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Abstract

In this paper, we study wave propagation in elastic plates incorporating honeycomb
arrays of rigid pins. In particular, we demonstrate that topologically non-trivial band-gaps
are obtained by perturbing the honeycomb arrays of pins such that the ratio between the
lattice spacing and the distance of pins is less than 3; conversely, a larger ratio would lead
to the appearance of trivial stop-bands. For this purpose, we investigate band inversion of
modes and calculate the valley Chern numbers associated with the dispersion surfaces near
the band opening, since the present problem has analogies with the quantum valley Hall
effect. In addition, we determine localised eigenmodes in strips, repeating periodically in one
direction, that are subdivided into a topological and a trivial section. Finally, the outcomes
of the dispersion analysis are corroborated by numerical simulations, where a time-harmonic
point source is applied to a plate with finite arrays of rigid pins to create localised waves
immune to backscattering.

1 Introduction

Topologically protected wave propagation in elastic metamaterials has attracted increasing at-
tention in the scientific community in recent years, due to the possibility of creating waveguides
that are immune to backscattering in the presence of defects, such as impurities or sharp cor-
ners. The idea was firstly proposed in quantum mechanics [1, 2] and later extended to photonic
[2, 3, 4, 5, 6] and acoustic [7, 8, 9, 10, 11, 12] media.

In elasticity, different classes of passive models have been proposed to realise topologically
protected edge states, such as lattices [13, 14, 15] and plates [16, 17]. In the latter type of struc-
tures, topological supernetworks with tunable directionality, based on combinations of multi-
directional energy splitters, have been designed in [18, 19, 20] using group theory, topological
concepts and tunnelling phenomena. Edge waves have been observed in discrete lattices includ-
ing tilted resonators in [21, 22], while wave localisation in lattices of Rayleigh beams has been
investigated in [23, 24, 25]. Localised folding motions at the boundaries of origami and kirigami
structures have been connected to topological polarisation in [26]. Topological properties of
rotational waves in granular crystals have been discussed in [27]. Valley anisotropy has been
observed in [28], where a chiral system consisting of hard spiral scatterers embedded in a soft
material matrix has been studied.

The systems mentioned above, comprising only passive elements, do not break time-reversal
symmetry. The latter can be broken if active components are also incorporated or if an external
field with a momentum bias is applied to the system. For instance, in [29] a lattice model
has been employed to describe topologically protected edge modes in microtubules, present in
eukaryotic cells, where time-reversal symmetry can be broken by weak magnetic properties of
the tubulin proteins. Gyroscopic action can also be used in this framework to create topological
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insulators, as demonstrated in [30, 31, 32, 33, 34, 35, 36, 37] for elastic lattices and in [38, 39]
for elastic plates.

In this paper, we consider an elastic plate constrained by a periodic arrangement of honey-
comb arrays of rigid pins. Dirac cones are broken by perturbing the positions of the pins, and as
a consequence a stop-band is generated. Following the concept proposed in [40] and developed
for a honeycomb array of dielectric cylinders in a material with different dielectric properties,
we alter the locations of the pins to create either a topological or a trivial band-gap in proximity
of the broken Dirac cone.

The topology of Dirac cones in pinned elastic plates has been extensively investigated in [41,
42], where unidirectional trapped modes have also been observed. Wave transmission in elastic
plates incorporating periodic arrays of rigid pins or masses have been studied in [43, 44, 45],
while localisation phenomena produced by semi-infinite grating stacks of pins or different types
of oscillators have been examined in [46, 47, 48]. The possibility of attaching active sources to a
plate with the purpose of designing an optimal cloaking device has been proposed in [49]. The
effect of cavities on the band diagram of a platonic crystal has been analysed in [50, 51], both
numerically and experimentally, while the band structures of thin and thick plates connected to
periodic systems of spring-mass resonators have been obtained in [52, 53]. Homogenised models
to describe flexural vibrations localised in single or double rings of spring-mass resonators have
been formulated in [54] and [55], respectively, based on pointwise descriptions of dynamic fields
of the meso-scale type [56, 57].

The paper is organised as follows. After presenting the model in Section 2, we discuss the
dispersion properties for both the unperturbed and perturbed systems in Section 3, focussing
the attention on the band inversion of modes. Then, in Section 4 we calculate the valley Chern
numbers to distinguish between topological and trivial regimes. In Section 5 we show localised
interfacial modes in periodic strips divided into a topological and a trivial region, and in Section
6 we illustrate topologically robust waves that are immune to backscattering. Finally, in Section
7 we provide concluding remarks.

2 Motivation for the work and description of the model

We consider the Kirchhoff-Love elastic plate analogue of a topological photonic crystal, made
purely of conventional dielectric material, which was proposed in [40]. In particular, in [40]
a honeycomb array of cylinders with dielectric constant εd is embedded within a surrounding
medium characterised by different dielectric constant εa. The unperturbed honeycomb lattice
(generated by a primitive rhombic unit cell) is illustrated in Fig. 1(a), where neighbouring
cylinders are separated by R. Introducing the lattice constant a0, the system is equivalent to
a triangular lattice of hexagonal cells composed of six neighbouring cylinders when a0/R = 3.
Taking this larger hexagonal macrocell as the unit cell, the Dirac cones arising at the K and
K ′ points in the first Brillouin zone of the honeycomb lattice, shown in Fig. 1(b), are folded
into doubly degenerate Dirac cones at the Γ point (kx = ky = 0) for the macrocell treatment
[41, 58]. By varying the lattice parameter a0/R, the triangular lattice of hexagonal cells is
deformed in such a way as to preserve both the triangular lattice and the C6 symmetry, but
leads to anisotropy, including the opening of a non-trivial band-gap at the quadruply degenerate
Dirac point.

Here, we study the same periodic structure but replace the dielectric photonic crystal with
a platonic crystal, where a thin elastic plate is structured with an array of rigid pins (zero
displacement at point scatterers). Using the biharmonic model for flexural wave propagation in
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Figure 1: (a) Unperturbed honeycomb array, that can be generated by either a rhombic (dashed) or
hexagonal macrocell. In the latter case, it is characterised by the lattice parameter a0/R = 3, where
a0 is the spacing between the centres of neighbouring hexagonal macrocells, and R is the distance of
an individual cylinder from its cell’s centre. (b) First Brillouin zone for the triangular lattice in the
reciprocal space. Dirac cones arise at the K and K ′ points.

Kirchhoff-Love plates, the governing equation for the out-of-plane displacement u(r) is expressed
by

∆2u(r)− ρhω2

D
u(r) = 0, (1)

where ∆ represents the Laplacian operator, ρ is the density (mass per unit volume), h is the
thickness and D = Eh3/(12(1 − ν2)) is the flexural rigidity of the plate, with E and ν being
the Young’s modulus and Poisson’s ratio, respectively. In addition, r is the position vector and
ω is the angular frequency. The spectral parameter β is often employed, and its relations with
both ω and the frequency f are given by

β2 = ω

√
ρh

D
, f =

ω

2π
. (2)

We point out that the spectral parameter β has the dimensions of a wavenumber.
Regarding the honeycomb array of point constraints, by increasing a0/R we squeeze the

rigid pins closer together (see Fig. 2(a) for a0/R = 3.5), producing a triangular lattice of
regular hexagonal cells. Reducing the lattice parameter has the opposite effect, stretching the
triangular lattice’s constituent hexagonal cells (see Fig. 2(b) for the case a0/R = 2.5). Note that
the perturbation of Fig. 1(a)’s pure honeycomb structure results in irregular hexagons between
the triangular lattice’s regular hexagonal macrocells, whose size and nature depend on the choice
of whether to reduce or increase a0/R. The limiting cases are shown in Figs. 2(c,d): in part
(c), we illustrate the case a0/R = 10, which demonstrates that in the limit as a0/R → ∞, the
lattice approaches the pure hexagonal Bravais lattice; the same result occurs for the limiting
case a0/R→ 1, shown in part (d).
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Figure 2: Comparison of perturbed honeycomb lattices: (a) a0/R = 3.5, (b) a0/R = 2.5, (c) a0/R = 10,
(d) a0/R = 1.

3 Dispersion properties

The dispersion diagrams and eigenmodes of the unperturbed and perturbed structured plates
are determined numerically using the finite element package Comsol Multiphysics. To this aim,
Bloch-Floquet conditions are applied at the boundaries of the periodic cell [38, 39, 46]. In the
following, we consider an aluminum plate having Young’s modulus E = 70 GPa, Poisson’s ratio
ν = 0.33, density ρ = 2700 kg/m3 and thickness h = 0.002 m. The lattice constant is taken as
a0 = 1 m.

3.1 Unperturbed array of rigid pins

The dispersion diagram for the unperturbed honeycomb system with the hexagonal macrocell
defined by a0/R = 3, computed along the path ΓKMΓ (see Fig. 1(b)), is shown in Fig. 3(a).
The corresponding dispersion surfaces near Γ are illustrated in Fig. 3(b), where we plot the
spectral parameter β on the vertical axis versus the wavevector components kx and ky on the
horizontal axes. Note that the presence of the rigid pins leads to a low-frequency band-gap
for β < 7.25 m−1. We also observe another significant band-gap for this system for 9.34 m−1

≤ β ≤ 10.88 m−1. The most striking feature of Figs. 3(a) and 3(b) is the quadruply degenerate
Dirac point at Γ = (kx, ky) = (0, 0) for β ' 12.56 m−1, where two doubly degenerate Dirac
cones meet (the dispersion diagram in part (a) is illustrated in the interval β ∈ [11, 15] (m−1) to
better illustrate the Dirac point). This is analogous to the double Dirac cones identified in [40]
for the photonic honeycomb crystal, and is also reminiscent of the multiply degenerate Dirac
points observed in [41] for elastic plates pinned at points of a hexagonal lattice (although in [41]
an additional flat band surface, passing through the Dirac-like point, is also present).

In Fig. 3(c), we illustrate the system’s Bloch modes in proximity of the Dirac point frequency
at the Γ-point. The two modes for β = 12.557 m−1 (or, equivalently, f = 78.156 Hz), which are
associated with the apex of the lower cone in Fig. 3(b), are denoted by λ† and λ‡. In contrast,
the two modes for β = 12.558 m−1 (corresponding to f = 78.159 Hz), which belong to the upper
cone in Fig. 3(b), are indicated by λ� and λ∗.

3.2 Perturbed arrays of rigid pins

For the analogous photonic crystal discussed in [40], reducing the lattice parameter (namely,
taking a0/R < 3) opens a global band-gap near the Dirac point, and a band inversion takes place
- this is referred to as the topological regime in [40]. Conversely, for the opposite type of pertur-
bation (such that a0/R > 3), no band inversion takes place, and this is called the trivial regime.
These contrasting scenarios are determined by the p± and d± states for the electromagnetic
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Figure 3: (a) Dispersion diagram for the unperturbed honeycomb lattice (generated equivalently by
rhombic or hexagonal macrocell) with a0/R = 3, evaluated along the path ΓKMΓ and shown in the
range β ∈ [11, 15] (m−1). (b) Dispersion surfaces for the same structure, shown in the range β ∈ [7, 15]
(m−1). (c) Eigenmodes associated with the Dirac point at β ' 12.56 m−1. For β = 12.557 m−1 (slightly
below the Dirac point), the two modes are denoted by λ† and λ‡; for β = 12.558 m−1 (slightly above
the Dirac point), we use λ� and λ∗.
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dielectric case. Specifically, solving the Maxwell equations yields harmonic transverse magnetic
(TM) modes that are supported by the hexagonal cells, which act as “artificial atoms” in the
present geometry. The modes exhibit orbital-like p- and d-wave shapes, hence the terminology
adopted in [40] to distinguish between the types of mode, and form photonic bands.

For the platonic case here, perturbing the array of pins leads to the opening of a band-gap
around the Dirac point at Γ = (0, 0). When a0/R = 2.85 (see Figs. 4(a) and 4(b)), the stop-band
is in the range β ∈ [12.58, 12.74] (m−1). On the other hand, when a0/R = 3.25 (see Figs. 4(d)
and 4(e)), the band-gap is narrower: β ∈ [12.68, 12.78] (m−1).

The eigenmodes demonstrate something analogous to the photonic crystal’s band inversion.
For a0/R = 3.25, equivalent to the trivial regime in [40], the modes below (λ† and λ‡) and above
(λ� and λ∗) the band opening at Γ = (0, 0) are similar to those found for the unperturbed array
of pins (compare Figs. 3(c) and 4(f)). Conversely, for the topological regime (a0/R = 2.85), the
modes λ� and λ∗ arise at a lower frequency than λ† and λ‡, as shown in Fig. 4(c). A band
inversion takes place around the Dirac point, and so a non-trivial band-gap is obtained, by
perturbing the periodicity with a0/R < 3.

4 Calculation of valley Chern number

In order to compute the valley Chern number, we follow a procedure similar to that developed
in [30, 28]. The considered elastic periodic plate, constrained by arrays of rigid pins, is a
continuous structure, that is discretised with the finite element method to determine numerically
the dispersion diagrams. For each dispersion surface, we can obtain the eigenvector W = W (k)
corresponding to any value of the wavevector k = (kx, ky)T and to the specific value of the
frequency ω = ω(k) associated with that dispersion surface.

Since the system has time-reversal symmetry, the integration of the Berry curvature Ω(k)
(defined below) over the Brillouin zone is zero; however, Ω(k) is localised near the valleys (in
particular, at the K and K ′ points), hence the integration over a small area around the valley
results in a non-zero value [28]. This integration is denoted as the valley Chern number [28]:

Cv =
1

2π

∫
S

Ω(k)d2k, (3)

where S is a small area around the valley.
The valley Chern number is calculated as follows. First, we consider the regions pertinent

to the K and K ′ points in the reciprocal space, corresponding to the triangles indicated by T1
and T2 in Fig. 5. More specifically, the triangle T1 has its vertices at the points (kx, ky) = (0, 0),(
2π/a0,−2π/(

√
3a0)

)
and

(
2π/a0, 2π/(

√
3a0)

)
, while for the triangle T2 the vertices are at

the points (kx, ky) = (0, 0),
(
2π/a0, 2π/(

√
3a0)

)
and

(
0, 4π/(

√
3a0)

)
. Then, we discretise each

triangle into triangular and square facets, whose base and height are sufficiently small (in our
calculations, they are equal to [2π/a0]/12 and [2π/(

√
3a0)]/12, respectively). For each square

facet (for the triangular ones similar considerations apply, taking into account three points
instead of four), we determine the eigenvectors at the k-points corresponding to the vertices of
the square facet, indicated by P1, P2, P3 and P4, taken along a counter-clockwise path. The
Berry curvature is evaluated as [30]

Ω(k) = −Im

(
log

[
〈W (P1)|W (P2)〉〈W (P2)|W (P3)〉〈W (P3)|W (P4)〉〈W (P4)|W (P1)〉
〈W (P1)|W (P1)〉〈W (P2)|W (P2)〉〈W (P3)|W (P3)〉〈W (P4)|W (P4)〉

])
.

(4)
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Figure 4: Results for perturbed honeycomb lattices, produced by varying the lattice parameter: (a-c)
a0/R = 2.85, (d-f) a0/R = 3.25. (a,d) Dispersion diagrams. (b,e) Dispersion surfaces. (c,f) Eigenmodes
in the vicinity of the band opening around the Dirac point at Γ = (0, 0); the modes similar to those of
the unperturbed honeycomb array in Fig. 3(c) are labelled in the same way with λ†, λ‡, λ� and λ∗.
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Table 1: Valley Chern number Cv, computed for a0/R = 2.85.

area point disp. surf. 8 disp. surf. 9 8 + 9 disp. surf. 10 disp. surf. 11 10 + 11

T1
Γ 0.5 −0.5 0 −0.5 0.5 0
K −0.5 0 −0.5 0 0.5 0.5

T2
Γ 0.5 −0.5 0 0 0 0
K ′ 0.5 0 0.5 0 −0.5 −0.5

In the formula above,

〈W (Pi)|W (Pj)〉 =

∫
A
W ∗(k|Pi

) ·W (k|Pj
)dA, (5)

where ∗ denotes the complex conjugate and A is the area of the periodic cell. Note that the
Berry curvature in (4) is intended to be associated with the eigenvector k at the middle point
of the square facet. For the triangular facets, the Berry curvature is similarly evaluated at their
centre.

In Fig. 5 we show the colour maps of the Berry curvature over the regions T1 and T2, relative
to the honeycomb arrays with lattice parameters a0/R = 2.85 (parts (a)-(d)) and a0/R = 3.25
(parts (e)-(h)). In particular, four dispersion surfaces from Fig. 4(b,e) have been considered: the
8th (Fig. 5 parts (a) and (e)), the 9th (parts (b) and (f)), the 10th (parts (c) and (g)) and the 11th

(parts (d) and (h)). For both values of the lattice parameter, the eighth and ninth dispersion
surfaces lie below the band-gap generated by the perturbation imposed on the pins’ locations,
and they converge to each other at point Γ. Conversely, the tenth and eleventh dispersion
surfaces are above the same band-gap and share a common point at Γ. Looking at Fig. 5, we
observe clear localisations of Ω(k) at particular positions of the reciprocal space, in particular
at Γ, K and K ′.

The values of the valley Chern number Cv for the lattice parameter a0/R = 2.85 are given
in Table 1. We have also reported the sums of Cv of the 8th and 9th dispersion surfaces, below
the band-gap, and of the 10th and 11th dispersion surfaces, above the band-gap. We note
that the combined valley Chern numbers at Γ, in both T1 and T2, are zero. Conversely, at
K the combined Cv for the two dispersion surfaces below the band-gap is −0.5, while for the
two dispersion surfaces above the band-gap, it is equal to 0.5. The valley Chern numbers at
K ′ are flipped in sign with respect to those at K, so that the Chern number over the whole
Brillouin zone is zero, as expected. The non-trivial values of Chern numbers predict the presence
of topologically protected valley edge modes, as also demonstrated in the following sections.
This is in accordance with what has been observed in other elastic systems (see, for instance,
[15, 16, 28]).

Concerning the results for the lattice parameter a0/R = 3.25, given in Table 2, we note that
the combined valley Chern numbers are zero at all points. This confirms that for a0/R > 3 edge
modes are not topologically protected (trivial regime).

5 Localised modes in infinite systems

Now, we investigate the dispersive properties of a system containing two sub-domains with dif-
ferent perturbations of the pins’ locations: a0/R = 2.85 (topological region) and a0/R = 3.25
(trivial region). The number of rows of topological hexagonal cells is 19, while the trivial section
contains 14 rows. We assume that the plate is infinite in the x-direction (see Fig. 6(a)), hence
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Figure 5: Maps of the Berry curvature Ω(k) for the lattice parameters (a-d) a0/R = 2.85 and (e-h)
a0/R = 3.25, corresponding to the (a,e) 8th, (b,f) 9th, (c,g) 10th and (d,h) 11th dispersion surface. The
triangles T1 and T2 are the areas of pertinence of the K and K ′ points, respectively. The areas around
the points Γ, K and K ′, delimited by solid thick lines, indicate the regions where the valley Chern
numbers have been calculated.
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Table 2: Valley Chern number Cv, computed for a0/R = 3.25.

area point disp. surf. 8 disp. surf. 9 8 + 9 disp. surf. 10 disp. surf. 11 10 + 11

T1
Γ −0.5 0.5 0 0.5 −0.5 0
K −0.5 0.5 0 0.5 −0.5 0

T2
Γ 0.5 −0.5 0 0.2 −0.2 0
K ′ 0.5 −0.5 0 −0.5 0.5 0

quasi-periodicity Bloch-Floquet conditions can be imposed at the boundaries of the parallelo-
gram macrocell, shown by dashed lines. A homogeneous plate (namely, a plate without rigid
pins) and a slab incorporating viscous dampers are inserted in proximity of each edge of the
system.

Referring to the results reported in Section 33.2, we note that for this choice of the lattice
parameters the topological and trivial regions share a common stop-band for β ∈ [12.68, 12.74]
(m−1). This ensures that localised modes at the interface between the two regions (indicated
by a dotted line in Fig. 6(a)) can be supported.

By performing an eigenfrequency analysis with Comsol Multiphysics, which provides the
eigenfrequencies for varying wavenumber, we obtain the dispersion curves plotted in Fig. 6(b),
where we show β versus kx in the vicinity of the unperturbed honeycomb structure’s Dirac point
at Γ and β = 12.56 m−1. We observe that additional modes appear in the mutual band-gap of
the topological and trivial regions, and these are located at the interface where the topological
and trivial parts meet. An example of an interfacial mode that decays exponentially into the
bulk of the system is illustrated in Fig. 6(c).

6 Interfacial waves in finite clusters

In this section, we demonstrate the ability of these perturbed systems to transport energy
with little leakage by modelling plates with finite clusters of pins that act as waveguides. By
considering sufficiently large clusters, we can replicate the key properties of the infinite system
illustrated in Fig. 6(a), and therefore show examples of localised interfacial modes.

We consider the finite system in Fig. 7(a), comprising 43× 43 hexagonal cells of rigid pins,
divided into a topological (a0/R = 2.85) and a trivial (a0/R = 3.25) region. The topological
section consists of 24× 24 hexagonal cells and is positioned in the top left corner. We apply a
point source on the lateral interface (shown by a double arrow in Fig. 7(a)), characterised by a
frequency f = 79.814 Hz (corresponding to β = 12.69 m−1), which is inside the mutual stop-
band of the topological and trivial regions. By plotting the displacement field in Fig. 7(a), we
observe a wave that is localised at the interface, with little leakage into the surrounding medium.
The robustness of the system is evidenced by the fact that wave propagation is not affected by
the presence of geometrical defects, represented in this case by a corner in the interface.

In Fig. 7(b), we show the displacement field when the frequency parameter of the point
source is β = 12.63 m−1, which is in the stop-band for the topological array, but in the pass-
band for the trivial one. We observe transmission into the latter section of the system, which
highlights that the operating range for the interfacial modes is restricted to the overlapping
band-gap for the constituent parts of the system.

In the Supplementary Material accompanying this paper, we show additional examples of
interfacial waves, obtained for a couple of different values of the lattice parameters characterising
the topological and trivial regions of the array of pins.
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Figure 6: (a) Schematic diagram for an infinite plate in the x-direction, comprising a topological
(a0/R = 2.85) and a trivial (a0/R = 3.25) region of perturbed honeycomb arrays of pins. Damping
conditions are introduced near the top and bottom boundaries. The parallelogram macrocell is indicated
by dashed lines. (b) Dispersion curves for the system in (a). (c) Example of an eigenmode localised at
the interface between the topological and trivial regions, obtained for β = 12.69 m−1.
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Figure 7: (a) Interfacial wave in an elastic plate with a 43× 43 cluster of hexagonal cells of rigid pins,
with the topological section consisting of 24× 24 rows in the top left corner. The wave is generated by
a harmonic force (shown by a double arrow) with a frequency parameter β = 12.69 m−1. The lattice
parameters are a0/R = 2.85 in the topological region and a0/R = 3.25 in the trivial region. (b) For
β = 12.63 m−1, there is no localised wave at the interface, the energy leaks into the trivial part. In this
case, the plate incorporates a 42× 26 cluster of pins, with the topological section being made of 21× 13
rows in the top left corner.

7 Conclusions

We have shown how to perturb honeycomb arrays of pins in elastic plates to obtain either a
topological or a trivial band-gap, in analogy with what has been observed in dielectric media
containing hexagonal arrangements of cylinders with a different dielectric constant.

First, the study of band inversion and Berry curvatures, localised at specific points in the
reciprocal space, has demonstrated that when the ratio of the lattice spacing to the distance
between pins in the honeycomb topology is smaller (larger) than 3, a topological (trivial) band-
gap opens up in the neighbourhood of the Dirac point of the unperturbed system’s dispersion
diagram. In addition, by analysing the dispersion properties of a strip of finite height and pe-
riodic in the perpendicular direction, that is also subdivided into a topological and a trivial
section, we have observed modes localised at the interface between the two sections for frequen-
cies falling inside the common band-gap of the topological and trivial sections. Finally, we have
derived the response of an elastic plate with a large but finite array of pins, again arranged in
two sub-regions with topological and trivial band-gaps, to a time-harmonic excitation imposed
at the interface between the two regions, and we have observed a localised interfacial wave if
the frequency of the excitation lies within the common band-gap. Hence, the proposed model
is capable of supporting topologically protected edge and interfacial modes that are immune to
backscattering.

We envisage that the results of the present work may have important implications in engi-
neering applications related to wave guiding, vibration isolation and energy harvesting.
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