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Abstract—We present a novel Double Deep Q Network
(DDQN) application to a sensor management problem in space
situational awareness (SSA). Frequent launches of satellites into
Earth orbit pose a significant sensor management challenge,
whereby a limited number of sensors are required to detect
and track an increasing number of objects. In this paper, we
demonstrate the use of reinforcement learning to develop a sensor
management policy for SSA. We simulate a controllable Earth-
based telescope, which is trained to maximise the number of
satellites tracked using an extended Kalman filter. The estimated
state covariance matrices for satellites observed under the DDQN
policy are greatly reduced compared to those generated by an
alternate (random) policy. This work provides the basis for
further advancements and motivates the use of reinforcement
learning for SSA.

Index Terms—Reinforcement Learning, Sensor Management,
Space Situational Awareness

I. INTRODUCTION

In an era of regular and frequent launches of satellites to
low Earth orbit (LEO), the possibility of collisions between
resident space objects continues to increase, and poses a
significant threat to space based infrastructure. The Kessler
Syndrome – a cascade of collisions that could render any
satellite use in LEO extremely difficult and costly – becomes
an increasing risk [1]. Between one third and one half of the
capacity of LEO space has already been occupied [2].

Space Situational Awareness (SSA) is the understanding
of the complex orbital domain, involving man made objects,
and natural phenomena [3]. Ground-based surveillance and
tracking of man made objects in orbit can be achieved with a
variety of instruments, including radars and optical telescopes.
Measurements are required to be able to predict the trajectories
of the objects, to assess the risk of potential collisions.
However, measurements must be made repeatedly, as the orbit
of any satellite is subject to change. These changes may be
small perturbations, but the accumulation of small changes
over time can be significant. In the LEO environment, there
are several factors that could affect the orbit of satellites -

most notably intentional manoeuvres, atmospheric drag, or
solar radiation pressure could alter the orbit from a predicted
trajectory. With limited sensor availability, efficient sensor
management (SM) algorithms are necessary for long-term
SSA. Given the large number of objects in LEO, the problem
suffers from a combinatorial explosion as the number of
possible actions increases [4]. The European Space Agency
is investing in improving the long-term sustainability of the
space domain [5], and employing novel methods to improve
SSA and help accomplish this goal. Objects orbiting the earth
in LEO have short orbital periods, meaning they cannot be
observed reliably from a single site; and these sites are often
constrained to making measurements in clear weather and of
restricted patches of sky. Therefore, using multiple sensors
located around the globe is highly beneficial, but comes with
a cost and is a considerable SM challenge.

Deep reinforcement learning (DRL) is one possible solution
to this problem. DRL is the combination of standard rein-
forcement learning algorithms with neural networks to solve
Markov decision processes (MDPs). DRL has been applied
to various fields with large action spaces, and has produced
impressive results [6]- [8].

II. FILTERING AND STATE ESTIMATION

In this paper, we aim to estimate {X}, the set of state
vectors describing satellites’ positions and velocities, using
measurements {Y }. The optimal state estimation algorithm
for linear, Gaussian systems is the well known Kalman filter
(KF). The Kalman filter is the best linear estimator for
reducing the mean square error [9]. For slightly nonlinear
systems, adaptations of the KF exist to attempt state estimation
while overcoming some of these non-linearities. The extended
Kalman filter (EKF) employs state transition and measurement
functions, as opposed to simple matrices, to propagate the
state estimates. However, the covariance is propagated linearly
through the step, so the EKF is only suitable for systems with
modest non-linearities. The unscented Kalman filter (UKF)



develops this further, by generating sigma points around
the target position, and propagating these through the non-
linearity, and reforming the covariance [10]. In this paper we
will only use an EKF for simplicity but the approach is readily
extendable to UKF or other state estimation methods.

III. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a machine learning method
in which an intelligent agent must make decisions to maximise
its received reward, which is determined by the results of
the actions it takes [11], [12]. RL differs from other machine
learning learning areas in that the model can be unknown, the
agent need only know the actions and the reward, as well as
some observation about the environment’s transition into new
time steps, based on the environment’s evolution over time.
Observations are usually related to some value in the environ-
ment that determines the amount of reward returned. This can
be ideal for SM applications, particularly in SSA, where we
do not need to model a potentially complex environment for
the agent to interpret. This means RL can work in much higher
dimensions than other dynamic programming approaches.

Markov decision processes (MDPs) are the underlying for-
mulations that RL algorithms are built upon. MDPs operate
discretely, where at each time step, an action is made. The state
will react to this action via a transition, and a reward is given.
The transition is defined as Pss′ = P[St+1 = s′|St = s],
where Pss′ is the state transition probability, s is the Markov
state at time t and s′ is the successor state. The goal of an
MDP is to find a policy, matching states to actions, to receive
the maximum reward.

Previous work into RL for SSA includes applications of
DRL in [13] and [14]. They show proof-of-concept results for
applying RL to the SSA problem, using Actor-Critic methods.
The actor refers to the policy, that asks the estimated value
function, or critic, about the next possible state values, which
the critic improves during learning. More recently, extensions
to the previous work were completed that added more com-
plexity and required less intensive compute resources to run
[15], [16]. We present the first implementation of a DDQN to
the sensor management problem for SSA, as opposed to the
Actor-Critic methods cited above.

A. Q-learning

Q-learning is a simple value iteration update on a Markov
decision process. Q-values, or quality-values, are state-action
values, and refer to the expected reward gained by taking a
certain action in a given state. Q-learning attempts to first
find Q-values for a range of states and actions, and to then
exploit the Q-values by selecting the action that returns the
highest reward at any state, in a greedy policy. Q-learning is
different from a Q-value iteration algorithm, as the transition
probabilities and rewards are initially unknown.

Q-learning is defined by:

Qnew(st, at)← Q(st, at)+α ·(rt+γ ·maxQ(st+1, a)−Q(st, at))
(1)

where Q is the expected reward and is a function of action a
and state s at time t. α is the learning rate, and 0 < γ < 1 is
the discount factor. α is a tuning parameter that determines
how quickly the algorithm learns new information. γ is a
parameter required for convergence of the algorithm, and
determines how much weight is given to information in the
future. If γ is close to 1, the future is valued almost as much
as the present. If γ is close to 0, the immediate information
is much more highly valued [17].

B. Deep Q Network

A DQN is an implementation of Q-learning. The main issue
with Q-learning is that it does not scale to larger problems
with larger action and state spaces. Deep Q-learning was
developed to overcome this. Deep Q-learning uses neural
networks (NNs) and experience replay to use a random sample
of prior actions instead of just the most recent action. Some
well-known DQNs use convolutional NNs: hierarchical layers
of tiled convolutional filters to mimic the effects of receptive
fields [18]. Receptive fields are defined as the association of
input fields to output fields. Experience replay is the use of
batches of sampled transitions for better data efficiency and
stability. DQNs are the term given to implementations of Q-
learning algorithms applied to such NNs.

C. Double Deep Q Network

It has been shown that DQNs commonly overestimate action
values in certain situations, and produce over-confident Q-
values [19]. To solve this problem, Double Deep Q Networks
were developed. In DQNs, the max operator is used to select
and evaluate actions, which leads to overly confident value
estimates. By using two sets of weights θ and θ′, and using
one to determine the policy and the other to evaluate it, this
problem is effectively overcome.

IV. PROBLEM SIMULATION

In this scenario, we create a satellite simulation using a
Python package Pysatellite: a Github repository being devel-
oped by the author [20]. This package implements orbit gener-
ation, reference frame transformations, and target tracking – in
this scenario through the use of an EKF. We generate 25 LEO
satellites using a Keplerian model, visualised in Fig. 1. Higher
order terms such as solar radiation pressure and atmospheric
drag will be included in further iterations. In this paper, it
is assumed that all satellites are following circular orbits at a
radius from the centre of the Earth of R = 7×106 metres. For
this implementation, we find that using an EKF is adequate to
handle the non-linearities of the system, but in future work, a
UKF or particle filter may be more suitable.

Detections are generated by simulating a telescope on
the surface of the Earth which measures azimuth, elevation,
and range with additive Gaussian noise. Fig. 2 shows the
satellite paths from the telescope’s point of view. The mea-
surements are transformed into the Earth-centred inertial (ECI)
reference frame, a Cartesian frame with the origin at the
centre of the Earth, through which the Earth rotates. The



Fig. 1. LEO satellite paths plotted around the earth in the ECI reference
frame

EKF operates in an ECI reference frame, with a state vector
X = (x, y, z, xv, yv, zv), which encodes the Cartesian position
and velocity of the satellite. Measurements are transformed
from azimuth, elevation, and range to ECI via the following
method:

YAER =

ϕ
θ
R

 (2)

YNED =

R · cos(θ) · cos(ϕ)
R · cos(θ) · sin(ϕ)

−R · sin(θ)

 (3)

YECEF =

− sin(ϕ0) cos(λ0) − sin(λ0) − cos(ϕ0) cos(λ0)
− sin(ϕ0) sin(λ0) cos(λ0) − cos(ϕ0) sin(λ0)

cos(ϕ0) 0 − sin(ϕ0)


· YNED

(4)

YECI =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1


· YECEF

(5)

where ϕ, θ, and R are the azimuth, elevation and range
coordinates of the satellite respectively, YNED refers to the
commonly used North, East, Down reference frame, ϕ0 and
λ0 are the latitude and longitude positions of the sensor,
respectively, ω is the Earth rotation rate, and t is the sidereal
time. In our simulated problem, we define our own ECI and
ECEF reference frames related to the time elapsed between
frames. For dealing with real data, ECI and ECEF reference
frames that relate to common time bases must be used. The
method explained here does not account for higher-order
specificities associated with real-world reference frames, but
is suitable for a simple geoid simulation.

A measurement noise matrix is generated in the AER frame
for each measurement. We simulate ideal diffraction limited
measurements.

PAER =

σ2
θ 0 0
0 σ2

θ 0
0 0 σ2

r

 (6)

where σθ and σr are the standard deviations expected for
ideal angle and range measurements. These are converted
to the ECI frame by calculating the Jacobian matrix of the
measurement through the above transformation from AER to
ECI and applying it to the measurement noise matrix:

PECI = J · PAER · JT (7)

where J is the calculated Jacobian matrix.

Fig. 2. Satellite paths crossing an Earth based telescope’s Field of View

For the learning environment, we use Tensorflow Agents, an
accessible and approachable RL framework in Python. Agents
allows users to create their own environments, and apply them
to a range of different RL algorithms, including DQN, Deep
Deterministic Policy Gradient (DDPG), and others; for our
simulation we used a DDQN. The DDQN uses a replay buffer
and stochastic gradient descent to calculate the loss.

We state the following definitions for clarity: iterations
refer to the number of training episodes that have occurred.
Episodes refer to one full run of an environment, made up
of t time-steps. At each iteration, the step transitions are
added to a circular buffer that stores the last n number of
iterations. During learning, a small sample of the buffer is
used to calculate the loss, instead of just the last transition.
This provides two benefits: as each transition is sampled
many times, a higher data efficiency is achieved, and using
uncorrelated transitions leads to a better stability of data.

We model a telescope control scenario, with a sensor state
T = (ϕ, θ), where ϕ is the telescope’s azimuth pointing,
and θ is the telescope’s elevation pointing. At each time step
of the environment, the agent can choose from 5 possible



actions: move up, down, left, right, or do nothing. As the
environment is discretised, we assume that when an action
is taken, the telescope state in the next time-step will be equal
to the maximum distance travelled in that direction, based
on a telescope slew rate of 2o/s. Up and down refer to the
telescope’s elevation pointing, and left and right refer to the
telescope’s azimuth pointing. If actions are taken that would be
unfeasible, such as the telescope pointing below the horizon,
no action is taken. As elevation can cross the zenith at π/2

c,
and azimuth is bounded 0 < θ < 2πc, actions that would
take the telescope direction out of this range are wrapped. For
each satellite, we find the difference between the centre of the
telescope Field of View (FoV) and the satellite’s azimuth and
elevation position.

dϕ = |sϕ − Tϕ| (8)
dθ = |sθ − Tθ| (9)

where dϕ and dθ are the differences in azimuth and elevation,
respectively, sϕ and sθ are the satellite’s azimuth and elevation
positions, respectively, and Tϕ and Tθ are the telescope’s
centre azimuth and elevation pointing, respectively. If both
azimuth and elevation are within the FoV of the telescope, then
a reward is given. The reward is cumulative in each time-step,
so if multiple satellites are detected, the reward will increase
accordingly. Algorithm 1 shows the basic operation of the RL
environment.

Algorithm 2 shows the training loop to improve the agent’s
policy, and select the best action at each time-step. The agent
will train for a certain number of iterations, and the perfor-
mance is periodically evaluated using a sample of episodes
which are executed with the current policy. We then run
another episode to generate measurements using the current
policy, which are used in the EKF.

V. RESULTS

After training the above environment on a DDQN for 20,000
iterations, and sampling the average reward at every 1,000 iter-
ations, Fig. 3 shows that the DDQN agent clearly outperforms
the same environment run with a random policy, where at
a given time-step, an action is picked at random, instead of
choosing the action that will maximise the cumulative reward.
We choose to compare against a random policy to show a base-
line for learning, and to show clearly the improvement of the
DDQN over increasing iterations. Future work will compare
the DDQN to other RL implementations. Each iteration trains
the agent with 10 episodes of the environment, with each
episode consisting of 20 time-steps. We use a seeded simula-
tion to create the same satellite orbits, and run the environment
for 5 sets of iterations to generate average returns.

It is clear that after ∼8,000 iterations, the DDQN begins to
converge on an optimal policy, that far exceeds the random
policy shown, which has no obvious improvement over time,
as expected. After this, the DDQN remains at or near the
optimal policy, with no loss of return from catastrophic forget-
ting, a common problem in RL algorithms [21]. Catastrophic
forgetting occurs as an agent explores its environment, it

Algorithm 1 RL environment
t = time-step
a = action
r = reward
s = satellite, sp = satellite position
T (ϕ, θ) = sensor state with field of view FoV
o = observation
while episode not ended do

t += 1
Get a for current t
if a < limit then

apply a
else

wrap and apply a
end if
for each s do

o = T (ϕ, θ)− sp
if o within FoV then

measurement = True
r += 1

else
measurement = False
r += 0

end if
end for
return r, o
if last t then

end episode
end if

end while

Algorithm 2 DDQN Training
t = time-steps
r = reward
Y = measurements
for each iteration do

collect multiple t, save to replay buffer
sample buffer, update network
if iteration = evaluation interval then

calculate r of 10 episodes with current network
generate set of Y from current network
use Y in EKF

end if
end for

may learn things that break its previously learnt information,
causing the agent to forget the past information and return poor
rewards. The shaded region shows the standard deviation of
5 runs of the same environment in the DDQN. The standard
deviation decreases once the algorithm reaches the plateau,
showing its increased confidence in this region of training. The
maximum possible return of the DDQN is less than the number
of satellites simulated because only some of the satellites will
cross the telescope field of view during the length of the
environment simulation, as exemplified in Fig. 4. Increasing



Fig. 3. Average reward from 10 episodes returned by an environment trained
using a DDQN. The trained policy in blue shows vast improvements against
the random policy. Shaded regions show the standard deviation of 5 training
runs

the number of steps in each episode would lead to a higher
maximum possible return, but training would take far longer
due to the increased action space over the larger number of
steps, and thus would require more iterations to converge.

Fig. 4. Satellite paths crossing an Earth based telescope’s FoV over a limited
number of time steps - most satellites will not appear in telescope FoV

In Fig. 5, we show the log of the trace of the covariance
matrices associated with each satellite after they have been
tracked for the length of the episode. The value for each point
in the graph is the trace of the covariance matrix after applying
an EKF to the satellite for n steps, where n is the number of
steps used in the RL environment, based on the measurements
generated in the DDQN.

If a satellite is captured within the telescope FoV, a measure-
ment is generated; conversely if the satellite is not observed
by the telescope, no measurement can be made. As the policy
improves and the number of satellites seen in the FoV of
the telescope increases, more measurements are generated as
iterations increase. By having more measurements for each
satellite, the EKF is able to reduce the uncertainty of the

Fig. 5. Log-trace of final covariance
matrices for tracked satellites at the
end of an episode. Each line repre-
sents a different satellite visible in
the telescope FoV. Shaded regions
show the standard deviation of 5
training runs

Fig. 6. Log-trace of final covariance
matrices for tracked satellites at the
end of an episode, with a random
policy. Each line represents a differ-
ent satellite visible in the telescope
FoV. Shaded regions show the stan-
dard deviation of 5 training runs

target position and velocity, which can be seen in the lines at
the bottom of the graph. Where limited or no measurements
are made, the EKF can only predict the satellite position
and velocity, giving increasing uncertainty – seen at the top
of the graph. We see that over half of the visible satellites
are measured more consistently as the DDQN trains, leading
to reductions in the final uncertainty of the satellite. We
compare this with Fig. 6, which is the result of tracking on
measurements generated from a random policy. Here we see
no overall improvement on the tracking performance.

In Fig. 7 and Fig. 8, we show the outcome of tracking in the
final iteration, when the agent has attained the optimal reward.
In the trained run, we see that a majority of the satellites are
detected by the telescope, meaning the measurements made are
able to reduce the uncertainty. Some satellites are never seen
in the FoV, which is shown by the top line in the graph, where
the EKF becomes increasingly uncertain about its state. In the
random action run, we can see that no satellite has consistent
measurements, meaning that the uncertainties are not lowered
as well. This shows a SM algorithm that is better than random
pointing, proved by a covariance-based metric.

VI. FUTURE WORK

In future work, we hope to expand on the work completed
here, with the inclusion of target tracking performance metrics.
Two such metrics that would likely prove fruitful in this
scenario are the Posterior Cramér-Rao Bound (PCRB) [22] and
the Generalised Optimal Sub-Pattern Assignment (GOSPA)
[23]. The PCRB would be useful in situations where the
geometry affects the resulting information of the targets, such
as in cases where the covariance of a target is very thin but
long. The GOSPA metric will be more suitable in scenarios
where there is clutter, false detections, and missed targets
[24], all of which are likely in the SSA domain. Further
improvements will be made to increase the complexity of
the satellite dynamics and how they are tracked, including
more robust reference frame transformations, for example.
Including effects like solar radiation pressure and atmospheric
drag will increase the realism of the scenario, and will require
more advanced tracking algorithms, such as a UKF. Other



Fig. 7. Satellite covariances during the final trained episode. Each line
represents 1 satellite. Shaded regions show the standard deviation of 5
training runs

Fig. 8. Satellite covariances during the final random episode. Each line
represents 1 satellite. Shaded regions show the standard deviation of 5
training runs

advancements include using angle-only measurement models,
and continuous control agents to more accurately reflect the
use of real telescopes.

VII. CONCLUSIONS

In this paper, we simulate a controllable Earth-based tele-
scope viewing satellites in low Earth orbit in a reinforcement
learning environment. We present a novel application of a
Double Deep Q Network to space situational awareness. We
maximise the number of satellites observed during a time
period, and increase the number of successful measurements
made. We use the generated measurements in an extended
Kalman filter, in which we see a significant reduction in posi-
tion and velocity uncertainty for observed satellites as a result
of increasing observations, as opposed to observations made
from a random policy. This forms the basis of a framework
for future research into applying deep reinforcement learning
to space situational awareness.
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