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The many phases of QCD3 and dualities

Abdullah Khalil Hassan Ibrahim

Abstract

We investigate the low-energy physics of QCD-like theories in 2 + 1 dimensions
coupled to a Chern-Simons term and fermion(s) in various representations of the
gauge group (SU(N)). The level/rank dualities and Boson/Fermion dualities
provide access to such theories.

We first discuss the phase diagram of QCD3 with fermions in the fundamental
representation and a Chern-Simons term with level k [1]. The theory is well-
described via topological field theories in the semiclassical limits. For sufficiently
low k values, a new quantum phase is introduced for small fermion mass to cover
the entire phase diagram. The quantum phase is conjectured to be a non-linear
sigma model. We also discuss the extension of this work by including two sets of
fermions with different masses, resulting in a two-dimensional phase diagram [2].

We add to these previous studies the analysis of the phase diagrams of a
theory with three distinct groups of fermions described in my work [3]. The phase
diagram becomes three-dimensional, with multiple topological field theories and
different shapes of quantum regions: cuboid, planar, and linear sigma models. We
discuss the consistency of the phase diagrams with boson/fermion dualities, in
addition to their reduction to one and two-family diagrams.

We consider in detail the analysis of QCD3 with a Majorana fermion in the
adjoint representation [4]. The theory has an N = 1 supersymmetry for a
particular choice of the fermion mass. Supersymmetry is spontaneously broken for
a certain k limit, and the infrared description requires a new quantum phase to fill
the phase diagram with the right symmetries and anomalies. We also address the
possibility of building a two-dimensional phase diagram with the adjoint matter,
which is the subject of a forthcoming publication [5]. The phases of this theory on
the diagonal line of the two-dimensional phase diagram have also been investigated
[6].
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Chapter 1

Introduction

Quantum Field Theory (QFT) has become the centrepiece of theoretical physics

for the past fifty years. Originally, QFT was developed to describe the dynamics

of elementary particles. It has since become an indispensable tool in modern

physics fields such as statistical physics, condensed matter physics, cosmology and

has influenced certain advances in pure mathematics.

However, QFTs are exceptionally difficult to handle. There are extremely

few explicit computations that can be performed, and those that can are often

simply asymptotic approximations to physical observables. For a long time,

symmetries were the most significant tool for understanding systems within the

QFT framework, and supersymmetry, in particular, has played an essential part

in these studies. Of contrast, the fundamental problems in quantum field theory

usually address the dynamics of strongly interacting systems. In many cases,

especially outside of supersymmetry, this renders exact computations unfeasible.

One of these strongly-coupled systems is the interaction of quarks and anti-quarks,

which can be adequately explained by Quantum Chromodynamics (QCD).

Moving from strongly to weakly coupled systems has thus been the key to

simplifying computations and providing access to some physical observables. This

is possible within the framework of dualities, particularly S-dualities in which two

theories might flow to the same fixed point in the infrared (IR). The most well-
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known S-duality is the Seiberg duality, which is a four-dimensional duality between

two supersymmetric theories. Theory A is an N = 1 supersymmetric quantum

chromodynamics (SQCD) with SU(N) gauge group coupled to F flavours of

fundamental chiral multiplets and F flavours of antifundamental chiral multiplets.

The dual theory B is a N = 1 theory with gauge group SU(F −N) (i.e. F −N

colours) and F flavours [7–9]. The original theory is strongly coupled with electric

description, whereas the dual description is weakly coupled and represents a

magnetic phase.

Many supersymmetric dualities in 4d have developed since the conjecture

of Seiberg duality and their generalization to three dimensions has also been

of significant interest [10–18]. The success of these supersymmetric dualities

in both three and four dimensions motivates theoretical physicists to seek non-

supersymmetric dualities, particularly in three dimensions. In 3d, one may

consider adding the Chern-Simons term, which provides a topological feature for

three-dimensional theories. In the last five years, the search for dualities inside

theories with a topological phase in the IR has been an important direction of

research. The success in finding dualities in 2 + 1 dimensions has advanced our

understanding of the dynamics and phases of strongly coupled theories such as

QCD3, which is the central focus of this thesis.

The remainder of this chapter offers an outline of the dynamics and topological

nature of the Chern-Simons theories. We also look at the dualities between

2 + 1-dimensional Chern-Simons theories, such as the level/rank dualities and

Aharony dualities. We also go through how to analyze QFT in 2 + 1 dimensions.

In chapter 2, we review the work done to investigate the phases and transitions

that occurs in the phase diagram of a QCD-like theory in 2+1 dimensions coupled

to a number of flavours in the fundamental representation of the gauge group. A

symmetry-breaking scenario to the global symmetry is used to obtain the complete

phase diagram. We also go over the tests that have been undertaken to ensure

that the phase diagram is legitimate in cases where the phase diagram is only
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conjectural. In chapter 3, we extend the work in chapter 2 to include three families

of fundamental flavours with three different masses where the phase diagram

becomes three-dimensional. We discuss all the phases in the three-dimensional

phase diagram and the consistency checks for validity. In chapter 4, we discuss the

analysis and phases of QCD in 2 + 1 dimensions when adjoint matter (Majorana

fermion) is introduced. We also go through the process of adding another fermion

of the same mass and explain the duality chain notion. We discuss the possibility

of obtaining a two-dimensional phase diagram when the extra adjoint fermion has

a different mass. Finally, we summarise our study and provide suggestions for

further research on this topic of interest.

1.1 Aspects of quantum field theories in 2 + 1

dimensions

In 2 + 1 dimensions, the Dirac fermions are two-component spinors defined by the

equations

(iγµ∂µ − eγµAµ −m)ψ = 0 or i∂0ψ =
(
−iα⃗ · ∇⃗+mβ

)
ψ , (1.1)

where α⃗ = γ0γ⃗, β = γ0. γµ are the γ-matrices satisfying the following commutation

relations

{γµ, γν} = 2ηµν ,

γµγν = ηµν − iϵµνσγσ ,

tr (γµγνγσ) = −2iϵµνσ .

(1.2)

The Minkowskian metric ηµν has the following signature

ηµν ≡ diag(1,−1,−1) . (1.3)
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In 2 + 1 dimensions, there is no notion of chirality, where one can not find

a γ5 that commutes with all the γ-matrices since iγ0γ1γ2 = 1. The γ-matrices

can be expressed in two different representations: the Dirac representation with

γ-matrices

γ0 =

1 0

0 −1

 , γ1 =

0 i

i 0

 , γ2 =

 0 1

−1 0

 . (1.4)

The Dirac fermions are specified by ψ̄ =
(
ψ†)T γ0, where T and † denote the trans-

pose and the hermitian adjoint respectively. The other representation describes

the Majorana fermion where equation (1.1) has an imaginary β and real α. The

γ-matrices become

γ0 =

0 −i

i 0

 , γ1 =

i 0

0 −i

 , γ2 =

0 i

i 0

 . (1.5)

The Majorana fermion λ is a real two-component fermion field with the conjugation

operation λ̄ = λTγ0. The Lagrangian of the massive Majorana fermion is then

Lλ =
i

2
λ̄γµ∂µλ+

m

2
λ̄λ . (1.6)

In 2 + 1 dimensions, the actions of the discrete symmetries T , C, and P

(time-reversal, charge conjugation, and parity) are described as follows:

• Parity P : Performing the reflection in two spatial dimensions is equivalent

to rotation. As a result, the parity transformation is specified by a reflection

on only one of the spacial components in 2 + 1 dimensions. The parity

transformation then takes the form

P : (x0, x1, x2) −→ (x0,−x1, x2) ,

(A0, A1, A2) −→ (A0,−A1, A2) ,
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ψ −→ γ1ψ ,

λ −→ iγ1λ . (1.7)

A very important term that we will discuss later takes the form of ϵµνρAµAνAρ,

where Aµ is a gauge field. This term becomes −ϵµνρAµAνAρ under parity

transformations, which means that it breaks parity symmetry. We also

notice that the mass term breaks parity where λ̄λ→ −λ̄λ.

• Charge conjugation C: Charge conjugation is a transformation under

which a Dirac fermion becomes anti-fermion. The Dirac equation of the

anti-particle is then

(iγµ∂µ + eγµAµ −m)ψc = 0 , (1.8)

where ψc = Cγ0ψ∗, C is the charge conjugation matrix which is chosen to

be γ2 for the Dirac representation. The mass term preserves the charge

conjugation symmetry.

• Time-reversal T : The time-reversal is a transformation x0 → −x0. How-

ever, one would avoid taking p0 → −p0 when performing this transformation,

so we also take i→ −i. The transformations under time-reversal are specified

by

T : (x0, x1, x2) −→ (−x0, x1, x2) ,

(A0, A1, A2) −→ (A0,−A1,−A2) ,

ψ −→ γ2ψ ,

λ −→ iγ0λ . (1.9)

The fermion mass term also breaks time-reversal.

We notice that the fermion mass term breaks both parity and time-reversal

symmetries. Some discrete anomalies are introduced when parity and time-reversal
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symmetries are broken; matching these anomalies is crucial for verifying suggested

quantum field theories phases.

1.2 Chern-Simons Theories

The Chern-Simons (CS) theory is a quantum gauge theory with a surprisingly

subtle action that describes the dynamics of quantum field theories in two spatial

dimensions. The topological structure of the Chern-Simons theories gives access

to non-trivial examples of quantum field theories. It also has a wide range

of applications in different aspects of theoretical physics, most notably within

condensed matter and String Theory, where it is used to explain the quantum hall

effect [19–23].

Chern and Simons started to study the three-form in three dimensions [24].

The integral of the Chern-Simons three-form on a given manifold is used to

formulate a gauge theory, which added a physical significance to the Chern-Simons

term. In [25], an abelian gauge theory with a pure Chern-Simons term was

introduced, followed by the formulation of the non-abelian Chern-Simons theory

in [26–28]. The latter becomes of interest when Stanley Deser, R. Jackiw, and

S. Templeton [28, 29] found that the gauge field in 2 + 1 dimensions acquires a

mass from the Chern-Simons term. Later on, Witten endorses the significance

of Chern-Simons theory by arguing that it is exactly solvable and describing its

implications for three-dimensional geometry, particularly the understanding of

the Jones polynomials of knot theory in three-dimensions [30]. Witten was also

able to develop a two-dimensional conformal field theory (CFT) based on his

understanding of the Chern-Simons theory.

The main idea is that in 2 + 1 dimensions, a new term can be added to the

Lagrangian without violating gauge invariance. This is known as the Chern-Simons

term, and it takes the form Aµ∂νAσ with its permutations, where Aµ is the gauge

field (the photon in this case). In this section, we provide a brief overview of



1.2 Chern-Simons Theories 7

the kinematics and dynamics of Chern-Simons theories, based primarily on the

discussions in these review articles [22, 23, 31].

1.2.1 Dynamical mass generation for the photon

Let us begin with the most basic scenario, in which a gauge field gets a dynamical

mass from the CS term. Consider a pure Maxwell gauge theory with a Lagrangian

− 1
4e2
fµνf

µν , where fµν = ∂µAν − ∂νAµ is the abelian field strength, and e2 is the

electromagnetic coupling constant. In 2+1 dimensions, we add the CS term to

the Lagrangian with a coupling κ to be

L U(1)
CS = − 1

4e2
fµνf

µν + κϵµνσAµ∂νAσ , (1.10)

where ϵµνσ is the antisymmetric Levi-Civita tensor. The equations of motion are

not ∂µfµν = 0, but rather

∂µf
µν + 2κe2ϵναβfαβ = 0 . (1.11)

In 2+1 dimensions e2 has a dimension of mass. This tells us that the gauge

field A is no longer massless, i.e. the CS term gives a mass of 2κe2 to the photon.

One can see the origin of this mass by simply calculating the photon propagator.

This can be done by adding a gauge fixing term to the Lagrangian − 1
ζe2

(∂µA
µ)2,

where zeta is the gauge parameter with zero value for the Landau gauge. The

photon with momentum p has a propagator

Dµν = e2
[
p2gµν − pµpν − 2iκe2ϵµνσp

σ

p2(p2 − (2κe2)2)
+ ζ

pµpν
(p2)2

]
. (1.12)

The propagator in equation (1.12) has a pole exactly at the photon mass-squared

p2 = (2κe2)2. The photon becomes infinitely massive in the limit e2 →∞ and the

theory will not contain any physical excitations.



8 Introduction

1.2.2 Non-Abelian Chern-Simons theory

Let us now consider a non-abelian CS gauge theory in 2+1 dimensions by writing

the Lagrangian in the trace (Tr) form to be

L SU(N)
CS = κϵµνσTr

(
Aµ∂νAσ +

2

3
AµAνAσ

)
, (1.13)

where Aµ = AaµT
a, a = 1, . . . , N is the color index, and T a ∈ SU(N) are the

generators of the SU(N) gauge group with the following identities

[
T a, T b

]
= fabcT c ,

Tr
(
T aT b

)
= −1

2
δab ,

(T a)† = −T a .

(1.14)

The equations of motion of this Lagrangian looks similar to the abelian case and

can be found by applying an infinitesimal transformation to the gauge field. The

equation of motion is then

κϵµνσFνσ = Jµ , (1.15)

where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is the non-Abelian field strength, and Jµ is

the non-Abelian current following the covariant current conservation DµJ
µ = 0.

Let us now check the gauge invariance by applying a gauge transformation

g ∈ SU(N) such that Aµ → Agµ ≡ g−1 (Aµ + ∂µ) g, the change in the Lagrangian

is then

δL SU(N)
CS = − κ

4π
ϵµνσ∂µTr

(
∂νgg

−1Aσ
)
−κ
3
ϵµνσTr

[(
g−1∂µg

) (
g−1∂νg

) (
g−1∂σg

)]
.

(1.16)

The first term vanishes under some boundary conditions because it is a total

derivative, while the second term is the winding number density w(g) of the group
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element g ∈ G, for a general gauge group G [32]

w(g) =
1

24π2
ϵµνσTr

[(
g−1∂µg

) (
g−1∂νg

) (
g−1∂σg

)]
. (1.17)

In the action form, the second term gives the winding number ν. The number

of times the map image (g) wraps around the gauge group is described by the

winding number. The change in the action becomes

δSCS = −8π2κν . (1.18)

In path integral formalism, one needs the measure [DA] eiSCS [A] to be invariant

under gauge transformation, so we require δSCS to be an integer multiplied by

2π. Hence, one must choose the coupling κ to be integer/4π. Then we rewrite

κ = k/4π, where k is the famous Chern-Simons level. From now on, we label the

CS gauge theory with a gauge group G and CS level k to be Gk.

It is worth emphasising that the CS action does not depend on the metric of

the space-time manifold but rather on its topology. As a result, the theory has

topological invariants that cannot be ignored in low-energy effective action, and it

is thus called topological [30].

1.2.3 The topological aspect of Chern-Simons theories

To understand the topological nature of the Chern-Simons theory, we compare the

kinetic term of the Maxwell theory to the Chern-Simons term when the theory is

promoted to curved space-time (i.e. coupled to a background metric gµν). The

action term of the Maxwell theory in curved space-times is then

SM = − 1

4e2

∫ √
−ggµρgνσfµνfρσ (1.19)
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while the action of the abelian Chern-Simons theory becomes

SCS =
k

4π

∫
A ∧ dA (1.20)

where A∧ dA is a 3-form, and the integral is over any 2 + 1-dimensional manifold.

The difference between the two actions is easily noticeable; the Maxwell action is

dependent on the metric g, which raises the indices of fµν for contraction, and it

also provides the measure
√
−g for respecting diffeomorphism while integrating.

In the Chern-Simons term, however, the two preceding properties are not required.

As a result, the Chern-Simons action remains independent of the metric in curved

space-time, and the term is said to be topological. It is worth noting that the

topology of the underlying manifold plays a crucial role in Chern-Simons theory,

particularly in low-energy effective theories [30].

The Chern-simons term has an interesting property in that it preserves rota-

tional invariance while breaking parity and time-reversal, as shown in section 1.1.

Anomalies result from symmetry breaking at the quantum level, and matching

these anomalies is essential in determining the consistency of any conjectured

phases of a given three-dimensional theory.

1.3 level/rank dualities

Dualities between two pure Chern-Simons theories in which the CS level k and

the gauge group rank are exchanged are known as level/rank dualities. We are

interested in QCD-like theory in 2 + 1 dimensions, hence we will concentrate

on level/rank dualities, which encompass theories with gauge groups U(N) and

SU(N). Before we start discussing the dual theories, let us introduce certain

notations and norms. In the language of differential geometry, a non-abelian pure

CS theory with gauge group SU(N) and CS level k is denoted by SU(N)k, with
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a Lagrangian given by

LSU(N)k =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
. (1.21)

For the theories with U(N) gauge group, the group U(N) has an SU(N) part and

a U(1) part with two independent CS levels, so we write the quotient

U(N)k,k′ ≡
SU(N)k × U(1)k′N

ZN
. (1.22)

However, the gauge invariant form of this theory is U(N)k,k+nN , for n ∈ Z. The

theory is then defined by a Lagrangian

LU(N)k,k+nN =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
+

n

4π
Tr(A)d(TrA) . (1.23)

We also denote the theory with n = 0 by U(N)k ≡ U(N)k,k.

Chern-Simons theories become anomalous when defined on a manifold with a

boundary. On such a manifold, the boundary term in equation (1.16) can not be

ignored, an hence gauge invariance is lost. To address this issue and restore gauge

invariance, one may add extra degrees of freedom to the boundary. The theory

with these extra degrees of freedom is known as the Wess-Zumino-Witten (WZW)

model [33, 34]. The extra degrees of freedom consist of a chiral boson for the

Abelian case, whereas in the non-Abelian case they constitute a non-trivial 1 + 1

dimensional conformal field theory for the non-Abelian case. One implication of

these CFTs is the equivalence in a theory describing NK complex chiral fermions

given by [35]

SU(N)k ←→
SU(Nk)1
SU(k)N

. (1.24)

The right-hand side of equation (1.24) is a GKO coset. The GKO coset construction

is a method to establish the highest weight representations of the Virasoro algebra

and was first introduced in [36]. This is to define a duality between theories
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described by the following Lagrangians

LSU(N)k ←→ LSU(NK)1/SU(k)N ≡ L(SU(NK)1×SU(k)−N )/Zk . (1.25)

We can rewrite SU(Nk)1 = U(Nk)1 × U(1), where the U(Nk)1 is a trivial theory.

The second U(1) kills the U(1) part of the U(Nk)1 theory leading to the following

duality

SU(N)k ←→
U(1)−Nk × SU(k)−N

Zk
≡ U(k)−N,−N . (1.26)

We saw that the WZW models are theories that exist on the boundary of Chern-

Simons theories. Thus, this duality between boundary theories can be promoted

to the 2 + 1 dimension to represent a level/rank duality between Chern-Simons

theories. As a result, we write the following set of level/rank dualities

SU(N)±k ←→ U(k)∓N,∓N , (1.27)

U(N)k,k±N ←→ U(k)−N,−N∓k . (1.28)

The level/rank dualities have been rigorously demonstrated. However, Po-Shen

Hsin and Seiberg have identified several complex challenges when dealing with

these dualities [37]. The most confusing aspect is that some of these theories on

one side of the dualities are dependent on the spin structure chosen, such as

SU(N)k; for all values of k

U(N)k,k; for odd values of k

U(N)k,k±N ; for even values of k .

None of the theories is a spin theory on the other side of the dualities. This raises

an intriguing question: how can a spin theory be described as a dual description

of a non-spin theory?
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In summary, the solution to this problem is to convert all spin theories into non-

spin theories in two steps: The first is to connect the spin theory to a background

spinc-connection, which defines the theory on a spinc manifold rather than the

spin manifold. This makes the theory independent of the spin structure employed.

The naive method of coupling a background field with a spinc connection does not

necessarily produce the same contact terms as the dual theory [38, 39]. As a result,

we proceed to the second step, coupling the non-spin theory to a background U(1)

field that adds a counterterm to ensure that the theories have the same contact

terms.

An example of the process of the spin to non-spin conversion is the U(N)k,k,

which is only a spin theory for odd k. The Lagrangian of this theory is given by

LU(N)k,k [A] =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
, (1.29)

where A is a U(N) gauge field. First, we couple the spin theory (with odd values

of k) to a spinc-connection C, we get

LU(N)k,k [A;C] =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
+

1

2π
(TrA) dC . (1.30)

Then we couple the non-spin theory (even k) to a U(1) background field B, we

get

LU(N)k,k [A;B] =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
+

1

2π
(TrA) dB . (1.31)

Combining equations (1.30) and (1.31), the resultant theory has a Lagrangian

LU(N)k,k [A;B + kC] =
k

4π
Tr

(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
+

1

2π
(TrA) d (B + kC) .

(1.32)

The second term of equation (1.32) ensures that the theory remains non-spin

for all values of k; For even k, (B + kC) becomes an ordinary U(1) field, and
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the theory is non-spin. For odd k, (B + kC) becomes a spinc-connection and the

theory becomes non-spin. The conversion of the theories SU(N)k and U(N)k,k±N

can be done in the same spirit.

1.4 Boson/fermion dualities in 2 + 1 dimensions

One of the most common approaches to finding non-supersymmetric dualities is

to begin with a duality between supersymmetric theories and then turn on some

operators that violate supersymmetry. Then allow these theories to flow to the

IR; if the flow is smooth, the non-supersymmetric counterparts of these dualities

can be conjectured [4, 40, 41].

An alternate approach is to explore the provided Chern-Simons matter theory

in the limit of large N and k with fixed N/k, which simplifies the calculations

of several observables using large N techniques [42–53]. Large N calculations

revealed the presence of non-supersymmetric dualities between Chern-simons

theories coupled to scalars and other theories linked to fermions. The next logical

step is to extend these large N dualities to finite N dualities. The validity of the

potential finite N dualities may be determined by simply giving masses to matter

and flowing to pure Chern-Simons theories that are linked to the well-established

level/rank dualities.

With the above methodologies in hand, Ofer Aharony used the Chern-Simons

theories’ mapping between baryon operators and monopole operators to conjecture

a complete and broad version of the level/rank dualities that includes matter to

Chern-Simons theories’ dualities at finite N [54].

Consider Chern-Simons theories coupled to F scalars ϕ or Dirac fermions ψ

in the fundamental representation of the gauge group. The conjectured Chern-

Simons-matter dualities are

SU(N)k + Fϕ←→ U(k)−N+F/2,−N+F/2 + Fψ , (1.33)

U(N)k,k + Fϕ←→ SU(k)−N+F/2 + Fψ , (1.34)
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U(N)k,k±N + Fϕ←→ U(k)−N+F/2,−N∓k+F/2 + Fψ . (1.35)

The first three dualities were conjectured in [54], while the last one, with the

minus sign in its level, was presented in [37]. The dualities of Aharony have

been demonstrated to fit both the supersymmetric and large N pictures. They

were also proven to be consistent with mass deformations and lead directly to

level/rank dualities when we set F = 0. Above all, the baryon and monopole

operators match appropriately [55]. Additional four dualities can be encountered

by reversing the orientation of the theories in equations (1.33) to (1.35), resulting

in a change of sign of all levels. The issue of coupling these theories to background

fields, as well as the puzzle of introducing a duality between a fermionic theory

(spin theory) and a bosonic theory (non-spin theory), has been discussed in [37].

The special case N = k = F = 1 has also been analyzed in [56–58], where it

leads to the abelian 3d bosonization

Free ϕ ←→ U(1)−1/2 + ψ , (1.36)

U(1)1 + ϕ←→ Free ψ , (1.37)

U(1)2 + ϕ←→ U(1)−3/2 + ψ . (1.38)

These dualities are interpreted to indicate that the fermions are coupled to gauge

fields without any extra interactions. In particular, the fermion is free in the

second duality. The scalar in the first duality, on the other hand, should be

regarded as being in a Wilson–Fisher fixed point, and this Wilson–Fisher theory

is gauged in the other dualities.

The theories on both sides of each of Aharony’s dualities have a global U(F )

flavour symmetry that rotates the matter fields. We will see later that breaking

this symmetry plays a crucial role in probing the phase diagram of a given Chern-

Simons-matter theory. It is worth noting that there is a more general version of

Chern-Simons-matter duality that includes bosons and fermions on both sides;
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this duality is known as master duality, and it takes the form [59, 60]

SU(N)k−F/2 + Sϕ+ Fψ ←→ U(k)−N+S/2 + Fψ + Sψ,

with S ≤ N, F ≤ k, and (S, F ) ̸= (N, k) . (1.39)

The dualities of Aharony and the master duality are subject to a flavour bound

set by k and F . To better understand this limitation and stay within the scope of

this thesis, consider the example of SU(N)k gauge theory coupled to F fermions.

A dual formulation of this theory is given by U(k + F/2)−N coupled to F scalars.

Giving a negative mass squared for all scalars in the bosonic theory and the

assumption that the theory is maximally higgsed, the scalars may have a vacuum

expectation value (VEV) of the form

⟨ϕ⟩ = v

 1F×F

0(k−F/2)×F

 . (1.40)

As a result, the gauge group is partially broken to U(k − F/2)−N . The gauge

group is now completely broken for k < F/2, implying that Aharony’s unitary

duality only holds for k ≥ F/2.



Chapter 2

Fundamental QCD3 with one and

two sets of fermions

In this chapter, we review the results of [1, 2, 61]. We discuss the dualities

and phases of a SU(N) gauge theory coupled to F fermions in the fundamental

representation, as well as a Chern-Simons term with level k. The first section

delves into the theory where all fermions have the same mass, whereas the second

section dives into the splitting of these fermions into two families with different

masses. The Lagrangian of this theory is given by

LSU(N)k+Fψ = − 1

4g2
TrF2 +

kbare
4π

Tr
(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
+

F∑
j=1

(
iψ̄j /Dψj +

m

4π
ψ̄jψj

)
, (2.1)

where kbare ∈ Z denotes the bare Chern-Simons level. We use the terminology

and conventions specified in [1], which defined k = kbare − F/2. This level shift

guarantees that the Chern-Simons level is appropriately normalized, where k is a

half-integer if and only if F is odd. This convention is made to the half-integer

contribution to the CS level from the η-invariant [62]. Massive fermions can be

integrated out, resulting in a change in the level of the low energy effective theory
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given by

kIR = k − sgn(m)
F

2
. (2.2)

The given theory has a dual bosonic description given by U(k+F/2)−N+F +ϕ,

where ϕ is a scalar, based on Aharony’s dualities. This duality, however, was

predicted to hold for a limited number of flavours k ≥ F/2 as discussed in

section 1.4. One of the main implications of [1] is that Aharony’s dualities hold

not only for small values of F but also for a large number of flavours. This

conjecture is constrained by the large F limits of the 2 + 1 dimensional QCD [63].

The study of the domain walls in four dimensions, [64, 65], lends support to this

conjecture as well as the proposed phase diagram. The fundamental QCD3 has a

U(F ) global symmetry that rotates the F flavours. We also consider that k > 0

and the negative k case can be easily found by applying time-reversal, which

inverts the sign of the mass term.

2.1 Flavour symmetry breaking and the

one-dimensional phase diagram

Komargodski and Seiberg [1] investigated the phase diagram of SU(N) gauge

theory in 2 + 1 dimensions coupled to Chern-Simons term with level k and F

fermions in the fundamental representation. The theory features a global flavour

symmetry U(F ), which is spontaneously broken for small k values. Because of the

spontaneous breaking of the flavour symmetry, the authors were able to divide

the phase diagram into two cases:

2.1.1 No-symmetry breaking case: k ≥ F/2

In this range of k, the theory in the IR is semiclassically accessible, and the phase

diagram is described by the asymptotic theories obtained after integrating the

fermions out when their mass m is positive or negative. The two phases are
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m

SU(N)k + F ψ ←→ U(k + F/2)−N + F ϕ

U(k + F/2)−N

SU(N)k+F
2

SU(N)k−F
2

U(k − F/2)−N
m = 0

Figure 2.1: Phase diagram of SU(N)k + F ψ with k ≥ F/2.

then SU(N)k+F/2 for positive m, which has a level/rank dual U(k + F/2)−N ,

and SU(N)k−F/2 for negative m with a level/rank dual U(k − F/2)−N . The

two phases are separated by a phase transition described by the critical theory

SU(N)k + F ψ0, where the superscript 0 refers to the fermions being massless.

This phase transition could be of the first or second order, or it could be a series

of phase transitions [66–70]. However, The entire description of the phase diagram

is independent of the type of these phase transitions. The asymptotic phases are

pure gapped topological quantum field theories (TQFT). The phase diagram is as

in figure 2.1, where the transition between the two asymptotic phases occurs at

the blue point (m = 0).

2.1.2 Broken-symmetry case: k < F/2

In this case, the theory is semiclassically accessible only for large mass (m→ ±∞).

The asymptotic theories are SU(N)k+F/2 ←→ U(k + F/2)−N for large positive m

and SU(N)k−F/2 ←→ U(F/2 − k)N for large negative m. However, integrating

out the scalars from the dual bosonic theory U(k+F/2)−N+F ϕ for large negative

mass squared leads to a sigma model phase which does not appear in the fermionic

phase. In [1], the authors suggested that for the fermionic theory, there is some

value of the number of flavours F ∗ at which the U(F ) symmetry is spontaneously

broken into U(F/2 + k)× U(F/2− k), leading to a sigma model σ in the IR that
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m

U(F/2− k)N + F ϕ←→ SU(N)k + F ψ ←→ U(k + F/2)−N + F ϕ

U(k + F/2)−N

SU(N)k+F
2

SU(N)k−F
2

U(F/2− k)N
m+m− σ

+
NΓ

Figure 2.2: Phase diagram of SU(N)k + F ψ with k < F/2.

matches the bosonic phase and is given by the Grassmannian

Gr(F/2 + k, F ) =
U(F )

U(F/2 + k)× U(F/2− k)
. (2.3)

The sigma model is a purely quantum gapless phase that does not appear semi-

classically. This non-linear sigma model is accompanied by a Wess-Zumino term

Γ whose coefficient is N , which is crucial in matching the anomalies for the sigma

model phase. The phase diagram now consists of the two asymptotic topological

phases separated by a new quantum region for small |m|. The quantum region is

bounded by two transition points that are described by some positive mass m+

and some negative mass m−, as shown in figure 2.2. The authors also conjectured

the existence of a new duality in the form SU(N)k +F ψ ←→ U(F/2− k)N +F ϕ

to cover the phase diagram for negative m.

2.1.3 Consistency checks: One-family case

It was shown that for m = k = 0 with even F , the theory breaks its global

symmetry to U(F/2)× U(F/2) leading to a non-linear sigma model given by a

Grassmannian with target space [71, 72]

Gr(F, k = 0) =
U(F )

U(F/2)× U(F/2)
. (2.4)
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This is a trivial consistency check for the presence of the quantum phase in the

proposed phase diagram. It might also serve as a jumping-off point in building

the entire phase diagram for finite k. A mass deformation of the sigma model

presented in equation (2.4) reveals that the symmetry breaking scenario occurs

throughout a region of the parameter space rather than at one point.

Another option to put the predicted phases to the test is to employ the dual

bosonic description to identify the bosonic phases around the critical point(s)

and compare them to fermionic theory phases. The authors of [2] suggested this

consistency check for the two-family situation, but it may also be applied for the

single flavour case.

Bosonic Phases

Consider a U(n)l gauge theory coupled to F scalars ϕαi in the fundamental

representation, with n = F/2± k, l = ∓N , i = 1, . . . , f , and α = 1, . . . , n. One

can build a gauge invariant operator Xj
i = ϕαi ϕ

∗j
α , where X is an F × F matrix

with rank r following the constraint r ≤ min(n, F ). diag(x1, x2, . . . , xr, 0, . . . , 0)

is the diagonalized matrix, where xi represent the eigenvalues of the matrix X.

Because the theory includes a U(F ) global symmetry, one may derive a potential

from this gauge invariant operator and preserve this symmetry such that

V =M2tr(X) + λ(trX)2 + µtrX2 . (2.5)

where M2 is the mass squared of the scalars, µ and λ are the coupling constants

for the quartic term. To confine this potential from below, we pick µ > 0, which

necessitates µ+ min(n, F )λ > 0. Now we seek for possible minimization, which is

dependent on the value of M2. If M2 ≥ 0, the potential is minimized by simply

setting X = 0, and the IR effective theory is a pure U(n)l. If M2 < 0, the
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minimum of the potential can be found by solving the vacuum equation

dV

dX
=M2 + 2λtrX + 2µX = 0 . (2.6)

Equation (2.6) provides a set of equivalent linear equations, implying that all

eigenvalues are degenerate (xi = x). Solving equation (2.6) gives the following

eigenvalues

x =
−M2

2λ+ 2µ
, (2.7)

and the potential becomes

V (x) =
−M4r

4λr + 4µ
. (2.8)

When r reaches its maximum value (i.e. r = min(n, F )), the potential in equa-

tion (2.8) is minimized. The phase diagram of the bosonic theory is thus divided

into two cases

1. F < n: This implies r = F , the gauge group is broken in all F directions (i.e.

maximally Higgsed), but the global U(F ) symmetry remains unbroken. Inte-

grating the massive scalars out produces a pure U(n−F )l as a consequence.

Thus the IR description for (n, l) = (F/2 + k,−N) is pure U(k − F/2)−N

for negative M2 (i.e. on the left of the critical point of figure 2.1), which

corresponds to the fermionic phase.

2. F > n: We require r = n, so the gauge group is completely Higssed, and

the global symmetry U(F ) spontaneously breaks to U(F )×U(F − n). As a

result, the IR dynamics are characterized by a non-linear sigma model with

a target space given by the Grassmannian

Gr(n, F ) =
U(F )

U(n)× U(F − n)
. (2.9)
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A Wess-Zumino term with the coefficient |l| is also included. The theory

has a sigma model with a Grassmannian that matches the sigma model of

the fermionic phase for all (n, l) values.

The authors of [1] originally proposed the sigma model for the fermionic theory

based on the symmetry breaking scenario. They predicted, from the start, that

the sigma model from the fermionic and scalar theories are comparable, which

we demonstrated in this section using mass deformation. The power of the mass

deformation method as a testing tool will become more apparent for the two and

three-family scenarios.

2.2 Two-dimensional phase diagram

We now move to the work in [2, 61] where the authors considered the case when

the F fermions are split into two sets of fermions: pψ1 fermions with mass m1 and

(F − p)ψ2 fermions with mass m2. The flavour symmetry is now explicitly broken

into U(p)× U(F − p) and the phase diagram looks different for three particular

cases: k ≥ F/2, F/2− p ≤ k < F/2, and 0 ≤ k < F/2− p, where the range of p

is such that 0 ≤ p ≤ F/2. In analogy to the one-family case, there are two dual

bosonic theories U(k+F/2)−N+p ϕ1+(F−p)ϕ2 and U(F/2−k)N+p ϕ1+(F−p)ϕ2

for small values of k to cover the full phase diagram.

2.2.1 Type I: k ≥ F/2

There is no flavour symmetry breaking, and the four topological theories describe

the phase diagram. Integrating out both ψ1 and ψ2 when their masses are both

positive and negative, one obtains various topological phases Ta(m1 > 0,m2 > 0),
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m1

m2

TaTb

TdTc

Figure 2.3: Phases of SU(N)k + pψ1 + (F − p)ψ2 with k ≥ F/2: Type I.

Tb(m1 < 0,m2 > 0),Tc(m1 < 0,m2 < 0),Td(m1 > 0,m2 < 0):

Ta : SU(N)k+F
2
←→ U(k + F/2)−N ,

Tb : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N ,

Tc : SU(N)k−F
2
←→ U(k − F/2)−N ,

Td : SU(N)k−F
2
+p ←→ U(k − F/2 + p)−N .

(2.10)

These topological phases are separated by critical theories represented as

red lines in figure 2.3. The critical theories are SU(N)k± p
2
+ (F − p)ψ0

2 on the

horizontal red line and SU(N)k±F−p
2

+ pψ0
1 on the vertical red line. The blue

point is a transition point that separates the four different topological phases. We

will use the term type I phase diagram to label this case.

2.2.2 Type II: F/2− p ≤ k < F/2

The asymptotic phases can be found similarly by sending both masses to ±∞.

The topological phases Ta, Tb, and Td remain as in equation (2.10) while Tc
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becomes

Tc → T̃c : SU(N)k−F
2
←→ U(F/2− k)N . (2.11)

There are quantum regions in this case where the flavour symmetry is spontaneously

broken. The strategy is to check the asymptotic phases where we send only one of

the masses to ±∞, and the theory becomes one-family with a shifted level. The

theory is strongly coupled and has sigma model descriptions σbc and σcd for small

and/or negative m1 and m2, respectively. The sigma-models have target spaces

with the following Grassmannians

σbc : Gr(F/2− k, F − p) =
U(F − p)

U(F/2− k)× U(k + F/2− p)
, (2.12)

σcd : Gr(F/2− k, p) =
U(p)

U(F/2− k)× U(k − F/2 + p)
. (2.13)

The theory also includes a sigma model σ on the diagonal line m1 = m2, which

reduces it to the one-family case. In this case, σ acts as a phase transition

between σbc and σcd. The red line that separates Ta and Td corresponds to the

critical theory SU(N)k+ p
2
+ (F − p)ψ0

2 while the red line separating Ta and Tb

corresponds to the critical theory SU(N)k+F−p
2

+ pψ0
1. The asymptotic theories

and the quantum phases are separated by lines of critical theories, which are

described via the dual bosonic theories. For example, the red line that separates

Tb and σbc is given by the critical theory U(F/2 − k)N + (F − p)ϕ0
2, and this

applies similarly for the remaining red lines. The full phase diagram for this case

is shown in figure 2.4, and we label it as a type II phase diagram.

2.2.3 Type III: 0 ≤ k < F/2− p

The phase diagram in this range is similar to the preceding case. It consists of

topological theories that can be found semiclassically and quantum regions arising

from the symmetry breaking scenario. The topological phases Ta, Tb, and T̃c
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m1

m2

TaTb

TdT̃c

σbc

σcd

σ

Figure 2.4: Phases of SU(N)k + pψ1 + (F − p)ψ2 with F/2− p ≤ k < F/2: Type
II.

remain the same while Td becomes

Td → T̃d : SU(N)k−F
2
+p ←→ U(F/2− p− k)N . (2.14)

In this case, the quantum phases are σ models on the diagonal line with a

Grassmannian given by equation (2.3). They are σbc which is a plane describing

the quantum region for small and negative m2 with a Grassmannian given by

equation (2.12) and σad for small and positive m2 with a Grassmannian

σad : Gr(F/2 + k, F − p) = U(F − p)
U(F/2 + k)× U(F/2− p− k))

. (2.15)

The phase diagram is shown in figure 2.5 which is a type III phase diagram.

As in type II, the σ line acts as a transition between σbc and σad. To summarize,

the two-family theory has the following features:

• For k ≥ F/2, the theory in the IR is described by the four topological field

theories in equation (2.10).
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m1

m2

TaTb

T̃dT̃c

σbc σad

σ

Figure 2.5: Phases of SU(N)k + pψ1 + (F − p)ψ2 with 0 ≤ k < F/2− p: Type
III.

• For small k, the IR description is given by four topological field theories and

a line of sigma model σ separating two planes of sigma models (σbc, σcd) or

(σbc, σad).

2.2.4 Consistency checks: Two-family case

The two-dimensional phase diagram depiction passes various consistency checks.

A very straightforward check is to match the phases of the one-dimensional phase

diagram with the phases recovered on the diagonal line of the two-dimensional

picture (i.e. m1 = m2). Other checks include matching the phases of the dual

bosonic theory around the critical points and perturbing the sigma model σ

on the diagonal to ensure that the description is valid when both masses are

simultaneously small [2].

Phases of the bosonic theory

In this section, we perform the same procedure as in section 2.1.3, where we aim

to deform the massless theories at the critical points via mass deformation. Here
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we consider U(n)l gauge theory coupled to two sets of scalars p ϕ1 and (F − p)ϕ2.

The gauge invariants operators formed from the combination of these scalars are

given by

X = ϕ1ϕ
†
1 ,

Y = ϕ2ϕ
†
2 ,

Z = ϕ1ϕ
†
2 .

(2.16)

X and Y are positive semidefinite Hermitian matrices of dimension p and F − p,

while Z has a dimension p× (F − p). The deformation potential up to quartic

terms is then

V =M2
1TrX +M2

2TrY + λ
(
Tr2X + Tr2Y + 2TrXTrY

)
+ µ

(
TrX2 + TrY 2 + 2TrZZ†) . (2.17)

We require µ + min(n, F )λ > 0 from the positivity of µ, just like in the

one-flavour case. We also diagonalize the matrices X and Y to obtain

X = diag(x1, . . . , xr1 , 0, . . . , 0) , (2.18)

Y = diag(y1, . . . , yr2 , 0, . . . , 0) , (2.19)

where r1 and r2 are the ranks of X and Y respectively. For (M2
1 ,M

2
2 ) > 0, the

gauge group is not Higgsed and the global U(p)×U(F−p) is preserved. Otherwise,

we may have Higgsing (i.e. scalar condensation) or/and spontaneous symmetry

breaking. The vacuum equations are then

∂V

∂X
=M2

1 + 2λTrX + 2λTrY + 2µTrX = 0 , (2.20)

∂V

∂Y
=M2

2 + 2λTrY + 2λTrX + 2µTrY = 0 . (2.21)
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Recall that X and Y are diagonal with r1 and r2 degenerate eigenvalues donated

by x and y respectively. Thus solving the vacuum equations yields

x =
−(µ+ λr2)M

2
1 + λr2M

2
2

2µ2 + 2λµ(r1 + r2)
, (2.22)

y =
−(µ+ λr1)M

2
2 + λr1M

2
1

2µ2 + 2λµ(r1 + r2)
. (2.23)

The constraints on r1 and r2 are

r1 ≤ min(n, p) ,

r2 ≤ min(n, F − p) ,

r1 + r2 ≤ min(n, F ) .

(2.24)

The positivity condition on x and y imply that a simultaneous condensation

of ϕ1 and ϕ2 only occurs in a subregion (R) of the third quadrant of (M2
1 ,M

2
2 )

plane. Only x or y can be non-zero outside of this zone (i.e. we only have a single

condensation). The minimization of V occurs at the boundary of each line of

equation (2.24), as in the one-family case. The two-family scalar theory phase

diagram is divided into four cases, each of which is explained by studying the four

quadrants of the (M2
1 ,M

2
2 ) plane.

1. p ≤ F − p ≤ F ≤ n:

(i) For M2
1 ,M

2
2 > 0, no scalar condensation nor spontaneous symmetry

breaking for the global symmetry. Thus the theory in the IR is pure

U(n)l.

(ii) For M2
1 < 0,M2

2 > 0, only ϕ1 condenses leading to a partial Higssing

of the gauge group to U(n− r1)l. When we apply the restriction on r1

and take into consideration that p < n, we get U(n− p)l.

(iii) For M2
1 < 0,M2

2 < 0, both ϕ1 and ϕ2 condense, but only on a subregion

R of this third quadrant, with the rest joining either the phases of the

second or fourth quadrants. The rank constraints are thus r1 = p and
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r2 = F − p. The gauge group is broken down into U(n− (r1 + r2))l =

U(n− F )l as a result of the double condensation.

(iv) For M2
1 > 0,M2

2 < 0, only ϕ2 condenses where r2 is saturated to F − p.

Thus the IR description is U(n− F + p)l.

The U(n)l gauge theory represents the whole first quadrant, which we

identify as region A. The area of the second quadrant, as well as what is

left of the subregion R of the third quadrant, is denoted by B. We also call

the subregion of the third quadrant C since it has a double condensation

as well as complete saturation of r1 and r2. Similarly, the last region is D,

which represents the fourth quadrant plus the region leftover from the third

quadrant. Once we substitute n = F/2± k, we get the phases of the bosonic

theory. In this case, however, only n = F/2 + k is allowed, and the phases

are described in table 2.1.

Region r1 r2 Phase n = F/2 + k n = F/2− k

A 0 0 U(n)l Ta N/A
B p 0 U(n− p)l Tb N/A
C p F − p U(n− F )l Tc N/A
D 0 F − p U(n− F + p)l Td N/A

Table 2.1: Phases of the bosonic theory U(n)l+ pϕ1+(F − p)ϕ2 with p ≤ F − p ≤
F ≤ n.

2. p ≤ F − p ≤ n < F :

(i) For M2
1 ,M

2
2 > 0, this is similar to the previous case with no scalar

condensation leading to the same region A with U(n)l gauge theory.

(ii) For M2
1 < 0,M2

2 > 0, this is also similar to the previous case with

region B represented by U(n− p)l gauge theory.

(iii) ForM2
1 < 0,M2

2 < 0, we have Higgsing as well as spontaneous symmetry

breaking to the global symmetry leading to a sigma model. We use the

constraint on r1 + r2 to find the Grassmannians of the sigma model.
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Because there are two ways to saturate the r1 + r2 constraint, the C

region is divided into two subregions: C1 and C2. When r1 is entirely

saturated, r2 takes the value n − p, and the subregion C1 appears,

resulting in a Grassmannian Gr(n− p, F − p). The subregion C2 can

be found by saturating r2 to F − p while r1 = n− F + p, as a result,

the Grassmannian is given by Gr(n− F + p, p).

(iv) For M2
1 > 0,M2

2 < 0, only a condensation of ϕ2 occurs, as in the

previous case, leading to U(n− F + p)l.

Region r1 r2 Phase n = F/2 + k n = F/2− k

A 0 0 U(n)l Ta N/A
B p 0 U(n− p)l Tb N/A
C1 p n− p Gr(n− p, F − p) σbc N/A
C2 n− F + p F − p Gr(n− F + p, p) σcd N/A
D 0 F − p U(n− F + p)l Td N/A

Table 2.2: Phases of the bosonic theory U(n)l+ pϕ1+(F − p)ϕ2 with p ≤ F − p ≤
n < F .

3. p ≤ n < F − p ≤ F :

(i) For M2
1 ,M

2
2 > 0, we have U(n)l theory describing region A.

(ii) For M2
1 < 0,M2

2 > 0, the theory U(n− p)l describes region B.

(iii) ForM2
1 < 0,M2

2 < 0, we have Higgsing as well as spontaneous symmetry

breaking. The (n, F ) relationship requires the value of r1 + r2 to be

n. As a result, we have two possibilities to achieve this condition: the

first is to use r1 = p and r2 = n− p, which leads to a Grassmannian

Gr(n−p, F −p) representing the subregion C1. The subregion C2 is now

different, with r1 = 0 and r2 = n, so this region has a new Grassmnnian

given by Gr(n, F − p). We will see later that this region joins the

region from the fourth quadrant to form a whole new region, so we will

name it D1.
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(iv) For M2
1 > 0,M2

2 < 0, we have Higgsing plus spontaneous symmetry

breaking with r1 = 0 and r2 = n, which provides the Grassmannian

Gr(n, F − p) (i.e. the whole fourth quadrant is part of D1).

Region r1 r2 Phase n = F/2 + k n = F/2− k

A 0 0 U(n)l Ta T̃c

B p 0 U(n− p)l Tb T̃d

C1 p n− p Gr(n− p, F − p) σbc σad

D1 0 n Gr(n, F − p) σad σbc

Table 2.3: Phases of the bosonic theory U(n)l + pϕ1 + (F − p)ϕ2 with p ≤ n <
F − p ≤ F .

4. n < p ≤ F − p ≤ F :

(i) For M2
1 ,M

2
2 > 0, region A exists with U(n)l gauge theory.

(ii) For M2
1 < 0,M2

2 > 0, we have only one possibility to satisfy the

r1 + r2 condition where we choose r1 = n and r2 = 0. This is exactly

similar to what happens for the subregion C1 from the third quadrant

(M2
1 < 0,M2

2 < 0). Thus, regions B joins the subregion C1 to form a

whole new region B1 with sigma model described by Gr(n, p).

(iii) The rest of the third quadrant joins region D to reproduce D1 with a

Grassmannian Gr(n, F − p).

Region r1 r2 Phase n = F/2 + k n = F/2− k

A 0 0 U(n)l N/A T̃c

B1 n 0 Gr(n, p) N/A σcd

D1 0 n Gr(n, F − p) N/A σbc

Table 2.4: Phases of the bosonic theory U(n)l + pϕ1 + (F − p)ϕ2 with n < p ≤
F − p ≤ F .

It is straightforward to see that the phases of the bosonic theory in tables 2.1

to 2.4 match their correspondance from the fermionic theory. This is a powerful

tool for testing conjectured phases in figures 2.3 to 2.5, particularly around the

critical points.
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σ perturbation: Matching theories off diagonal

Another non-trivial consistency check discussed in [2] is achieved via mass de-

formation of the sigma model σ on the diagonal line (i.e. m1 = m2). σ can

be represented in terms of n with Grassmannian Gr(n, p), so mass deformation

modifies it accordingly. The perturbation is done by adding an infinitesimal

mass squared to either ϕ1 or ϕ2. The sign of the additional mass, as well as the

relationship between n, p, and F , determine the shape of such modification (i.e.

theories above or below σ). It is worth noting that the outcome is independent of

the choice of whether we deform ϕ1 or ϕ2.

Now, let us add δM2
1 to ϕ1 and check the effect of such deformation. If δM2

1 > 0

(i.e. below the diagonal line), the family ϕ1 condenses first causing either partial

or complete Higgsing to the gauge group depending on the (n, F − p) relationship.

For F − p > n, the gauge group is completly Higgsed, so one may integrate ϕ1 out

resulting in a sigma model with grassmannian Gr(n, F − p). For F − p < n, ϕ2

partially Higgs the gauge group down to U(n− F + p), then ϕ1 condenses leading

to a sigma model with Grassmannian Gr(F − n, p).

On the other hand, For δM2
1 < 0, the set ϕ2 condenses first, and the result

describes the theory above the diagonal line. Since we only have pϕ1 to integrate,

the theory now relies on the (n, p) relationship. For p > n, the condensation of ϕ2

completely Higgs the gauge group, so we integrate ϕ2 out without compromising

the remaining theory. As a result, the theory is described via a sigma model with

Grassmannian Gr(n, p). For p < n, ϕ1 partially Higgs the gauge group down

to U(n − p), then ϕ2 condenses leading to a sigma model with Grassmannian

Gr(F − n, F − p).

We summarize the phases due to mass perturbation of σ in table 2.5. The

results show clearly that these phases match exactly the ones in figures 2.4 and 2.5

when we make the substitution n = F/2± k.
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Phase n = F/2 + k n = F/2− k

δM2
1 > 0

F − p > n Gr(n, F − p) σad N/A

F − p < n Gr(F − n, p) σcd N/A

δM2
1 < 0

p > n Gr(n, p) N/A σcd

p < n Gr(F − n, F − p) N/A σbc

Table 2.5: Phases around σ due to mass perturbation.



Chapter 3

Three-dimensional phase diagrams

of fundamental QCD3

We now proceed to build on the prior work by integrating a third flavour family

into the theory. The discussion of this chapter is based on a published work [3].

We split the F fermions into three sets: pψ1 fermions with mass m1, q ψ2 fermions

with mass m2, and (F − p − q)ψ3 fermions with mass m3. The global flavour

symmetry U(F ) is explicitly broken into U(p)×U(q)×U(F−p−q). There are two

possible scenarios to cover the entire phase diagram of the three-family situation.

The two scenarios are determined by the number of flavours for the additional

family; the first is for F −p−q ≤ F/2, and the second is for F −p−q > F/2; each

scenario is divided into five different cases depending on the value of k. However,

the majority of these cases are the same in both scenarios, with the difference

appearing when we examine the phases of k with a boundary of |F/2 − p − q|

flavours.

3.1 F − p− q ≤ F/2 Scenario

In order to keep the analysis under control, we propose setting p and q such that

0 < q ≤ p ≤ F − (p+ q) ≤ F/2. The range of k diagram is divided into five cases:
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k ≥ F/2, F/2−q ≤ k < F/2, F/2−p ≤ k < F/2−q, (p+q)−F/2 ≤ k < F/2−p,

and 0 ≤ k < (p+ q)− F/2, each with its own phase diagram.

Our technique for identifying the topological phases is to send the three masses

to ±∞. For small values of k, we look for the quantum regions in two steps:

first, we identify the asymptotic limits when two of the masses are sent to ±∞,

and then we find the asymptotic limit when just one of the three masses is sent

to ±∞. The theory on the three-dimensional diagonal line m1 = m2 = m3 is

simplified to the one-family case with the phase diagrams shown in figures 2.1

and 2.2, which indicates that we always anticipate σ to emerge as a phase for all

ranges of k < F/2.

3.1.1 Case 1: k ≥ F/2

The theory in the IR is weakly-coupled in this case, with no symmetry breaking

scenario. The phase diagram is defined by eight topological field theories and

associated level/rank dual descriptions; six critical lines separate these phases.

The topological phases are derived by finding the asymptotic limits of the three

masses, and they appear in the mass ranges m1, m2, and m3 as T1(m1 > 0,m2 >

0,m3 > 0),T2(m1 > 0,m2 > 0,m3 < 0),T3(m1 > 0,m2 < 0,m3 > 0)T4(m1 <

0,m2 > 0,m3 > 0),T5(m1 < 0,m2 < 0,m3 > 0),T6(m1 < 0,m2 > 0,m3 < 0),

T7(m1 < 0,m2 < 0,m3 > 0),T8(m1 < 0,m2 < 0,m3 < 0). They are

T1 : SU(N)k+F
2

←→ U(k + F/2)−N

T2 : SU(N)k+p+q−F
2
←→ U(k + p+ q − F/2)−N

T3 : SU(N)k+F
2
−q ←→ U(k + F/2− q)−N

T4 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N

T5 : SU(N)k+p−F
2
←→ U(k + p− F/2)−N (3.1)

T6 : SU(N)k+q−F
2
←→ U(k + q − F/2)−N

T7 : SU(N)k+F
2
−p−q ←→ U(k + F/2− p− q)−N
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T8 : SU(N)k−F
2

←→ U(k − F/2)−N

The phase diagram is three-dimensional in the space (m1,m2,m3) as shown

in figure 3.2 and the six different projections are shown in figure 3.1. The

separation between the eight topological theories occurs via points, lines, and

planes of critical theories. The blue point is described by a critical theory given

by SU(N)k + pψ0
1 + q ψ0

2 + (F − p− q)ψ0
3. Each point on the critical lines belong

to one of the following critical theories

C±
1 : SU(N)k± p

2
+ q ψ0

2 + (F − p− q)ψ0
3 ,

C±
2 : SU(N)k± q

2
+ pψ0

1 + (F − p− q)ψ0
3 ,

C±
3 : SU(N)k±F−p−q

2
+ pψ0

1 + q ψ0
2 .

(3.2)

C±
1 , C±

2 , and C±
3 describe the lines on the mass axes m1, m2, and m3, respectively.

The plus or minus sign indicates whether the theory is along the positive or

negative axes. The critical planes are given by any of the following theories:

C±
12 : SU(N)k± p+q

2
+ (F − p− q)ψ0

3 ,

C±
21 : SU(N)k± p−q

2
+ (F − p− q)ψ0

3 ,

C±
13 : SU(N)k±F−q

2
+ q ψ0

2 ,

C±
31 : SU(N)k±(F−q

2
−p) + q ψ0

2 ,

C±
23 : SU(N)k±F−p

2
+ pψ0

1,

C±
32 : SU(N)k±(F−p

2
−q) + pψ0

1 .

(3.3)

C±
ij describes the theories on the planes (mi,mj) with both of the masses being

positive or negative, while C±
ji for the planes when one of the masses is positive

and the other is negative.
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m2

m3

T1T3

T2T5

(a) (m2, m3), m1 > 0

m2

m3

T4T7

T6T8

(b) (m2, m3), m1 < 0

m1

m3

T1T4

T2T6

(c) (m1, m3), m2 > 0

m1

m3

T3T7

T5T8

(d) (m1, m3), m2 < 0

m1

m2

T1T4

T3T7

(e) (m1, m2), m3 > 0

m1

m2

T2T6

T5T8

(f) (m1, m2), m3 < 0

Figure 3.1: Phases of SU(N)k + pψ1 + q ψ2 + (F − p− q)ψ3 with k ≥ F/2.
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Figure 3.2: The three-dimensional phase diagram of SU(N)k + pψ1 + q ψ2 + (F −
p−q)ψ3 with k ≥ F/2. The blue ball represents the critical point, the red lines are
the critical lines given by equation (3.2) while the planes in cyan are the critical
planes, each plane is described by one of the critical theories in equation (3.3).

3.1.2 Case 2: F/2− q ≤ k < F/2

In this range of k and all the remaining cases, we need two bosonic dual descriptions

to fill in the full phase diagram as conjectured in [1]. These bosonic theories are

U(F/2+k)−N+p ϕ1+q ϕ2+(F−p−q)ϕ3 and U(F/2−k)N+p ϕ1+q ϕ2+(F−p−q)ϕ3,

where ϕ1, ϕ2, and ϕ1 are scalars in the fundamental representation of SU(N). The

three masses asymptotic limits yield the same topological theories as in ?? except

for T8, which becomes

T8 → T̃8 : SU(N)k−F
2
←→ U(F/2− k)N . (3.4)

The two mass asymptotic limits produce a one-family theory with a shifted

level. In some limits, the shifted level becomes less than the remaining number

of flavours divided by two, and the theory becomes strongly-coupled. The three-



40 Three-dimensional phase diagrams of fundamental QCD3

dimensional phase diagram includes quantum regions described by sigma models,

but this time they appear as cuboids in the three-dimensional picture. The cuboid

quantum phases are the signature of the three-family theory as the planes of

sigma-models were signatures of the two-family case. The theory that has a level

within this range experience a cuboid sigma model in its phase diagram in the

following cases:

• m2, m3 → −∞: the theory becomes SU(N)k−F/2+p/2 +pψ1. The cuboid

quantum region is described by a sigma model σc1. From now on, we

shorthand the cuboid Grassmannains by their corresponding sigma models,

the Grassmannian for this region is

σc1 =
U(p)

U(F/2− k)× U(k − F/2 + p)
. (3.5)

• m1, m3 → −∞: the theory becomes SU(N)k−F/2+q/2 +q ψ2 which has a

sigma model σc2 given by

σc2 =
U(q)

U(F/2− k)× U(k − F/2 + q)
. (3.6)

• m1, m2 → −∞: the theory is SU(N)k−p/2−q/2+(F −p− q)ψ3 with a sigma

model σc3 given by

σc3 =
U(F − p− q)

U(F/2− k)× U(F/2− p− q + k)
. (3.7)

Now let us perform a consistency check by sending one mass to infinity where the

theory with the remaining flavours is reduced to a two-family case with shifted

level. In each limit, we check the relation between the remaining number of

flavours and the shifted level, which determines whether the phase diagram is

type I, II, or III. We summarize the check as follows:
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(i) m1 → +∞: we integrate ψ1 out, and the theory is reduced to

SU(N)k+ p
2
+ q ψ2 + (F − p− q)ψ3 ≡ SU(N)k+1 + q ψ2 + (F1 − q)ψ3 ,

(3.8)

where k+1 = k + p/2 and F1 = F − p with k+1 > F1/2. Due to the range of

k+1 , this region of the three-dimensional phase diagram has a type I phase

diagram with the topological theories T1, T2, T3, and T5.

(ii) m1 → −∞: integrating ψ1 out leads to

SU(N)k− p
2
+ q ψ2 + (F − p− q)ψ3 ≡ SU(N)k−1 + q ψ2 + (F1 − q)ψ3 ,

(3.9)

where k−1 = k − p/2 and F1/2− q < k−1 < F1. Due to the range of k−1 , the

phase diagram is then of type II with the topological theories T4, T6, T7,

and T̃8. Alongside these topological phases, we have a sigma model on the

diagonal given by

σd23 : Gr(F1/2 + k−1 , F1) =
U(F − p)

U(F/2− k)× U(F/2− p+ k)
. (3.10)

This diagonal sigma model is not a line but rather a plane region in the

three-dimensional picture. Only one side appears here, which will become

clear in section 3.3. The horizontal and vertical sigma models are σ78 which

separates T7 and T̃8 as well as σ68 separating T6 and T̃8. They are given by

σ78 : Gr(F1/2− k−1 , F1 − q) =
U(F − p− q)

U(F/2− k)× U(F/2− p− q + k)
≡ σc3 ,

(3.11)

σ68 : Gr(F1/2− k−1 , q) =
U(q)

U(F/2− k)× U(k − F/2 + q)
≡ σc2 . (3.12)
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We notice that σ78 ≡ σc3 which means that σ78 is just one side of the three-

dimensional quantum region σc3, the same thing applies for σ68 which is

equivalent to σc2.

(iii) m2 → +∞: we integrate ψ2 out, and the theory becomes

SU(N)k+ q
2
+ pψ1 + (F − p− q)ψ3 ≡ SU(N)k+2 + pψ1 + (F1 − p)ψ3 ,

(3.13)

where k+2 = k+ p/2 and F2 = F − q with k+2 > F2/2 and the phase diagram

is of type I with the topological phases T1, T2, T4, and T6.

(iv) m2 → −∞: integrating ψ2 gives

SU(N)k− q
2
+ pψ1 + (F − p− q)ψ3 ≡ SU(N)k−2 + pψ1 + (F1 − p)ψ3 ,

(3.14)

where k−2 = k − p/2 and F2/2− q < k−2 < F2. The phase diagram is then

of type II with the topological theories T3, T5, T7, and T̃8. The diagonal

sigma model is

σd13 : Gr(F2/2 + k−2 , F2) =
U(F − q)

U(F/2− k)× U(F/2− q + k)
, (3.15)

the quantum phase σ78 also exists in this side as in equation (3.11) alongside

the phase σ58 that separates T5 and T̃8 which is given by

σ58 : Gr(F2/2− k−2 , p) =
U(p)

U(F/2− k)× U(k − F/2 + p)
≡ σc1 . (3.16)

We should emphasize here that the equivalence between these phases and

the cuboid sigma models is itself a consistency check of our analysis.
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Figure 3.3: Phases of SU(N)k+pψ1+q ψ2+(F−p−q)ψ3 with F/2−q ≤ k < F/2.
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Figure 3.4: The three-dimensional phase diagram of SU(N)k + pψ1 + q ψ2 + (F −
p−q)ψ3 with F/2−q ≤ k < F/2. σ is represented by the thick black line between
the two critical points. σc1, σc2, and σc3 are represented by the red, yellow, and
blue regions, respectively. The diagonal sigma models are the dark brown planes
separating the cuboid quantum regions.

(v) m3 → +∞: after integrating ψ3 out the theory is

SU(N)k+F−p−q
2

+ pψ1 + q ψ2 ≡ SU(N)k+3 + pψ1 + (F3 − p)ψ2 , (3.17)

where k+3 = k+ (F − p− q)/2 and F3 = p+ q, the relation k+3 > F3/2 holds,

and we have a type I phase diagram with the topological phases T1, T3, T4,

and T7.

(vi) m3 → −∞: integrating ψ3 gives

SU(N)k−F−p−q
2

+ pψ1 + q ψ2 ≡ SU(N)k−3 + pψ1 + (F3 − p)ψ3 , (3.18)

where k−3 = k − (F − p − q)/2 and F3/2 − q < k−3 < F3, but p > q which

makes this case cover the range of type II phase diagram. The phase diagram
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has the topological phases T2, T5, T6, and T̃8. The diagonal sigma model

of this side is

σd12 : Gr(F3/2 + k−3 , F3) =
U(p+ q)

U(F/2− k)× U(k − F/2 + p+ q)
, (3.19)

while the horizontal and vertical quantum regions are σ68 and σ58 respectively

and given by equations (3.12) and (3.16).

In this range of k, we summarize the phase diagram in figures 3.3 and 3.4 where

the IR theory has the following phases; eight topological phases (T1−7, T̃8), three

cuboid sigma models (σc1, σ
c
2, σ

c
3), three planes of sigma models (σd12, σ

d
13, σ

d
23), as

well as a line of sigma model σ that appears on the diagonal line m1 = m2 = m3.

In the limiting case q = 0, the phase diagram becomes equivalent to the k = F/2

case where all the sigma models, as well as the topological theories T6 and T8

trivialize. The phase diagram is then reduced to a two-dimensional phase diagram

with three topological theories Ta, Tb, and Td, as well as a trivial theory SU(N)0.

3.1.3 Case 3: F/2− p ≤ k < F/2− q

As in the previous case, the theory has two bosonic dual descriptions. The

topological phases are given by ?? and equation (3.4) except for T6, which

becomes

T6 → T̃6 : SU(N)k−F
2
+q ←→ U(F/2− q − k)N . (3.20)

T8 is also replaced by T̃8 as before.

The cuboid quantum regions exist in the following cases:

• m2 → +∞ andm3 → −∞: the theory is reduced to SU(N)k−F/2+p/2+q+pψ1

which has a sigma model phase given by

σ̄c1 =
U(p)

U(F/2− q − k)× U(k − F/2 + p+ q)
. (3.21)
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• m2, m3 → −∞: the theory has the same cuboid sigma model as in equa-

tion (3.5).

• m2 → +∞ and m1 → −∞: the theory is reduced to SU(N)k−p/2+q/2+(F −

p− q)ψ3 with a sigma model given by

σ̂c3 =
U(F − p− q)

U(F/2− p+ k)× U(F/2− q − k)
. (3.22)

• m1, m2 → −∞: the theory has the same cuboid sigma model σc3 as in

equation (3.7).

The phases that appear when we take one of the masses to ±∞ are as follows:

(i) m1 → +∞: this is similar to case 2, where we have a type I phase diagram

with only topological phases.

(ii) m1 → −∞: this limit is different from the previous case, as in this range of

k the value of k−1 lies between F1/2 − p and F1/2 − q, which gives a type

III phase diagram. The sigma models σd23 and σ78 remain the same, while a

new phase σ46 appears between T4 and T̃6 and is given by

σ46 : Gr(F1/2 + k−1 , F1 − q) =
U(F − p− q)

U(F/2− p+ k)× U(F/2− q − k)
≡ σ̂c3 .

(3.23)

(iii) m2 → +∞: the range of k+2 within this range of k is F2/2− p ≤ k+2 < F2/2

and the phase diagram is of type II with a new diagonal sigma model σ̄d13

given by

σ̄d13 : Gr(F2/2 + k+2 , F2) =
U(F − q)

U(F/2 + k)× U(F/2− q − k)
. (3.24)
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Figure 3.5: Phases of SU(N)k + pψ1 + q ψ2 + (F − p− q)ψ3 with F/2− p ≤ k <
F/2− q.
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Figure 3.6: The three-dimensional phase diagram of SU(N)k + pψ1 + q ψ2 + (F −
p− q)ψ3 with F/2− p ≤ k < F/2− q. σ̄c1 is given by the region in magenta color
and σ̂c3 is represented by the green region.

The other two sigma models are σ46 as in equation (3.23) and a new σ26

that separates T2 and T̃6 with a Grassmannian given by

σ26 : Gr(F2/2− k+2 , p) =
U(p)

U(F/2− q − k)× U(k − F/2 + p+ q)
≡ σ̄c1 .

(3.25)

(iv) m2 → −∞: in this case, k−2 is within F2/2− p ≤ k−2 < F2/2, which is just

similar to case 2 with the same quantum phases σd13, σ78, and σ58.

(v) m3 → +∞: k+3 > F3/2 giving a type I phase diagram just like in case 2.

(vi) m3 → −∞: it is not clear whether this case is of type II or III because k−3

takes some negative values in this range of k. The theory is better understood

by rewriting its reduction in the form SU(N)k−3 + q ψ2 + (F3 − q)ψ1. Hence

it becomes clear that |k−3 | < F3/2− q and the theory is type III with sigma
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models appearing only for small m1 both negative and positive sides which

are σ58 and σ26 respectively, as shown in figure 3.5f.

The phases of case 3 are summarized in figures 3.5 and 3.6. These phases

are eight topological field theories (T1−5, T̃6, T7, T̃8), four cuboid sigma models

(σc1, σ̄
c
1, σ̂

c
3, σ

c
3), four planes of sigma models (σd12, σ

d
13, σ̄

d
13, σ

d
23), as well as the one-

dimensional sigma model σ. In the limiting case q = 0, the Chern-Simons level

range becomes F/2− p ≤ k < F/2 and the phase diagram is reduced to figure 2.4.

3.1.4 Case 4: (p+ q)− F/2 ≤ k < F/2− p

Following the same procedure, we found that this case has the same topological

phases as in case 3 with an extra change being that T5 is replaced by T̃5 as

T5 → T̃5 : SU(N)k−F
2
+p ←→ U(F/2− p− k)N . (3.26)

The two masses asymptotic limits show that the theory has the following

cuboid sigma models

• m1 → +∞ and m3 → −∞:

σ̄c2 =
U(q)

U(F/2− p− k)× U(k − F/2 + p+ q)
. (3.27)

• m1 → +∞ and m2 → −∞:

σ̄c3 =
U(F − p− q)

U(F/2− p− k)× U(F/2− q + k)
, (3.28)

along with σ̄c1, σ̂c3, and σc3.

The six sides of the three-dimensional picture have the following phases:
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(i) m1 → +∞: F1/2 − q ≤ k+1 < F1/2 and the theory has a type II phase

diagram with a diagonal sigma model σ̄d23 given by

σ̄d23 : Gr(F1/2 + k+1 , F1) =
U(F − p)

U(F/2 + k)× U(F/2− p− k)
. (3.29)

This diagonal sigma model separates two other sigma models given by

σ35 : Gr(F1/2− k+1 , F1 − q) =
U(F − p− q)

U(F/2− p− k)× U(F/2− q + k)
≡ σ̄c3 ,

(3.30)

σ25 : Gr(F1/2− k+1 , q) =
U(q)

U(F/2− p− k)× U(k − F/2 + p+ q)
≡ σ̄c2 .

(3.31)

(ii) m1 → −∞: this limit is similar to case 3 with σd23, σ78, and σ46 appear as

quantum phases.

(iii) m2 → +∞: this is also similar to case 3 with σ̄d13, σ46, and σ26.

(iv) m2 → −∞: we have k−2 < F2/2− p within this range of k, which makes this

limit to be of type III with σd13, σ78, and σ35.

(v) m3 → +∞: this remains of type I phase diagram just like in cases 2 and 3.

(vi) m3 → −∞: this limit gives a shifted level within the range F3/2 − p <

k−3 < F3/2, which makes this case of type II phase diagram. However, k−3 is

always negative in this range of k, which requires a flip of the masses signs

to get the right phase diagram. This allows sigma models to appear for

small m2 but positive m1 (σ25) and small m1 with positive m2 (σ26) instead

of σ68 and σ58, as shown in figure 3.7f. σ25 and σ26 are the correct phases to

appear in this limit as they are part of σ̄c1 and σ̄c2 while σ68 and σ58 are part

of σc1 and σc2 which do not appear in this range of k.
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Figure 3.7: Phases of SU(N)k + pψ1 + q ψ2 + (F − p− q)ψ3 with (p+ q)−F/2 ≤
k < F/2− p.
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Figure 3.8: The three-dimensional phase diagram of SU(N)k + pψ1 + q ψ2 + (F −
p− q)ψ3 with (p+ q)− F/2 ≤ k < F/2− p. σ̄c2 is the region in purple and σ̄c3 is
represented by the light brown region.

Figures 3.7 and 3.8 summarize the phases of case 4, which include the following;

the eight topological phases (T1−4, T̃5, T̃6,T7, T̃8), five cuboid sigma models

(σ̄c1, σ̄
c
2, σ̄

c
3, σ̂

c
3, σ

c
3), five planes of sigma models (σd12, σd13, σ̄d13, σd23, σ̄d23) together with

the sigma model line σ. In the limiting case q = 0, the phase diagram becomes

equivalent to a theory with level k = F/2− p where all the sigma models and the

topological theories T2 and T5, trivialize. The phase diagram is then reduced to a

two-dimensional phase diagram with three topological theories Ta, Tb, and Tc, as

well as a trivial theory SU(N)0.

3.1.5 Case 5: 0 ≤ k < (p+ q)− F/2

This is the last possible range of k has a three-dimensional phase diagram with

the same topological phases as in case 4 except that T7 is now

T7 → T̃7 : SU(N)k+F
2
−p−q ←→ U(p+ q − F/2− k)N . (3.32)
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The topological theories come along with σ̄c1, σ̄c2, σ̄c3, σ̂c3, and the following new

cuboid quantum regions

• m2 → −∞, m3 → +∞:

σ̂c1 =
U(p)

U(F/2 + k − q)× U(p+ q − F/2− k)
. (3.33)

• m1 → −∞, m3 → +∞:

σ̂c2 =
U(q)

U(F/2 + k − p)× U(p+ q − F/2− k)
. (3.34)

The one mass asymptotic limits are now

(i) m1 → +∞: F1/2 − q ≤ k+1 < F1/2 which gives a type II phase diagram

with the quantum regions σ̄d23, σ35, and σ25

(ii) m1 → −∞: F1/2 − q ≤ |k−1 | < F1/2 with negative k−1 which leads to a

time-reversed type II phase diagram as shown in figure 3.9b with the phases

σd23, σ46, and σ47, where

σ47 : Gr(F1/2 + k−1 , q) =
U(q)

U(F/2 + k − p)× U(p+ q − F/2− k)
≡ σ̂c2 .

(3.35)

(iii) m2 → +∞: F2/2− p < k+2 < F2/2 and the phase diagram is of type II with

the phases σ̄d13, σ46, and σ26.

(iv) m2 → −∞: F2/2 − p < |k−2 | < F2/2, with k−2 < 0, hence we have a

time-reversed type II phase diagram with σd13, σ35, and σ37, where

σ37 : Gr(F2/2 + k−2 , p) =
U(p)

U(F/2 + k − q)× U(p+ q − F/2− k)
≡ σ̂c1 .

(3.36)
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(v) m3 → +∞: F3/2 − p ≤ |k+3 | < F3/2 which gives a type II phase diagram

with σ37, σ47, and a new diagonal sigma model σ̄d12 given by

σ̄d12 : Gr(F3/2 + k+3 , F3) =
U(p+ q)

U(F/2 + k)× U(p+ q − F/2− k)
, (3.37)

(vi) m3 → −∞: F3/2− p ≤ |k−3 | < F3/2 this limit has a time-reversed type II

phase diagram with σd12, σ25, and σ26.

We summarize the phases of case 5 infigures 3.9 and 3.10 where these are: eight

topological field theories (T1,T2, T3,T4, T̃5, T̃6, T̃7, T̃8), six cuboid sigma models

(σ̄c1, σ̂
c
1, σ̄

c
2, σ̂

c
2, σ̄

c
3, σ̂

c
3), six planes of sigma models (σd12, σ̄d12, σd13, σ̄d13, σd23, σ̄d23), as well

as σ. The limiting case q = 0 reproduces the phase diagram in figure 2.5.

3.2 F − p− q > F/2 Scenario

In this scenario we consider the choice of p and q such that 0 < q ≤ p ≤ p+ q ≤

F/2. The range of k diagram is divided into: k ≥ F/2, F/2 − q ≤ k < F/2,

F/2− p ≤ k < F/2− q, F/2− (p+ q) ≤ k < F/2− p, and 0 ≤ k < F/2− (p+ q),

we label these cases by 1̄, 2̄, 3̄, 4̄, and 5̄, respectively. We notice that the cases

1̄ to 3̄ are precisely similar to cases 1 to 3 of the first scenario, and the phase

diagrams of these cases are equivalent. Case 4̄ is identical to case 4 in the first

scenario since we have k > |F/2− (p+ q)| in both scenarios. The only difference

then would be in the 0 ≤ k < F/2− (p+ q) case.

3.2.1 Case 5̄: 0 ≤ k < F/2− (p+ q)

This range of k under the constraint of this scenario has a three-dimensional phase

diagram with the same topological phases as in case 4 of the first scenario except

that T2 is now

T2 → T̃2 : SU(N)k−F
2
+p+q ←→ U(F/2− p− q − k)N . (3.38)
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Figure 3.9: Phases of SU(N)k+pψ1+q ψ2+(F−p−q)ψ3 with 0 ≤ k < (p+q)−F/2.
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Figure 3.10: The three-dimensional phase diagram of SU(N)k+pψ1+ q ψ2+(F −
p − q)ψ3 with 0 ≤ k < (p + q) − F/2. σ̂c1 is represented by the region in gray,
while σ̂c2 is the white region.

The topological theories come along with σc3, σ̄c3, σ̂c3, and a new cuboid region

when we send m1, m2 → +∞ given by

σ̃c3 =
U(F − p− q)

U(F/2 + k)× U(F/2− p− q − k)
. (3.39)

The one mass asymptotic limits are now

(i) m1 → +∞: p/2 ≤ k+1 < F1/2 − q which gives a type III phase diagram

with the quantum regions σ̄d23, σ35 as well as a new region for small m3 but

positive m2:

σ12 : Gr(F1/2 + k+1 , F1 − q) =
U(F − p− q)

U(F/2 + k)× U(F/2− p− q − k)
≡ σ̃c3 .

(3.40)
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Figure 3.11: Phases of SU(N)k + pψ1 + q ψ2 + (F − p − q)ψ3 with 0 ≤ k <
F/2− (p+ q).
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Figure 3.12: The three-dimensional phase diagram of SU(N)k+pψ1+ q ψ2+(F −
p− q)ψ3 with 0 ≤ k < F/2− (p+ q). σ̃c3 is represented by the region in cyan.

(ii) m1 → −∞: |k−1 | < F1/2 − q giving a type III phase diagram as in case 4

with the phases σd23, σ78, and σ46.

(iii) m2 → +∞: q/2 < k+2 < F2/2− p and the phase diagram is of type III with

the phases σ̄d13, σ46, and σ12.

(iv) m2 → −∞: this is a type III phase diagram with σd13, σ78, and σ35.

(v) m3 → +∞: type I phase diagram.

(vi) m3 → −∞: this limit has a type I phase diagram with no quantum regions

as it satisfies |k−3 | > F3/2.

We summarize the phases of case 5̄ in figures 3.11 and 3.12 where these are:

eight topological field theories (T1, T̃2, T3,T4, T̃5, T̃6,T7, T̃8), four cuboid sigma

models (σ̃c3, σ̄
c
3, σ̂

c
3, σ

c
3), four planes of sigma models (σd13, σ̄

d
13, σ

d
23, σ̄

d
23), and the

one-dimensional sigma model σ. The limiting case q = 0 reproduces the phase

diagram in figure 2.5.
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We see that this scenario does not include σ̄d12, σ̂c1, and σ̂c2 as in the first scenario.

However, this scenario includes σ̃c3, which was missing in the first scenario. Hence

there is no single analysis that discusses the full phases of the three-family case;

one should choose a scenario for the analysis based on the number F − p − q.

The difference appears in some new and other missing quantum phases for each

scenario.

3.3 Consistency checks: Three-family case

In this section, we discuss a few ways to check our analysis for the three-family

case. We mostly zoom on the region around the blue critical points on our figures,

when we use the boson/fermion duality adapted to our three-family situation. We

generalize the procedure used in [2] to our model of the three-family theory. The

discussion for this section is mainly for the first scenario discussed in section 3.2,

and we will mention the possible changes to the analysis when we use the second

scenario accordingly.

3.3.1 Planar sigma models

Before we start looking at the bosonic phases, we give an alternative way of the

reduction to the two-family case by looking at the planes where two of the masses

are equal. This reduction gives more insights into the nature of the diagonal sigma

models that appear in the three-family theory.

(m1 = m2,m3) plane

The theory is reduced to SU(N)k + p̄ ψ1 + (F − p̄)ψ3 with p̄ = p+ q fermions of

mass m1 = m2 and F − p̄ of mass m3. However, in this case the choice of p̄ is

such that 0 ≤ F − p̄ ≤ F/2, which makes the quantum regions appear for small

m1 = m2 in the type III phase diagram. The phase diagram is then of type I in

case 1, type II in cases 2, 3, and 4, and type III in case 5 of section 3.1. The
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m1 = m2

m3

T1T3

T6T8

(a) k ≥ F/2

m1 = m2

m3

T1T7

T2T̃8

σ78

σ28

σ

(b) p̄− F/2 ≤ k < F/2

m1 = m2

m3

T1T̃7

T2T̃8

σ17

σ28

σ

(c) 0 ≤ k < p̄− F/2

Figure 3.13: Phase diagrams in the limiting case m1 = m2.

phase diagrams are now reduced to the phases in figure 3.13. In figure 3.13b, the

quantum phases are σ17 and σ28 where

σ17 : Gr(F/2 + k, p̄) =
U(p+ q)

U(F/2 + k)× U(p+ q − F/2− k)
≡ σ̄d12 , (3.41)

σ28 : Gr(F/2− k, p̄) =
U(p+ q)

U(F/2− k)× U(k − F/2 + p+ q)
≡ σd12 . (3.42)

We note that σ28 is equivalent to σd12, which clearly shows that σd12 is not a line

of quantum phase but rather a plane, and it appears in cases 2, 3, and 4. The

quantum regions in figure 3.13c are σ78 and σ17, which are given by equations (3.11)

and (3.41).



3.3 Consistency checks: Three-family case 61

The only difference between the first and second scenarios is that the phase

diagram in figure 3.13c becomes a type III with quantum regions for small m3

instead of small m1 = m2. This makes the diagonal sigma model σ̄d12 disappear as

we expected from the discussion of case 5̄.

(m1 = m3,m2) plane

The theory is reduced to SU(N)k + q ψ2 + (F − q)ψ3 with q fermions of mass

m1 = m3 and F − q fermions of mass m2. The phase diagram is now of type I in

case 1, type II in case 2, and type III in cases 3, 4, and 5. The phase diagram is

summarized in figure 3.14 with the following quantum regions: in figure 3.14b we

have σ68 and σ38 where

σ38 : Gr(F/2− k, F − q) =
U(F − q)

U(F/2− k)× U(F/2− q + k)
≡ σd13 . (3.43)

In figure 3.14c the quantum phases are σ38 and σ16 where

σ16 : Gr(F/2 + k, F − q) = U(F − q)
U(F/2 + k)× U(F/2− q − k)

≡ σ̄d13 . (3.44)

We conclude that the diagonal sigma model σd13 appears in all the cases except

case 1 while σ̄d13 appears only in cases 3, 4, and 5 of section 3.1. The analysis is

the same for the second scenario.

(m1,m2 = m3) plane

The theory is reduced to SU(N)k + pψ1 + (F − p)ψ3 where ψ2 = ψ3. The phase

diagram is of type I in case 1, type II only in cases 2 and 3, and type III in cases

4 and 5. The phase diagram is summarized in figure 3.15, wherein figure 3.15b,

the quantum regions are σ58 and σ48 with

σ48 : Gr(F/2− k, F − p) =
U(F − p)

U(F/2− k)× U(F/2− p+ k)
≡ σd23 . (3.45)
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m2

m3 = m1

T1T3

T6T8

(a) k ≥ F/2

m2

m3 = m1

T1T3

T6T̃8

σ38

σ68

σ

(b) F/2− q ≤ k < F/2

m2

m3 = m1

T1T3

T̃6T̃8

σ38 σ16

σ

(c) 0 ≤ k < F/2− q

Figure 3.14: Phase diagrams in the limiting case m1 = m3

In figure 3.15c the quantum phases are σ48 and σ15 where

σ15 : Gr(F/2 + k, F − p) = U(F − p)
U(F/2 + k)× U(F/2− p− k)

≡ σ̄d23 , (3.46)

which shows that the diagonal sigma model σd23 appears in cases 2 and 3 while σ̄d23

appears in cases 4 and 5. The analysis is also the same for the second scenario in

this limiting case.

3.3.2 Matching the bosonic phases

We employ the bosonic dual description to match the phases around the critical

points, just as we did for the two-family example. We begin with a theory
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m1

m3 = m2

T1T4

T5T8

(a) k ≥ F/2

m1

m3 = m2

T1T4

T̃5T̃8

σ48

σ58

σ

(b) F/2− p ≤ k < F/2

m1

m3 = m2

T1T4

T̃5T̃8

σ48 σ15

σ

(c) 0 ≤ k < F/2− p

Figure 3.15: Phase diagrams in the limiting case m2 = m3

formed of a gauge group U(n)l and three sets of scalar fields in the fundamental

representation: p ϕ1, q ϕ2, and (F − p− q)ϕ3. We divided the F scalars into three

groups that can acquire distinct mass deformations, denoted by M2
i , i = 1, 2, 3.

This bosonic theory has six gauge invariant operators which can be written in

terms of the three scalars as

X = ϕ1 ϕ
†
1, Y = ϕ2 ϕ

†
2, Z = ϕ3 ϕ

†
3

U = ϕ1 ϕ
†
2, W = ϕ1 ϕ

†
3, T = ϕ2 ϕ

†
3 ,

(3.47)

where X, Y , and Z are positive semidefinite diagonal Hermitian matrices of

dimensions p, q, and F − p− q, respectively. We consider a scalar potential for the

critical theory up to quartic order in the scalar field, which is further deformed by
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symmetry breaking mass operators. Written in terms of the six gauge invariant

operators, this is

V =M2
1TrX +M2

2TrY +M2
3TrZ + λ(Tr2X + Tr2Y

+ Tr2Z + 2TrXTrY + 2TrXTrZ + 2TrY TrZ)+

µ(TrX2 + TrY 2 + TrZ2 + 2TrUU † + 2TrWW † + 2TrTT †) , (3.48)

where λ and µ are the coupling constants for the quartic terms. The quartic

couplings are chosen such that the full U(F ) flavour symmetry is preserved. We

choose µ ≥ 0, which requires µ+ min(n, F )λ > 0 for the potential to be bounded

from below.

Consider that X, Y , and Z have r1, r2, and r3 degenerate eigenvalues x, y,

and z respectively such that

TrX = r1x, TrY = r2y, TrZ = r3z, . (3.49)

The gauge group U(n) is never Higgsed if the squared mass of X, Y , and Z are

non-negative. In this case, all the six gauge invariant operators vanish on-shell, so

there is no scalar condensation, all matter fields are integrated out due to being

massive, and one obtains a topological U(n)l theory in the infrared.

On the other hand, if at least one of the scalars has a negative mass squared,

the minimum of the potential can be found by solving the equations of motion

M2
1 + 2λ(TrX + TrY + TrZ) + 2µX = 0 , (3.50)

M2
2 + 2λ(TrX + TrY + TrZ) + 2µY = 0 , (3.51)

M2
3 + 2λ(TrX + TrY + TrZ) + 2µZ = 0 . (3.52)
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It also implies that U = W = T = 0. Solving the equations of motion gives the

following eigenvalues

x =
λ(M2

2 r2 +M2
3 r3)−M2

1 [µ+ λ(r2 + r3)]

2µ[µ+ λ(r1 + r2 + r3)]
, (3.53)

y =
λ(M2

1 r1 +M2
3 r3)−M2

2 [µ+ λ(r1 + r3)]

2µ[µ+ λ(r1 + r2 + r3)]
, (3.54)

z =
λ(M2

1 r1 +M2
2 r2)−M2

3 [µ+ λ(r1 + r2)]

2µ[µ+ λ(r1 + r2 + r3)]
. (3.55)

It can be easily seen that minimizing the potential always requires maximization

of r1 + r2 + r3. The ranks r1, r2, and r3 are non-negative integers satisfying the

following conditions

r1 ≤ min(n, p) ,

r2 ≤ min(n, q) ,

r3 ≤ min(n, F − p− q) ,

r1 + r2 + r3 ≤ min(n, F ) .

(3.56)

The constraints in ?? and the sign of the mass squared of each gauge invariant

operator defines the phases that appear in the bosonic theory. The bosonic theory

experiences Higgsing of the gauge group or Higgsing plus spontaneous symmetry

breaking except when M2
1 , M2

2 , and M2
3 are all non-negative, as discussed above.

The phase diagram of the bosonic theory can be divided into five cases:

1. q ≤ p ≤ F − p− q ≤ F < n:

F < n does not allow any spontaneous symmetry breaking for the flavour

symmetry U(F ). We expect to have eight different regions to describe the

phase diagram in this range. Region A describes the theory when all the

masses squared are non-negative with no scalar condensation. The regions

B, C, and D are reached when only one scalar mass squared is negative,

allowing a condensation for ϕ1, ϕ2, or ϕ3, respectively. There are also three

regions E, F, and G where two of the scalars condense before integrating
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them out. The last region, H, describes a phase when the three scalars

condense simultaneously.

Region r1 r2 r3 Phase
Scenario 1 Scenario 2

n = F/2 + k n = F/2− k n = F/2 + k n = F/2− k

A 0 0 0 U(n)l T1 T̃8 T1 T̃8

B p 0 0 U(n− p)l T4 T̃5 T4 T̃5

C 0 q 0 U(n− q) T3 T̃6 T3 T̃6

D 0 0 F − p− q U(n− F + p+ q)l T2 T̃7 T2 N/A
E p q 0 U(n− p− q)l T7 N/A T7 T̃2

F p 0 F − p− q U(n− F + q)l T6 N/A T6 N/A
G 0 q F − p− q U(n− F + p)l T5 N/A T5 N/A
H p q F − p− q U(n− F )l T8 N/A T8 N/A

Table 3.1: Phases of the bosonic theory U(n)l + pϕ1 + qϕ2 + (F − p− q)ϕ3 with
q ≤ p ≤ F − p− q ≤ F < n.

The phases of the bosonic theory in this range are summarized in table 3.1.

For n = F/2 + k, the phases reproduce the topological theories of ??, which

match the phases of case 1 in the fermionic description. For n = F/2− k,

the remaining topological phases from cases 2 to 5 appear.

For the second scenario, the bosonic phases are similar except that, for

n = F/2− k, region D will not be allowed, and region E will be described by

T̃2. The bosonic phases then match the topological phases of the fermionic

theory for cases 1̄ to 5̄.

2. q ≤ p ≤ F − p− q ≤ n < F :

In this range, there is a possibility of spontaneous symmetry breaking, which

allows sigma models to appear in the bosonic phases. The sigma models

appear when there is a condensation of more than one scalar. The region

E, where ϕ1 and ϕ2 condense, splits into two regions: E1 where only the

constraint on r1 is saturated and E2 where the constraint on r2 is saturated.

The same scenario occurs for regions F and G, while region H splits into

three subregions, each of them is described when one of the constraints on

r1, r2, or r3 is saturated.
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The phases of the bosonic theory in this range are summarized in table 3.2.

For n = F/2+k, the quantum phases are (σc1, σ̄
c
1, σ̂

c
1, σ

c
2, σ̄

c
2, σ̂

c
2, σ

c
3, σ̄

c
3, σ̂

c
3),

which are equivalent to all the cuboid quantum phases of the fermionic

theory in cases 2, 3, 4, and 5 of section 3.1. For n = F/2− k, the quantum

phases are (σ̄c1, σ̂
c
1, σ̄

c
2, σ̂

c
2, σ̄

c
3, σ̂

c
3), which match the fermionic phases from

case 5.

For the second scenario, the only allowed substitution is n = F/2 + k with

slightly changed phases where the regions E1 and E2 will not be allowed

under the constraint F − p − q > F/2. This makes the quantum phases

σ̂c1 and σ̂c2 disappear, and the bosonic phases match correctly the fermionic

phases in cases 2̄, 3̄, and 4̄.

Region r1 r2 r3 Phase
Scenario 1 Scenario 2

n = F/2 + k n = F/2− k n = F/2 + k

A 0 0 0 U(n)l T1 T̃8 T1

B p 0 0 U(n− p)l T4 T̃5 T4

C 0 q 0 U(n− q) T3 T̃6 T3

D 0 0 F − p− q U(n− F + p+ q)l T2 T̃7 T2

E1 p n− p 0 Gr(n− p, q) σ̂2 σ̄c2 N/A
E2 n− q q 0 Gr(n− q, p) σ̂1 σ̄c1 N/A
F1 p 0 n− p Gr(n− p, F − p− q) σ̂c3 σ̄c3 σ̂c3
F2 n− F + p+ q 0 F − p− q Gr(n− F + p+ q, p) σ̄c1 σ̂c1 σ̄c1
G1 0 q n− q Gr(n− q, F − p− q) σ̄c3 σ̂c3 σ̄c3
G2 0 n− F + p+ q F − p− q Gr(n− F + p+ q, q) σ̄c2 σ̂c2 σ̄c2
H1 p q n− p− q Gr(n− p− q, F − p− q) σc3 N/A σc3
H2 p n− F + q F − p− q Gr(n− F + q, q) σc2 N/A σc2
H3 n− F + p q F − p− q Gr(n− F + p, p) σc1 N/A σc1

Table 3.2: Phases of the bosonic theory U(n)l + pϕ1 + qϕ2 + (F − p− q)ϕ3 with
q ≤ p ≤ F − p− q ≤ n < F .

3. q ≤ p ≤ n < F − p− q ≤ F :

In this range, regions A, B, and C are similar to the previous cases. Since

n < F − p− q, r1 is saturated to n and region D now shrinks to a smaller

region D1 with a sigma model phase. The regions E1 and E2 remain the

same as in the previous case while only F1, G1, and H1 subregions appear

in this case. Each of the remaining subregions shares the same phase as in

one of the other regions (e. g. the subregion F2 has the same sigma model as

in D1).
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The phases of this case are summarized in table 3.3. Only n = F/2 − k

is allowed for the first scenario which gives the phases (σ̄c1, σ̄
c
2, σ

c
3, σ̂

c
3, σ̄

c
3) .

These quantum phases are equivalent to the phases of the fermionic theory

in case 4 of section 3.1.

For the second scenario, when n = F/2 + k, the phases are

(σ̄c1, σ̄
c
2, σ̄

c
3, σ̂

c
3, σ̃

c
3, σ

c
3), which are equivalent to the phases of the fermionic

theory in cases 4̄ and 5̄. For n = F/2 − k, the bosonic phases are

(σc3, σ̄
c
3, σ̂

c
3, σ̃

c
3) which match the fermionic phases in case 5̄ of section 3.2.

Region r1 r2 r3 Phase
Scenario 1 Scenario 2

n = F/2− k n = F/2 + k n = F/2− k

A 0 0 0 U(n)l T̃8 T1 T̃8

B p 0 0 U(n− p)l T̃5 T4 T̃5

C 0 q 0 U(n− q) T̃6 T3 T̃6

D1 0 0 n Gr(n, F − p− q) σc3 σ̃c3 σc3
E1 p n− p 0 Gr(n− p, q) σ̄c2 N/A σ̄c2
E2 n− q q 0 Gr(n− q, p) σ̄c1 N/A σ̄c1
F1 p 0 n− p Gr(n− p, F − p− q) σ̄c3 σ̂c3 σ̄c3
G1 0 q n− q Gr(n− q, F − p− q) σ̂c3 σ̄c3 σ̂c3
H1 p q n− p− q Gr(n− p− q, F − p− q) N/A σc3 σ̃c3

Table 3.3: Phases of the bosonic theory U(n)l + pϕ1 + qϕ2 + (F − p− q)ϕ3 with
q ≤ p ≤ n < F − p− q ≤ F .

4. q ≤ n < p ≤ F − p− q ≤ F :

In this case, the regions A and C do not experience any spontaneous

symmetry breaking. Since n < (p, F − p− q), both r1 and r3 are saturated

to n in regions B and D, which shrink to smaller regions B1 and D1 with

sigma model phases. The subregions F1 and H1 now join the subregion B1 to

form a broader region sharing the same sigma model, and the same happens

for F2 and H2 which join the subregion D1.

The phases of this case are summarized in table 3.4. Only n = F/2− k is

allowed in this case which gives (σc1, σ̄
c
1, σ

c
3, σ̂

c
3), which match the phases of

the fermionic theory in case 3 of section 3.1. The analysis is precisely the

same for the second scenario, where case 3 and case 3̄ are identical.
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Region r1 r2 r3 Phase n = F/2− k

A 0 0 0 U(n)l T̃8

B1 n 0 0 Gr(n, p) σc1
C 0 q 0 U(n− q)l T̃6

D1 0 0 n Gr(n, F − p− q) σc3
E2 n− q q 0 Gr(n− q, p) σ̄c1
G1 0 q n− q Gr(n− q, F − p− q) σ̂c3

Table 3.4: Phases of the bosonic theory U(n)l + pϕ1 + qϕ2 + (F − p− q)ϕ3 with
q ≤ n < p ≤ F − p− q ≤ F .

5. n < q ≤ p ≤ F − p− q ≤ F :

In this range, all the single condensation cases experience spontaneous sym-

metry breaking scenario where each of the corresponding ranks is saturated

to n producing a sigma model. The double and triple condensation cases

share the same sigma model as in the single condensation case.

The phases are now reduced to include only regions A, B1, C1, and D1, as

shown in table 3.5. For n = F/2− k, the phases are (σc1, σ
c
2, σ

c
3), matching

the fermionic phases in case 2 of section 3.1. The analysis is also the same

for the second scenario, where cases 2 and 2̄ are identical.

Region r1 r2 r3 Phase n = F/2− k

A 0 0 0 U(n)l T̃8

B1 n 0 0 Gr(n, p) σc1
C1 0 n 0 Gr(n, q) σc2
D1 0 0 n Gr(n, F − p− q) σc3

Table 3.5: Phases of the bosonic theory U(n)l + pϕ1 + qϕ2 + (F − p− q)ϕ3 with
n < q ≤ p ≤ F − p− q ≤ F .

An additional and straightforward consistency check is to reduce the bosonic

theory to the two-family case by putting q = 0 where the tables 3.1 to 3.5 reduce

to the tables in [2].
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3.3.3 Perturbing the lower dimension sigma models

We saw in the previous subsection how to match the phases of the bosonic and

the fermionic theories around the critical points by considering perturbations in

the bosonic dual descriptions. We now want to perturb the diagonal sigma models

in both two-dimensional and three-dimensional pictures. We do this by adding a

mass term which explicitly breaks the flavour symmetry U(F ), as considered in

[2] for the two-family case. The target space of the sigma model σ is

σ : Gr(n, F ) =
U(F )

U(n)× U(F − n)
, (3.57)

where again n can be either F/2+ k or F/2− k. σ appears on the diagonal line of

the three different limiting cases discussed in the previous subsection, which show

that there exist three different possibilities of the mass deformation corresponding

to deforming the mass of each of the scalars independently.

Perturbing σ

For (m1,m2 = m3) plane, the theory has p ϕ1 + (F − p)ϕ2 scalars. This allows us

to perturb σ by deforming ϕ1 or ϕ2 where the result is independent of the choice

of the scalar set that we deform so let us say that we deform ϕ1 by adding an

infinitesimal mass squared δM2
1 to M2

1 . Hence we have four possibilities:

• If δM2
1 > 0 and F − p > n, ϕ3 condenses first Higgsing the gauge group

U(n), then one can integrate ϕ1 out and the resulting sigma model has a

Grassmannian Gr(n, F − p).

• If δM2
1 > 0 but F − p < n the condensation of ϕ3 partially Higgs the

gauge group down to U(n− F + p) and then can be integrated out followed

by integrating out ϕ1. This gives a sigma model with a Grassmannian

Gr(F − n, p).
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• For δM2
1 < 0 and p > n, ϕ1 condenses first with a complete Higgsing of the

gauge group which leads to a sigma model with a Grassmannian Gr(n, p).

• For δM2
1 < 0 and p < n, the theory has a sigma model with a Grassmannian

Gr(F − n, F − p).

Substituting n = F/2± k gives Grassmannians describing the sigma models σd23,

σc1, and σ̄d23, which match the theories around σ in figure 3.15c.

Similarly for the (m2,m1 = m3) plane, where we deform the mass of ϕ1 to

perturb sigma leading to the Grassmannians Gr(n, F − q), Gr(F −n, q), Gr(n, q),

and Gr(F−n, F−q). These Grassmanians correspond to the sigma models σd13, σc2,

and σ̄d13 matching the phases around σ in figure 3.14c. Lastly, the mass deformation

of ϕ3 in the (m1 = m2,m3) plane leads to the Grassmannians Gr(n, F − p− q),

Gr(F − n, p + q), Gr(n, p + q), and Gr(F − n, F − p − q) describing the target

space of the sigma models σc3, σd12, and σ̃c3 which match the phases around σ in

the fermionic theory, as shown in figure 3.13c.

We now move to perturb the other diagonal sigma models when we simultane-

ously deform the mass of two scalars. We consider the perturbation of pairs of

diagonal sigma models as follows:

Perturbing σd23 and σ̄d23

We rewrite both theories in the general form Gr(n, F − p) where σd23 can be found

by substituting n = F/2− k while σ̄d23 is found by substituting n = F/2+ k. This

can be obtained by deforming the mass of ϕ1 with δM2
1 > 0 and F − p > n on

the (m1,m2 = m3) plane. In addition, we deform the mass of ϕ2 and check the

four possibilities.

Now we have a perturbation of Gr(n, F1) with δM2
2 > 0 or δM2

2 < 0. As in the

previous discussion, this gives sigma models with the following Grassmannians:

Gr(n, F − p− q), for δM2
2 > 0 and F − p− q > n, Gr(F − p− n, q), for δM2

2 > 0

and F −p−q < n, Gr(n, q), for δM2
2 < 0 and q > n, and Gr(F −p−n, F −p−q),

for δM2
2 < 0 and q < n. For n = F/2− k, these Grassmannians correspond to σc3,
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σ̂c3, σc2, and σ̂c2 matching the fermionic phases around σd23, as shown in figures 3.3b,

3.5b, 3.7b and 3.9b. For n = F/2 + k, these Grassmannians correspond to σ̄c3 and

σ̄c2 matching the fermionic phases around σ̄d23, as shown in figures 3.7a and 3.9a.

We should clarify that not all the Grassmannians are allowed when we make

the substitution n = F/2± k where they are subject to k being non-negative and

the constraint of the first deformation, which is F − p > n in this case.

In the second scenario, Gr(F −p−n, F −p− q) is not allowed for n = F/2−k

and Gr(n, F − p − q) provides σ̃c3 for n = F/2 + k. Then we have only σc3, σ̂c3,

and σc2 that surround σd23, as shown in figures 3.3b, 3.5b, 3.7b and 3.11b. σ̃c3, σ̄c3

and σ̄c2 are the phases around σ̄d23 matching the fermionic description, as shown in

figures 3.7a, 3.9a and 3.11a.

Perturbing σd13 and σ̄d13

These two sigma models have Grassmannians written in a single form Gr(n, F − q)

which is obtained by deforming the mass of ϕ2 with δM2
2 > 0 and F − q > n

on the (m2,m1 = m3) plane. By adding a deformation to the mass of ϕ1, the

resulting sigma models have Grassmannians Gr(n, F − p− q), Gr(F − q − n, p),

Gr(n, p), and Gr(F − q − n, F − p− q).

For n = F/2− k, these Grassmannians correspond to σc3, σc1, σ̄c3, and σ̂c1 which

match the phases around σd13. For n = F/2+k, the Grassmanians correspond to σ̄c1

and σ̂c3, which match the phases around σ̄d13 in the fermionic picture. The analysis is

similar for the second scenario except that the GrassmannianGr(F−q−n, F−p−q)

is no longer allowed for n = F/2− k.

Perturbing σd12 and σ̄d12

We start from Gr(n, p + q) which can be read from deforming the mass of ϕ3

with δM2
3 < 0 and p+ q > n on the (m1 = m2,m3) plane. An extra deformation

of the mass of ϕ1 gives sigma models. For n = F/2 − k, the only allowed

sigma models have Grassmannians Gr(F/2− k, p), Gr(p+ q − F/2 + k, p), and
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Gr(p+ q−F/2+ k, q). These Grassmannians correspond to σc1, σ̄c1, and σ̄c2, which

are the phases that appear around σd12.

For n = F/2 + k, the allowed sigma models are σ̂c1 and σ̂c2, which are the only

quantum phases that appear around σ̄d12. The substitution n = F/2 + k is not

allowed for the second scenario; the analysis remains the same elsewhere.





Chapter 4

Phases of QCD3 with adjoint

matter

In chapters 2 and 3, we analyzed the phase diagrams of a Chern-Simons theory

coupled to a number of fermions in the fundamental representation. The next

logical question is what happens for theories with matter in other gauge group

representations. Right after conjecturing the phases of the fundamental theory,

the theory with fermions in the adjoint representation received much attention

[4, 6, 66].

This chapter starts with the case of a single Majorana fermion in the adjoint

representation of an SU(N) gauge group coupled to a Chern-Simons term of

level k. We also discuss the extension of adding another adjoint fermion of the

same mass, where the phase diagram remains one-dimensional in the mass axis.

Lastly, we examine the possibility of having a two-dimensional phase diagram

with adjoint matter (i.e. two adjoints with arbitrary distinct masses), which is

part of an ongoing work that is expected to be published later [5].
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4.1 Phases of adjoint QCD3 via SUSY breaking

In this section, we review the work of Gomis, Komargodski, and Seiberg (GKS) on

the phases of QCD-like theory in 2 + 1 dimensions with a single adjoint fermion

[4]. Consider an SU(N) gauge theory coupled to a Chern-Simons term of level k

and a Majorana fermion λ in the adjoint representation with mass mλ. We choose,

without loss of generality, k ≥ 0 throughout this chapter, and the negative k

analysis can be easily found by applying time-reversal (k → −k). The Lagrangian

density is then

L = − 1

4g2
TrF2 +

kbare
4π

Tr
(
AdA− 2i

3
A3

)
+ iTrλDλ+MλTr(λλ) , (4.1)

where g is the SU(N) coupling and kbare is the bare level, which is normalized to

k = kbare −N/2, such that k becomes an integer for even N and half-integer for

odd N [73]. The theory has no zero-form global symmetry but rather a one-form

ZN symmetry. It also exhibits N = 1 supersymmetry for the special choice

mλ = −kg2/2π.

The IR dynamics of this theory is well described semiclassically for large values

of Mλ and/or k. For large mass limits |mλ| ≫ g2, λ can be safely integrated out,

causing a shift in k given by [74]

kIR = k + sgn(mλ)
N

2
. (4.2)

Because the Yang-Mills term has greater derivatives than the CS term, it becomes

irrelevant in the large mass limit. As a result, the IR description is a pure TQFT,

with SU(N)k+N/2 for large positive mλ and SU(N)k−N/2 for large negative mλ.

On the other hand, for a large k limit, the gauge field A has a mass of order kg2

and may thus be integrated out, leaving a pure TQFT. As we adjust mλ, the

remaining light fields weakly interact, resulting in a weakly coupled CFT.
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When mλ and k are relatively small, the dynamics is obscure. However, GKS

provides a comprehensive picture of the phase diagram, which may be understood

as follows: Take the specific choice of mλ = mSUSY = −kg2/2π, and the theory

becomes an N = 1 supersymmetric gauge theory, with λ being the gaugino.

Moving away from the mSUSY point explicitly breaks supersymmetry. Then,

we integrate the heavy matter out, starting with the gaugino, which shifts k to

k −N/2. Because the gauge fields are heavy (∼ kg2) and can be integrated out,

we end up with a pure topological SU(N)k−N/2 theory.

Apart from explicitly breaking supersymmetry, there are some limitations

on k where supersymmetry is spontaneously broken. We investigate the Witten

(supersymmetric) index IW for various k limits, as provided by [73]

IW =
(k +N/2− 1)!

(N − 1)!(k −N/2)!
. (4.3)

which can be rewritten as

IW =
1

(N − 1)!

N/2−1∏
j=−N/2+1

(k − j) =


̸= 0, if k ≥ N/2.

= 0, if 0 ≤ k < N/2.

(4.4)

We notice that the supersymmetric index vanishes for k < N/2 (i.e supersymmetry

is broken in this limit). As a result, the phase diagram is divided into two cases:

k ≥ N/2 and k < N/2.

Semiclassical limit: k ≥ N/2

In this limit, supersymmetry is preserved at mλ = mSUSY . The theory is weakly-

coupled, and the two asymptotic phases are pure SU(N)k+N/2 TQFT for large

positive mass and SU(N)k−N/2 for large negative mass. The supersymmetric point

is part of the negative mass phase SU(N)k−N/2. The two asymptotic phases are

separated by a phase transition, which is described by a CFT. The proposed phase

diagram is depicted in figure 4.1 in terms of mλ. The phase transition between
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mλ

SU(N)k + λadj

CFT

SU(N)k+N
2

SU(N)k−N
2

N = 1
mSUSY

Figure 4.1: Phase diagram of SU(N)k + λadj for the range k ≥ N
2
. The solid line

represents the flow to the IR fixed point at which the phase transition occurs.
The blue bullet represents the transition point, while the black bullet depicts the
supersymmetric point.

SU(N)k−N/2 and SU(N)k+N/2 is second-order, and the CFT point reflects a theory

with dim [SU(N)] = N2 − 1 free fermions [4].

Quantum phase: k < N/2

In this range of k, supersymmetry is broken at mλ = mSUSY . The supersymmetry

breaking scenario implies that there is a massless Goldstino (Gα) at this point.

The first possibility is that the phase diagram is similar to the k ≥ N/2 case,

except at the supersymmetric point, where the SU(N)k−N/2 is accompanied by

the massless Goldstino. GKS argued that this scenario is only true for the special

case k = N/2 − 1 and fails for the lower values of k. This is demonstrated by

considering the special case of k = 0, where the two asymptotics are SU(N)N/2

for large positive mass and SU(N)−N/2 for large negative mass. In this scenario,

the phase transition occurs at the supersymmetric point (i.e. Mλ = mλ = 0),

therefore the theory must be time-reversal invariant. The two asymptotic phases

should then represent the theory in the IR at this point, which cannot be true

unless there is a duality between the two asymptotic theories. However, even in

our specific case with SU(N), this is not the case for a generic gauge group.

Another possible scenario is that the phase at the supersymmetric point

contains only the massless Goldstino. However, as previously stated, the original

theory has a one-form symmetry that should be captured in the IR due to the
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’t Hooft anomalies. A single Goldstino can not match the one-form symmetry.

The exclusion of this possibility becomes clearer if we take the special case k = 0,

where we have time-reversal anomaly given by an integer ν modulo 16 [62, 75–79].

However, a phase with a single Goldstino does not match this anomaly. As a

result, there must be a topological theory in the IR in addition to Gα, and this

theory can not be SU(N)k−N/2, except for k = N/2− 1.

In the spirit of the fundamental QCD3 discussion, GKS proposed the existence

of a quantum phase for small mass. The quantum phase splits the transition point

into two points at m−
λ , m+

λ . The quantum phase separates the two asymptotic

phases SU(N)k±N/2 ↔ U(N/2 ± k)∓N,∓N (by level/rank duality). As a result,

there must be a dual theory DA that flows to the m−
λ point as well as a dual theory

DB that flows to the m+
λ point. These two theories are dual to the UV theory

near each critical point but not necessarily dual to each other. The dual theories

DA and DB contain dual adjoint fermions λ̂ and λ̃ respectively. Each dual theory

flows to an IR fixed point where the corresponding fermion is massless. The two

dual theories are conjectured to be

DA :SU(N)k + λadj ←→ U

(
N

2
− k

)
3
4
N+ k

2
,N

+ λ̂adj , near m−
λ . (4.5)

DB :SU(N)k + λadj ←→ U

(
N

2
+ k

)
− 3

4
N+ k

2
,−N

+ λ̃adj , near m+
λ . (4.6)

The second duality is obtained from the first one by applying k → −k combined

with orientation reversal. Hence, one may consider that mλ = 0 point acts as a

mirror between the two dual theories (i.e. the mass deformations are related by

δmλ = −δmλ̂ and δmλ = −δmλ̃).

Let us now understand how these dual theories are conjectured starting from

the asymptotic phases and their level/rank dual descriptions. For mλ → −∞, the

phase is SU(N)k−N/2 ↔ U(N/2− k)N,N , where the theory in the right hand side

must define one of the asymptotic phases of the dual theory DA in the IR. Thus,

the dual theory DA is U (N/2− k)3N/4+k/2,N + λ̂. Remarkably, we find that DA is
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mλ

SU(N)k + λadj

U
(
N
2
+ k

)
− 3

4
N+ k

2
,−N + λ̃adjU

(
N
2
− k

)
3
4
N+ k

2
,N

+ λ̂adj

m−
λ m+

λ

SU(N)k+N
2

U(N
2
+ k)−N,−N

SU(N)k−N
2

U(N
2
− k)N,N

Gα

U
(
N
2
+ k

)
−N

2
+k,−N

U
(
N
2
− k

)
N
2
+k,N

Figure 4.2: Phase diagram of SU(N)k + λadj for k < N
2
. The thick black line

represents the quantum region. The dashed circles show that the fermion-fermion
dualities only hold near the critical points.

weakly-coupled, where |k̂| > N̂/2 (k̂ and N̂ are the level and rank of DA). This

means that the theory has a single phase transition specified by the m−
λ point,

and only two phases one of them is the U(N/2 − k)N,N phase and the other is

U(N/2 − k)N/2+k,N . The later describes the intermediate region of the original

theory. Similarly for the mλ → ∞ phase, we find that the dual theory DB is

U(N/2 + k)−3N/4+k/2,N + λ̃. DB is also weakly-coupled, thus the intermediate

phase is U(N/2 + k)N/2+k,N after integrating λ̃ out. Surprisingly, the topological

theories that describe the intermediate quantum phase, U(N + N/2)−N/2+k,−N

and U(N/2 + k)N/2+k,N , are level/rank dual to each other.

It is worth mentioning that the phase transition does not cause a shift in

the level of the U(1) part of the level/rank dual descriptions because there is

no particle charged under the U(1). The phase diagram for this range of k is

then summarized in figure 4.2. For the special case k = N/2 − 1, we see that

the asymptotic phases are SU(N)−1 ↔ U(1)N,N for large negative mass and

SU(N)N−1 ↔ U(N − 1)−N,−N for large positive mass. The quantum phase is now

U(1)N,N , implying that the large negative mass phase and the quantum phase

coincide, and the transition point to the left of figure 4.2 disappears. As a result,
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the phase diagram looks similar to the k ≥ N/2 case with a single phase transition

separating the two asymptotic phases.

Consistency checks

A highly non-trivial test for the k ≥ N/2 case is to consider the special case where

N = 2 and k is odd (SU(2)kodd). The theory has an anomaly-free Z2 one-form

symmetry. It was shown that this theory is dual to O
(
K+1
2

)0
−3,−3

+ ϕvec, where

ϕvec is a scalar in the vector representation [80] 1. The dual bosonic theory has

two phases in the IR described by two TQFTs: If m2
ϕvec > 0, the phase in the IR is

level/rank dual to the SU(2)k+1 TQFT, which matches the phase of the SU(2)1+λ

for mλ > 0. If m2
ϕvec < 0, where the scalar condenses, the IR phase is level/rank

dual to the SU(2)k−1 matching the negative mass phase of the SU(2)1 + λ theory

[80].

The description of the phase diagram for the k < N/2 case was conjectured

by using the following methods: integrating the fermion out for large |mλ|, using

level/rank dualities, and a phase transition between weakly-coupled theories.

The level/rank dualities are rigorously proven, and the transition between the

weakly-coupled theories is smooth. This ensures that the phases of this range

of k have the same global symmetry and their ’t Hooft anomalies match. The

anomaly matching is only questioned for the special case k = 0, at which we

expect time-reversal anomaly. The above argument works well when we integrate

λ out (i.e. |mλ| > 0), but it is not necessarily true for the mλ = 0 situation. For

k = 0 case, the supersymmetric point coincides with the mλ = 0 point at which

the phase in the IR is a massless Majorana fermion and a U(N/2)N/2,N TQFT.

1We follow the notation and convention of [13, 80]. The first subscript is the CS level of the
continuous group, while the second subscript describes the topological term in the Z2 sector.
The superscript 0 indicates that there is no coupling between the continuous group and the Z2

symmetry
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Matching time-reversal anomaly: k = 0

Let us now look at how the time-reversal anomalies match at k = mλ = 0. As we

mentioned earlier, the time-reversal anomaly is defined by an integer ν modulo 16.

In the UV, the theory decouple to free gauge fields and dim [SU(N)] = N2 − 1

free fermions; only the latter contributes to the anomaly with a value of ±1. The

time-reversal anomaly in the UV (νUV ) is then (N2−1) mod 16 =
(
1− 2(−1)N/2

)
mod 16. In the IR, the theory is described by a U(N/2)N/2,N TQFT and a

Goldstino. The Goldstino contributes with 1 to the anomaly while the TQFT part

was calculated to contribute with ±2, which is in total −2(−1)N/2 [76, 77]. As a

result, the total time-reversal anomaly in the IR (νIR) is 1− 2(−1)N/2 matching

the value of νUV .

4.2 QCD3 with two degenerate adjoint fermions

In this section, we review the analysis of QCD3 with two Majorana fermions in

the adjoint representation [6]. The two adjoint fermions have the same mass

mλ, and the theory is coupled to a Chern-simons term with level k (i.e. we start

from SU(N)k + 2λadj). The proposal is to follow the work of [4] and analyse the

asymptotic phases first, then look for possible quantum phases for sufficiently

small k values. In this case, the phase diagram is split into three cases: k ≥ N ,

N/2 ≤ k < N , and 0 < k < N/2. We expect quantum phases only for the last

two cases where the theory is strongly-coupled in the UV.

4.2.1 Semiclassical limit: k ≥ N

In this case, k is large enough for the theory to be expressed semiclassically, and the

two fermions for large |mλ| can be integrated out. As a result, for large positive mλ,

the theory in the IR is described via a pure SU(N)k+N ↔ U(k+N)−N,−N TQFT,

whereas for large negative mass, the theory is SU(N)k−N ↔ U(k − N)−N,−N

TQFT. These two asymptotic phases also describe the small mass region, and the



4.2 QCD3 with two degenerate adjoint fermions 83

mλ

SU(N)k + 2λadj

SU(N)k+N

U(k +N)−N,−N

SU(N)k−N

U(k −N)−N,−N

Figure 4.3: Phase diagram of SU(N)k + 2λadj for k ≥ N .

theory has a single phase transition separating the two topological phases. The

phase diagram is simple, as shown in figure 4.3.

4.2.2 Quantum phase I: N/2 ≤ k < N

The theory is strongly-coupled for the range k < N , demanding a quantum

region to fill the phase diagram. Let us now follow the lead of [1, 6] by finding

the asymptotic phases first. The asymptotic phases are now SU(N)k+N ↔

U(k +N)−N,−N for large positive mass and SU(N)k−N ↔ U(N − k)N,N for large

negative mass. The level/rank dual description of the negative mass asymptotic

theory differs from the preceding case. Now it is time to propose fermion-fermion

dualities near the transitions points, which can be written as follows

DA :SU(N)k + 2λadj ←→ U (N − k)k,N + 2λ̂adj , near m−
λ . (4.7)

DB :SU(N)k + 2λadj ←→ U (N + k)k,−N + 2λ̃adj , near m+
λ . (4.8)

We notice that the dual theory DB is strongly-coupled for all values of k < N .

However, the dual theory DA is weakly-coupled for the range N/2 < k < N

(k̂A = k > |N − k|), and strongly-coupled otherwise. For this reason, we split the

phase diagram for k < N into two distinct cases: N/2 ≤ k < N and 0 < k < N/2.

Since DA is weakly-coupled in this range of k, we are allowed to use it to

conjecture the quantum region. Integrating out the dual adjoint fermions λ̂ for
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mλ

SU(N)k + 2λadj

DB : U (N + k)k,−N + 2λ̃adjDA : U (N − k)k,N + 2λ̂adj

m−
λ m+

λ

SU(N)k+N

U(N + k)−N,−N

SU(N)k−N

U(N − k)N,N Qd
I : U (N − k)2k−N,N

Figure 4.4: Phase diagram of SU(N)k + 2λadj for N
2
≤ k < N .

negative mass gives

Qd
I : U(N − k)2k−N,N . (4.9)

The phase diagram is depicted in figure 4.4.

4.2.3 Quantum phase II: 0 < k < N/2

In this range of k, both DA and DB are strongly coupled, which make it difficult to

conjecture the quantum phase. The author of [6] resolved this issue by introducing

the concept of ”Duality Chain”. Duality chain is simply introducing a set of

successive dual descriptions D(n)
A near the left critical point. This is inspired by

the observation that the rank of the dual theory DA decreases each time a new

fermion-fermion duality is defined. Hence, there must be n times after which we

reach a weakly coupled theory (i.e.
∣∣∣k̂(n)A

∣∣∣ > N̂
(n)
A ).

Before delving into the specifics of chain duality, we address another remarkable

idea defined in [6]: generalised level/rank duality which provides a modified version

of equation (1.28).

Generalized level/rank dualities

The main objective is to find the level/rank dual description of a theory in the form

of U(N)k,k±pN , where p is an integer, using the effect of the transformations of the
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SL(2,Z) group. Consider a gauge theory in 2+ 1 dimensions whose Lagrangian is

L [a] where a is the gauge field. One may couple this theory to a U(1) background

field B which takes L [a]→ L [a,B].

The SL(2,Z) group has two relevant elements defined via the following opera-

tions: The S-operation, which promotes the background field B to a dynamical

field b. The other element is the T -operation, which shifts the Chern-Simons

coupling of the background field. The two operations are then defined as follows

[37, 81]

S :L [a,B]→ L [a, b]− 1

2π
bdB , (4.10)

T :L [a,B]→ L [a,B] +
1

4π
BdB . (4.11)

The S and T -operations satisfy the identity S2 = (ST )3 = C, where C is the

charge conjugation (i.e. B → −B). Now let us start from the level rank dualities

in equation (1.27) and make use of the ST operations. First, we identify the

theories on both sides of SU(N)k ↔ U(k)−N,−N in terms of the background field

B by writing

SU(N)k : L [u,B] =
k

4π
TrN

(
udu− 2i

3
u3
)
+

1

2π
cd(Tru+B) , (4.12)

U(k)−N,−N : L [v,B] =
−N
4π

Trk
(
vdv − 2i

3
v3
)
+

1

2π
(Trv)dB . (4.13)

Now let us apply the operation T first followed by S. The two Lagrangians

become

ST SU(N)k : L [u,B] =
k

4π
TrN

(
udu− 2i

3
u3
)
+

1

2π
cd(Tru+ b)

+
1

4π
bdb− 1

2π
bdB , (4.14)

ST U(k)−N,−N : L [v,B] =
−N
4π

Trk
(
vdv − 2i

3
v3
)
+

1

2π
(Trv)db
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+
1

4π
bdb− 1

2π
edB . (4.15)

One may now safely integrate c and b out, leading to the Lagrangian of the theories:

ST SU(N)k = U(N)k,k+N and ST U(k)−N,−N = U(k)−N,−k−N ↔ U(N)k,k+N +

U(1)1. As a result, we get the duality U(k)−N,−N ↔ U(k)−N,−k−N agreeing with

equation (1.28). The other duality, with a negative sign in its level, can be

obtained similarly by applying ST−1 operations.

Let us take it a step further and apply the T - operation p times followed by

the S-operation to equations (4.12) and (4.13):

ST p SU(N)k : L [u,B] =
k

4π
TrN

(
udu− 2i

3
u3
)
+

1

2π
cd(Tru+ b)

+
p

4π
bdb− 1

2π
bdB , (4.16)

ST p U(k)−N,−N : L [v,B] =
−N
4π

Trk
(
vdv − 2i

3
v3
)
+

1

2π
(Trv)db

+
p

4π
bdb− 1

2π
edB . (4.17)

We obtain U(N)k,k+pN from equation (4.16) by integrating out c and b. Applying

the same procedure to the theory with negative level, we arrive at the following

generalized level/rank dualities

U(N)±k,±k+pN ←→ ST pU(k)∓N,∓N . (4.18)

The author of [6] made perfect use of the generalized level/rank dualities, as

well as the duality chain, to determine the quantum region of the phase diagram

when k < N/2. The implementation of the duality chain technique is depicted in

figure 4.5, where each graph represents a step in a n-step chain of dualities.

In the first step, we define the first fermion-fermion dual descriptions near each

critical point of the phase diagram of the original theory: D(1)
A = U(N−k)k,N+2λ̂(1)
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mλ

SU(N)k + 2λadj

Qd
II [SU(N)k]

D(1)
B : U (N + k)k,−N + 2λ̃(1)D(1)

A : U (N − k)k,N + 2λ̂(1)

SU(N)k+N

U(N + k)−N,−N

SU(N)k−N

U(N − k)N,N ⇒

m
(1)

λ̂

U (N − k)k,N + 2λ̂(1)

Qd
II

[
U (N − k)k,N

]
D(2)
B : SU(N)k + 2λD(2)

A : ST 2U(N − 2k)k,N−k + 2λ̂(2)

SU(N)k−N

U(N − k)N,N

U(N − k)2k−N,N

ST 2U(N − 2k)N−k,N−k ⇒

ST 2U(N − 2k)k,N−k + 2λ̂(2)

m
(2)

λ̂

D(3)
B : ST 2SU(N − k)k + 2λ̃(3)D(3)

A : (ST 2)
2
U(N − 3k)k,N−2k + 2λ̂(3)

ST 2SU(N − k)2k−N

ST 2U(N − 2k)N−k,N−k

ST 2U(N − 2k)3k−N,N−k

(ST 2)
2
U(N − 3k)N−2k,N−2k

...

(ST 2)
n−2

U(N − (n− 1)k)k,N−(n−2)k + 2λ̂(n−1)

mλ

Qd
II : (ST

2)
n−1

U(N − nk)−N+(n+1)k,N−(n−1)k

D(n)
B

D(n)
A : (ST 2)

n−1
U (N − nk)k,N−(n−1)k + 2λ̂(n)

Figure 4.5: Duality chain process for n steps that lead to the phase diagram of
the SU(N)k + 2λadj in the range 0 < k < N

2
.
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and D(1)
B = U(N +k)k,−N +2λ̃(1), where λ̂(1) and λ̃(1) are the dual adjoint fermions

associated with the dual theories after the first step. As we mentioned earlier, the

two dual theories are strongly coupled since k̂(1)A = k < N−k and k̃(1)B = k < N+k.

It is also evident that the dual theory DA has a lower rank, thus from now on, we

will only focus on the dual theory on the left side of the phase diagram.

In the second step, we take D(1)
A and try to find its phases. This requires

introducing the next fermion-fermion dualities. The asymptotic theories for

large mass are U(N − k)N,N ↔ SU(N)k−N for large positive mass and U(N −

k)2k−N,N ↔ ST 2U(N −2k)N−k,N−k (using the generalized level/rank dualities) for

large negative mass. The latter allows us to conjecture the next fermion-fermion

duality in the duality chain, which is given by D(2)
A : ST 2U(N − 2k)k,N−k + 2λ̂(2).

We notice that D(2)
A is still weakly coupled since k(2)A = k < N − 2k. The phase

diagram for D(1)
A is described by the second diagram of figure 4.5.

Repeating the same approach results in a new fermion-fermion duality each

time. As a result, we identify a pattern in which each step in the duality chain

decreases the rank and level of the U(1) part by k. The dual description DA will

remain strongly coupled until the level k̂A is larger than or equal to the rank

N̂A. Assuming this happens after n steps, we need k ≥ N − nk. However, in

order to assure that n remains an integer, we need n = ⌈N/k⌉ − 1. The final dual

description is then

D(n)
A :

(
ST 2

)⌈Nk ⌉−2
U

(
N −

⌈
N

k

⌉
k + k

)
k,N−⌈Nk ⌉k+2k

+ 2λ̂(n) . (4.19)

D(n)
A is a weakly coupled theory with only two asymptotic phases in the IR.

Integrating out λ̂(n) for negative mass provides the topological theory that describes

the negative mass asymptotic theory, which shares the quantum region of the

original theory. Thus, the quantum phase is given by

Qd
II [SU(N)k] :

(
ST 2

)⌈Nk ⌉−2
U

(
N −

⌈
N

k

⌉
k + k

)
−N+⌈Nk ⌉k,N−⌈Nk ⌉k+2k

. (4.20)
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4.3 On the possibility of a two dimensional phase

diagram

In this section, we discuss some work in progress to construct the two-dimensional

phase diagram of QCD3 with two distinct adjoint fermions λadj and ψadj [3]. The

phase diagrams of the two adjoints with equal masses become the phases on the

diagonal line of the two-dimensional phase diagram.

Following the lead of [2, 61], one may find the asymptotic theories when we

send one of the masses to ±∞ then deal with the theory left as a one-dimensional

problem. However, this will only yield asymptotic phases: asymptotic topological

theories and quantum areas when only one of the masses is small. The region

where the mass of the two fermions are small, for strongly-coupled theory, remains

unknown except on the diagonal. The phase diagram of QCD3 with two adjoints

is divided into three cases as before: k ≥ N , N/2 ≤ k < N , and 0 < k < N/2.

For k ≥ N , the theory is weakly coupled and is described semiclassically via

four topological quantum field theories. Hence integrating out the two fermions

for various mass sign combinations gives

T1 : SU(N)k+N ←→ U(k +N)−N,−N ,

T2 = T4 : SU(N)k ←→ U(k)−N,−N ,

T4 : SU(N)k−N ←→ U(k −N)−N,−N .

(4.21)

These topological theories are separated by lines of critical theories at which one

of the fermions become massless. The critical theories are given by

C±λ : SU(N)k±N
2
+ λadj0 ,

C±ψ : SU(N)k±N
2
+ ψadj0 .

(4.22)

The subscript 0 indicates to the fermion being massless. The phase diagram is

simple as shown in figure 4.6.
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mλ

mψ

T1 : SU(N)k+NT2 : SU(N)k

T3 : SU(N)k−N T4 : SU(N)k

Figure 4.6: Phases of SU(N)k + λadj + ψadj with k ≥ N . The blue point is
the point where both fermions are massless. The red lines are the critical lines
separating the four asymptotic theories.

For N/2 ≤ k < N , we expect quantum phases to fill the small mass regions.

Integrating out ψ first leads to SU(N)k+N/2+λ
adj for mψ →∞ and SU(N)k−N/2+

λadj for mψ → −∞. Each of the previous theories is a one-dimensional problem,

where the first is weakly-coupled with k +N/2 ≥ N/2 and the second is strongly-

coupled with |k −N/2| < N/2.

The remaining theory SU(N)k+N/2 + λadj has only two topological theories in

its phase which are: T1 for large positive mλ and T2 for large negative mλ. The

phase diagram is then represented by a line in the two-dimensional picture. This

line describes the phases above the positive critical point of the mψ axis (m+
ψ ): T1

and T2 separated by a transition point on the red line.

For SU(N)k−N/2 + λadj, we require a quantum phase to separate the two

asymptotic theories: T4 for large positive mλ and T̃3 : SU(N)k−N ↔ U(N−k)N,N

for large negative mλ. One may then define dual theories to find the quantum

region that separates T̃3 and T4. The dual theories for this case are defined by

DA : U(N − k)N+k
2

,N + λ̂adj near m−
λ and DB : U(k) k

2
−N,−N + λ̃adj near m+

λ . The
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mλ

mψ

SU(N)k+N

U(N + k)−N,−N

SU(N)k

U(k)−N,−N

SU(N)k

U(k)−N,−N

SU(N)k−N

U(N − k)N,N

U(N − k)k,N

U(k)−N+k,−N

U(N − k)k,N

U(k)−N+k,−N

Figure 4.7: Possible phase diagram for SU(N)k + λadj + ψadj for N
2
≤ k < N .

The solid black line is represented by equation (4.9). The green regions are the
quantum phases Q23 and Q34. The shaded yellow regions are unknown areas.

two dual theories are weakly-coupled for this range of k. The quantum phase is

now given by Q34 : U(N − k)k,N ↔ U(k)−N+k,−N .

The analysis is also similar for other large masses cases when we integrate out

λ first. The quantum region separating the asymptotic theories is exactly the

same Q23 = Q34, while the quantum region on the diagonal is given by Qd
I as in

equation (4.9). However, it is not clear which quantum phase covers the regions

right off the diagonal. The expected phase diagram for this range of k is shown in

figure 4.7.

The same problem arises in the case k < N/2, where we are unable to locate

the quantum regions off the diagonal line and inside the mass ranges (m±
ψ ,m

±
λ ).

The following alternative resolutions can be considered:

• We can start from the critical theories with two massless adjoint fermions

and perturb these theories via a potential. This is similar to the fundamental

QCD3 case where we get the phases around each critical point. The question

now is what type of potential can we use to deform these massless theories?

Any suggested potential should recover the quantum regions of the two
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degenerate adjoints case, which can be a good exercise towards the phases

of the interior region of the two-dimensional diagram.

• We may perturb the quantum region on the diagonal via mass deformation

by adding either δmλ or δmψ to the fermion masses. This should give us

the theories above and below the diagonal line. The problem with this

suggestion is that the two dual theories that describe the critical blue points

are significantly different, with one being weakly-coupled and the other

strongly-coupled. It becomes significantly more challenging for the k < N/2

range when both theories are strongly-coupled.

• One can consider starting from N = 1 supersymmetry as in the single

adjoint case. Then couple it to adjoint matter multiplet by adding a scalar

ϕadj in the adjoint representation and another adjoint fermion. The scalar

comes from the dimensional reduction of the four-dimensional theory. The

theory has N = 2 supersymmetry for the particular choice mλ = mψ =

mϕ = −kg2/2π. Altering one of the fermion masses breaks supersymmetry

to N = 1 supersymmetry whose phase diagram is well established in [66].

Turning on soft breaking symmetry mass for both fermions completely breaks

supersymmetry to the theory of interest. A small deformation around the

mϕ = 0 point may shed light on the phases off the diagonal. The phase

diagram will be slightly different since the transition points will be shifted

as a result of the scalar. The phase diagram will include lines representing

the phases of N = 1 theory as defined in [66].



Chapter 5

Conclusions and discussions

We studied the IR dynamics of SU(N) gauge theory coupled to a Chern-Simons

term of level k and matter in different representations. The general Lagrangian

density for our theory is

LSU(N)k = −
1

4g2
TrF2 +

k

4π
Tr

(
AdA− 2i

3
A3

)
+ Lmatter , (5.1)

where the matter term is given by

Lmatter =


F∑
j=1

(
iψ̄j /Dψj +

mψ
4π
ψ̄jψj

)
, for the fundamental case.

= iλ̄ /Dλ+ m
4π
λ̄λ, for the adjoint case.

(5.2)

The first is a theory coupled to F fermions ψ in the fundamental representation,

while the second is a theory coupled to a single Majorana fermion λ in the adjoint

representation.

The two theories differ primarily in that the normalisation condition on

the Chern-Simons level demands F/2 + k ∈ Z for the fundamental case and

N/2 + k ∈ Z for the adjoint case. Both theories have time-reversal symmetry

for k = m = 0. The fundamental theory possesses a U(F ) global symmetry that
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rotates the flavours (mψ preserves this symmetry), whereas the adjoint theory

lacks this symmetry. The fundamental theory, on the other hand, has no one-form

symmetry, whereas the adjoint theory has a ZN one-form symmetry [82, 83].

Finally, integrating the matter results in a shift in the Chern-Simons level given

by

kIR =


k + sgn(mψ)

F
2
, for the fundamental case .

k + sgn(mλ)
N
2
, for the adjoint case .

(5.3)

These two theories have decoupling limits where they could be described

semiclassically

1. For large m (|m| ≫ g2): The fermions decouple even before the interaction

starts, and the theory is already weakly-coupled with heavy matter. The

Yang-Mills term is also negligible in this limit since it has higher derivatives

than the Chern-Simons term. As a result, we integrate the fermion(s) out

to get pure topological field theories whose levels are governed by the shifts

defined in equation (5.3).

2. For large k (k ≫ N or k ≫ 1): The gauge field is heavy with a mass of

kg2 ≫ g2N , and then it decouples before the interaction. The remaining

light fields weakly interact, and there is a weakly-coupled conformal field

theory if we tune m (Qualitatively, we tune m to zero). To decide the

limit of how large k should be to keep the theory as weakly-coupled as

possible, we make use of the following: For the fundamental theory, Aharony

introduced a dual bosonic description defined in equation (1.34) which holds

for k ≥ F/2. On the other side, there is an N = 1 supersymmetry for

the adjoint case when we take the particular choice of mλ = −kg2/2π, and

Witten argued that it is spontaneously broken for k < N/2. The decoupling

limits remain valid for k ≥ F/2 for the fundamental theory and k ≥ N/2

for the adjoint theory.
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To follow the story of the IR dynamics of QCD3, new phases that do not

occur semiclassically have been introduced (for this reason, we call them quantum

phases). The presence of the scalar theory that is dual to the fundamental QCD3

suggests the existence of a non-linear sigma model in the phase diagram, which

does not appear semiclassically. The supersymmetry breakdown scenario, on the

other hand, implies the presence of a massless Goldstino in the phase diagram,

which cannot meet the ZN one-form symmetry.

We started the thesis with the phases of the fundamental QCD3 coupled

to F fermions. We reviewed the conjectured quantum phases introduced when

the theory is strongly-coupled. For k ≥ F/2, the phase diagram has only two

asymptotic theories described by the topological theories SU(N)k±F/2 separated

by a phase transition. The phase transition could be first or second order, or

a series of first-order phase transitions as in the large N limit [67, 68, 70]. For

k < F/2, the theory has the same asymptotic phases for large mass separated by

a quantum phase represented by a non-linear sigma model with a Grassmannian

as in equation (2.3). The transition point is split into two, and a boson/fermion

duality is introduced near each point.

The next natural step towards the fundamental theory was to split the F

fermions into two families with distinct masses [2, 61]. The theory is then

SU(N)k + pψ1 + (F − p)ψ2. We covered the details of this theory resulting in

a two-dimensional phase diagram with only four topological theories given by

equations (2.10), (2.11) and (2.14). The phase diagram has sigma-models with

various Grassmannians describing the quantum regions.

As the core of this thesis, we investigated the IR behaviour of SU(N) gauge

theory coupled to three families of flavours in the fundamental representation,

expanding the prior work for one family [1] and two families [2, 61]. Our description

covers the entire phase diagram in all the possible ranges of the Chern-Simons level.

Our approach yields a three-dimensional phase diagram that is semiclassically well

defined by topological gapped phases for k ≥ F/2, as in the one and two-family
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cases. In addition to topological phases, we come across one-dimensional sigma

models, planar sigma models, and cuboid sigma models, all of which are quantum

phases. The cuboid sigma models, which occur when one of the fermion masses

becomes small, are an inherent feature of the three-dimensional phase diagram.

We also provided consistency checks such as matching the phases of the bosonic

dual descriptions with the fermionic ones and perturbing the diagonal sigma-model

via mass deformations to match the off-diagonal lines phases. The reduction to

the two-family case by describing the various planes when two of the masses are

equal reproduces the results of [2, 61].

In chapter 4, we revisited the work of the adjoint QCD3 with both single

and double adjoint fermions. The phase diagram has a quantum phase, in the

form of a topological theory, for sufficiently small k values. The quantum phases

are conjectured via introducing new fermion-fermion dualities that hold near

each critical point. The theory with two degenerate adjoint fermions requires a

series of fermion-fermion dualities by applying a process known as the ”Duality

Chain” defined in [84]. The main task of the duality chain process is to reduce

the rank of the new dual theory until we reach a weakly-coupled theory whose

asymptotic theory shares the quantum region of the original theory. The possibility

of constructing a two-dimensional phase diagram of the two adjoint theory has

also been discussed with some possible resolutions to the unknown phases.

One of the most important applications of studying the dynamics of three-

dimensional theories is that they are linked to the dynamics of problems in 4d

and their domain walls. The Yang-Mills theories in 4d, when coupled to either an

adjoint fermion or fundamental Dirac fermions, have degenerate vacua, each of

which is gapped and trivial. As a result, three-dimensional theories exist within

the domain walls of their four-dimensional equivalents. The symmetries and

anomalies of these domain walls are the same as those of the 3d theories. In some

circumstances, their phases may be explicitly estimated using techniques in 4d,

and the quantum phases can be discovered. For example, the QCD4 with F = 2
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heavy quarks and θ = π has two ground states for nonzero positive mass. We

have SU(2)1 TQFT on the wall for large m, and the coset U(2)
U(1)×U(1)

≈ CP1 on the

wall for small m [64, 85].

The 2 + 1 dimensions techniques has also shed light to some N = 1 supersym-

metric theories in 4d with simply connected gauge groups (SU(N), Sp(N), and

Spin(N)). We notice that the quantum phase for the SU(N)k + λadj coincides

with results from the domain wall theories of four dimensional N = 1 SU(N)

SYM defined in [86]. The quantum phase of the same theory with Spin(N) was

also identified from the 3d techniques in [79].

We hope to finish the two-dimensional phase diagram for the adjoint case in the

near future. The large N computations show that the phase transitions appearing

on the phase diagram of theory with fundamental flavours are represented by a

series of first-order phase transitions in both the one and two-family case [67–

69, 87]. It would be interesting to perform the large N implementation for the

three-family case to have a flavour of the critical theories on the three-dimensional

picture. We also seek a better understanding of the types of phase transitions

that we encountered in the adjoint QCD3.
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