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(Bacterio)chlorophylls are modified tetrapyrroles that are used by
phototrophic organisms to harvest solar energy, powering the
metabolic processes that sustain most of the life on Earth.
Biosynthesis of these pigments involves enzymatic modification
of the side chains and oxidation state of a porphyrin precursor,
modifications that differ by species and alter the absorption
properties of the pigments. (Bacterio)chlorophylls are
coordinated by proteins that form macromolecular assemblies
to absorb light and transfer excitation energy to a special
pair of redox-active (bacterio)chlorophyll molecules in the
photosynthetic reaction centre. Assembly of these pigment–
protein complexes is aided by an isoprenoid moiety esterified
to the (bacterio)chlorin macrocycle, which anchors and
stabilizes the pigments within their protein scaffolds. The
reduction of the isoprenoid ‘tail’ and its addition to the
macrocycle are the final stages in (bacterio)chlorophyll
biosynthesis and are catalysed by two enzymes, geranylgeranyl
reductase and (bacterio)chlorophyll synthase. These enzymes
work in conjunction with photosynthetic complex assembly
factors and the membrane biogenesis machinery to synchronize
delivery of the pigments to the proteins that coordinate them.
In this review, we summarize current understanding of the
catalytic mechanism, substrate recognition and regulation of
these crucial enzymes and their involvement in thylakoid
biogenesis and photosystem repair in oxygenic phototrophs.

1. Introduction
Chlorophylls (Chls) are modified tetrapyrroles synthesized by
photosynthetic organisms and are critical to the primary reaction
of photosynthesis, the harvesting of light energy to drive an
electron transport chain and produce ATP and NADPH for
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carbon fixation. Chls absorb light in the blue and red region of the electromagnetic spectrum and absorb
poorly in the green region, giving oxygenic phototrophs—plants, algae and cyanobacteria—their
distinctive green colour [1]. The Chls that perform this absorption are organized within intricate
protein–pigment assemblies, known collectively as light-harvesting antenna complexes, in a
configuration that permits the transfer of light energy between neighbouring Chls. Light energy is
ultimately funnelled to photosystem complexes where a ‘special pair’ of redox-active Chl molecules
facilitate charge separation, essentially converting light energy into chemical energy. As such, Chl is
responsible for supplying a large portion of the biosphere with life-sustaining energy.

Chls share the same basic structure, consisting of four pyrrole rings (A–D) arranged in a macrocycle that
coordinates a central Mg2+ ion, and a modification to give an archetypal fifth isocylcic ‘E’ ring. Seven major
forms of Chl, lettered a, b, c1, c2, c3, d and f, have been discovered to date (figure 1) and differ in the functional
groups located at positions C2, 3, 7, 8 and 17 (see figure 4 for macrocycle nomenclature). Chls c1, c2 and c3
also lack an isoprenoid moiety esterified to the C17 position on ring D. Bacteriochlorophylls (BChls) are
synthesized by anoxygenic phototrophs and differ from Chls primarily in the reduction state of the C17-
18 bond (in the case of the true BChls) along with other differences in pyrrole functional groups (figure 1).

The most abundant Chl species is Chl a, which is found in all oxygenic phototrophs. Biosynthesis of Chl a
consists of 17 enzymatic steps catalysed by 15 enzymes and shares a pathway with heme biosynthesis up until
the point of metal ion insertion into protoporphyrin IX; magnesium chelatase chelates future Chl molecules
with Mg2+ [2] whereas ferrochelatase inserts Fe2+ to make heme B [3]. Following Mg2+ insertion, the reactions
of the enzymes Mg-protoporphyrin methyltransferase [4] and Mg-protoporphyrin monomethylester cyclase
[5] form the characteristic E ring of the chlorin macrocycle producing divinyl-protochlorophyllide (DV-
PChlide). Next, PChlide oxidoreductase (POR) reduces the C17 =C18 double bond of ring D [6,7] and divinyl
reductase (DVR) reduces the vinyl group at the C8 position of ring B to an ethyl group [8,9], resulting in the
production of monovinyl-chlorophyllide (Chlide a); note that these reactions may occur in either order. Chl a
biosynthesis concludes with the attachment of a reduced C20 isoprenoid alcohol to the C17 propionate side
chain of ring D of Chlide a by the action of two enzymes, geranylgeranyl reductase (GGR; ChlP) [10] and
chlorophyll synthase (ChlG) [11]. In some organisms, Chl/Chlide a can be modified to Chl/Chlide b (formyl
group at C7), Chl/Chlide d (formyl rather than vinyl group at C3) or Chl/Chlide f (formyl group at C2)
(figure 1). The Chl f synthase (ChlF; [12]) and Chl/Chlide a oxygenase (CAO, for Chl b synthesis; [13]) have
been identified, but the enzyme(s) responsible for Chl d synthesis is unknown. Schliep et al. [14] suggest the
C3 modification of Chl d occurs after tail addition, but it is not clear if ChlF and CAO act before (i.e. on Chlide
a) or after (i.e. on Chl a) esterification of the macrocycle by ChlG. BChls are also synthesized by modification of
(DV-)Chlide a, with the reduction of the C7-C8 double bond by the enzyme Chlide a oxidoreductase (COR)
converting the chlorin ring to a bacteriochlorin ring in the case of BChls a, b and g, or removal of the C132

methylcarboxyl group from ring E by Chlide a hydrolase (BciC) in the case of BChls c–f. For further details on
(B)Chl biosynthesis we refer the reader to a recent review of tetrapyrrole biosynthesis [15].

The integral thylakoid membrane protein ChlG, and its homologue in BChl containing organisms, BChl
synthase (BchG), are members of a family of enzymes called polyprenyl transferases. These enzymes are
responsible for the esterification of (B)Chlide with an isoprenoid alcohol, in the majority of cases a C20
molecule of geranylgeraniol from geranylgeranyl pyrophosphate (GGPP) or phytol from phytyl
pyrophosphate (PPP) [16]. Esterification with GGPP produces geranylgeranyl-chlorophyll (GG-Chl), which
is subsequently reduced to a phytyl moiety by the action of the membrane-associated enzyme ChlP (BchP
in anoxygenic phototrophs) [10]. ChlP uses NADPH to perform three consecutive reductions of the GG
moiety, producing two intermediary species, dihydro-geranylgeranyl (DHGG)-Chl (one reduction) and
tetrahydro-geranylgeranyl (THGG)-Chl (two reductions) [17,18]. Alternatively, ChlP can reduce free GGPP
to PPP prior to ChlG catalysis [16]. Although addition of an isprenoid tail has no spectroscopic effect on the
chlorin ring, the hydrophobicity of the pigment is significantly enhanced, which aids the binding and
positioning of Chl within membrane-intrinsic photosynthetic protein complexes [19]. In this respect, ChlG
operates at the interface between the pathways of Chl biosynthesis and thylakoid membrane biogenesis,
partaking in Chl handover to the photosystem assembly/repair apparatus [20]. In this review, we
summarize the literature pertaining to the final steps of Chl and BChl biosynthesis, highlighting gaps in our
current knowledge, and discuss unresolved questions to be tackled by future research.
2. Discovery of (bacterio)chlorophyll synthases in photosynthetic organisms
The esterification of Chlide was first reported in 1911, when Willstatter and Stoll discovered hydrolysis of
Chl to Chlide in crude extracts of Heracleum leaves and named the enzyme responsible for this reaction
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Figure 1. (Bacterio)chlorophyll biosynthesis pathways in photosynthetic organisms. The first steps of (bacterio)chlorophyll ((B)Chl)
biosynthesis are shared between all photosynthetic organisms and involve chelation of a magnesium ion at the centre of the
porphyrin ring and formation of the characteristic ring E producing divinyl-protochlorophyllide a (DV-PChlide a). Reduction of
ring D of DV-PChlide a produces divinyl-chlorophyllide a, the last common precursor in plants, algae� and cyanobacteria,
purple bacteria, heliobacteria, and ‘green bacteria’ (green sulfur bacteria, filamentous anoxygenic phototrophs (FAPs) and
Acidobacteria). �Note that in some algal species variants of Chl c are produced from DV-PChlide a by action of an unknown
enzyme(s) and differ depending on the identity of the ring B side chains (R1 and R2). Further specific modifications that
produce the various species of (B)Chl are colour-coded according to the organism(s) in which they are synthesized along with
the enzymes that catalyse the reactions. Except for Chls c, Chl biosynthesis and the biosynthesis of BChls a and b terminates
with the esterification and reduction of a C20 isoprenoid moiety to ring D by ChlG/BchG and ChlP/BchP, respectively. A C15
farnesyl tail is typically added to BChlides c, d, e, f and g by BchK (BChls c–f ) or BchG (BChl g). Note that some reactions
may occur in alternative orders, as detailed in the text.
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chlorophyllase. This enzyme also exhibited limited activity in the opposite direction, esterification of
Chlide with PPP to form Chl [21,22]. Over the following years, examination of the in vitro
esterification activity of algal and plant chlorophyllases produced conflicting results [23–26]. Although
chlorophyllase appeared capable of esterifying various species of Chlide with differing tetraprenyl
moieties [27,28], the enzyme invariably demonstrated a requirement for high concentrations of Chlide
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and organic solvent in order to shift the reaction equilibrium in favour of esterification [29]. Nevertheless,
chlorophyllase was postulated to participate in the final step of the Chl biosynthesis pathway in young
plants by esterifying Chlide before catalysing the opposite reaction and breaking down Chl in mature
plants [26,29]. However, the extreme assay conditions required to promote esterification activity
prompted the suggestion that another enzyme was responsible for Chl synthesis in vivo [30–32].

Rüdiger et al. [33] found the first evidence that an enzyme other than chlorophyllase catalyses
esterification of Chlide. 14C-labelled GGPP was esterified to Chlide when incubated with maize shoot
extracts in the absence of organic solvents. The solvent-independent activity of this enzyme was
further demonstrated in oat seedlings in which 80–90% of total Chlide was esterified [11]; by
comparison, in previous experiments chlorophyllase converted just 1–15% of Chlide to Chl [31,32].
Furthermore, Rudoı̆ et al. [34] showed production of Chl from exogenous Chlide upon incubation
with leaf extract, but not production of pheophytin (Chl lacking the central Mg2+ ion) from
pheophorbide (Chlide lacking Mg). Conversely, addition of Chl and pheophytin resulted in
production of Chlide and pheophorbide, respectively, demonstrating the existence of two distinct
enzymes. Accordingly, the enzyme responsible for esterification of Chlide was named Chl synthase in
order to distinguish it from chlorophyllase [11].

BchG was identified in the purple bacterium Rhodobacter (Rba.) capsulatus by site-directed
mutagenesis of orf304 in the photosynthesis gene cluster, producing a mutant that failed to synthesize
BChl a and accumulated bacteriochlorophyllide (BChlide) a [10]. This discovery was followed by
identification of bchG/chlG homologues in the genomes of other model photosynthetic organisms
including the purple bacteria Rba. sphaeroides [35] and Rhodospirillum (Rsp.) rubrum [36], the
cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) [37,38], the plants Arabidopsis
thaliana [39] and Oryza sativa (rice) [40], and the ‘green bacteria’ Chloroflexus (Cfx.) aurantiacus [41] and
Chlorobium (Cba.) tepidum [42]. In most cases, evidence that these genes encoded BchG or ChlG was
demonstrated by heterologous production in Escherichia coli and assaying cell lysates for enzyme
activity by detection of Chl/BChl after exogenous addition of substrates [35,40,43,44].
3. Chlorophyll synthase activity in oxygenic phototrophs
ChlG is an essential enzyme in oxygenic phototrophs such as plants, algae and cyanobacteria, and its
activity is associated with the thylakoid membranes of cyanobacteria [20,45–47] and mature plant
chloroplasts [48–50]. Immunoprecipitation experiments with tagged ChlG from Synechocystis have
shown that the protein co-purifies with YidC and ribosomal subunits, indicating that it is probably
translated by membrane-bound ribosomes and co-translationally inserted into the membrane by the
SecYEG translocon with the assistance of the YidC membrane-insertase [20,45].

In plants, ChlG is encoded by a single gene (chlG) that is constitutively expressed at low levels in all
green tissues throughout growth [39,40,51]. ChlG activity is specifically associated with the inner
membrane fractions of young plant etioplasts, consisting of prolamellar bodies (PLBs) and
prothylakoids (PTs) [11,52–56]. An initial study suggested the enzyme is inactive within intact PLBs
[56] until their light-induced conversion to PTs, which correlates with the ‘Shibata shift’ (a change in
the absorption maximum of Chlide from 684 to 672 nm) and the light-dependent production of
Chlide by POR; ChlG activity increases as the enzyme and its substrates are transferred from the PLB
fraction to the newly forming PTs during plant greening [55,56].

Subsequently, two phases of Chlide esterification have been described in etiolated leaves. A pulse of
light initiated a fast phase of esterification that converted 15% of the Chlide pool into Chl during the first
15–30 s after illumination. This was followed by a lag phase of approximately 2 min, before initiation of a
second slow phase (30–60 min) during which the remaining Chlide is phytylated [57,58]. The fast phase
of esterification always resulted in the same quantity of Chl production and was unaffected by the light
intensity, Chlide availability, low temperature or the disaggregation of PLBs, and could be restored by a
period of darkness before a second pulse of light. By contrast, the slow phase is abolished at low
temperatures and is dependent upon the disaggregation of the PLBs [58].

The two phases of Chlide esterification by ChlG are thought to be the result of several factors
including: (i) the disaggregation of PLBs; (ii) the rate of diffusion of GGPP/PPP in the membrane
bilayer; (iii) the Shibata shift, which has been linked to the release of Chlide from POR ternary
complexes and the transfer of the ternary complexes from the PLBs to PTs; and (iv) the pre-loading of
ChlG with GGPP/PPP [58–65]. The fast phase correlates with the rapid conversion of a pool of POR-
bound photoactive PChlide to Chlide upon exposure to light. In this scenario, the release of Chlide is
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reductase (POR; black), protochlorophyllide (PChlide; red) and NADPH (blue). POR catalyses electron transfer from NADPH to
PChlide, producing NADP+ (cyan) and chlorophyllide (Chlide; dark green), respectively. A high concentration of PChlide in the
prolamellar bodies (PLBs) promotes replacement of Chlide with PChlide in the ternary complex; newly released Chlide is
subsequently esterified to GGPP, which is already bound to ChlG (ChlGGGPP), followed by reduction of the GG tail to phytyl by
ChlP, forming chlorophyll (Chl; green). NADPH replaces NADP+ and the POR cycle repeats. (b) The ensuing slow phase of Chl
formation becomes prominent as the PLBs disaggregate in etio-chloroplasts and prothylakoid formation increases. PChlide
becomes limiting and Chlide is not immediately released from the POR ternary complex. Instead, NADP+ replacement by
NADPH precedes release of Chlide, thus, the flux of the Chlide substrate towards ChlG/ChlP is decreased and Chl formation
slows; this is further accentuated by the need for rebinding of GGPP to ChlG.
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immediately followed by replacement with PChlide due to the high concentration of the latter in PLBs.
Thus, in the fast phase, replacement of Chlide with PChlide precedes rebinding of NADPH to POR [66].

The released Chlide is esterified by nearby ChlG, as shown in figure 2a [57,66]. This model assumes
pre-loading of ChlG with GGPP/PPP [58,64] and the possible association of ChlG with POR [58],
although the latter has yet to be conclusively demonstrated [66]. The essential nature of GGPP/PPP
pre-loading was demonstrated by the fact that sodium fluoride treatment, which inhibits the slow
phase of Chlide esterification, presumably by preventing GGPP/PPP production, did not affect the
fast phase [65], indicating that if the enzyme already contains GGPP/PPP then Chlide binding upon
illumination can proceed unperturbed.

The second phase of esterification is comparatively slow due to the need for rebinding of GGPP to
ChlG [56–58]. Also implicated in the slow phase is the rate of disaggregation of POR complexes,
concurrent with the Shibata shift, and the changes in cellular architecture during the dispersal of PLBs
and the formation of PTs [60,61,63]. The concentration of PChlide is more limiting under these
conditions and so newly formed Chlide is not immediately released from POR; instead, replacement
of NADP for NADPH occurs before Chlide is released [66] (figure 2b).
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The fast and slow phases of Chl formation have also been investigated in vitro where ChlG was
produced in E. coli and cell lysates were pre-incubated with PPP. Upon addition of exogenous Chlide,
the lysates exhibited a rapid phase of esterification that lasted 15–30 s, comparable to that in leaves
[64]. These results support a model in which pre-loading of ChlG with GGPP/PPP enables a rapid
phase of Chl formation and the subsequent slow phase is limited by the availability and rate of
diffusion of further GGPP/PPP substrate in the lipid bilayer [64].

During the later stages of plant growth, ChlG activity remains associated with the thylakoid fraction
of mature plant chloroplasts [48–50]. Interestingly, the activity of ChlG appears to be enhanced within
crude chloroplast extracts in which the thylakoid and stromal fractions are not separated [48]. This
could be because the stromal fraction contains essential cofactors that enhance ChlG activity, or may
reflect an increased efficiency of substrate delivery from preceding stromal Chl biosynthesis enzymes
to membrane-bound ChlG. ChlG activity has also been associated with the stromal fraction of spinach
chloroplasts [50] and daffodil chromoplasts [67]. In the latter case, ChlG activity was confined to the
stromal fraction, which esterified 66% of exogenously added Chlide [67]. It has been argued that these
results are an artefact of the isolation methods used to prepare chloroplast fractions [50], or that
esterification activity within chromoplasts, which do not contain Chl, is due to an as-yet unidentified
membrane-associated enzyme rather than the membrane-integral ChlG [67].
Sci.9:211903
4. Synthesis of bacteriochlorophylls a, b and g in anoxygenic phototrophs
The synthesis of BChls is best studied in purple phototrophic bacteria such as Rba. sphaeroides, which
induce pigment biosynthesis in response to anoxic conditions and light [68,69]. The pathway of BChl
a biosynthesis in anoxygenic phototrophs is analogous to that of Chl a in oxygenic phototrophs up to
the synthesis of Chlide a [15]. Following this, two additional modifications of Chlide a result in the
production of BChlide a: (i) the C7 = C8 double bond of ring B is reduced by COR (BchXYZ) to
produce 3-vinyl-BChlide a (3V-BChlide a) [70,71]; and (ii) 3V-BChlide a is converted to BChlide a by
conversion of the C3 vinyl group to an acetyl group by the activities of 3V-BChlide hydratase (BchF)
and BChlide dehydrogenase (BchC) [72–74]. Note that BchF and BchC may act before COR
(producing 3-acetyl-Chlide a), as shown in figure 1. Subsequently, GGPP is esterified to BChlide a by
BchG and reduced by BchP, or BchP may reduce GGPP to PPP prior to esterification by BchG
[10,75,76]. In the synthesis of BChls b and g, COR acts on DV-Chlide a to produce 3V-BChlide b (also
referred to as BChlide g), which has a ethylidene group at C8 [77,78]. In BChl b synthesis, BChlide b is
formed from 3V-BChlide b by BchF and BchC (figure 1). BchG adds a farnesyl pyrophosphate (FPP)
or GGPP/PPP tail to BChlide g or BChlide b, respectively, producing BChl g or BChl b.

Genetic studies showed that bchG encodes BChl synthase in Rba. capsulatus [10] and Rba. sphaeroides
[75]; both enzymes have been produced in E. coli and tested for esterification activity by addition of
BChlide and GGPP/PPP to cell-free lysates [35,44]. BchG has also been identified in the green sulfur
bacterium Cba. tepidum [79], the filamentous anoxygenic phototroph (FAP) Cfx. aurantiacus [41] and
Heliobacteria [78].
5. Geranylgeranyl reductase
GGPP is a critical precursor in several vital metabolic pathways in both eukaryotes and prokaryotes,
where in addition to (B)Chl it is required for synthesis of terpenoids including carotenoids, plant
hormones, gibberellins, quinones, tocopherols, lipids and dolichol [80–83]. GGPP is synthesized by the
condensation of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) and
subsequent condensation with two additional IPP molecules (figure 3) [84–86], and represents an
important metabolic hub where the flux of GGPP into various metabolic pathways is controlled
[82,87–89]. The enzymes responsible for catalysing this reaction are known as GGPP synthases
(GGPPS). Members of this diverse family associate with downstream metabolic enzymes to ensure
substrate channelling into the appropriate pathways. In plant chloroplasts, one such GGPPS co-
localizes with a GGPPS-recruiting protein (GRP) in the thylakoid membrane [89].

ChlP and BchP catalyse the NADPH- and ATP-dependent reduction of three of the four C=C double
bonds of GGPP to produce PPP [10] (figure 3). Genes encoding ChlP/BchP have been identified in
oxygenic phototrophs including cyanobacteria [90] and plants [17,18,91,92], as well as in purple
bacteria [76] and green bacteria [93,94]. Deletion of chlP from Synechocystis results in the accumulation
of Chl molecules with unreduced tail moieties that are incorporated into Chl-binding proteins and can
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still function in light harvesting. Photosystem I (PSI) and photosystem II (PSII) are functional in these
mutants, but photoautotrophic growth is abolished due to the rapid degradation of the photosystems
[16,95]. The same growth phenotype is observed in plants lacking chlP [18,96], which also display an
increased sensitivity to high-light stress [97]. The reduced stability of the photosystems induced by
integration of unreduced Chls has been attributed to the increased rigidity of GG-Chl, which may
disrupt the assembly of the complexes [16,95]. Reduction of the Chl tail also appears to be important
for mediating the interactions between neighbouring Chl molecules, enabling the efficient transfer of
absorbed light energy to the photosystem reaction centre [95]. Although purple bacteria harbouring
GG-BChl a had reduced reaction centre stability [10], they were able to grow photoautotrophically,
albeit at a slower rate than the wild-type strains [76]. Note that in Rsp. rubrum, which produces GG-
BChl a, the BchP enzyme is specific for the reduction of the isoprenoid moiety of bacteriopheophytin
(BPheo) a [36], while the BchP enzymes of some other bacteria miss out one reduction of GGPP
resulting in (B)Chls esterified with Δ2,6-phytadienyl or Δ2,10-phytadienyl TH-GG tails (see below).
6. Substrate specificity of ChlG/BchG for tetraprenyls
Two pathways of Chl esterification have been described in photosynthetic organisms. One consists of
esterification of Chlide with GGPP by ChlG, followed by the stepwise reduction of the GG moiety by
ChlP to produce mature Chl a; alternatively, ChlP can act on free GGPP to produce PPP that is used
by ChlG to esterify Chlide [10,16]. The former pathway appears to predominate in the etioplasts of
young plants and the chloroplast envelope of mature plants [11,50,58,98,99], whereas the latter occurs
in the thylakoid membranes of mature greening plants [50,100]. The reasons for this remain unclear;
however, it is likely that utilization of either GGPP or PPP by ChlG is dependent upon the availability
of each substrate, which in turn is contingent on the varying levels of ChlP during plant growth
[50,101,102]. ChlP production is upregulated during chloroplast development, thus, GGPP may be
more readily available in the etioplasts of young seedlings [17], whereas in mature plants PPP
prevalence increases with ChlP abundance and GGPP availability may decrease due to demand from
the carotenoid biosynthesis pathway [50].

A small population of Chls are esterified with a shorter farnesyl moiety (Chl af ) in some species of
thermophilic cyanobacteria. These Chl af molecules appear to specifically localize within the CP43
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subunit of the PSII complex [103]. Esterification of Chlide with FPP is presumably catalysed by ChlG;
indeed, ChlG has been shown to use exogenous FPP as a substrate [11].

In anoxygenic phototrophs, BChl a is almost universally found in the phytylated form [104,105].
Upon the onset of BChl a biosynthesis, some purple bacteria accumulate three minor BChl species,
GG-BChl, DH-GG-BChl and TH-GG-BChl, in addition to BChl a [106,107], indicating that BchG can
act before BchP. This is reinforced by the observation that Rsp. rubrum synthesizes unreduced BChl
aGG, but also incorporates the de-metallated BPheo a with a phytyl tail into its reaction centre; the
BchP enzyme from this organism is only able to reduce the tail of BPheo, indicating that BchG must
esterify BChlide with GGPP, and that this pigment undergoes Mg-dechelation before the isoprenoid
moiety is reduced [36,105]. An additional unique case is that of the anoxygenic phototrophic
bacterium Halorhodospira halochloris, which accumulates BChl b carrying a tail with only two
reductions (a 2,10-phytadienyl moiety), thought to be a result of an insertion mutation in the bchP
gene [108,109]. Furthermore, Cba. tepidum produce BChl a with a phytyl tail, but also Chl a with a
unique TH-GG group with two reductions (a 2,6-phytadienyl moiety) [108,110].

ChlG from Synechocystis, produced recombinantly in E. coli, preferred PPP to GGPP [44], whereas the
enzymes from A. thaliana [43] and Avena sativa (oat) [64] showed a preference for GGPP. Similarly, BchG
homologues from Cba. tepidum [79] and Cfx. aurantiacus [111] preferentially esterified BChlide with GGPP
over PPP (and FPP) when assayed in E. coli lysates; the Cba. tepidum BchG used FPP more efficiently
during the first 5 min of the reaction before preferentially consuming GGPP. Conversely, BchG from
Rba. capsulatus showed a preference for PPP in a recombinant system [44]. Like ChlG, BchG from Rba.
sphaeroides has also been shown to use FPP as well as GGPP both in vitro and in vivo [78,79].

GGPP appears to be rapidly metabolised by E. coli cell lysates to a form that is no longer a substrate of
ChlG [64]. Given this, the substrate specificity of ChlG for its isoprenoid substrates requires in vivo
kinetics in the native organism [58] or enzyme assays using purified ChlG. Chidgey et al. [20]
demonstrated such an assay using a Synechocystis ChlG protein complex isolated by FLAG
immunoprecipitation in detergent and the exogenous addition of GGPP and Chlide.

Despite conflicting reports concerning the preferential reactivity of ChlG with GGPP or PPP in vivo
compared with in vitro, it is clear that ChlG requires diphosphorylated isoprenoids for activity. ChlG
from plant etioplasts was able to incorporate GGPP, PPP and FPP into Chlide in the absence of
exogenous ATP, whereas the monophosphorylated derivatives of these compounds were only partially
esterified, and the unphosphorylated variants not at all unless ATP was provided [11]. Similar
experiments performed with ChlG produced in E. coli demonstrated that unphosphorylated substrates
were not accepted, even in the presence of ATP, indicating that plant etioplasts produce a kinase that
is absent in E. coli [51].
7. Tetrapyrrole substrate specificity of ChlG/BchG
By contrast to the apparently relatively loose specificity of ChlG and BchG for the isoprenoid tails, both
enzymes exhibit more specific recognition of their tetrapyrrole substrates. Many tetrapyrrole compounds
have been tested for reactivity with ChlG/BchG with the aim of determining the tolerance of the enzyme
for variance in the central metal ion, chemical substituents of the pyrrole rings and the reduction state of
the macrocycle (summarized in figure 4). Differences between Chls and BChls are mainly in rings A and
B. Chls typically have a vinyl group at C3 of ring A (formyl in Chl d ), as does BChl g, whereas BChls a
and b have an acetyl group at this position, Chls b and f have substitutions at C7 and C2, respectively, and
BChls b and g have an ethylidene substituent in place of the ethyl group at the C8 position. However, it
appears that the predominant determinant of substrate specificity by ChlG and BchG is whether the ring
B C7-C8 bond is reduced, as is the case in true BChls, or oxidized, as in Chls.

In addition to a central metal ion that can form a pentacoordinate square-pyramidal conformation
and reduction of the C17-C18 double bond of ring D, ChlG enzymes appear to require that the C7-C8
double bond of ring B remains oxidized [34,51,52,64,112]. ChlG homologues do not esterify BChlide a
(acetyl at C3 and C7-C8 bond reduced) [44] but can esterify Chlides a, b, d and f (d and f presumed
but not definitively shown) and DV-Chlide a, which all contain a double C7-C8 bond but differ at the
C2 (Chlide f ), C3 (Chlide d ), C7 (Chlide b) and C8 (DV-Chlide a) positions [34,64,113]. This indicates
that exocyclic differences in the groups of ring A and B (figure 1) have less influence than the
reduction state of the C7-C8 bond of the macrocycle in substrate recognition.

The structure of the substituents on ring E also seem to be important as Chlide a’, where the C132

methyl ester group and proton of ring E are orientated in the opposite direction to that of Chlide a, is



NN

N N

H3C

H3C

H3CO2C

H2C

O

C

OH

O

Cl
Br

Mg

COCH3

C

H

C C

CHO

CHO

CH2OH

CH3

CH3

CH3

CHNC6H4N3
CH2NHC6H4N3

O

NHCH2C6H5O

C

esterified by ChlG

not esterified by ChlG

A B

CD

E

Mn
Zn

Cu
Co
Ni
N

CO2CH3 CO2CH3

CO2CH3OC2H5

CO2CH3OCH3OCH3 OCH3

CO2CH3

H

chlorophyllide a

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15
16

17

18

19

20

131132

Figure 4. Reactivity of modified tetrapyrrole compounds with chlorophyll synthase (ChlG). Chemical modification of chlorophyllide a
(grey) to produce compounds that can be esterified by ChlG are highlighted in green and those that can no longer act as a substrate
in red. ChlG requires reduction of ring D but that ring B remain oxidized, chelation of a central metal ion that forms a
pentacoordinate square-pyramidal conformation, and that no bulky substituents occupy side chain positions around ring E.
Modification of ring A and B side chains are tolerated. Carbon atom numbering around the tetrapyrrole macrocycle is indicated
in blue.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211903
9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 M

ay
 2

02
2 
not esterified by ChlG. This indicates that naturally occurring Chl a’ must be formed by epimerization of
Chl a following esterification of Chlide a [114]. Lack of the C132 methyl ester had no effect on ChlG
activity; however, replacing the C13 H with methoxy or ethoxy groups severely perturbed enzyme
activity, suggesting the enzyme cannot tolerate bulky substituents at the C13 position [64].

Like ChlG, BchG requires a metal ion capable of forming a pentacoordinate square-pyramidal
conformation at the centre of the macrocycle ring [44,111]. In addition to BChlide a, BchG from Rba.
sphaeroides can esterify BChlide b and g [77,78], which have a reduced C7-C8 double bond but differ
at the C8 positon, and in the case of BChlide g also at C3. However, the enzyme does not use
substrates where the C7-C8 bond is unsaturated, including Chlide a, 3-hydroxyethylchlide a and
BChlide c [115,116]. This allows BchG to differentiate BChlide a from Chlide a, which is produced as
an earlier intermediate in the BChl biosynthesis pathway [44]. In addition, the Zn analogues of
BChlides c, d and e, which despite their names are chlorins with a hydroxymethyl group at C3, are
not substrates for BchG [111]; BChlides c, d, e and f are instead esterified by a third enzyme,
bacteriochlorophyll c (d/e/f ) synthase (BchK; discussed below).

ChlG and BchG exhibit competitive inhibition when provided with the ‘wrong’ substrate in vitro,
suggesting that the active sites of the enzymes are similar [115]. In support of this, Kim et al. [116]
identified a single residue that appears to be important in determining the substrate specificity of the
enzymes. By producing cyanobacterial ChlG in a bchG deficient strain of Rba. sphaeroides, which
cannot produce BChl, meaning the strain cannot photosynthesize, the authors isolated suppressor
mutants that produced some BChl and were able to grow phototrophically. The suppressor mutation
resulted in residue Ile44 in ChlG being substituted by Phe, which is found at the equivalent position
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in BchG homologues (see below). The I44F variant was able to use BChlide as a substrate when produced
recombinantly, and the corresponding BchG F28I enzyme was able to esterify Chlide in vitro; in both
cases the mutant enzymes worked on the ‘wrong’ substrate with significantly lower efficiency than
their natural substrate, for which their affinity did not change. We have identified the same ChlG
suppressor mutation in analogous experiments and introduced the F28I variant of BchG into
Synechocystis, but the variant enzyme is not sufficiently active with Chlide as substrate to allow
replacement of the native ChlG (Proctor and Hitchcock 2022, unpublished).

The Ki for the inhibition of ChlG by BChlide is increased approximately fourfold when PPP is bound
to the enzyme instead of GGPP. It was suggested that the reduced bonds of PPP resulted in a decrease in
BChlide binding to ChlG, perhaps by inducing structural changes to ChlG [115]. Conversely, pre-binding
of PPP or GGPP did not increase the Ki value for inhibition of BchG by Chlide. This is interesting when
considering that Chlide a is an intermediate of the BChl biosynthesis pathway, whereas ChlG does not
encounter BChlide in oxygenic phototrophs. The authors speculated that inhibition of BchG by Chlide
is prevented by low intracellular concentrations of the latter and/or substrate channelling between
earlier BChl biosynthesis enzymes, preventing leakage of Chlide into the photosynthetic membrane
where BchG is situated [115].
pen
Sci.9:211903
8. Bacteriochlorophyll c, d, e and f synthases
In addition to BChl a, green sulfur bacteria and FAPS produce BChl c as their main pigment, as well as
BChls d and e [117–121]. Despite the universally accepted BChl prefix, these molecules are classified as
chlorins due to reduction of only the D ring and are therefore distinct from the true bacteriochlorins,
BChls a, b and g, where ring B is also reduced [122,123]. BChls c, d, e and f (the latter of which is not
produced naturally) share Chlide a as a common precursor, which undergoes specific modifications of
its pyrrole side chains prior to esterification, primarily with FPP, by BchG isoforms collectively known
as BchK (previously BchG2) (figure 1) [79,111,124,125]. Furthermore, some species also produce Chl a
with a 2,6-pytadienyl tail (reduced only twice) and contain ChlG as a third esterifying enzyme. For a
detailed review of (B)Chl biosynthesis in green bacteria see [93].

BchK was identified as a paralog of BchG in Cfx. aurantiacus and named BchG2 [111]. Deletion of the
equivalent gene from Cba. tepidum prevented accumulation of BChl c, whereas BChl a and Chl a
production was unaffected, confirming that BchG2 encodes BChl c synthase and prompting renaming
of the enzyme as BchK [124]. Deletion of the gene bchU, encoding a C-20 methyltransferase required
for synthesis of BChlide c and e, resulted in a Cba. tepidum strain that accumulated only BChl d, so
BchK must also be able to esterify BChlide d [126]. Esterification of BChlides e and f, which differ
from BChlides c and d at the C7 group, have been attributed to a second, recently identified clade of
BchK named BchK2 [125].

Green sulfur bacteria contain several types of BChl c molecules esterified with various long-chain
alcohols, indicating BchK exhibits promiscuous recognition of the isoprenoid substrate [79,127–133].
BChl a with a farnesyl tail is not detected in Cba. tepidum, despite the fact that BchG recognizes FPP
as a substrate, possibly due to spatial separation of the sites of GGPP and FPP esterification by BchG
and BchK, respectively [79]. BchK enzymes do not use Chlide a or BChlide a as substrates but the
enzyme is active with the Zn analogues of BChlides c and d in vitro; both contain an oxidized C7-C8
bond and a C3 acetyl group, which appear to be essential for recognition by BchK [111]. In
Chloroflexus-type green bacteria, BChl c is mainly esterified with stearol [93], and other esterifying fatty
alcohols can be incorporated when supplied exogenously in the growth medium [128,134].
9. The structure of chlorophyll and bacteriochlorophyll synthases
Although a high-resolution structure of a ChlG, BchG or BchK enzyme is yet to be published, all are
integral membrane proteins predicted to contain six to nine transmembrane helices (TMH) and with
an approximate size of 30–40 kDa [41,51,64]. Considering the high degree of similarity in the amino
acid sequences between (B)Chl synthases from various photosynthetic organisms, it is likely that these
enzymes contain the same number of TMHs; the average number predicted for ChlG and BchG is
eight [135] although structural models suggest that they contain nine (see below). The high degree of
homology between ChlG, BchG and BchK enzymes implies restrictions to the structure throughout
evolution, probably due to the well-defined spatial structure required to bind two amphiphilic
substrates [51].
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Structural characterization of proteins by methods such as X-ray crystallography and cryogenic
electron microscopy is dependent upon production and isolation of pure proteins in relatively high
quantities. A small quantity of active ChlG has been purified from the thylakoid membranes of
Synechocystis by solubilization of membranes in detergent followed by affinity purification of the
enzyme [20,45–47]. However, purification of membrane proteins from native organisms is often
limited by low abundance. E. coli has been used for the production of recombinant ChlG from A.
sativa [51], A. thaliana [43], O. sativa [40] and Synechocystis [44], as well as BchG from the purple
bacteria Rba. sphaeroides [35] and Rba. capsulatus [44] and the green sulfur bacterium Cba. tepidum [79].
The recombinant proteins are active in E. coli lysates but purification of the enzymes
following detergent solubilization appears to result in loss of activity [43], hindering the use of this
method for structural work.

In the absence of a structure of a ChlG, BchG or BchK enzyme, structure-function information has been
restricted to modelling and analysis of primary sequences, which has enabled identification of conserved
residues and domains by comparison to other well-characterized members of the polyprenyltransferase
family. Such comparisons indicate that the Mg2+ ion at the centre of Chlide is coordinated by an
unknown residue in ChlG [112]. This may be indirectly via a second metal ion bound within the active
site, similar to other polyprenyltransferases [41,136–138], or by a water molecule, which has been shown
to coordinate the central Mg2+ within crystalline ethylchlorophyllide [139]. Polyprenyltransferase
enzymes possess three conserved domains termed I, II and III. These domains have been identified in
ChlG, BchG and BchK; in particular, domain II is highly conserved between the synthases and is
implicated in binding of Mg2+ via a conserved DDXXD motif [39,41,136–138]. Alignment of ChlG and
BchG orthologues required modification of this motif to DRXXD [41], although NDXXD, which occurs
slightly earlier in the sequence (NDXXDRXXD; the underlined Asp is common to both motifs), could
also be responsible for magnesium coordination [51]. In either case, these acidic motifs are suggested to
interact with the negatively charged phosphates of polyprenyl diphosphates by proxy via coordination
of Mg2+ ions, similar to the DRXXD motif of isoprenyl diphosphate synthases [140,141]. Alternatively,
Arg or Lys residues could facilitate the interaction with the diphosphate groups of PPP/GGPP, as is the
case in farnesyltransferases [142].

Site-directed mutagenesis of ChlG/BchG has progressed the structure–function understanding of the
enzymes by enabling identification of features and residues essential for substrate binding and
specificity. Schmid et al. [64] characterized domain II of the oat ChlG, predicted to lie within a loop
between the second and third TMH. Mg2+ was essential for ChlG activity in vitro, indirect evidence
that Mg2+ coordinates binding of PPP/GGPP. The authors identified an essential Arg residue (R161),
proximal to the NDXXDRXXD region, which may be involved in GGPP/PPP binding. A follow-up
study by the same group demonstrated that four residues within the motif (N146, D147, D150 and
D154) are essential for enzyme activity, supporting the notion of diphosphate binding via complexed
Mg2+ and promoting revision of the domain II motif to NDXXDRXXDXXXXXXR, starting with N146
and ending in the aforementioned R161 [64]. Schmid and colleagues also identified a Cys residue
conserved in ChlG and BchG homologues (C109 in the oat enzyme) as essential for enzyme activity,
and suggested it is involved in substrate binding or stabilization of the active form of the enzyme. N-
and C-terminal truncation of the enzyme also revealed that the first 87 residues (which includes the
chloroplast transit peptide) are dispensable for enzyme activity, although further deletion, which most
likely interrupts the first TMH region, abolished catalysis. The enzyme could only tolerate removal of
one residue from the C-terminus before loss of activity, again presumably due to disruption of the
final TMH [51], which is in agreement with our unpublished data on the cyanobacterial enzyme.

Protein structure prediction by computation has recently experienced rapid advancement due to the
application of machine-learning technology. One such prediction program, AlphaFold2, employs a deep
learning artificial intelligence system to predict the three-dimensional structures of proteins [143,144].
Here we provide AlphaFold2 [144] structural models of ChlG from Synechocystis (Syn-ChlG) and A.
thaliana (At-ChlG), and BchG from Rba. sphaeroides (Rba-BchG) (figure 5). All simulations were run on
a NVIDA Tesla K80 GPU and conducted using the original monomer model with no ensembling and
a PDB database threshold date of 1 January 2021. Displayed structures correspond to the model with
the highest confidence score, calculated as the per-residue predicted local distance difference test
(pLDDT) value of α-carbon atoms in the protein structure [146].

The three model structures were generated with a comparable degree of confidence and overlay
closely with each other, with the exception of the first predicted TMH of Syn-ChlG (figure 5a).
Interestingly, the position of the I44 (Synechocystis), F28 (Rba. sphaeroides) and P110 (A. thaliana)
residues, which appear to be important for defining substrate specificity [116], are almost identical in
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Figure 5. Computational models of (bacterio)chlorophyll synthases. (a) Overlay of ChlG from A. thaliana (At-ChlG, dark green), ChlG
from Synechocystis (Syn-ChlG, light green) and BchG from Rba. sphaeroides (Rba-BchG, purple). (b) Magnified region of the three
proteins showing differences in equivalent residues (P110 in At-ChlG, I44 in Syn-ChlG and F28 in Rba-BchG) that appear to be
important for substrate specificity. (c) Partially surface rendered image of ChlG (yellow) to show conserved regions between all
three proteins. Fully conserved residues are shown in dark blue and conservative changes in light blue. Residues with semi-
conservative changes and no homology were not surface rendered. Red spheres indicate the location of the I44 residue.
(d–f ) Structural models (top) and pLDDT scores (bottom) are shown for At-ChlG (d ), Syn-ChlG (e) and Rba-BchG ( f ). Residue
colours correspond to the confidence thresholds set out in Tunyasuvunakool et al. [145], with high confidence (greater than
90 pLDDT) in dark blue, reasonable confidence (90–70) in cyan, low confidence (70–50) in yellow, and very low confidence
(less than 50) in red. Note that the computational simulation of At-ChlG was run using the full-annotated sequence from the
UniProt database but is displayed with the N-terminal chloroplast transit peptide removed.
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each structure (figure 5b). These residues reside before a central cleft that would appear to correspond to
the enzymes’ active site, akin to the crystal structure of the related prenyl transferase enzyme UbiA [147].
The residues within this cleft are highly conserved between the three homologues, as highlighted by the
coloured surface representation in figure 5c.

The acidic NDXXDRXXDXXXXXXR motif predicted to coordinate the tetrapyrrole substrate is
located with near-identical geometry in the cleft of each protein; the only notable difference is the
presence of Asn in the Rba. sphaeroides structure (position 72) rather than the equivalent Asp residues
in the Chlide a-binding enzymes (figure 6a). The highly conserved Cys118 in A. thaliana aligns closely
to the corresponding Cys residues in the Rba. sphaeroides and Synechocystis models (figure 6b). This
residue resides outside the putative active site at the interface between the two diverging helices that
form the cleft opening. The models do not provide any indication of disulfide bond formation;
instead, this residue appears to pack among other hydrophobic residues (V375, I378, F379 and
A382 in A. thaliana) and its essential role presumably derives from hydrophobic packing and van der
Waals interactions.
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Figure 6. Highly conserved residues in (bacterio)chlorophyll synthases. Structural models of ChlG from A. thaliana (At-ChlG, dark green)
and Synechocystis (Syn-ChlG, light green), and BchG from Rba. sphaeroides (Rba-BchG, purple), are displayed in the left-hand panels.
Conserved residues of interest are rendered in ball and stick format. Oxygen, nitrogen and sulfur atoms are coloured red, blue and
yellow, respectively. (a) An expanded image of the acidic NDXXDRXXDXXXXXXR motif shows close spatial residue alignment for each
structure. (b) An expanded image of the C118 position. Nearby residues that may participate in hydrophobic packing but have not
been identified as critical for protein function are shown in wire format. Residue numbering corresponds to the primary sequence of
A. thaliana ChlG. (c) Partial sequence alignment of Rba-BchG, Syn-ChlG, At-ChlG and the A. sativa ChlG (As-ChlG); residues from the
NDXXDRXXDXXXXXXR motif (depicted in panel (a)) are highlighted in yellow and the conserved cysteine (depicted in panel (b)) in orange.
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10. The role of chlorophyll synthase in coordination of chlorophyll
biosynthesis, thylakoid biogenesis and photosystem repair in oxygenic
phototrophs

Due to its position at the end of the Chl biosynthesis pathway, ChlG is thought to be important for co-
regulation of Chl production and pigment delivery to Chl-binding proteins [20,148]. As such, a mismatch
in the rate of Chl biosynthesis and the synthesis of Chl-binding proteins could result in an excess of free
Chl to the detriment of the cell [149]. De novo production of Chl by ChlG is essential for the stable
accumulation of Chl-binding apoproteins such as P700, CP47, CP43 and D2 [53,54,150–158], without
which photomorphogenesis is delayed [40]. Although the accumulation of Chl and Chl-binding
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proteins are positively correlated [153,159–162], it is likely that the binding of Chl to these apoproteins is
required for their stability and that the onset of Chl biosynthesis does not promote translation of Chl-
binding photosystem subunits [54,154,155,163–165]. Furthermore, the binding of Chl to apoproteins
appears to specifically require that Chl originates from de novo synthesis by ChlG; addition of Chlide
and PPP to a ChlG-containing etioplast fraction resulted in accumulation of P700, CP47, CP43 and D2,
whereas direct addition of Chl did not ([51]; L. Eichacker 2022, personal communication). This
suggests ChlG participates in an as-yet uncharacterized mechanism in which newly synthesized Chl is
delivered to nascent Chl-binding polypeptides co-translationally. A pause in translation by the
ribosome may allow time for Chl binding [20,166–168], although this pause was still observed in Chl-
free plants, so is not induced by Chl itself [165,167]. Nevertheless, the co-purification of Synechocystis
ChlG with the membrane protein insertase YidC suggests interaction between the two proteins [20].
YidC is known to aid protein folding [169] and participate in the correct integration of photosystem
polypeptides into thylakoid membranes [170–176], which could indicate direct Chl handover from
ChlG to assembling photosystem apoproteins [20], although this has yet to be conclusively
demonstrated. Other factors, such as the numerous auxiliary proteins that aid photosystem assembly,
may also be involved in Chl handover (reviewed in [141]).

ChlGmay also have an indirect role in the regulation of earlier enzymes in the Chl biosynthesis pathway
andChl-binding apoproteins by exerting control over Chl accumulation. In rice,mutation of chlG resulted in
accumulation of Chl biosynthesis intermediates and the suppression of nuclear-encoded PSII genes, while
plastid-encoded genes were unaffected, suggesting feedback regulation of nuclear gene expression by Chl
[40]. Lack of Chl also resulted in reduced expression of the gene HEMA1, involved in producing glutamyl
tRNA from which tetrapyrrole compounds, including Chl and heme, are synthesized [40]. This may be to
prevent accumulation of Chl/heme precursors that can generate damaging reactive oxygen species upon
exposure to light. Similarly, a heat-sensitive chlG mutant of A. thaliana that accumulates Chlide at
increased temperature also had reduced levels of the Lhcb1 antenna protein [177].

The level of ChlG is also directly involved in feedback-control of Chl biosynthesis. Shalygo et al. [178]
showed that chlG overexpression and knockdown lines of tobacco (Nicotiana tabacum) had increased and
decreased transcript levels of magnesium chelatase, respectively. Magnesium chelatase catalyses the first
dedicated and rate-limiting step in Chl biosynthesis and is therefore a valid target for control of the rate of
Chl production. Aminolevulinic acid (ALA) synthesis was also decreased but Chlide accumulation was
not observed, suggesting a mechanism for the prevention of Chl precursor build-up, which would have
detrimental consequences for the cell. Conversely, overproduction of ChlG increased the metabolic flux
towards Chl biosynthesis by increasing synthesis of ALA, enhancing magnesium chelatase activity and
the accumulation of light-harvesting complexes.

In addition to a role in thylakoid biogenesis, ChlG is also postulated to function in the recycling of Chl
molecules released from photodamaged protein complexes. Photodamage, in particular to PSII [179],
necessitates a constant repair cycle where complexes are disassembled and damaged subunits are
replaced by newly synthesized ones (reviewed in [156,157,180–184]). During PSII repair, Chl is released
from the damaged subunits and recycled, firstly by removal of the tail, and then reintegration of the
resulting Chlide and phytol (converted to PPP) back into the de novo Chl biosynthesis pathway
[177,185,186]. A chlG mutant that is destabilized at temperatures ≥40°C accumulated Chlide in the dark,
which must originate from de-esterification of Chl released from damaged photosystems rather than
from de novo biosynthesis, which requires the light-dependent reaction of POR. This suggests that the
pathway of Chl recycling uses ChlG for the re-esterification of Chlide and funnelling of the pigment
back to the photosystem repair machinery for reintegration into PSII [177].
11. Chlorophyll synthase forms a complex with high-light inducible
proteins in cyanobacteria

In cyanobacteria, the Chl-binding proteins of PSI and PSII are synthesized on TM-bound ribosomes and
co-translationally bound to Chl prior to assembly into functioning photosystems [187]. Evidence to
support the hypothesis that ChlG is involved in Chl delivery to nascent photosystem polypeptides
emerged from co-immunoprecipitation assays using tagged Synechocystis ChlG. Recovery of a
pigmented protein complex resulted in identification of high-light inducible proteins D and C (HliD/
HliC), the PSII assembly factor Ycf39 and the membrane insertase YidC, along with Chl a and
carotenoids [20,47]. ChlG binds tightly to HliD in a ChlG-HliD ‘core’ complex, with Ycf39 and YidC
more-loosely associated and subsequently found to be relatively minor components of the complex
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[20,45]. There is also evidence that BchG interacts with YidC, YajC (an inner membrane protein that
associates with the Sec machinery) and LhaA (the assembly factor for the light-harvesting 1 complex)
in Rba. sphaeroides [188].

YidC is presumed to mediate ChlG integration into the thylakoid membrane and possibly facilitate
co-translational insertion of Chl into photosystem apoproteins during thylakoid biogenesis [20], as
discussed above. The peripheral membrane protein Ycf39 is a member of a family of short-chain
alcohol dehydrogenases but has not been shown to have any catalytic function [20,189] and its role
within the ChlG complex remains unclear. Ycf39 dissociates from the ChlG complex under high-light
stress and can form a separate complex with HliD/HliC, which are involved in photoprotection of
early PSII assembly intermediates and Chl recycling [45,189]. These different protein assemblies may
represent dynamic sub-populations of the larger ChlG-HliD-HliC-Ycf39 complex that serve distinct
functions in response to cellular stress.

HliD and HliC are two of the four HLIPs produced in Synechocystis [190] and are single-helix integral
membrane proteins thought to be the ancestors of plant LHC proteins [191–194]. HLIPs possess a highly
conserved Chl a binding domain and significantly increase the half-life of Chl in Synechocystis. They are
also hypothesized to scavenge the Chl molecules released during the repair of damaged PSII [195–197].
Although not essential for cell survival [198], HLIPs function to protect the photosystems from
photooxidative damage induced by excess light [190,191,197,199–201].

HliC and HliD associate into their respective homodimeric complexes in vivo; the former binds four
Chl and two β-carotene pigments [202], whereas the latter binds six Chls and two β-carotenes [47,198].
The binding of HliD/HliC to ChlG accounts for the presence of β-carotene and the majority of the Chl
within this complex [47]. HliD binds these pigments in a configuration that enables quenching of
harmful Chl triplet excited states by β-carotene [203,204]. This quenching behaviour has been
demonstrated within the ChlG-HliD complex, and so HliD is hypothesized to provide photoprotection
to ChlG [47]. Incorporation of HliD into the ChlG complex is dependent upon zeaxanthin [46], which
probably binds at the transmembrane interface between the two integral membrane proteins and acts
as a ‘molecular glue’, increasing the strength of their interaction. Preventing the formation of the
ChlG-HliD complex, either by removal of xanthophylls or deletion of hliD [20,46], resulted in
accumulation of Chlide, indicating perturbed ChlG function. Deletion of hliD also reduces the
quantities of ChlG that can be purified by FLAG immunoprecipitation, suggesting that HliD binding
is required to stabilize the enzyme [20,46]. Despite this, the exact role of HliD within the ChlG
complex has yet to be elucidated, and the role of HliC also requires further study.

Heterologous production of plant (A. thaliana) and algal (Chlamydomonas reinhardtii) ChlG
homologues in Synechocystis allowed deletion of the otherwise essential native chlG, demonstrating
that the eukaryotic enzymes are functional in the cyanobacterial host. The plant-enzyme producing
strains did not display an obvious phenotype; however, they did not co-purify with HliD, Ycf39 or
carotenoids [45], which suggests that they do not form such a complex in vivo or that the complex is
less stable than the one formed by the cyanobacterial enzyme. Despite this, formation of equivalent
ChlG complexes in plants and algae cannot be ruled out. Homologues of HLIPs are present in plants;
in A. thaliana, one-helix protein 2 (OHP2) is the closest homologue to HliD [205]. Although a specific
interaction of OHP2 and ChlG has not been reported, this protein has been shown to form a complex
with OHP1 and the plant homologue of Ycf39, HCF244. This complex was implicated in Chl delivery
to PSII apoproteins, resembling the Ycf39-HliD/HliC complex in Synechocystis [206–209]. Plants also
possess light-harvesting-like (LIL) proteins, of which LIL3 is involved in the latter stages of Chl
biosynthesis, interacting with both ChlP and POR [210–212]. Mork-Jansson et al. [211] demonstrated
an interaction between LIL3 and ChlG in barley via a split-ubiquitin assay; however, Hey et al. [210]
did not find such an interaction in A. thaliana.
12. Concluding remarks
Since the discovery of chlorophyll synthase activity over 100 years ago, a huge amount of progress has been
made in characterizing this enzyme and its essential role in Chl biosynthesis, one of the most productive
biological pathways on Earth. Similarly, our understanding of the BchG and BchK homologues required for
BChl biosynthesis, and the tail-reducing ChlP/BchP enzymes, has also advanced. However, several
important questions remain unanswered. While advances in protein structure prediction have improved
our ability to model these enzyme structures, a key goal is the acquisition of bona fide high-resolution
structures of the enzymes in order to help to elucidate their mechanisms of action and differing
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substrate specificities. Further characterization of the in vivo interactions between the synthases and ChlP/
BchP and/or other enzymes in the (B)Chl biosynthesis pathways is also needed to determine if (B)Chl-
biosynthesis complexes are formed to allow efficient substrate channelling from the soluble enzymes
earlier in the pathway to the membrane-integral synthase. The role of the ChlG-HLIP complex identified
in cyanobacteria, and whether analogous complexes exist in higher oxygenic phototrophs, are other
avenues for future study. Furthermore, the exact role of ChlG in the handover of de novo synthesized
Chl pigments to the photosystem assembly apparatus, and in the recycling of Chl released from
damaged photosystems, will further our understanding of the interface between pigment biosynthesis
and the assembly and repair processes. Answering these questions will help further our understanding
of Chl metabolism in oxygenic phototrophs, a process essential for sustaining the majority of Earth’s
food chains, and aid our manipulation of photosynthesis, an endeavour that holds promise for the
production of high-value biomolecules and increasing the yields of crops to feed the growing population.

Data accessibility. The model structures of At-ChlG, Syn-ChlG and Rba-BchG presented in this manuscript were generated
from UniProt entries Q38833, Q55145, Q9Z5D6, respectively, and are available to download in the electronic
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align very closely (RMSD< 0.15) with the structures presented here.
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