.33) can be 

rewritten as: 

 

∫ ∫ 𝑢𝑟
∗(𝑟, 𝜃)𝑑𝑟𝑑𝜃

𝑅𝐼

0

2𝜋

0

=∑∫ ∫ 𝑢𝑟
∗(𝑟, 𝜃)𝑑𝑟𝑑𝜃

𝑅𝐼

0

𝜗𝑖+1

𝜗𝑖

𝑁

𝑖

(4.34) 

 

where 𝑁 is the number of divisions of integration domains (𝑁 = 4 for inner 

fluid particles), and 𝜗𝑖 is the identification of specific points which specifies 

the current integration over a subdomain. 

 

Based on the analytical evaluation using Eqs. (4.27) and (4.28), the 

intermediate velocity component becomes 

 

𝑢 = 𝑢0 + 𝑐𝑢𝑥𝑟 cos 𝜃 + 𝑐𝑢𝑦𝑟 sin 𝜃 (4.35)  

𝑣 = 𝑣0 + 𝑐𝑣𝑥𝑟 cos 𝜃 + 𝑐𝑣𝑦𝑟 sin 𝜃  (4.36)        

 

where (𝑥 − 𝑥0)/𝑅𝐼 = 𝑟 cos 𝜃 and (𝑦 − 𝑦0)/𝑅𝐼 = 𝑟 sin 𝜃 can be used for the 

transformation from Cartesian coordinates to polar coordinates.  
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So 

𝑢𝑟
∗(𝑟, 𝜃) = 𝑢0 cos 𝜃 + 𝑣0 sin 𝜃 + 𝑐𝑢𝑥𝑟 cos

2 𝜃 + 𝑐𝑢𝑦𝑟 cos 𝜃 sin 𝜃

                     +𝑐𝑣𝑥𝑟 cos 𝜃 sin 𝜃 + 𝑐𝑣𝑦𝑟 sin
2 𝜃   (4.37)

 

 

Finally, integrating each term of Eq. (4.37) and the integral term in Eq. (4.24) 

can be explicitly solved as   

 

∫ ∫ 𝒖𝒓
∗(𝑟, 𝜃)𝑑𝑟𝑑𝜃

𝑅𝐼

0

𝜗2

𝜗1

=
1

4
𝑅𝐼 [

(𝑐𝑢𝑥 + 𝑐𝑣𝑦)(𝜗2 − 𝜗1) +

(𝑐𝑢𝑥 − 𝑐𝑣𝑦)(sin 𝜗2 cos 𝜗2 − sin 𝜗1 cos 𝜗1)

+(𝑐𝑢𝑦 + 𝑐𝑣𝑥)(sin
2 𝜗2 − sin

2 𝜗1)

] (4.38) 

 

It is noted that the results obtained based on four divisions are good enough 

for 2D simulations (Ma, 2005b), and the requirement of velocities at only 

five specified points considerably saves the computational time. More 

recently, Agarwal et al. (2021) figured out that the semi-analytical method 

used for integral expression is asymmetric and lacks the order of error; 

therefore, an alternative derivation is provided based on Taylor series 

expansion with fewer required integration points (i.e., only 6 points for a 3D 

spherical subdomain) and a leading error term proportional to 𝑅𝐼
4. It is worth 

to mention that the resultant expression by Agarwal et al. (2021) shows 

great potential for improving accuracy and extending the current 2D 

simulations to 3D problems. 
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4.4 Code implementation of MLPG_R 

 

The code implementation is to convert the numerical procedures into a 

usable tool for performing various tasks (Liu & Liu, 2003). The current 

MLPG_R code developed in this work is implemented and tested based on 

the platform of Microsoft Visual Studio 2015 in the environment of the Intel 

Fortran compiler for carrying out a series of validating tasks and 

applications.  

 

Fig. 4.3 shows the main structure of the MLPG_R code, and it is designed 

to satisfy the basic requirements of executing and validating the proposed 

boundary scheme following the two-step prediction-correction pressure 

solving procedure. In general, this code implementation can be divided into 

three parts. The first one is the initialization sector, which includes 

subroutines that can input initial values (e.g., density, gravity, viscosity etc.), 

generate the initial node grid and assign required physical properties to 

each particle within the computational domain. Then, the main sector within 

the time loop aims to incorporate basic governing equations into discretized 

equations and solve the subsequent pressure, velocity, and position of each 

particle. Finally, the computed results are outputted and stored in external 

files for analysis and visualization.  

 

This code can be easily extended to other applications by adding or 

modifying subroutines according to different requirements. Some involved 

numerical techniques like NNPS (i.e., the nearest neighbouring particle 

searching scheme) are referred to Fraga Filho et al. (2020). 
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Figure 4.3. Structure of the current MLPG_R code.  
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4.5 Model validations 

 

In this section, four test cases, namely patch test for solving Poisson’s 

equation, lid-driven cavity, flow over a cylinder and monochromic wave 

generation, which have analytical solutions, numerical benchmarks and 

experimental results, are presented to validate the proposed scheme for 

implementing the boundary condition. The MLPG_R method for modelling 

fluid particles, without the special boundary treatment approach, is well 

established in solving linear potential flow problems (Atluri & Zhu, 1998), 

non-linear water waves (Ma, 2005a), and more recently, contaminant 

transport problems (Boddula & Eldho, 2017) and wave-vegetation 

interaction problems (Divya et al., 2020).  

 

 

4.5.1 Patch tests for solving Poisson’s equation 

 

To test the performance of different numerical schemes, patch tests for 

solving Poisson’s equation with comparisons with the analytical solution are 

widely reported (Schwaiger, 2008; Lind et al., 2012; Zheng et al., 2014). In 

this study, the equation of ∇2𝑝 = 0 in the patch of 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 

will be solved. Four solid boundary conditions are defined as 
𝜕𝑝

𝜕𝑥
|
𝑥=0

= 0, 

𝜕𝑝

𝜕𝑥
|
𝑥=1

= 0, 
𝜕𝑝

𝜕𝑦
|
𝑦=0

= 0 and 
𝜕𝑝

𝜕𝑦
|
𝑦=1

= 𝜋sinh (𝜋𝑦)cos (𝜋𝑥) which leads to the 

analytical solution of 𝑝(𝑥, 𝑦) = cosh (𝜋𝑦)cos (𝜋𝑥) . The equation is 

numerically solved by the newly developed boundary condition scheme as 

well as the existing scheme involving direct discretization of the wall 

boundary condition (Ma, 2005a) for comparison. A range of particle 
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distances ∆𝑙 = 0.007, 0.008, 0.01, 0.0125, 0.01666, 0.025 and 0.05 in both 

x and y directions are tested, corresponding to total particle numbers of 

20736, 15876, 10201, 6561, 3721, 1681 and 441, respectively in the patch. 

To achieve a particle distribution similar to that in the real flow simulation, 

controlled randomness is added to regularly distributed particles with the 

coordinates modified by  ∆𝑙′ = (1 + 𝑘(𝑅𝑛 − 0.5))∆𝑙, where 𝑅𝑛 is a random 

number ranging from 0 to 1, and 𝑘  is a constant for adjusting the 

disorderliness of the particles. The accuracy is quantified by evaluating the 

mean error for all particles as 𝐸𝑟 = √∑|𝑝𝑖 − 𝑝𝑖,𝑎|
2
/√∑|𝑝𝑖,𝑎|

2
, where 𝑝𝑖  is 

the numerically solved pressure and 𝑝𝑖,𝑎 is the analytical solution.  

 

 

Figure 4.4. Errors of the new boundary scheme and pressure Neumann 

boundary scheme for different particle distances of ∆𝑙 =0.007, 0.008, 0.01, 
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0.0125, 0.01666, 0.025, 0.05 with the randomness of 𝑘 = 0.3. The dashed 

line is to indicate the 2:1 gradient. 

 

Fig. 4.4 shows the errors of numerical results using the direct discretization 

of the wall boundary condition by the SFDI scheme (Ma, 2008) and the 

present weak formulation. It can be seen that with different numbers of 

particles employed at typical randomness in the simulation 𝑘 = 0.3, the 

errors of the new boundary scheme are smaller than those with the existing 

direct discretization scheme. The scheme also achieves overall second-

order convergence for particle distance, as shown in Fig. 4.4. When 

examining wall boundary particles only, the mean error for the particle 

distance of ∆𝑙 = 0.01𝑚   is 6.299 × 10−4  by adopting the new boundary 

approach, which is lower than 1.729 × 10−3  obtained by the direct 

discretisation approach. Since the numerical scheme remains the same for 

all the inner particles, the reduced mean errors, including all the particles 

as shown in Fig. 4.5, indicate that the improvement on the boundary 

condition implementation also significantly impacts the equation solving for 

the inner particles.   
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                                (a)                                                  (b) 

     

                              (a)                                                     (b) 

  

Figure 4.5. Errors of the direct Neumann boundary condition scheme 

(triangle markers) and the improved weak formulation boundary scheme 

(square marker) for different particle distances ∆𝑙 =0.01, 0.0125, 0.01666, 

0.025, 0.05 with different randomness in (a) 𝑘 = 0.1, (b) 𝑘 = 0.2, (c) 𝑘 = 0.4 

and (d) 𝑘 = 0.5. The dash lines are to indicate the 2:1 gradient. 
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Further tests for the various particle distributions by ranging randomness 𝑘 

from 0.1 to 0.5 are carried out, and results are compared with the existing 

scheme as shown in Fig. 4.5. For both schemes, errors slightly increase as 

the increased disorder is introduced in the distribution of particles, which is 

consistent with results from other meshless methods (Basic et al., 2018). It 

also can be seen that the new scheme shows better performance over the 

full range of randomness and particle distances. For minor disordered 

particles (𝑘 = 0.1 and 0.2), the performances of the two schemes are similar, 

especially when particle distance is sufficiently fine, i.e., ∆𝑙 = 0.01, while for 

higher disordered distribution (𝑘 = 0.4 and 0.5), the new scheme achieves 

much higher accuracy. 

 

Figure 4.6. The number of particles with an error larger than a certain 

percentage of maximum error (the blue column for the new scheme and the 

red column for the existing scheme). 
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In addition to the mean error, the number of particles having large errors, 

which may lead to simulation instability, is also investigated. For the case 

with ∆𝑙 = 0.01  and 𝑘 = 0.3 , the maximum errors are 1.534 × 10−2  and 

2.424 × 10−2  for the new and existing schemes, respectively. Fig. 4.6 

shows the number of particles having large errors, which are higher than 

20% of the maximum error in the simulation. Those particles are divided 

into groups with an increment of 10% relative to the maximum error. It can 

be seen that 97 particles out of 10201 in total have errors between 20% 

and 30% of the maximum error in the present scheme. While the number 

is doubled for the existing boundary condition scheme in this error range, 

and this is the case for all other larger error ranges. 

 

 

4.5.2 Lid-driven cavity 

 

In this section, the lid-driven cavity flow in a 2D square domain with the 

length of sides being 𝐿 = 1𝑚 is considered. This case has been used to 

examine the accuracy and efficiency of other numerical methods, such as 

the Finite Volume method (Ghia et al., 1982), which will be used as the 

benchmark. The flow in the rigid wall confined domain is driven by the lid 

sliding laterally at a constant velocity of 𝑈𝑙𝑖𝑑 = 1𝑚/𝑠. The flow regime is 

classified by the Reynolds number defined as 𝑅𝑒 = 𝑈𝑙𝑖𝑑𝐿 𝜐⁄  where 𝜈 

denotes the kinematic viscosity of the fluid. 𝑅𝑒 from 100 to 3200 are tested, 

covering a wide range of the flow regime, which can reach a steady-state 

(Peng et al., 2003). The convergence test regarding to the particle distance 

is firstly carried out for 𝑅𝑒 = 400 with 𝛥𝑙 = 0.05m, 0.025m, 0.017m, 0.013m 

and 0.01m, corresponding to total particle numbers of 21 × 21, 41 × 41, 
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61 × 61 , 81 × 81  and 101 × 101  respectively. Horizontal and vertical 

velocities at 𝑥=L/2 and 𝑦=L/2, respectively, are plotted for all the resolutions 

along with the benchmark results (Ghia et al., 1982), as shown in Fig. 4.7. 

It can be seen that with the particle number increased, both velocities 

gradually approach the benchmark with the results from 81 × 81  well 

agreed with the benchmark. To ensure the accuracy of the simulations, 

particle distance 𝛥𝑙 = 0.01  (corresponding to the particle number of 

101 × 101) will be adopted for the following cases unless stated otherwise.  
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(a)

(b) 

Figure 4.7. Velocities of lid-driven cavity flow at 𝑅𝑒 =400 obtained by the 

MLPG_R method with the new wall boundary scheme using different 

particle distances and the benchmark. (a) Horizontal velocity at x=L/2 and 

(b) Vertical velocity at y=L/2.  
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The velocities for the flows with 𝑅𝑒 being from 100 to 3200 are plotted and 

compared with those simulated by the existing boundary condition scheme 

in Fig. 4.8. The results of the new boundary condition scheme show good 

agreement with those in Ghia et al. (1982) across the whole range of the 

𝑅𝑒. Similar performance of both schemes at low 𝑅𝑒 = 100 as demonstrated 

in Fig. 4.8(a) and (b) is to be expected due to the maximum velocities in 

flows with lower 𝑅𝑒 are developed far away from the boundaries, i.e., the 

magnitude of the horizontal velocity becomes maximum at 𝑦 = 0.5𝑚, and 

that happens at 𝑥 = 0.22𝑚 and 0.8𝑚 for the vertical velocity, which is less 

sensitive to the boundary treatment. When 𝑅𝑒  is increased, the 

improvement by the new boundary scheme becomes significant, especially 

for the maximum velocities which occur closer to the wall boundaries. As 

for the case of 𝑅𝑒 = 1000, the maximum horizontal velocity occurs at 𝑦 =

0.18𝑚, which is closer to the bottom boundary and that for the vertical 

velocity occurs at 𝑥 = 0.15𝑚  and 0.9m which move forward the two 

sidewalls. One should also note that when the 𝑅𝑒 is further increased to 

3200, although the results are improved from the previous scheme, 

velocities are slightly underestimated may be caused by the lack of 

consideration for turbulence which is not the focus of this work. 

 

 

 

Figure 4.8. Velocities of the lid-driven cavity flow by adopting the improved 

wall boundary scheme (black solid line) and the existing wall boundary 

scheme (dash blue line). (a) to (d) are results of 𝑅𝑒 = 100, 400, 1000 and 

3200 with horizontal velocities at 𝑥 = 𝐿/2 on the top and vertical velocities 

at 𝑦 = 𝐿/2 on the bottom. The squares are benchmarks from the Finite 

Volume Method (Ghia et al., 1982). 
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(a) Results of 𝑅𝑒 = 100 with horizontal velocities at 𝑥 = 𝐿/2 on the top and 

vertical velocities at 𝑦 = 𝐿/2 on the bottom. The squares are benchmarks 

from the Finite Volume Method (Ghia et al., 1982). 
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(b) Results of 𝑅𝑒 = 400 with horizontal velocities at 𝑥 = 𝐿/2 on the top and 

vertical velocities at 𝑦 = 𝐿/2 on the bottom. The squares are benchmarks 

from the Finite Volume Method (Ghia et al., 1982). 



80 
 

 

(c) Results of 𝑅𝑒 = 1000 with horizontal velocities at 𝑥 = 𝐿/2 on the top and 

vertical velocities at 𝑦 = 𝐿/2 on the bottom. The squares are benchmarks 

from the Finite Volume Method (Ghia et al., 1982). 
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(d) Results of 𝑅𝑒 = 3200 with horizontal velocities at 𝑥 = 𝐿/2 on the top 

and vertical velocities at 𝑦 = 𝐿/2  on the bottom. The squares are 

benchmarks from the Finite Volume Method (Ghia et al., 1982). 
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4.5.3 Flow over a cylinder 

 

In this section, simulations are carried out for flow over a cylinder to show 

the capacity of the new boundary scheme for handling curved boundaries. 

As shown in Fig. 4.9, flow with a constant inlet velocity 𝑢𝑎 =0.1m/s 

interacting with a cylinder is simulated in a rectangular domain with a length 

of 𝐿=0.9m and a height of 𝐻=0.6m. The cylinder has a radius of 𝑅=0.02m 

and is located at 𝑥=0.5m and 𝑦=0.3m. The Reynolds number of the flow is 

defined by 𝑅𝑒 = 𝑢𝑎2𝑅/𝑣.  

 

To simulate continuous inflow and outflow at two ends of the channel, the 

periodic boundary condition is applied by returning the particles to the inlet 

once it reaches the outlet. It is achieved by setting multiple layers of 

particles, with the width of 𝑊 = 0.1m, in the inlet and outlet zone to be 

mirrored to the outside of the domain by carrying all the flow properties. 

This treatment also completes the support domains for particles at inlet and 

outlet boundaries. 

 

The new boundary scheme is applied to all the solid boundaries, including 

the top wall, bottom wall, and cylinder surface. To use the semi-circular sub-

domain on the wall particles at the curved boundary, the diameter goes 

through the wall particle and tangents to the curved wall, as illustrated in 

Fig. 4.9. It is worth noting that the wall boundary condition is applied on the 

diameter of the semi-circle as that for the flat boundary rather than on the 

actual surface of the cylinder. 
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Figure 4.9. Illustration of the simulation domain with mirrored particles to 

achieve periodic boundaries and integration domain tangent to the curved 

wall. 
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The error induced by this procedure can be reduced by increasing the 

number of particles which has been tested by setting the different particle 

numbers distributed at the circular wall boundary with 𝛥𝑙 = 2𝜋𝑅/12, 2𝜋𝑅/

18 ,  2𝜋𝑅/24  and 2𝜋𝑅/30 . The flow with 𝑅𝑒 = 40  is simulated, and the 

pressures relative to the far-field pressure around the cylinder surface are 

shown in Fig. 4.10. It can be seen that the results converge at 𝛥𝑙 =

2𝜋𝑅/24 ≈ 0.005𝑚  and show a negligible difference when the particle 

distance is further decreased to 𝛥𝑙 = 2𝜋𝑅/30 . Therefore, the particle 

distance of  𝛥𝑙 = 2𝜋𝑅/24 will be adopted for other flow over cylinder tests. 

 

 

 

Figure 4.10. Pressure distribution along the upper half surface of the 

cylinder as shown by dash line for different particle distances in the flow of 

𝑅𝑒 = 40.  
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(a) 𝑅𝑒 =20 

 

(b) 𝑅𝑒 =30 
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(c) 𝑅𝑒 =40                                                                                    

 

(d) 𝑅𝑒 =50 



87 
 

 

(e) 𝑅𝑒 =60 

 

(f) 𝑅𝑒 =100 

 

Figure 4.11. Velocity field near the cylinder at (a) 𝑅𝑒 = 20; (b) 𝑅𝑒 = 30; (c) 

𝑅𝑒 = 40; (d) 𝑅𝑒 = 50; (e) 𝑅𝑒 = 60 and (f) 𝑅𝑒 = 100. 
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Figure 4.12. Comparison of normalized wake lengths 𝐿𝑤𝑎𝑘𝑒/𝐷  with the 

experimental data (Coutanceau & Bouard, 1977). 

 

The velocity fields are plotted in Fig. 4.11 for 𝑅𝑒 = 20, 30, 40, 50, 60 and 

100. Complex flow phenomena near the cylindrical wall boundary involving 

wake flow, flow separation and vortex shedding are well captured by the 

new boundary scheme. It can be seen from Fig. 4.11(a) to (e) that two 

symmetrical vortexes are generated behind the cylinder for low 𝑅𝑒 up to 60, 

with the wake length increased when the Reynolds number gets higher. At 

a higher 𝑅𝑒 = 100, as shown in Fig. 4.11(f), non-symmetrical wakes are 

captured, which is consistent with the observation in Ding et al. (2004). Fig. 

4.12 demonstrates a good agreement between calculated and measured 

(Coutanceau & Bouard, 1977) wake lengths for various 𝑅𝑒  values. 

Furthermore, the distribution of time-averaged relative pressure coefficient 
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𝐶𝑝 = (𝑝 − 𝑝∞)/
1

2
𝜌𝑢∞

2  along the upper half surface of the cylinder at 𝑅𝑒 =

100  is calculated, where 𝑝∞ and 𝑢∞ are the far-field pressure and velocity. 

Fig. 4.13 shows a good agreement between the results from the present 

model with the numerical results of Park et al. (1998), which used a high-

resolution finite volume method. It should also be noted that the direct 

discretisation approach for the boundary condition is also tested with the 

same settings as that in the new boundary approach. Without using any 

regularization, particle disorder at the wake of the cylinder is significant, 

which leads to stability issues. But this is much improved for the new 

boundary scheme as the void in the wake of the cylinder was fairly small 

(the largest particle distance is about 1.3 × ∆𝑙 ) and does not expand 

throughout the simulation until an equilibrium vortex is developed. 

 

Figure 4.13. Comparison of the time-averaged pressure coefficient 𝐶𝑝  

along the upper half surface of the cylinder with experimental data (Park et 

al., 1998) at 𝑅𝑒 = 100. 
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4.5.4 Monochromic wave generation 

 

In this section, the monochromic wave will be generated by a piston moving 

wavemaker to examine the performance of the proposed boundary scheme 

for the moving boundary with accelerations. The monochromic wave is 

generated in a long rectangular tank with water depth 𝐻 = 1𝑚 and tank 

length 𝐿 = 30𝑚, which is sufficiently long to contain several waves without 

reflection from the far end of the tank. The free-slip boundary condition is 

imposed on rigid walls, and the motion of the wavemaker (i.e., moving solid 

boundary particles) is governed by  

 

𝑆(𝑡) = 𝑎(1 − cos𝜔𝑡) (4.39)  

𝑈𝑥(𝑡) = 𝑎𝜔 sin𝜔𝑡 (4.40)  

 

where 𝑈𝑥 is the velocity of the wavemaker in the wave progression direction 

with the amplitude 𝑎 = 0.01𝑚  and the frequency 𝜔 = 1.45𝑠−1 ; 𝑆  is the 

displacement of the wavemaker. Like the test in Zhou et al. (2008), the slip 

boundary condition is applied on the wavemaker with the tangential velocity 

obtained by calculating the pressure gradient by the SFDI scheme. The 

generated waves have small wave steepness, i.e., 0.012, and can be 

characterised as a linear wave for which the surface profile can be 

expressed by the linearized analytical solution (Eatock Taylor et al., 1994). 

By setting the initial particle distance ∆𝑙 = 0.04𝑚 and the time step ∆𝑡 =

0.02𝑠 , the new boundary condition scheme is validated by the analytical 

solution by comparing wave profiles at two instants of 𝑡 = 24𝑠 and 𝑡 = 30𝑠 

as shown in Fig. 4.14. It can be seen that the present study has achieved 
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a good agreement with the analytical solution, which demonstrates the 

capability of the proposed boundary scheme for treating moving boundaries.  

 

(a) 𝑡 = 24𝑠 

 

(b) 𝑡 = 30𝑠 

Figure 4.14. Comparison with analytical solution (Eatock Taylor et al., 1994) 

of wave profiles at two instants (a) 𝑡 = 24𝑠 and (b) 𝑡 = 30𝑠 (𝑎 = 0.01𝑚 and 

𝜔 = 1.45𝑠−1).  
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4.6 Conclusion 

 

The present study in Chapter 4 developed a new solid boundary condition 

implementation scheme for rigid and impermeable walls by integrating the 

PPE over a semi-circular sub-domain for wall boundary particles with the 

Neumann pressure boundary condition imposed. In this formulation, terms 

involving the derivative of the unknown pressure are removed to improve 

accuracy. Through validating the new scheme by the patch test of solving 

Poisson’s equation, the new scheme achieves a second-order particle 

distance convergent rate for a range of disorderliness of particle 

distributions. Higher accuracy is also demonstrated by comparing the 

results with those of the previous scheme, which directly discretizes the 

pressure wall boundary condition, especially for particles with relatively high 

randomness through patch test validations. Apart from the reduction of 

mean error, the number of particles having large errors is also reduced, 

thus enhancing the stability of the simulation. In the lid-driven cavity cases, 

the velocity fields simulated by the model with the new boundary scheme 

has achieved good agreement with those by the well-established numerical 

method across a wide range of Reynolds number. The maximum velocities 

developed in the lid-driven cavity flow which appear near the wall boundary 

are better captured by the new boundary scheme. In the simulation of flow 

over a cylinder, the new boundary scheme is applied to the curved surface 

of the cylinder. The convergent results to various particle numbers show 

the capacity of the new scheme to deal with non-flat geometries. The 

development of symmetrical vortex and its length at low Reynolds number 

and asymmetrical vortex at high Reynolds number are all well captured 

compared with measurements. The capability of the new boundary 

approach is also validated for the moving boundary by generating 
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monochromic waves using a piston wavemaker as the wave surface 

profiles well agree with the analytical solutions.  
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Chapter 5: Development of a two-phase model based on 

incompressible SPH method for simulating suspended 

sediment motion   

 

5.1 Introduction  

 

Sediment motion in natural water bodies involves a wide range of 

phenomena like sediment transport, erosion, deposition, suspension, etc. 

Since the last century, numerous laboratory experiments and theoretical 

studies have been conducted to explore such complex physical processes 

(Nakasuji et al., 1990; McNamee, 2000; Bühler & Papantoniou, 2001; 

Picouet et al., 2001; Dohmen-Janssen & Hanes, 2002; Noguchi & Nezu, 

2009; Turowski et al., 2010). This is, however, not an easy task; pure 

experimental or theoretical studies are not sufficient for comprehensively 

understanding the mechanics of sediment motion under various flow 

conditions. As an alternative, numerical modelling has been developed as 

an effective tool and is widely applied in multiple sciences and engineering 

applications (Finn et al., 2016; Fonty et al., 2019). Over the past decades, 

multiphase flow problems have been extensively studied based on the 

mesh-based Eulerian approaches (Dong & Zhang, 2002; Chang & Hsieh, 

2003; Jha & Bombardelli, 2009; Chen et al., 2011; Shi & Yu, 2015; Lee & 

Huang, 2018). However, tracking the interface or free water surface with 

deformation or fragmentation remains challenging (Fu & Jin, 2016; Shi et 

al., 2019). For example, Yeganeh-Bakhtiary et al. (2009) assume the top 

boundary is fixed with a negligible variation of the free surface, which 

prevents the vertical velocity and free surface from being effectively 

modelled. 
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In the present study, SPH, as a typical meshless Lagrangian method, is 

extended to study suspended sediment problems under the influence of 

free surface. Initially developed by Lucy (1977) and Gingold & Monaghan 

(1977), SPH shows great capabilities in dealing with free surface flows 

(Gotoh & Khayyer, 2018), and it has already been widely applied in various 

single-phase flow problems (Liu & Liu, 2010; Zhang et al., 2017; Shadloo 

et al., 2016). More recently, the SPH method has been of particular interest 

for modelling sediment-laden flows (Shi et al., 2017; Wang et al., 2017; Shi 

et al., 2019). For many existing two-phase SPH models, the fluid-sediment 

mixture is treated as two immiscible phases and represented by two sets of 

SPH particles (Ulrich et al., 2013; Fourtakas & Rogers, 2016; Zubeldia et 

al., 2018). It is noticeable that the SPH particles representing the sediment 

phase in these models consist of the water-soil mixture rather than 

sediment only, and variables of the mixture are solved rather than the 

individual phase. Shi et al. (2019) pointed out that the interphase forces and 

intergranular stresses in these models cannot be addressed directly. 

Furthermore, the sediment concentration is controlled by the kernel-

averaged volumetric approximation in these models, which is too crude for 

simulating suspended sediment motion. Instead of treating the fluid-

sediment mixture as two immiscible fluids, a two-phase SPH model in Shi 

et al. (2017) and Shi et al. (2019) is developed to simulate sediment-laden 

flows, in which treating the two phases as two miscible fluids based on a 

general formulation.  

 

It is worth to mention that all models mentioned above (e.g., Ulrich et al., 

2013; Fourtakas & Rogers, 2016; Zubeldia et al., 2018; Shi et al., 2017; Shi 

et al., 2019) are based on the weakly compressible SPH (WCSPH) method 

where the pressure field is explicitly solved through the Equation of State 
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(EoS). Only a few attempts (Ran et al., 2015; Pahar & Dhar, 2017) have 

been made through the incompressible SPH (ISPH) formulations to solve 

two-phase problems, with some questionable assumptions. Specifically, 

Ran et al. (2015) proposed a two-phase model based on the ISPH scheme 

for simulating movable bed dam-break flows, but the sediment bed is 

treated as an erodible solid wall. In Pahar & Dhar (2017), the variation of 

sediment concentration is simply omitted by assuming that the solid 

concentration is equal to a constant for each SPH particle. Such 

oversimplified SPH models lack generalizability and cannot be employed 

for simulating suspended sediment motion problems.  

 

The present study in Chapter 5 aims to develop a two-phase model based 

on the ISPH scheme with a general formulation. The two phases of 

sediment-laden flow are considered to be miscible, and each phase is 

described by a single set of governing equations. Furthermore, the 

computational domain is discretized by a single set of SPH particles to 

avoid variable smoothing length scales and non-conservation momentum 

problems (Laibe & Price, 2014). The SPH particles move with the water 

velocity and carry local properties of both phases by employing the volume 

fraction representation, which is detailed in Monaghan & Kocharyan (1995), 

Monaghan (1997) and Kwon & Monaghan (2015). The intergranular 

stresses and interphase forces are addressed directly in momentum 

equations. The Large-eddy simulation (LES) and sub-particle scale models 

are employed to represent the turbulent effect, and the turbulent viscosities 

are determined by the Smagorinsky model. Additionally, the hindered 

settling effect is also considered concerning to the drag force. The classic 

two-step projection approach is used for solving the pressure with certain 

modifications to fit the two-phase scenario. In this work, the new model has 
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been validated by the analytical solution of two idealized problems of still 

water containing both neutrally buoyant and naturally settling sand. 

Application to the sand dumping problem is also investigated.  

 

In the rest of Chapter 5, the governing equations and corresponding two-

phase formulations are described in Section 5.2. Boundary conditions and 

discretized equations are presented in Sections 5.3 and 5.4, respectively. 

Code implementations of the ISPH model are given in Section 5.5. 

Validation for idealized cases and application of the proposed model to the 

sand dumping problem are discussed in Sections 5.6 and 5.7, respectively. 

Finally, conclusions are summarized in Section 5.8.   

 

 

5.2 Formulation of the two-phase ISPH model  

 

5.2.1 Governing equations  

 

Governing equations for two-phase flows 

 

In this new two-phase ISPH model, the fluid and sediment phases are 

described as two miscible continua within the domain of interest. The fluid-

sediment mixture is discretized into a single set of SPH particles governed 

by the conservation laws for mass and momentum. Each SPH particle 

carries the properties of different phases by introducing the corresponding 

volume fraction of sediment and fluid. Following the two-phase form 
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governing equations originally derived by Drew (1983), the continuity 

equations in Eulerian form can be written as 

 

𝜕𝛼𝑓𝜌𝑓

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑗

𝜕𝑥𝑗
= 0 (5.1) 

𝜕𝛼𝑠𝜌𝑠
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
= 0 (5.2) 

 

where, 𝛼 is the volume fraction in which 𝛼𝑓 + 𝛼𝑠 = 1; 𝜌 is the density; 𝑢 is 

the velocity component; 𝑡 is the time; 𝑥 is the coordinate; the subscripts of 

𝑓 and 𝑠 represent the fluid phase and the sediment phase, respectively; 

following the summation convention, the indices 𝑖  or 𝑗  represent the 

coordinate directions. 

 

The momentum equations for the two phases in Eulerian form can be 

written as  

 

𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖𝑢𝑓,𝑗

𝜕𝑥𝑗
= −𝛼𝑓

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝛼𝑓𝜌𝑓𝑇𝑓,𝑖𝑗

𝜕𝑥𝑗
+ 𝛼𝑓𝜌𝑓𝑔𝑖 − 𝐹𝑖  (5.3) 

𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖𝑢𝑠,𝑗

𝜕𝑥𝑗
= −𝛼𝑠

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝛼𝑠𝜌𝑠𝑇𝑠,𝑖𝑗

𝜕𝑥𝑗
+ 𝛼𝑠𝜌𝑠𝑔𝑖 + 𝐹𝑖 (5.4) 

 

where 𝑝 is the pressure; 𝑔 is the acceleration of gravity (i.e., 𝑔 = 9.8𝑚/𝑠2); 

another two terms involving stresses and interphase forces will be 

discussed in the following context. 
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In Eqs. (5.3) and (5.4), the stress tensor term represents the effect of 

viscous and turbulent stresses and can be expressed as 

 

𝑇𝑘 =
(𝜏𝑘
0 + 𝜏𝑘

𝑡 )

𝛼𝑘𝜌𝑘
= (𝑣𝑘

0 + 𝑣𝑘
𝑡) (

𝜕𝑢𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑘,𝑗

𝜕𝑥𝑖
) (5.5) 

 

where 𝜏0 represents the viscous stress and 𝜏𝑡 represents the sub-particle  

stress; 𝑣0 and 𝑣𝑡 is the kinematic viscosity and eddy viscosity, respectively; 

the index 𝑘 = 𝑓, 𝑠. 

 

The viscous stress tensor 𝜏𝑘
0 can be determined by  

 

𝜏𝑘,𝑖𝑗
0 = 𝛼𝑘𝜌𝑘𝑣𝑘

0 (
𝜕𝑢𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑘,𝑗

𝜕𝑥𝑖
) (5.6) 

 

According to Ahilan & Sleath (1987), the relationship between 𝑣𝑓
0 and 𝑣𝑠

0 

can be expressed as  

 

𝑣𝑠
0 = 1.2

𝜌𝑓

𝜌𝑠
[(
𝛼𝑠𝑚
𝛼𝑠
)

1
3
− 1]

−2

𝑣𝑓
0 (5.7) 
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where 𝑣𝑓
0  is set to be the kinematic viscosity of water (i.e., 𝑣𝑓

0 =

1 × 10−6𝑚2/𝑠); 𝛼𝑠𝑚 is the maximum volume fraction of sediment, equal to 

0.606, referring to Lin & Wang (2006). 

 

It is believed that the presence of turbulence should be considered in most 

sediment-laden flow problems (Shi et al., 2017; Luo et al., 2021). However, 

the usage of the turbulence model should be problem-dependent (Sriram & 

Ma, 2021).  In general, two turbulence modelling approaches are widely 

used in meshless methods (Luo et al., 2021). One is the 𝑘 − 휀 approach, 

which models the Reynolds stress in the Reynold-Averaged Navier-Stokes 

(RANS) equations; another one is the sub-particle scale (SPS) model, 

which resolves the fluid motions to a prescribed scale based on the large 

eddy simulation (LES) method. Both approaches have been used in various 

coastal engineering applications, but Luo et al. (2021) figured out that 

precise reproduction of turbulence is a distinct significant challenge. In this 

study, large eddy simulation (LES) along with a sub-particle model is 

introduced to deal with the turbulent effect, referring to its successful 

applications in SPH modelling of turbulent water flows (Dalrymple & Rogers, 

2006; Mayrhofer et al., 2015, Shi et al., 2017; Shi et al., 2019).  

 

The general implementation of the SPS model in SPH was proposed by 

Gotoh et al. (2001), and the sub-particle stress based on the Boussinesq 

hypothesis, which stipulates the turbulent stress is related to the mean 

velocity gradients in a similar way as that of the viscous stress, has been 

widely used and one of the commonly used forms is   
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𝜏𝑘,𝑖𝑗
𝑡 = 𝛼𝑘𝜌𝑘𝑣𝑘

𝑡 (
𝜕𝑢𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑘,𝑗

𝜕𝑥𝑖
) (5.8) 

 

The widely used Smagorinsky (1963) model is employed here to determine 

the eddy viscosities 𝑣𝑘
𝑡 ; additionally, a modification is adopted here 

considering the existence of sediment particles (Chen et al., 2011; Shi et 

al., 2017).  

 

𝑣𝑘
𝑡 = (𝐶𝑘∆)

2|𝑺𝒌| (1 −
𝛼𝑠
𝛼𝑠𝑚

)
𝑛

 (5.9) 

 

where 𝐶𝑘 is Smagorinsky constant taken to be 0.10 according to a similar 

application of sand dumping case conducted by Shi et al. (2017); ∆ is the 

initial particle distance; |𝑺𝒌| is the local strain rate, while |𝑆𝑘,𝑖𝑗| = √2𝑆𝑘,𝑖𝑗𝑆𝑘,𝑖𝑗  

and its elements can be calculated as shown below: 

 

𝑆𝑘,𝑖𝑗 =
1

2
(
𝜕𝑢𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑘,𝑗

𝜕𝑥𝑖
) (5.10) 

 

The term linked with the interphase forces (e.g., drag, lift, or added mass 

forces) aims to maintain force balance between different phases. According 

to Nguyen et al. (2012), only the drag force caused by the relative motion 

between the sediment and fluid phases needs to be considered for 

describing the sand dumping case in still water included in the present study. 

It can be expressed as 
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𝐹𝑖 = 𝛾𝛼𝑠(𝑢𝑓,𝑖 − 𝑢𝑠,𝑖) (5.11) 

 

and the coefficient 𝛾 is estimated based on the formula initially proposed by 

Gidaspow (1944) and given by  

 

𝛾 =

{
 
 

 
 3

4
𝐶𝐷
𝜌𝑓|𝒖𝒇 − 𝒖𝒔|

𝑑𝑠
𝛼𝑓
−1.65                                  𝛼𝑠 ≤ 0.2

150
𝛼𝑠𝜌𝑓𝑣𝑓

0

𝛼𝑓𝑑𝑠2
+ 1.75

𝜌𝑓|𝒖𝒇 − 𝒖𝒔|

𝑑𝑠
                  𝛼𝑠 > 0.2

(5.12) 

 

where |𝒖| is the norm of the velocity vector. 

 

𝐶𝐷  is a coefficient determined by the particle Reynolds number 𝑅𝑒𝑠 =

𝛼𝑓|𝒖𝒇 − 𝒖𝒔|𝑑𝑠/𝑣𝑓
0 and given by 

 

𝐶𝐷 = {

24

𝑅𝑒𝑠
(1.0 + 0.15𝑅𝑒𝑠

0.687)                      𝑅𝑒𝑠 < 1000

0.44                                                          𝑅𝑒𝑠 ≥ 1000

(5.13) 

 

 

Governing equations in the Lagrangian form  
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It is noticeable that the governing equations for two-phase flows are 

discretized into a single set of SPH particles in the present study. Thus, the 

SPH particles are set to be moving with the velocity of the water phase, and 

the substantial derivative associated with each SPH particle can be 

expressed as: 

 

𝑑𝜑

𝑑𝑡
=
𝜕𝜑

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝜑

𝜕𝑥𝑗
 (5.14) 

 

where the notion of 𝜑 represents the physical quantities (i.e., the velocity of 

the fluid or sediment phase) carried by the SPH particles.  

 

The Lagrangian form of governing equations is described in the following 

context, and the continuity and momentum equations for the fluid phase are 

rewritten in Lagrangian form as the substantial derivative Eq. (5.14) is 

introduced, it gives:  

 

𝑑𝛼𝑓

𝑑𝑡
= −𝛼𝑓

𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
 (5.15) 

𝑑𝑢𝑓,𝑖

𝑑𝑡
= −

1

𝜌𝑓

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑓𝜌𝑓

𝜕𝛼𝑓𝜌𝑓𝑇𝑓,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 −

𝐹𝑖
𝛼𝑓𝜌𝑓

(5.16) 

 

Note that the fluid and sediment phases are considered to be 

incompressible. Manipulating Eqs. (5.2) and (5.14), it is easy to derive the 

continuity equation of the sediment phase as 
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𝑑𝛼𝑠
𝑑𝑡

= −𝛼𝑠
𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
− 
𝜕[𝛼𝑠(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)]

𝜕𝑥𝑗
(5.17) 

 

Since the velocities differ between phases, the mass and momentum fluxes 

exist among SPH particles. Accordingly, these two terms on the right side 

of Eq. (5.17) represent the volume change of each SPH particle and the 

effect of inter-particle sediment mass flux, respectively. 

 

Transforming Eq. (5.4) to the Lagrangian form of momentum equation of 

the sediment phase by introducing Eq. (5.14) yields 

 

𝑑𝑢𝑠,𝑖
𝑑𝑡

= −(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

−
1

𝜌𝑠

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑠𝜌𝑠

𝜕𝛼𝑠𝜌𝑠𝑇𝑠,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 +

𝐹𝑖
𝛼𝑠𝜌𝑠

 (5.18) 

 

where the first term on the right side of Eq. (5.18) represents the inter-

particle momentum flux. 

 

The complete derivations from the Eulerian form governing equations to the 

Lagrangian form are given in Appendix B. 
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5.2.2 Pressure solution algorithm  

 

In the present study, the pressure is determined implicitly by solving a  

Pressure Poisson Equation (PPE) rather than an equation of state, which 

makes it distinctive from the weakly compressible SPH (WCSPH) method. 

This algorithm for pressure solution was first proposed by Koshizuka and 

Oka (1996) and further developed by Shao & Lo (2003), also known as the 

two-step prediction-correction procedure. It is expected to achieve an 

improved pressure field and velocities with the ISPH method (Lee et al., 

2008; Xu et al., 2009). In this work, variables of the fluid and sediment 

phases are solved separately following the classic single-phase prediction-

correction procedure.  

 

Solution for the fluid phase  

 

In the first prediction step, intermediate velocities and positions of the fluid 

phase are evaluated without considering the pressure term, shown as 

 

𝒖𝑓
∗ = 𝒖𝑓

𝑛 + (
1

𝛼𝑓
𝑛𝜌𝑓

∇ ∙ (𝛼𝑓
𝑛𝜌𝑓𝑻𝑓) + 𝒈 −

𝑭

𝛼𝑓
𝑛𝜌𝑓

)∆𝑡  (5.19) 

𝒓∗ = 𝒓𝑛 + 𝒖𝑓
∗∆𝑡 (5.20) 

 

where 𝒓∗ is the position vector of a SPH particle; ∆𝑡 is the time step; the 

superscript 𝑛  indicates the n-step time at 𝑡 = 𝑡𝑛 ; and the superscript ∗ 

represents the intermediate step between 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡. 
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On this basis, the velocities of the fluid phase at 𝑡𝑛+1 can be expressed as  

 

𝒖𝑓
𝑛+1 = 𝒖𝑓

∗ −
∆𝑡

𝜌𝑓
∇𝑝𝑛+1 (5.21) 

 

By taking the divergence for both sides of Eq. (5.19), the pressure Poisson 

equation (PPE) is obtained as below: 

 

(∇ ∙
∆𝑡

𝜌𝑓
∇𝑝𝑛+1) = ∇ ∙ 𝒖𝑓

∗ − ∇ ∙ 𝒖𝒇
𝒏+𝟏 (5.22) 

 

where ∇ ∙ 𝒖𝒇
∗ can be explicitly solved; and (n+1)-step divergence of velocity 

∇ ∙ 𝒖𝒇
𝒏+𝟏 should satisfy the continuity equation, i.e., Eq. (5.13), which gives 

 

∇ ∙ 𝒖𝒇
𝒏+𝟏 = −

(𝑎𝑓
𝑛 − 𝑎𝑓

𝑛−1)

𝑎𝑓
𝑛∆𝑡

 (5.23) 

 

Next, the pressure of the fluid particle can be solved as 

 

∆𝑡

𝜌𝑓
∇2𝑝𝑛+1 = ∇ ∙ 𝒖𝒇

∗ +
(𝑎𝑓

𝑛 − 𝑎𝑓
𝑛−1)

𝑎𝑓
𝑛∆𝑡

 (5.24) 
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Then, the corrected velocities and positions of the fluid phase are updated 

as the pressure field is implicitly solved   

 

𝒖𝑓
𝑛+1 = 𝒖𝑓

∗ −
∆𝑡

𝜌𝑓
∇𝑝𝑛+1 (5.25) 

𝒓𝑛+1 = 𝒓𝑛 + 𝒖𝑓
𝑛+1∆𝑡 (5.26) 

 

Solution for the sediment phase  

 

Despite considering the change of position for the sediment phase as they 

are moving with the fluid velocity, the velocity of the sediment phase can be 

explicitly obtained as 

 

𝒖𝑠
𝑛+1 = 𝒖𝑠

𝑛 +

[−
1

𝜌𝑠
∇𝑝 +

1

𝛼𝑠
𝑛𝜌𝑠

∇ ∙ (𝛼𝑠
𝑛𝜌𝑠𝑻𝑠) + 𝒈 +

𝑭

𝛼𝑠
𝑛𝜌𝑠

− (𝒖𝑠
𝑛 − 𝒖𝑓

𝑛) ∙ ∇𝒖𝑠
𝑛] ∆𝑡 (5.27)

 

 

Finally, updating of volume fraction according to Eq. (5.15) is given by 

 

𝛼𝑠
𝑛+1 = 𝛼𝑠

𝑛 + [−𝛼𝑠
𝑛∇ ∙ 𝒖𝑓

𝑛 − ∇ ∙ 𝛼𝑠
𝑛(𝒖𝑠

𝑛 − 𝒖𝑓
𝑛)]∆𝑡 (5.28) 

 

and 

𝛼𝑓
𝑛+1 = 1 − 𝛼𝑠

𝑛+1 (5.29) 
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5.3 Boundary conditions  

 

5.3.1 Solid walls 

 

In this work, the solid wall boundaries are represented by a single layer of 

SPH particles fixed along the boundary lines. The impermeable wall 

boundary condition is imposed on those boundary particles. The direct 

discretization of impermeable wall boundary conditions involving the normal 

pressure gradient has been successfully applied in MLPG/SPH simulations 

(Ma, 2005 a, b; Ma & Zhou, 2009; Ran et al., 2015; Pahar & Dhar, 2017). 

Here, the boundary treatment scheme proposed by Ma & Zhou (2009) is 

employed, and the boundary condition is given below. 

 

On the impermeable boundaries, the velocity satisfies 

 

𝒏 ∙ 𝒖𝒇 = 𝒏 ∙ 𝑼 (5.30) 

 

where 𝒏  is the unit normal vector of the wall boundaries and 𝑼  is the 

velocity of wall boundaries.  

 

By substituting Eq. (5.30) to Eq. (5.19), the pressure Neumann boundary 

condition is to be satisfied as 

 

𝒏 ∙ ∇𝑝 =
𝜌𝑓

∆𝑡
𝒏 ∙ (𝒖𝒇

∗ − 𝑼) (5.31) 
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where 𝒖𝒇
∗  is explicitly calculated by Eq. (5.21) and 𝒖𝑓

𝑛+1 is replaced by 𝑼. If 

the wall boundary particles are fixed, 𝒏 ∙ 𝑼 = 0. 

 

In addition, mass transfer is ignored between the inner particles and 

boundary particles since the scope of the current study is limited to 

suspended load motion. The primary purpose of imposing such a boundary 

scheme is to prevent inner particles from penetrating the solid walls. Thus, 

the solid boundary particles are set to be pure fluid particles. 

 

 

5.3.2 Free surfaces 

 

In ISPH, the Dirichlet pressure condition (i.e., the zero pressure) is typically 

imposed to the free surface particles (Shao & Lo, 2003). However, some 

misjudgements can happen concerning the identification of free surface 

particles as the free surface can deform violently. Therefore, various 

numerical techniques have been developed when modelling cases with the 

free surface. Specifically, the free surface particles are identified by 

evaluating the particle number density in Lo & Shao (2002), the divergence 

of a particle position in Lee et al. (2008), the particle spacing based on the 

summation of x-coordinate or y-coordinate of relative particle positions 

(Khayyer et al., 2009) and the colour function (Zheng et al., 2021). 

 

A free surface particle identification scheme developed by Ma & Zhou (2009) 

is employed here with some modifications to improve the robustness of 

present simulation cases. As shown in Fig. 5.1(a) and (b), I is a random 
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fluid particle near the free surface with an outer circle that represents a 

searching domain with the radius r is taken to be 2.5 × ∆𝑙. The searching 

domain is divided into four divisions in Fig. 5.1(a) and is overlapped with 

four rectangular columns in Fig. 5.1(b).  

 

(a) 

 

(b) 

Figure 5.1(a) A random fluid particle I close to the free surface, i.e., the 

dashed line (the outer circle centred at particle I represents the searching 

domain with four 90-degree divisions and the small hollow circles are its 

neighbouring particles); (b) The target fluid particle I within the searching 
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domain, which is overlapped with four rectangular columns with the width 

equal to 0.8 × ∆𝑙 (∆𝑙 is the initial particle spacing). 

 

The free surface particle identification scheme is based on two auxiliary 

functions, as shown below 

 

𝐹𝑆𝑁𝑜𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑟(𝐈) =  {
1                       𝑖𝑓 𝑁 ≤ 3
0                       𝑖𝑓 𝑁 > 3

 (5.32)  

𝐹𝑆𝑁𝑜𝑑𝑒𝑐𝑜𝑙𝑢𝑚𝑛(𝐈) =  {
1                       𝑖𝑓 𝑁 ≤ 3
0                       𝑖𝑓 𝑁 > 3

 (5.33)  

 

where 𝑁 = 𝑁𝑒𝑎𝑠𝑡 + 𝑁𝑤𝑒𝑠𝑡 + 𝑁𝑛𝑜𝑟𝑡ℎ + 𝑁𝑠𝑜𝑢𝑡ℎ ; and 𝑁(𝑒𝑎𝑠𝑡) , for instance, 

represents if there is at least one neighbouring particle existing in the east 

quadrant or column (i.e., the coloured region in Fig. 5.1(a) & (b)); if yes, 

𝑁𝑒𝑎𝑠𝑡 = 1, if no, 𝑁𝑒𝑎𝑠𝑡 = 0.   

 

If the particle I simultaneously satisfies the following conditions, the 

concerning inner fluid particle I can be considered as a free surface particle 

and imposed with the previously mentioned free surface boundary condition 

(i.e., the zero pressure). 

 

𝐹𝑆𝑁𝑜𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑟(𝐈) = 1  

𝐹𝑆𝑁𝑜𝑑𝑒𝑐𝑜𝑙𝑢𝑚𝑛(𝐈) = 1  
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It is noticeable that the vast majority of the free surface particles can be 

identified efficiently in the present study with very limited misjudgements, 

but this has no significant impact on the overall computational accuracy.   

 

 

5.4 Discretized equations 

 

The general SPH formulations are presented in Section 3.3. For the two-

phase ISPH model, the volume of a particle 𝑏 can be defined by  

 

𝑉𝑏 = (
𝑚𝑓

𝑎𝑓𝜌𝑓
)
𝑏

(5.34) 

 

Note that the 𝑚𝑓 being the mass of fluid phase carried by each SPH particle 

and remains constant during the simulations. 

 

Although the classic SPH formulations have proven successful for 

modelling many free-surface flow problems with large deformation, the 

gradient or Laplacian operator calculation might be problematic in those 

regions near the rigid boundaries or free surfaces. Thus,  some approaches 

have been developed to address the challenges of calculating the second-

order or higher derivatives with the SPH method (Chen et al., 1999; Bonet 

& Kulasegaram, 2000; Chaniotis et al., 2002; Zhang & Batra, 2004; Liu & 

Liu, 2006; Schwaiger, 2008). In this work, an implicit corrected SPH 

formulation (Schwaiger, 2008) is employed to address the difficulties in 
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calculating the first and second-order derivatives of field values. An 

essential characteristic of this technique is introducing a simple correction 

term that incrementally improves gradient or Laplacian operator calculation 

(Schwaiger, 2008). Schwaiger (2008) also conducted a series of tests to 

demonstrate the reduced relative errors in approximating the Laplacian 

calculations on a square patch.    

 

The corrected form of the first and second derivatives of 𝜑 is given by: 

 

∇𝜑𝑎 =∑𝑉𝑏(𝜑𝑏 − 𝜑𝑎)𝐋 ∙ ∇𝑊𝑎𝑏

𝑏

 (5.35) 

And 

 

∇2𝜑𝑎 =
2𝑡𝑟(𝚪−1)

𝑛
{∑𝑉𝑏(𝜑𝑏 −𝜑𝑎)

𝒓𝒂𝒃 ∙ ∇𝑊𝑎𝑏

|𝑟𝑎𝑏|2
𝑏

− ∇𝜑𝑎 ∙ (∑𝑉𝑏
𝑏

∇𝑊𝑎𝑏)} (5.36) 

 

where 𝑛 = 2 in the 2D cases;  

 

and the discretized form of the correction term 𝐋 and 𝚪  can be defined by 

 

𝐋 =

(

 
 
∑𝑉𝑏∆𝑥

∂𝑊𝑎𝑏

𝜕𝑥𝑖
𝑏

∑𝑉𝑏∆𝑥
∂𝑊𝑎𝑏

𝜕𝑥𝑗
𝑏

∑𝑉𝑏∆𝑦
∂𝑊𝑎𝑏

𝜕𝑥𝑖
𝑏

∑𝑉𝑏∆𝑦
∂𝑊𝑎𝑏

𝜕𝑥𝑗
𝑏 )

 
 

−1

(5.37) 
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and 

 

𝚪 =

(

 
 
∑𝑉𝑏

𝒓𝑎𝑏 ∙ ∇𝑊𝑎𝑏

|𝑟𝑎𝑏|2
∆𝑥∆𝑥

𝑏

∑𝑉𝑏
𝒓𝑎𝑏 ∙ ∇𝑊𝑎𝑏

|𝑟𝑎𝑏|2
∆𝑥∆𝑦

𝑏

∑𝑉𝑏
𝒓𝑎𝑏 ∙ ∇𝑊𝑎𝑏

|𝑟𝑎𝑏|2
∆𝑥∆𝑦

𝑏

∑𝑉𝑏
𝒓𝑎𝑏 ∙ ∇𝑊𝑎𝑏

|𝑟𝑎𝑏|2
∆𝑦∆𝑦

𝑏 )

 
 
 (5.38) 

 

as ∆𝑥 = 𝑥𝑏 − 𝑥𝑎; ∆𝑦 = 𝑦𝑏 − 𝑦𝑎; 𝒓𝑎𝑏 = (∆𝑥, ∆𝑦) and |𝑟𝑎𝑏| = √(∆𝑥)2 + (∆𝑦)2. 

 

According to Eq. (5.37), the divergence of the velocity at point 𝑎 can be 

written as 

 

(
𝜕𝑢𝑘,𝑗

𝜕𝑥𝑗
)
𝑎

=∑𝑉𝑏 [(𝑢𝑘,𝑗)𝑏
− (𝑢𝑘,𝑗)𝑎

] (𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗
𝑏

 (5.39) 

 

 

Similarly, the gradient of pressure at point 𝑎 can be written as 

 

(
𝜕𝑝

𝜕𝑥𝑖
)
𝑎

=∑𝑉𝑏[(𝑝)𝑏 − (𝑝)𝑎](𝐋)𝑖 ∙ ∇𝑊𝑎𝑏

𝑏

 (5.40) 

 

The discretized equation for the interparticle mass flux term in Eq. (5.17) is 

given by 
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{−
𝜕[𝛼𝑠(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)]

𝜕𝑥𝑗
}
𝑎

=

− [(𝑢𝑠,𝑗)𝑎 − (𝑢𝑓,𝑗)𝑎]∑𝑉𝑏[(𝛼𝑠)𝑏 − (𝛼𝑠)𝑎](𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗
𝑏

 (5.41)
 

 

And the discretized equation for the inter-particle momentum flux term in 

Eq. (5.18) is given by 

 

{−(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

}
𝑎

=

−[(𝑢𝑠,𝑗)𝑎 − (𝑢𝑓,𝑗)𝑎]∑𝑉𝑏 [(𝑢𝑠,𝑖)𝑏 − (𝑢𝑠,𝑖)𝑎]
(𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗

𝑏

 (5.42)
 

 

A preferable symmetric form proposed by Ren et al. (2014)  is applied to 

discretize the viscous term, and it yields 

 

(
𝜕𝑇𝑘,𝑖𝑗

𝜕𝑥𝑗
+ 𝑇𝑘,𝑖𝑗

𝜕 ln(𝛼𝑘)

𝜕𝑥𝑗
)
𝑎

=

∑𝑉𝑏 [(𝑇𝑘,𝑖𝑗)𝑎 + (𝑇𝑘,𝑖𝑗)𝑏] [1 +
1

2
ln
(𝛼𝑘)𝑏
(𝛼𝑘)𝑎

]

𝑏

(∇𝑤𝑎𝑏)𝑗 (5.43)

 

 

It is noted that the term 𝑇𝑘,𝑖𝑗
𝜕𝛼𝑘

𝜕𝑥𝑗
 is replaced by 𝑇𝑘,𝑖𝑗

𝜕 ln(𝛼𝑘)

𝜕𝑥𝑗
 as 𝛼𝑠 may vanish 

in ln [
(𝛼𝑘)𝑏

(𝛼𝑘)𝑎
] due to possible sediment concentration discontinuity (Shi et al., 

2017).  
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According to Eq. (5.36), the Laplacian operator of pressure in PPE (i.e., Eq. 

(5.22)) is discretized as 

 

(∇2𝑝)𝑎 =                                                                                                                      

2𝑡𝑟(𝚪−1)

𝑛
{∑𝑉𝑏(𝑝𝑏 − 𝑝𝑎)

𝒓𝒂𝒃 ∙ ∇𝑤𝑎𝑏
|𝑟𝑎𝑏|2

𝑏

− (∇𝑝)𝑎 ∙ (∑𝑉𝑏
𝑏

∇𝑤𝑎𝑏)} (5.44)
 

 

Finally, the discrete form of governing equations for two-phase flow 

problems is tabulated below: 

 

𝑑(𝛼𝑓)𝑎
𝑑𝑡

= −(𝛼𝑓)𝑎∑𝑉𝑏 [(𝑢𝑓,𝑗)𝑏 − (𝑢𝑓,𝑗)𝑎]
(𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗

𝑏

                (5.45) 

𝑑(𝑢𝑓,𝑖)𝑎
𝑑𝑡

= −
1

𝜌𝑓
∑𝑉𝑏(𝑝𝑏 − 𝑝𝑎)(𝐋)𝑖 ∙ ∇𝑊𝑎𝑏

𝑏

                                                

                     +∑𝑉𝑏 [(𝑇𝑓,𝑖𝑗)𝑎 + (𝑇𝑓,𝑖𝑗)𝑏] [1 +
1

2
ln
(𝛼𝑓)𝑏
(𝛼𝑓)𝑎

]

𝑏

× (∇𝑊𝑎𝑏)𝑗

+𝑔𝑖 −
𝐹𝑖

(𝛼𝑓)𝑎𝜌𝑓
                                                       (5.46)
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𝑑(𝑢𝑠,𝑖)𝑎
𝑑𝑡

= − [(𝑢𝑠,𝑗)𝑎 − (𝑢𝑓,𝑗)𝑎]∑𝑉𝑏 [(𝑢𝑠,𝑖)𝑏 − (𝑢𝑠,𝑖)𝑎]
(𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗

𝑏

     −
1

𝜌𝑠
∑𝑉𝑏(𝑝𝑏 − 𝑝𝑎)(𝐋)𝑖 ∙ ∇𝑊𝑎𝑏

𝑏

                                     

             +∑𝑉𝑏 [(𝑇𝑠,𝑖𝑗)𝑎 + (𝑇𝑠,𝑖𝑗)𝑏] [1 +
1

2
ln
(𝛼𝑠)𝑏
(𝛼𝑠)𝑎

]

𝑏

× (∇𝑊𝑎𝑏)𝑗

+𝑔𝑖 +
𝐹𝑖

(𝛼𝑠)𝑎𝜌𝑠
                                                               (5.47)

 

 

 

𝑑(𝛼𝑠)𝑎
𝑑𝑡

= − [(𝑢𝑠,𝑗)𝑎 − (𝑢𝑓,𝑗)𝑎]∑𝑉𝑏[(𝛼𝑠)𝑏 − (𝛼𝑠)𝑎](𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗
𝑏

  −(𝛼𝑠)𝑎∑𝑉𝑏 [(𝑢𝑓,𝑗)𝑏 − (𝑢𝑓,𝑗)𝑎]
(𝐋)𝑗 ∙ (∇𝑊𝑎𝑏)𝑗

𝑏

 (5.48)
 

 

 

5.5 Code implementations  

 

The proposed ISPH model is implemented based on the Visual Studio 2015 

platform and programmed with Fortran.  

 

A 2-dimensional two-phase ISPH code is developed in this thesis, and it 

incorporates basic conservation equations for various fluid-sediment 

motions in a water tank system. The simplified structure of the two-phase 

ISPH code is shown in Fig. 5.2. The basis of the ISPH code is consist of 

the initialization part, main algorithm subroutines, and output, respectively. 

Specifically, the initial geometry is set by generating inner/boundary 
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particles with pre-defined physical quantities. Following the two-step 

prediction-correction procedure, the nearest neighbouring particle search 

(NNPS) scheme is conducted for all particles at each time step. The 

viscosity and drag force for each phase are calculated explicitly first. Then 

the intermediate velocity and position for the fluid phase are computed at 

the intermediate time step. After that, the matrix of the PPE equation is 

assembled, and the fluid pressure can be solved through a solver. The next 

step fluid velocity and position of each particle is then corrected. Finally, the 

corresponding velocity of the sediment phase and volume of fraction can 

also be updated as the pressure field is obtained by solving PPE. The 

iterative calculation is performed within the time loop until the terminal 

condition is researched. Once the time loop stops, the stored data will be 

exported as txt files. 
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Figure 5.2. The structure of the two-phase ISPH code. 
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5.6 Validation by idealized problems 

 

This section uses two idealized cases, namely still water with neutrally 

buoyant sediment and naturally settling sediment, to validate the proposed 

ISPH model. Numerical results on the static pressure distribution in still 

water with neutrally buoyant sediment and evolution of sediment 

concentration with naturally settling sediment are compared with analytical 

solutions (Shi et al., 2017). 

 

 

5.6.1 Still water with neutrally buoyant sediment 

 

In order to verify the solution of the pressure field by solving the PPE 

equation, the proposed ISPH model is applied to the problem of still water 

with neutrally buoyant sediment. In this section, two test cases, namely 

Case 1a and Case 1b, are conducted in a two-dimension square tank with 

the length of sides being 𝐿 = 1𝑚. In Case 1a, evenly distributed particles 

with the initial distribution of sediment concentration 𝛼𝑠 = 0.1 is considered; 

and in Case 1b, the initial distribution of sediment concentration becomes 

linear along the 𝑥2 axis (vertical direction) and set to be 𝛼𝑠 = 0.5(1 − 𝑥2/𝐿). 

The initial particle spacing is set to be 0.005𝑚, and the density of both 

phases is equal to the fluid density 𝜌𝑓 = 𝜌𝑠 = 1000𝑘𝑔/𝑚3 . The initial 

particle distribution in the two test cases is shown in Fig. 5.3. The time step 

∆𝑡 is 0.001𝑠, and the total simulating time is taken as 1.5𝑠.  
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In the simulations, the sediment phase will remain suspended, and 

sediment concentration distribution will keep unchanged. As can be seen 

from Fig. 5.4, the computed pressure distribution of Case 1a and Case 1b 

at 𝑡 = 1.5𝑠 has achieved a good agreement with the hydrostatic law in fluid 

mechanics. Moreover, the particles are uniformly distributed within the 

entire domain, which further demonstrates the fact that the pressure field is 

solved precisely without unphysical disorders, which are reported in Shi et 

al. (2017) with irregular particle distribution and rise of free surface particles.  

 

 

(a) 
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(b) 

 

Figure 5.3. Initial particle distribution and sediment concentration 

distribution of the test cases (a) Case 1a; (b) Case 1b in still water. 
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(a) 

(b) 

Figure 5.4. Computed pressure distribution at 𝑡 = 1.5𝑠 of test cases (a) 

Case 1a; (b) Case 1b. 
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5.6.2 Still water with naturally settling sediment 

 

Since particles remain suspended for the mixture of fluid and neutrally 

buoyant sediment, the proposed model will be further verified by the case 

of still water with naturally settling sediment. The computational domain is 

defined in a 2-dimensional tank with the length 𝐿 = 0.4𝑚 and depth 𝐻 =

0.5𝑚.  

 

As the sediment concentration in the 𝑥1 direction is uniform, the sediment 

concentration along the 𝑥2 direction can be expressed as 

 

𝜕𝛼𝑠
𝜕𝑡

− 𝜔𝑠(1 − 𝛼𝑠)
1.65

𝜕𝛼𝑠
𝜕𝑥2

= 0 (5.49) 

 

where 𝜔𝑠  is the settling velocity of an individual sediment grain; the 

correction factor (1 − 𝛼𝑠)
1.65  represents the hindered settling effect 

(Richardson & Zaki, 1954).  

 

According to Eq. (5.49), the analytical solution can be obtained as 

 

{
𝜑 = 𝑥2 + 𝜔𝑠[1 − 𝑓(𝜑)]

1.65𝑡

𝛼𝑠(𝑡, 𝑥2) = 𝑓(𝜑)
 (5.50) 

 

where 𝜑 is the coordinate position on 𝑥2  direction and 𝑓(𝜑) is the initial 

sediment concentration at 𝑡 = 0𝑠, which can be defined by 
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{
𝛼𝑠 =

𝛼𝑠0
2
[1 + cos 2𝜋 (

𝑥2 − 0.1

0.4
− 0.5)]      𝑥2 ≥ 0.1           

0                                                                    𝑥2 < 0.1
 (5.51) 

 

with 𝛼𝑠0 = 0.001. 

 

In this case, the density is taken as 𝜌𝑓 = 1000𝑘𝑔/𝑚3 and  𝜌𝑠 = 2650𝑘𝑔/𝑚
3, 

respectively. The diameter of the sediment is set to be 𝑑𝑠 = 0.15𝑚𝑚, and 

yielding a settling velocity of 𝜔𝑠 = 1.59𝑐𝑚/𝑠. The initial particle spacing is 

0.01𝑚, and further investigated with a convergent test for different particle 

spacing. The time step ∆𝑡 is 0.001𝑠. Fig. 5.5 shows the particle distribution 

and corresponding sediment concentration at 𝑡 = 0𝑠  and 𝑡 = 5𝑠 , 

respectively. The computed pressure field is presented in Fig. 5.6(a) and 

satisfied with the hydrostatic law as expected. The numerical results of 

computed sediment concentration at 𝑡 = 0𝑠 and 𝑡 = 5𝑠, as shown in Fig. 

5.6(b), are compared with the analytical solution of Eq. (5.50) and achieved 

a good agreement. In addition, a convergent test with respect to different 

particle spacing for ∆= 5𝑚𝑚, 10𝑚𝑚, 20𝑚𝑚 , 50𝑚𝑚  and the analytical 

solution at 𝑡 = 5𝑠 is conducted. As can be seen in Fig.5.7, the numerical 

error can be minimized by employing finer particle resolution and ∆= 10𝑚𝑚 

is good enough in the current simulations.  
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(a) 

(b) 

Figure 5.5. The particle distribution and sediment concentration at (a) 𝑡 =

0𝑠 and (b) 𝑡 = 5𝑠. 
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(a) 

(b) 

Figure 5.6. Computed (a) pressure distribution at 𝑡 = 5𝑠; (b) evolution of 

sediment concentration compared with the analytical solution at 𝑡 = 0𝑠 and 

𝑡 = 5𝑠. 
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Figure 5.7. Convergent test using the different particle spacing and the 

analytical solution at 𝑡 = 5𝑠. 

 

 

5.7 Application to sand dumping 

 

The significance of understanding the settling process of sand has been 

extensively discussed in the field of estuarine and coastal engineering 

(Nauyen et al., 2012; Shakibaeinia & Jin, 2012). Therefore, the proposed 

two-phase ISPH model will be extended to the more practical problem, i.e., 

sand dumping. 
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In this section, the proposed two-phase ISPH model is applied to a sand 

block with 𝛼𝑠0 = 0.606 initially released from the free surface to a 1𝑚 × 1𝑚 

square water tank. The sketch of the computational domain can be seen in 

Fig. 5.8; 𝐻0 and 𝑊0 is the initial size of the sand block; 𝐻 and 𝐿 is the depth 

and width of the water tank, respectively; 𝑍 is the settling distance between 

the initial sand block position and evolutionary front position of the sand 

cloud; 𝑊 is the width of the sand cloud, according to Bühler & Papantoniou 

(2001),  it is defined as the particles with the sediment concentration 𝛼𝑠 

equal to 5% of the maximum value at the considered instant. The initial 

particle distribution is shown in Fig. 5.9. The computational domain is 

represented by 10000 inner particles, including 100 free surface particles 

with regularly distributed particle spacing ∆= 10𝑚𝑚. The time step is fixed 

and set to be ∆𝑡 = 0.001𝑠.  

 

 

Figure 5.8. Configuration of a water tank with a sand block dumping from 

the free surface. 
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Figure 5.9. Initial particle distribution and sediment concentration. 

 

Table 1 shows the different conditions considered in the sand dumping case, 

where 𝑞0 is the initial area of the sand block defined as 𝑞0 = 𝐻0 ×𝑊0; the 

initial density of the sand block 𝜌𝑜 = 𝜌𝑓(1 − 𝛼𝑠0) + 𝜌𝑠𝛼𝑠0 = 2000𝑘𝑔/𝑚3 with 

𝛼𝑠0 being the initial sediment concentration; 𝑑𝑠  is the sand diameter; the 

characteristic velocity, 𝑢0 = √(𝜌𝑜 − 𝜌𝑓)𝑔√𝑞0/𝜌𝑓  and 𝐿0 = √𝑞0. 

Table 1 Simulation conditions for test cases 

Case      𝐻0(cm)        𝑊0(cm)        𝑞0(cm
2)       𝑑𝑠(mm)         𝜔𝑠(cm/s)       𝑢0(cm/s)        𝐿0(cm)   

  1             2.5                2                   5                0.8                12.60           46.81            2.24      

  2             2.5                2                   5                  5                 49.52           46.81            2.24              

  3             2.5                4                  10               1.3                19.61           55.67            3.16              

  4             2.5                4                  10                 5                 49.52           55.67            3.16              
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5.7.1 Motion of sand cloud 

 

The experimental data in Nakasuji et al. (1990) is used for validating the 

proposed model by comparing it with the computed frontal velocity 𝜔𝑐 and 

width of the sand cloud 𝑊.  

 

Fig. 5.10 shows that the sand cloud accelerates to a constant settling 

velocity after initial release from the free surface in both Case 1 and Case 

2. Despite some wiggles in Fig. 5.10(a), the computed results have 

achieved a good agreement for both cases in general. According to Shi et 

al. (2017), the underestimated frontal velocity at the early stage of settling 

might be caused by the turbulent model, which cannot accurately describe 

the turbulent effect of fine sand cloud. The proposed model is also validated 

by comparing the width of the sand cloud with experimental data. Even 

though minor fluctuations exist, both cases (i.e., Case 3 and 4) can correctly 

reproduce the satisfactory results In Fig. 5.11. Considering the definition of 

computed cloud width, the accuracy could be improved by adjusting the 

measuring method of the cloud width. 
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(a) 

(b) 

Figure 5.10 Comparison of the computed frontal velocity 𝜔𝑐 with 

experimental results of Nakasuji et al. (1990) under conditions of (a) Case 

1 and (b) Case 2. 
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(a) 

 (b) 

Figure 5.11. Comparison of the computed cloud width with experimental 

results of Nakasuji et al. (1990). (a) Case 3; (b) Case 4. 
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5.7.2 Computed sediment concentration  

 

To supplement the verification of the proposed ISPH model, the computed 

sediment concentration is performed in Case 1 and Case 2. In Case 1, the 

computed sediment concentration exhibits two peaks at different instants, 

as shown in Fig 5.12(a) and Fig. 5.12(b). This double-peak phenomenon is 

in good agreement with the observed results of Li (1997) and Shi et al. 

(2017). In Fig. 5.13(a) and Fig. 5.13(b), the double-peak phenomenon 

disappears in Case 2, which can be explained by the minimized effect of 

vortices (Li, 1997). 

(a) 

(b) 

Figure 5.12. Computed sediment concentration for Case 1 at (a) 𝑡 = 1𝑠 

and (b) 𝑡 = 2𝑠. 
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(a) 

(b) 

 

 

Figure 5.13. Computed sediment concentration for Case 2 at (a) 𝑡 = 1𝑠 and 

(b) 𝑡 = 2𝑠. 
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5.7.3 Computed fields of pressure and vortices 

 

In this section, the computed fields of pressure and vortices in Case 2 are 

performed to verify the motion of the sand cloud. The computed pressure 

field at 𝑡 = 1𝑠 is shown in Fig. 5.14. It demonstrates that the pressure field 

is continuous within the computational domain and generally agrees with 

the hydrostatic law.  

 

 

Figure 5.14. Computed pressure field at 𝑡 = 1𝑠 for Case 2. 
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(a) Computed fields of dynamic pressure, the volume fraction of sediment 

and vortices (the solid line box indicates the position of sand cloud) at 𝑡 =

0.25𝑠 for Case 2. 
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(b) Computed fields of dynamic pressure, the volume fraction of sediment 

and vortices (the solid line box indicates the position of sand cloud) at 𝑡 =

0.5𝑠 for Case 2. 
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(c) Computed fields of dynamic pressure, the volume fraction of sediment 

and vortices (the solid line box indicates the position of sand cloud) at 𝑡 =

0.75𝑠 for Case 2. 
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(d) Computed fields of dynamic pressure, the volume fraction of sediment 

and vortices (the solid line box indicates the position of sand cloud) at 𝑡 =

1𝑠 for Case 2. 
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(e) Computed fields of dynamic pressure, the volume fraction of sediment 

and vortices (the solid line box indicates the position of sand cloud) at 𝑡 =

2𝑠 for Case 2. 

Figure 5.15. Computed fields of dynamic pressure, the volume fraction of 

sediment and vortices at different instants (a) 𝑡 = 0.25𝑠, (b) 𝑡 = 0.5𝑠, (c) 𝑡 =

0.75𝑠 (d) 𝑡 = 1𝑠, (e) 𝑡 = 2𝑠 for Case 2. 
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Figs. 5.15(a) to 5.15(e) show the computed dynamic pressure, sediment 

concentration, and vortex field at different instants from 𝑡 = 0.25𝑠 to  𝑡 = 2𝑠 

for Case 2. It is clear that there exists a high-pressure zone below the front 

of the sand cloud, which drives the sediment to spread out during the 

process of settling. In Fig. 5.15(a), the position of sand cloud is located 

between two symmetrical vortices, and the pair of vertices can directly 

affect its motion. In Figs. 5.15(b) to 5.15(e), it is clear that the sand cloud is 

moving away from the vortices. Since the sand cloud is less affected by 

vortices in Case 2, it explains why the double-peak phenomenon appears 

in Case 1 but disappears in Case 2, as noted in Section 5.7.2. In brief, the 

sediment in Case 2 can move away from the vortex centre before the vortex 

can directly affect the movement of the sand cloud. 

 

 

5.8 Conclusion  

 

The present study proposes a two-phase model based on the 

incompressible SPH method for simulating sediment motion problems. The 

fluid and sediment phases are treated as two miscible fluids, and the 

computational domain is discretized into a single set of SPH particles. Each 

SPH particle moves with the fluid velocity and carries the local properties 

of both phases. The drag force is formulated with consideration of the 

hindered effect. In addition, large eddy simulation (LES) is employed to 

represent the turbulent effect, and the eddy viscosities are defined by the  

Smagorinsky model. The classic two-step prediction-correction procedure 

is used to solve the pressure Poisson equation under the incompressible 

conditions for fluid and sediment phases. The pressure Neumann boundary 

condition is imposed on the rigid solid walls, as the zero pressure boundary 
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condition on the free water surface. In the implementation, the Fortran code 

package based on the Visual Studio platform is newly developed.  

 

The two-phase model is verified by the analytical solutions for two idealized 

problems of still water with neutrally buoyant sediment and naturally settling 

sediment in a two-dimensional water tank. The numerical results have 

clearly agreed with the analytical solutions for both problems. The 

convergent test for a range of initial particle spacing is also conducted. In 

the sand dumping case, the proposed model is validated by comparing the 

motion of sand clouds (i.e., the frontal velocity and width) with experimental 

results. It is shown that the numerical results are in good agreement with 

experimental data. The model is then applied to explore the evolution of 

sand concentration. In the fine sediment case (i.e., Case 1), the double-

peak phenomenon appears because of the effect of vortices. However, in 

Case 2 with coarse sediment, the impact of vortices is weakened. This is 

because the sand cloud moves away from the vortex centre before it is fully 

developed. In summary, the newly developed two-phase model based on 

incompressible SPH method is proven to be effective for the numerical 

study of sand dumping problems. 
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Chapter 6: Conclusions and future work 

 

In this thesis, two numerical improvements have been proposed and 

incorporated into code implementations. Specifically, an improved 

boundary scheme based on the MLPG_R method is developed to impose 

rigid and impermeable boundary conditions. A two-phase model based on 

the incompressible SPH method is proposed for simulating sediment 

motion problems. This thesis starts with a brief introduction of the 

background of developing meshless methods. Then, the literature review 

chapter presents some recent developments of meshless methods (i.e., 

MLPG and SPH specifically), boundary treatment methods and multiphase 

flow modelling. Next, the fundamental modelling principles and formulations 

of the MLPG_R and SPH methods are described in the methodology 

chapter. The conclusion and discussion of the newly developed numerical 

improvements are shown below. 

 

6.1 The improved boundary scheme  

 

For simulating flow-structure interaction problems, this work develops an 

improved boundary scheme for rigid and impermeable walls by integrating 

the PPE for wall boundary particles with the Neumann pressure boundary 

condition imposed. This numerical improvement based on the MLPG_R 

method removes the calculation of derivatives of the unknown pressure. 

Accordingly, improved computational accuracy is reported through 

validation of patch tests and comparison with other numerical results (i.e., 

the direct discretization of the pressure Neumann boundary condition). The 

current boundary scheme shows a good capacity to deal with randomly 
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distributed particles.  Apart from the reduction of mean error, the number of 

particles having large errors is also reduced, thus enhancing the stability of 

the simulation. In the classic lid-driven cavity cases, the velocity fields 

simulated by the model with the new boundary scheme has achieved good 

agreement with those by the well-established numerical method across a 

wide range of Reynolds number.  In the simulation of flow over a cylinder, 

the new boundary scheme is applied to the curved surface of the cylinder. 

The convergent results to various particle numbers show the capacity of the 

new scheme to deal with non-flat geometries. Moreover, the development 

of symmetrical vortex and its length at low Reynolds number and 

asymmetrical vortex at high Reynolds number are all well captured 

compared with measurements. The capability of the new boundary 

approach is also validated for the moving boundary by generating 

monochromic waves using a piston wavemaker as the wave surface 

profiles well agree with the analytical solutions. 

 

 

6.2 The two-phase ISPH model  

 

A two-phase ISPH model is proposed in the present study for simulating 

sediment motion problems. The formulation of this two-phase model treats 

the fluid and sediment phases as two miscible fluids. The computational 

domain is discretized into a single set of SPH particles that move with the 

water velocity. Turbulent and hindered settling effects are also considered. 

The pressure field is solved by employing the two-step prediction-correction 

procedure. This two-phase model is firstly verified by two idealized 

problems, and the numerical results have clearly agreed with the analytical 

solutions. A convergent test for a range of initial particle spacing is also 
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conducted. In the sand dumping simulations, the proposed model 

demonstrates that the numerical results are in good agreement with 

experimental data regarding the motion of sand cloud (i.e., frontal velocity 

and width). The model is also applied to explore the evolution of sand 

concentration, and it is shown that the existence of vortices can cause the 

double-peak distribution of the sediment concentration. Furthermore, the 

double-peak distribution phenomenon disappears as the settling velocity is 

large enough to move away from the vortex centre. Overall, the developed 

two-phase model based on incompressible SPH method is proven to be 

effective for the numerical study of sand dumping problems. 

 

 

6.3 Future work 

 

This research has explored a number of potential avenues for future 

research: 

 

• The current boundary treatment schemes in MLPG are mainly 

applied to the flat boundary. With this regard, imposing boundary 

conditions on more complex geometries is important in practical 

engineering applications.  

 

• In order to accurately calculate the second or higher order of 

derivatives, an improved interpolation scheme is required for 

particles near the boundaries with a truncated support domain. This 

also plays a significant role in terms of computational stability.  
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• In this work, the assumption of a semi-circular domain at the 

boundary particles works well. However, this sub-domain may 

reduce to a quarter-circle near the intersection of free surface and 

rigid boundaries. It is questionable if such a truncated domain can 

provide a robust solution in corners or 3-dimensional cases. 

 

• A common issue in meshless methods applied to incompressible 

fluid flow simulations is the uneven distribution of particles. Although 

some numerical techniques such as the swift position method have 

been proposed, a robust solution is still needed to handle the 

regularization of the particles during the time loop.  

 

• For multiphase simulation, the proposed two-phase SPH model 

needs to be verified with further practical scenarios with various 

density ratios considering the hindered settling effect. 

 

• The discussion on the time step and corresponding conditions is 

unclear for multiphase flow simulations. More tests are required to 

explore the restrictions of the maximum time step for improving 

computational effectiveness. 

 

• The present model has not considered the scenario when settling 

materials approaches and distributes on the bottom. This might be 

oversimplified concerning adaptability.  

 

• Regarding the fluid-sediment interphase forces, only the drag forces 

are considered, and it is unclear if other forces should be included.  
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• In this thesis, the improved boundary scheme and two-phase model 

are both applied to 2-dimensional simulations. In future work, it is 

worth exploring their extension to 3-dimensional cases. 

 

• The codes developed in this work are highly customized. With this 

respect, the universal open-source codes could be helpful for 

improving and understanding the present numerical schemes. 

 

• The possibility of extending the improved boundary scheme based 

on MLPG to ISPH is worth exploring. Besides, the two-phase ISPH 

model also has the potential to be implemented based on the MLPG 

formulations.   

 

• As the governing equations and numerical procedure of ISPH and 

MLPG_R remain the same, it is worth exploring the application of the 

MLPG_R method to the multiphase problems.  
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Appendix A. MLPG_R formulation for wall particles 

 

This appendix aims to provide a detailed formulation of the proposed 

boundary scheme for wall particles. 

 

The PPE equation for solving the pressure of wall particles at the new time 

level is given by 

 

∇2𝑝𝑛+1 =
𝜌

∆𝑡
∇ ∙ 𝒖∗  (1) 

 

In order to find the solution for the pressure by solving Eq. (1), the MLPG_R 

method will be employed. A semicircle domain is specified as below for the 

two-dimensional case at each boundary particle on the rigid walls.  

 

 

(𝑆 = 𝜕𝛺𝐾 = 𝜕𝛺ℎ ∪ 𝜕𝛺𝑏1+𝑏2 ∪ 𝜕𝛺𝜀)             

 

Where 𝜕𝛺𝐾 is the boundary of the semicircle integration domain and 𝜕𝛺𝜀 is 

a small surface surrounding the centre of  𝛺𝐾  with a radius of 𝑅𝜀 . The 

reason for adding 𝜕𝛺𝜀 is that the test function 𝜑 becomes infinite at 𝑟 = 0 

and so the Gauss’s theorem cannot be used otherwise.   
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Eq. (1) is integrated over this domain after multiplying by a Rankine source 

test function 𝜑 for the two-dimensional case. 

 

∫ (∇2𝑝𝑛+1 −
𝜌

∆𝑡
∇ ∙ 𝒖∗)𝜑

𝛺𝐾

𝑑Ω = 0 (2) 

                                                                             

𝜑 =
1

2𝜋
ln (

𝑟

𝑅𝐾
) (3) 

                                                                     

where 𝛺𝐾 is the area of the semicircle integration domain, r is the distance 

between a concerned point and the centre of the integration domain and 

𝑅𝐾 is the radius of the integration domain. 

 

The test function 𝜑  is made to satisfy ∇2𝜑 = 0  in 𝛺𝐾  and 𝜑 = 0  on its 

boundary 𝜕𝛺𝐾  in order to obtain a better form solution for solving the 

second-order derivative of pressure and the gradient of intermediate 

velocity by applying Gauss’s theorem.   

 

In Eq. (2), the order of unknown pressure can be reduced by adding a zero 

term 𝑝∇2𝜑  and applying the Green’s theorem, and the gradient of 

intermediate velocity can also be changed by employing the Gauss’s 

theorem as below: 

 

∫ [(∇2𝑝)𝜑 − 𝑝(∇2𝜑)] 
𝛺𝐾

𝑑Ω = ∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω −∫ (∇2𝜑)𝑝
𝛺𝐾

𝑑Ω (4) 
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as 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω = ∫ ∇ ∙ (∇𝑝)𝜑
𝛺𝐾

𝑑Ω = ∫ [∇ ∙ (𝜑∇𝑝) − ∇𝑝 ∙ ∇𝜑]
𝛺𝐾

𝑑Ω  (4a) 

∫ (∇2𝜑)𝑝
𝛺𝐾

𝑑Ω = ∫ ∇ ∙ (∇𝜑)𝑝
𝛺𝐾

𝑑Ω = ∫ [∇ ∙ (𝑝∇𝜑) − ∇𝑝 ∙ ∇𝜑]
𝛺𝐾

𝑑Ω (4b) 

 

Eq. (4a) minus (4b) gives: 

 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω = ∫ [∇ ∙ (𝜑∇𝑝) − ∇ ∙ (𝑝∇𝜑)]
𝛺𝐾

𝑑Ω  (5) 

 

Employing 2D Gauss’s theorem to Eqs. (5a) and (5b)  yields: 

 

∫ ∇ ∙ (𝜑∇𝑝)
𝛺𝐾

𝑑Ω = ∫ 𝒏 ∙ (𝜑∇𝑝)𝑑𝑆
𝜕𝛺𝐾

 (5a) 

∫ ∇ ∙ (𝑝∇𝜑)
𝛺𝐾

𝑑Ω = ∫ 𝒏 ∙ (𝑝∇𝜑)
𝜕𝛺𝑘

𝑑𝑆 (5b) 

 

and the first term at the right-hand side of Eq. (4) becomes 

 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω = ∫ [𝒏 ∙ (𝜑∇𝑝) − 𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝐾

𝑑𝑆 (6) 
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The first term on the right-hand side of Eq. (6) can be expanded to  

 

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ+∂𝛺ε+∂𝛺𝑏

𝑑𝑆 = ∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ

𝑑𝑆 + ∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝜀

𝑑𝑆

                    +∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 (7)

 

 

as it can be easily proven that  

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ

𝑑𝑆 = 0 as 𝜑 vanishes on ∂𝛺ℎ;  

∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝜀

𝑑𝑆 = ∫ (𝒏 ∙ ∇𝑝)
1

2𝜋
ln (

𝑅𝜀

𝑅𝐾
)

0

𝜋
𝑅𝜀𝑑𝜃 = 0 as lim

𝑅𝜀→0
ln (

𝑅𝜀

𝑅𝐾
) 𝑅𝜀 → 0. 

 

Manipulating Eq. (7) gives:                      

    

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺𝐾

𝑑𝑆 =  ∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 (8) 

 

The second term on the left-hand side of Eq. (6) can be expanded to 

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ+∂𝛺ε+∂𝛺𝑏

𝑑𝑆 = ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 + ∫ [𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝜀

𝑑𝑆

              +∫ [𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝑏

𝑑𝑆   (9)
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as   

∫ [𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝜀

= lim
𝑅𝜀→0

∫
𝑝

2𝜋𝑅𝜀
∙ 𝑅𝜀

0

𝜋
𝑑𝜃 =

𝑝

2𝜋
∫ 1
0

𝜋
𝑑𝜃 =

𝑝

2𝜋
× (0 − 𝜋) = −

𝑝

2
;   

(assuming p is constant in the infinitesimal area 𝛺𝜀). 

∫ [𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝑏

𝑑𝑆 = 0 as 𝒏 is perpendicular to the solid wall 𝜕𝛺𝑏.  

 

Manipulating Eq. (9) gives: 

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺𝐾

𝑑𝑆 = ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
(10) 

 

Finally, Eq. (8) minus Eq. (10) yields:  

 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω = ∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 − ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 +
𝑝

2
 (11) 

 

Multiplying the second term of Eq. (2) associated with the intermediate 

velocity gives: 

 

∫
𝜌

∆𝑡
𝜑(∇ ∙ 𝒖∗)

𝛺𝐾

𝑑Ω = ∫
𝜌

∆𝑡
∇ ∙ (𝜑𝒖∗)𝑑Ω

𝛺𝐾

− ∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω (12) 

 

as 𝜑(∇ ∙ 𝒖∗) + 𝒖∗ ∙ ∇𝜑 = ∇ ∙ (𝜑𝒖∗) 
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Then, Gauss’s theorem is also employed in the first term of Eq. (12) and 

further expand this term gives: 

 

∫ [
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆]

∂𝛺ℎ+∂𝛺ε+∂𝛺𝑏

= ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺ℎ

+∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝜀

                +∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏

(13)

 

 

as 

∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺ℎ
= 0 as 𝜑 vanishes on ∂𝛺ℎ; 

∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝜀
= 0 as ∫ 𝜑𝑑𝑆

∂𝛺𝜀
= lim

𝑅𝜀→0
∫

1

2𝜋
ln (

𝑅𝜀

𝑅𝐾
) 𝑅𝜀 𝑑𝜃

0

𝜋
→ 0. 

 

Eq. (12) becomes 

 

∫
𝜌

∆𝑡
𝜑(∇ ∙ 𝒖∗)

𝛺𝐾

𝑑Ω = ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏

−∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω  (14) 

 

Combining Eq. (11) and (14), Eq. (2) has been manipulated to Eq. (15), 

which remains two terms need to be integrated over the wall boundary, 𝜕𝛺𝑏.  

∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 − ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 +
𝑝

2

= ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏

−∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω  (15)
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Next, imposing the impermeable boundary conditions, i.e., Eqs. (16) to Eq. 

(17) in order to avoid the computation of second-order derivatives. 

 

𝒖 ∙ 𝒏 = 𝑼 ∙ 𝒏 (16) 

𝒖𝑛+1 = 𝒖∗ + (−
1

𝜌
∇𝑝𝑛+1) ∆𝑡 (17) 

 

Here, Eq. (16) and Eq. (17) are combined to formulate an alternative solid 

boundary condition (Zhou et al., 2008 ), as shown in Eq. (18). 

 

𝒏 ∙ ∇𝑝 =
𝜌

∆𝑡
𝒏 ∙ (𝒖∗ − 𝑼) (18) 

 

The general weak formulation for wall boundary particle is obtained as 

shown in Eq. (19) 

 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω +∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝑼)𝑑𝑆

∂𝛺𝑏

(19) 

  

If the wall boundary is fixed, as 𝒏 ∙ 𝑼 = 0, and so Eq. (19) can be further 

simplified as Eq. (20) 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾

𝑑Ω (20) 
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Appendix B. Governing equations for two-phase flows 

 

The primary purpose of this appendix is to provide the detailed derivation 

process of two-phase governing equations from the Eulerian form to the 

Lagrangian form. 

 

Continuity equations:  

 

The continuity equations in Eulerian form is shown below: 

 

𝜕𝛼𝑓𝜌𝑓

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑗

𝜕𝑥𝑗
= 0 (1) 

𝜕𝛼𝑠𝜌𝑠
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
= 0 (2) 

 

where 𝛼 is the volume fraction of different phases and 𝛼𝑓 + 𝛼𝑠 = 1; 𝜌 is the 

density; 𝑢 is the velocity component; 𝑡 is the time; 𝑥 is the coordinate; the 

subscripts of 𝑓 and 𝑠 represent the fluid phase and the sediment phase, 

respectively; following the summation convention, the indices 𝑖  or 𝑗 

represent the coordinate directions for two-dimensional cases. 

 

𝜕𝛼𝑓𝜌𝑓

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑗

𝜕𝑥𝑗
= 𝜌𝑓

𝜕𝛼𝑓

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝛼𝑓

𝜕𝑥𝑗
+ 𝛼𝑓

𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
= 0 (3) 
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as 
𝜕𝜌𝑓

𝜕𝑡
= 0 by employing the incompressible condition. 

 

Substituting substantial derivative 
𝑑𝜑

𝑑𝑡
=

𝜕𝜑

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝜑

𝜕𝑥𝑗
, Eq. (3) yields: 

 

𝑑𝛼𝑓

𝑑𝑡
+ 𝛼𝑓

𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
= 0 (4) 

 

Similarly,  

 

𝜕𝛼𝑠𝜌𝑠
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
=
𝜕𝛼𝑠
𝜕𝑡

+ 𝑢𝑓,𝑗
𝜕𝛼𝑠
𝜕𝑥𝑗

− 𝑢𝑓,𝑗
𝜕𝛼𝑠
𝜕𝑥𝑗

+
𝜕𝛼𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
= 0 (5) 

 

By adding the zero term 𝑢𝑓,𝑗
𝜕𝛼𝑠

𝜕𝑥𝑗
− 𝑢𝑓,𝑗

𝜕𝛼𝑠

𝜕𝑥𝑗
= 0, thus Eq. (2) becomes: 

 

𝑑𝛼𝑠
𝑑𝑡

− 𝑢𝑓,𝑗
𝜕𝛼𝑠
𝜕𝑥𝑗

+
𝜕𝛼𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
= 0 (6) 

 

As employing the substantial derivative: 
𝑑𝛼𝑠

𝑑𝑡
=

𝜕𝛼𝑠

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝛼𝑠

𝜕𝑥𝑗
, Eq.(6) can be 

further manipulated as shown below: 

 

𝑑𝛼𝑠
𝑑𝑡

− (
𝜕𝛼𝑠𝑢𝑓,𝑗

𝜕𝑥𝑗
− 𝛼𝑠

𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
) +

𝜕𝛼𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
= 0 (7) 
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Finally, the continuity equation for the sediment phase Eq. (2) becomes: 

 

𝑑𝛼𝑠
𝑑𝑡

= −𝛼𝑠
𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
− 
𝜕[𝛼𝑠(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)]

𝜕𝑥𝑗
(8) 

 

Eqs. (4) and (8) represent the continuity equations in Lagrangian form.  

 

 

Momentum equations: 

 

The momentum equations are presented in Eulerian form as 

 

𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖𝑢𝑓,𝑗

𝜕𝑥𝑗
= −𝛼𝑓

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝛼𝑓𝜌𝑓𝑇𝑓,𝑖𝑗

𝜕𝑥𝑗
+ 𝛼𝑓𝜌𝑓𝑔𝑖 − 𝐹𝑖  (9) 

𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖𝑢𝑠,𝑗

𝜕𝑥𝑗
= −𝛼𝑠

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝛼𝑠𝜌𝑠𝑇𝑠,𝑖𝑗

𝜕𝑥𝑗
+ 𝛼𝑠𝜌𝑠𝑔𝑖 + 𝐹𝑖 (10) 

 

where 𝑝 is the pressure; 𝑔 is the acceleration of gravity; 𝑇  is the stress 

tensor, and 𝐹 is the interphase force. 

 

 

The left hand side of Eq. (9) can be expanded as 
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𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖𝑢𝑓,𝑗

𝜕𝑥𝑗

= 𝛼𝑓𝜌𝑓
𝜕𝑢𝑓,𝑖

𝜕𝑡
+ 𝑢𝑓,𝑖

𝜕𝛼𝑓𝜌𝑓

𝜕𝑡
+ 𝑢𝑓,𝑖

𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑗

𝜕𝑥𝑗
+ 𝛼𝑓𝜌𝑓𝑢𝑓,𝑗

𝜕𝑢𝑓,𝑖

𝜕𝑥𝑗
 (11)

 

 

Substituting Eq. (1) and the substantial derivative 
𝑑𝑢𝑓,𝑖

𝑑𝑡
=

𝜕𝑢𝑓,𝑖

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝑢𝑓,𝑖

𝜕𝑥𝑗
 

yields: 

𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖

𝜕𝑡
+
𝜕𝛼𝑓𝜌𝑓𝑢𝑓,𝑖𝑢𝑓,𝑗

𝜕𝑥𝑗
= 𝛼𝑓𝜌𝑓

𝑑𝑢𝑓,𝑖

𝑑𝑡
 (12) 

 

So, the momentum equation for the fluid phase in Lagrangian form 

becomes: 

 

𝑑𝑢𝑓,𝑖

𝑑𝑡
= −

1

𝜌𝑓

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑓𝜌𝑓

𝜕𝛼𝑓𝜌𝑓𝑇𝑓,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 −

𝐹𝑖
𝛼𝑓𝜌𝑓

 (13) 

 

Similarly, the left hand side of Eq. (10) can be manipulated as 

 

𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖𝑢𝑠,𝑗

𝜕𝑥𝑗

= 𝛼𝑠𝜌𝑠
𝜕𝑢𝑠,𝑖
𝜕𝑡

+ 𝑢𝑠,𝑖
𝜕𝛼𝑠𝜌𝑠
𝜕𝑡

+ 𝑢𝑠,𝑖
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑗

𝜕𝑥𝑗
+ 𝛼𝑠𝜌𝑠𝑢𝑠,𝑗

𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

(14)
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Substituting Eq. (2) and the substantial derivative 
𝑑𝑢𝑠,𝑖

𝑑𝑡
=

𝜕𝑢𝑠,𝑖

𝜕𝑡
+ 𝑢𝑓,𝑗

𝜕𝑢𝑠,𝑖

𝜕𝑥𝑗
 

yields: 

 

𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖
𝜕𝑡

+
𝜕𝛼𝑠𝜌𝑠𝑢𝑠,𝑖𝑢𝑠,𝑗

𝜕𝑥𝑗
= 𝛼𝑠𝜌𝑠 (

𝑑𝑢𝑠,𝑖
𝑑𝑡

) − 𝛼𝑠𝜌𝑠 (𝑢𝑓,𝑗
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

− 𝑢𝑠,𝑗
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

) (16) 

 

Finally, Eq. (10) becomes: 

 

𝑑𝑢𝑠,𝑖
𝑑𝑡

= −(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

−
1

𝜌𝑠

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑠𝜌𝑠

𝜕𝛼𝑠𝜌𝑠𝑇𝑠,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 +

𝐹𝑖
𝛼𝑠𝜌𝑠

 (17) 

 

Finally, the governing equations in the Lagrangian form are tabulated below: 

Fluid phase: 

𝑑𝛼𝑓

𝑑𝑡
+ 𝛼𝑓

𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
= 0  

𝑑𝑢𝑓,𝑖

𝑑𝑡
= −

1

𝜌𝑓

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑓𝜌𝑓

𝜕𝛼𝑓𝜌𝑓𝑇𝑓,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 −

𝐹𝑖
𝛼𝑓𝜌𝑓

  

 

Sediment phase: 

𝑑𝛼𝑠
𝑑𝑡

= −𝛼𝑠
𝜕𝑢𝑓,𝑗

𝜕𝑥𝑗
− 
𝜕[𝛼𝑠(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)]

𝜕𝑥𝑗
 

𝑑𝑢𝑠,𝑖
𝑑𝑡

= −(𝑢𝑠,𝑗 − 𝑢𝑓,𝑗)
𝜕𝑢𝑠,𝑖
𝜕𝑥𝑗

−
1

𝜌𝑠

𝜕𝑝

𝜕𝑥𝑖
+

1

𝛼𝑠𝜌𝑠

𝜕𝛼𝑠𝜌𝑠𝑇𝑠,𝑖𝑗

𝜕𝑥𝑗
+ 𝑔𝑖 +

𝐹𝑖
𝛼𝑠𝜌𝑠
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