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Abstract

This thesis focuses on investigations of the Drell-Yan production of gauge bosons in dilepton final states at the

ATLAS detector, both in the context of the Standard Model (W and Z) and beyond (W ′). The analyses presented utilise

the full Run-2 ATLAS pp dataset recorded between 2015 – 2018 at
√
s = 13 TeV.

The luminosity recorded by the ATLAS detector can be monitored by measuring the production rate of the Z boson.

Detector inefficiencies are modelled directly from the data itself over time periods of 60 seconds, which gives the method

excellent stability with respect to the changing conditions inside the detector. The measurement is performed in the

Z → e+e− and Z → µ+µ− channels which have completely independent chains of corrections and show excellent

agreement to within 0.8% of one another for the full Run-2 dataset. In particular, the novel addition of the Z → e+e−

channel greatly increases the power of the method by providing an internal cross-check as well as increased statistical

precision by combining the two channels. These two measurements are used to monitor the stability of the baseline

ATLAS luminosity measurement, which could improve the understanding of the associated systematic uncertainties.

A search for a new heavy charged gauge boson (W ′) in the lepton + missing energy final state is also presented.

This channel is experimentally very clean, and offers an excellent lens with which to search for new physics at hadron

colliders. No significant excess is observed with respect to the expected background predicted by the Standard Model,

which is dominated by charged-current Drell-Yan production. An observed (expected) lower limit of 6 TeV (5.8 TeV) is

set on the mass of theW ′ boson in the context of the Sequential Standard Model (SSM), the highest such limit set by

any physics experiment to date. Model independent limits are also provided for a range of generic signal models, greatly

increasing the range of possible theoretical interpretations of the presented results. In addition to this limits are set on

the visible cross section, ranging from 4.6 pb atW ′ masses of 130 GeV to 22 ab above 3.4 TeV.
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Introduction

The analyses presented in this thesis focus on the Drell-Yan production of dileptons at the ATLAS detector.

An overview of the Standard Model and its limitations is presented in Chapter 1, and a more thorough

examination of the Drell-Yan process is given in Chapter 2. The experimental setup of the Large Hadron

Collider and ATLAS detector is presented in Chapter 3.

Chapter 4 presents a novel method for monitoring the luminosity recorded by the ATLAS detector

by measuring the production rate of the Z boson. The stability of the baseline ATLAS luminosity

measurement has been monitored using Z → µ+µ− events since 2015, which was expanded during 2018

data-taking to include a completely new measurement using Z → e+e− events. This work was undertaken

by the author as the basis for an ATLAS service task, and has been continually developed and expanded

afterwards to improve the stability of the method. The framework runs during early data-processing,

and can provide fast feedback to the ATLAS luminosity group about the operational conditions during

data-taking. This measurement could also contribute to an improved characterisation of the systematic

uncertainties affecting the baseline ATLAS luminosity. The results of this analysis were published in

an ATLAS public note [1], where the author was a lead editor, and were also presented by the author

at ICHEP 2020 [2]. Subsequently, the author co-founded a new ATLAS analysis group based on this

analysis, aiming to reinterpret the data in the context of probing potential Lorentz-invariance violating

coefficients in Standard Model extension models. An initial analysis is presented in Appendix C.

Chapter 5 presents the results of a search for new a heavy charged gauge boson (W ′) at ATLAS using

the full Run-2 dataset. Various theoretical interpretations are presented in order to provide a vast landscape

for comparison of the ATLAS data withW ′ signal models. Specific focus is placed on the electron channel

analysis (W ′ → eν), where the author was the lead analyser and analysis contact in this channel. These

results were among the first produced by ATLAS using the full Run-2 dataset and were published in

Phys. Rev. D [3]. The author then went on to present the results at the annual ATLAS UK conference

in Cambridge (2019), as well as at Epiphany (Krakow, 2021) [4]. Chapter 6 provides a summary of the

analyses presented within and their results.
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Chapter 1

The Standard Model and its limitations

1.1 A brief overview

The Standard Model (SM) of particle physics is a relativistic quantum field theory that describes the

properties of elementary particles and the interactions between them at energies below the Planck scale

(1.22× 1019GeV). Elementary particles are the fundamental constituents of matter, and the interactions

between them make up three of the four fundamental forces: electromagnetic, weak and strong. Gravity is

the exception as it is not described by the Standard Model and is instead explained by General Relativity [5].

The three forces that are described in the Standard Model are mediated by the exchange of gauge bosons,

particles with integer spins, each of which is associated with some symmetry group (gauge). The

electromagnetic and weak sectors are described by a single unified description known as the electroweak

interaction [6, 7, 8], which is governed by the exchange of photons,W and Z bosons (SU(2)× U(1)),

while the strong interaction is governed by the exchange of gluons (SU(3)) [9].

In addition to the force carrying gauge bosons, there is the Higgs boson [10, 11, 12] which is responsible

for generating the masses of the weak bosons and massive fermions via spontaneous symmetry breaking.

Gauge invariance means that theW and Z bosons should be massless, a fact which is contradicted by

experimental evidence and the short range of the weak force. The introduction of a complex scalar Higgs

field mediated by the Higgs boson leads to spontaneous symmetry breaking, giving the weak bosons their

mass while still respecting global gauge invariance. The masses of theW andZ bosons are free parameters

in the Standard Model and must be determined experimentally, as are the masses of the fermions which

are generated as a result of a Yukawa coupling term between the fermion and Higgs fields.

Tables 1.1 and 1.2 show all the currently known particles of the Standard Model, arranged into their

respective families and generations. The families into which particles can be organised are most broadly

fermions and bosons, with fermions having half-integer spin and bosons integer spin. Within the fermion
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Fermions: half-integer spin particles

Generation Particle Charge Mass [MeV]
Interactions
EM Weak Strong

1

u +2/3 2.2 X X X
d -1/3 4.7 X X X
e 1 0.511 X X 7
νe 0 < 0.001 7 X 7

2

c +2/3 1280 X X X
s -1/3 96 X X X
µ 1 105.66 X X 7
νµ 0 < 0.17 7 X 7

3

t +2/3 173.1× 103 X X X
b -1/3 4180 X X X
τ 1 1777 X X 7
ντ 0 < 18.2 7 X 7

Table 1.1: All known Standard Model fermions arranged into their respective generation, with their
charge, mass, and mode of interaction shown.

Bosons: integer spin particles
Particle Charge Spin Mass [GeV] Force Gauge group

γ 0 1 0 EM U(1)
W± ±1 1 80 Weak SU(2)L
Z 0 1 91 Weak SU(2)L
g 0 1 0 Strong SU(3)c
H 0 0 125 - SU(2)

Table 1.2: All known bosons of the Standard Model, with their charge, spin, mass, corresponding force
and gauge group given.

family there are two further divisions, the quarks and leptons. Quarks (u, d, c, s, t, b) interact via the weak,

electromagnetic and strong forces. Within the lepton family there is a distinction between the charged

leptons (e, µ, τ ) which interact via the electromagnetic and weak forces, and the almost massless neutrinos

(νe, νµ, ντ ) 1 which interact only via the weak force. The term generation refers to the fact that in both the

quark and lepton families, for a given charge there are three distinct particles, with the only difference

being their masses.

There are further quantum numbers associated with SM particles, some examples of which are weak

hypercharge, weak isospin, colour charge, lepton number and baryon number. The lepton and baryon

numbers simply relate to the number and type of particles present in an interaction. Weak hypercharge

and isospin 2 are the generators of SU(2) and U(1) in electroweak interactions, and can be understood as

eigenstates of the flavour and charge operators. Colour charge is associated with the eigenstates of SU(3)

in the strong interaction, and can take values of red, green or blue (with anti versions of these colours

for anti-particles). The strong interaction is described by quantum chromodynamics, a quantum field

1The current upper limit on the mass of the neutrino is 1.1 eV [13].
2Here weak isospin refers to the third component of weak isospin, the component which must be conserved in electroweak

interactions.
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THE STANDARD MODEL AND ITS LIMITATIONS

theory that governs the interactions between quarks and gluons. Combining the constituent forces of the

Standard Model, one can define the SM gauge group as SU(3)× SU(2)× U(1), with the corresponding

Lagrangian,

LSM = −1

4
FµνF

µν (gauge sector)

+ iψ̄Dψ + h.c. (matter-gauge coupling)

+ ψiyijψjφ+ h.c. (Yukawa sector)

+ |Dµφ|2 − V (φ). (Higgs sector) (1.1)

The first line of Eq. 1.1 contains the kinetic terms of the three gauge sectors of the Standard Model;

the second line describes the interactions between the fermionic matter fields and the bosonic gauge fields;

the third line accounts for the Yukawa interaction between matter fields and the Higgs field, giving rise to

the fermion masses as a result of electroweak symmetry breaking; and the fourth line contains the kinetic

and potential terms of the Higgs sector.

Even though all the particles predicted by the Standard Model have already been discovered, many of

their properties are still being probed by experiment. To take just one interesting example; analyses are

performed to probe lepton universality, which refers to the fact that there is an equal probability for aW or

Z boson to decay into a e, µ or τ lepton. The ratio of the decay rates ofW → τν andW → µν (R(τ/µ))

is measured by ATLAS to be 0.992 ± 0.013, the most precise measurement to date [14]. This result

indicates that there is no evidence yet for lepton universality violation in the Standard Model, however,

many other important analyses are performed to study the properties of Standard Model particles; for

example the polarisation of the top quark [15], Higgs decays to bb̄ pairs [16], photon-inducedW+W−

production [17] and many other interesting analyses. As will be discussed in Chapter 4, measuring the

well-understood production rate of the Z boson at hadron colliders can provide a powerful method of

monitoring the luminosity that is delivered to the detector.

1.2 Searching for new physics

While the discovery of the Higgs boson in 2012 [18, 19] marked the completion of the Standard Model

as such, there are still many phenomena as yet unexplained by the theory; for example the asymmetry

between matter and anti-matter, the nature of Dark Energy and Dark Matter, the difference in the effective

scale and measured scale of some physical parameters (the hierarchy problem) and why gravity is not

governed by the exchange of a gauge boson - or is it governed by an as yet undiscovered gauge boson?
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Answers to these questions can be provided by both searching for new, as yet undiscovered particles, or by

measuring the properties of existing particles to greater precision (direct and indirect searches).

Collider experiments at the LHC offer means of directly searching for new elementary particles by

colliding beams of high-energy protons and measuring the resulting final state particles. The Higgs boson

was the latest particle to be discovered in 2012 by the ATLAS and CMS experiments at CERN by analysing

4.8 fb−1 (5.8 fb−1) 3 of pp collision data recorded at a centre-of-mass energy of
√
s = 7 TeV(8 TeV). By

comparing the observed mass distribution to the background expectation and calculating the probability

of a background fluctuation creating an excess greater than or equal to that observed in the data, the

significance of the observation can be measured. This was found to be 5.9σ (local) for the ATLAS

measurement and 5.1σ for CMS, consistent with a Standard Model Higgs boson of mass 126 GeV. Further

analyses of the Higgs boson at ATLAS and CMS have measured its mass to be 125.25± 0.17 GeV [20].

The g−2 experiment is an example of an indirect search for new physics. By measuring the anomalous

magnetic moment of the muon to extremely high precision (11 decimal places), evidence for new forces or

particles could be indirectly detected. The anomalous magnetic moment arises due to radiative corrections

resulting from virtual effects involving fermions, photons, electroweak bosons and the Higgs boson. In

the presence of new undiscovered particles, there would be tension between the value predicted by the

Standard Model and the experimentally observed value. The world average for this value has a significance

of 4.2σ when compared with the value predicted by the Standard Model [21], suggesting that there could

be strong evidence for interactions between the muon and an additional non Standard Model particle.

The discovery of the Higgs boson and the interesting results of the g − 2 experiment only scratch

the surface of the work done to search for physics beyond the Standard Model. There are many other

theories which predict particles beyond the Standard Model, and searches are undertaken at the ATLAS

detector to look for evidence of their existence. One broad class of theories is known as supersymmetry,

which predicts bosonic partners to the SM fermions and fermionic partners to the SM bosons [22, 23].

Another set of models predict the existence of bosons with both lepton and baryon number, known as

leptoquarks [24, 25]. Searches are also performed for evidence of dark matter [26, 27], as well as for

extended Higgs [28, 29] and electroweak sectors [30].

Effective field theories (EFTs) are another class of models which only focus on one particular scale or

degree of freedom, ignoring effects coming from different scales or higher degrees of freedom, although

physics at different scales can be introduced using perturbation theory. Many popular models treat the

Standard Model as an effective field theory, in which additional couplings are suppressed at low-energy

scales. 4 One such model is the Standard Model Effective Field Theory (SMEFT) [31, 32], which

3These numbers correspond to the ATLAS detector. The corresponding CMS luminosities are 5.1 and 5.3 fb−1.
4For instance, below the Planck scale in the Standard Model Extension or belowO(10 TeV) in the SMEFT.
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THE STANDARD MODEL AND ITS LIMITATIONS

introduces 2499 dimension-6 operators (Oi) to the SM Lagrangian,

LSMEFT = LSM +

2499∑
i=1

Ci
Λ
Oi. (1.2)

The interaction scale of the SMEFT (Λ) is much larger than the scale of SM particles, and so the

low-energy behaviour of the SMEFT mimics that of the SM. Fits are performed to experimental data to

probe for evidence of higher-dimensional operators, and as it is impractical to include 2499 operators,

certain fermionic flavour assumptions are made to simplify the model. So far no evidence of further

interactions has been found, and limits have been set on the dimension-6 SMEFT Wilson coefficients (Ci)

in the Warsaw basis [33] by measuring H → ```` decays at ATLAS [34].

Searches are a fundamental component of the LHC physics programme, and the second part of

this thesis is devoted to the quest to find evidence of new heavy charged gauge bosons using the full

Run-2 dataset (Chapter 5). The discovery of additional heavy electroweak gauge bosons would have a

dramatic impact on the landscape of particle physics and could offer an explanation of the difference in

hierarchy between some of the fundamental physical parameters of the Standard Model. An additional

proof-of-principle analysis is presented in Appendix C, using Z boson production rate data to probe

for Lorentz-invariance violation in the quark sector. Such effects are predicted by the Standard Model

Extension (SME) [35], an effective field theory which introduces Lorentz-invariance violating coefficients.
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Chapter 2

The Drell-Yan process

The analyses presented in this thesis focus on neutral- and charged-current Drell-Yan production of gauge

bosons; measuring the production rate of the SM Z boson to monitor the luminosity delivered to the

detector as well as searching for new heavy gauge bosons produced via the Drell-Yan mechanism (W ′)

where the dominant Standard Model background contribution comes from the charged-current Drell-

Yan interaction. This chapter presents a theoretical overview of the Drell-Yan process, as well as the

phenomenological framework which is used to make predictions at high-energy hadron-hadron colliders.

2.1 Introduction

Predicted in 1970 by Sidney Drell and Tung-Mow Yan [36], the Drell-Yan mechanism is a process that

occurs in hadron-hadron collisions whereby a quark and antiquark annihilate one another to produce a

virtual boson. Neutral-current scattering refers to the production of a virtual photon or Z boson, while

charged-current scattering refers to the production of a chargedW boson. In the case of neutral-current

scattering, the produced boson subsequently decays into a pair of oppositely charged leptons, while the

final state of charged-current scattering consists of a charged lepton and a neutrino, as demonstrated in

Figure 2.1. The branching fraction ofW → eν (W → µν) is 10.7± 0.16 % (10.63± 0.15 %) and the

branching fraction of Z → e+e− (Z → µ+µ−) is 3.3632 ± 0.0042 % (3.3662 ± 0.0066 %) [20]. It is

important to note that in this thesis decays to τ leptons will be considered as a source of background,

accounting for approximately 11.4% of the branching fraction of theW and 3.7% of the Z.

The QCD-improved parton model describes the proton as being composed of quarks bound together

by the exchange of gluons. At low-resolution the proton is composed of uud quarks, bound together by

the exchange of gluons. These are known as valence quarks. However, since the gluon also carries colour

charge it can split to produce two so-called sea quarks, which can in turn annihilate one another to produce
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THE DRELL-YAN PROCESS

Z/γ∗

q

q̄ `+

`−

W+/−

q1

q2 `+/ν̄`

ν`/`
−

Figure 2.1: Feynman diagrams for charged (left) and neutral (right) current Drell-Yan scattering at leading
order.

another gluon. The total proton momentum is split between the valence quarks, sea quarks and gluons,

therefore, the internal dynamics of the proton are complex, and there is no reliable way in QCD to predict

this internal structure.

Much experimental effort is devoted to understanding these complex interactions by measuring parton

distribution functions (PDFs, Section 2.3), primarily by exploiting deep inelastic scattering (DIS) scattering

data. Since the Drell-Yan process is sensitive to the internal structure of the proton, precise predictions

require accurate knowledge of the parton distribution functions. On the other hand, measuring the

kinematic properties of particles produced by the Drell-Yan process can also provide constraints to the

internal structure of the proton by probing the quark/anti-quark composition. Measurements of inclusive

W and Z cross sections using ATLAS data, combined with charged- and neutral-current deep inelastic

scattering data collected by the H1 and ZEUS collaborations [37] found evidence that the amount of

strange quarks in the proton sea is roughly equivalent to the number of up/down quarks [38], providing

evidence of light-flavour symmetry at Bjorken x < 0.01 (the fraction of the protons momentum carried

by each parton).

2.2 Phenomenological overview

In general, calculating the cross section of any process relies on first calculating the matrix element.

Ignoring the integration over the phase space (spin, flavour, polarisation), the general form of an s-channel

matrix element in 2→ 2 scattering is,

M = 〈p1|V |p2〉P 〈k1|V |k2〉 (2.1)

where p and k are the propagators of the incoming and outgoing particles, V is the scattering potential

and P is the propagator of the virtual boson. Matrix elements can be derived by following the Feynman

rules [39], which consists of: external fermion propagators, virtual boson propagators and vertex factors.

The product of the incoming fermion, vertex factor and outgoing fermion is calculated for each vertex in
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the interaction. The matrix element is equal to the product of each of these terms and the propagator of

the virtual exchange boson, the square of which is proportional to the cross section of the process.

To leading order (LO), the differential Drell-Yan cross section can be expressed in terms of the invariant

mass of the dilepton system (M ) and the rapidity of the produced boson (y) V [40]

d2σV
dM · dy

=
4πα2(MV )

9
· 2MV · PV (MV ) · ΦV (x1, x2,MV ), (2.2)

where α(MV ) represents the fine structure constant, PV (MV ) is the propagator, ΦV is the parton

distribution term and x1,2 are the Bjorken x values of each parton participating in the collision. Rapidity

is a measure of the angle between the x− y plane and z axis, where the z axis is along the beamline and

the x− y plane is perpendicular. A particle with infinitesimally small momentum along the z axis (pz)

will have a rapidity of 0, while a particle with extremely large pz will tend towards y → inf . There are

distinct propagator and parton distribution terms forW and Z/γ∗ production as a result of the different

properties of the exchange bosons involved.

Charged-current scattering The propagator term forW production is given by

PW =
1

(4 sin2 θW )2 · [(M2 −M2
W )2 + (ΓWMW )2]

, (2.3)

where θW is the weak mixing angle, ΓW is the width of theW andMW its pole mass. The parton

distribution term is sensitive to the charge of theW boson, and there are therefore distinct terms taking

into account the flavour composition of the incoming partons

ΦW+ = x1x2[U2
ud(u1d̄2 + u2d̄1) + U2

cs(c1s̄2 + c2s̄1) + U2
us(u1s̄2 + u2s̄1) + U2

cd(c1d̄2 + c2d̄1)],

(2.4)

ΦW− = x1x2[U2
ud(ū1d2 + ū2d1) + U2

cs(c̄1s2 + c̄2s1) + U2
us(ū1s2 + ū2s1) + U2

cd(c̄1d2 + c̄2d1)],

(2.5)

where Uij are the CKM matrix elements [41] - values which govern the strength of the flavour-

changing weak interaction - and u, d, c and s are the parton distribution functions for each quark flavour,

where the dependence on Bjorken x and the scaleM2 has been dropped to improve readability. This

formalism uses the 4-flavour scheme (u, d, c, s), which can be extended to five (u, d, c, s, b) or even six

flavours (u, d, c, s, b, t); however, the bottom and top contributions are much smaller than the light quark

contributions as they have small off-diagonal CKM matrix elements.
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THE DRELL-YAN PROCESS

Neutral-current scattering Since the neutral-current process (Z/γ∗) has contributions from pure Z

and γ∗ exchange, as well as their interference, the cross section is calculated by taking the sum over all

propagators,

PZ =
(v2
e + a2

e)

(4 sin2 θW · cos2 θW )2 · [(M2 −M2
Z)2 + (ΓZMZ)2]

, (2.6)

Pγ =
1

M4
, (2.7)

PZγ =
ve(M

2 −M2
Z)

4 sin2 θW · cos2 θW ·M2 [(M2 −M2
Z)2 + (ΓZMZ)2]

, (2.8)

where ve (ae) is the vector (axial) coupling of the electron. The vector and axial couplings are defined

as vf = T 3
f − 2ef sin θW and af = T 3

f , where T 3
f is the third component of weak isospin of the

fermion of type f 1 and ef is its electric charge. Each propagator also has its own unique parton distribution

term, which is sensitive to the universal PDF for a quark of that flavour (q(x,M2))

ΦZ =
∑
q

(v2
q + a2

q)Fqq̄, (2.9)

Φγ =
∑
q

e2
qFqq̄, (2.10)

ΦZγ =
∑
q

2eqvqFqq̄. (2.11)

Fqq̄ = x1x2[q(x1,M
2)q̄(x2,M

2) + q̄(x1,M
2)q(x2,M

2)] (2.12)

As a result of the form of the propagator terms in Eq. 2.3 and Eq. 2.6-2.8, the Drell-Yan cross section

decreases rapidly as a function ofM2 (Q2), except near theW and Z mass where there is a resonance.

This is one of the defining features of the Drell-Yan process. It is also evident from Eq. 2.4-2.5 and

Eq. 2.9-2.11 that there is a significant component of the cross section which is sensitive to the internal

structure of the proton. Therefore, it is of the utmost importance that a state-of-the-art description of these

internal dynamics is obtained using the best possible theoretical predictions, both for testing the accuracy

of the Standard Model and for searching for evidence of physics beyond.

The description given so far is only the leading order picture, and a vital component of the Drell-

Yan process are higher order corrections. As will be discussed in Section 2.4, there are large radiative

corrections to the Drell-Yan process due to additional QCD and electroweak (EW) radiation. These

1This is +1/2 for neutrinos and up-type quarks (u, c, t) and −1/2 for charged leptons and down-type quarks (d, s, b).
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higher order corrections modify the total cross section of the process, as well as the kinematic behaviour

of the decaying bosons and become especially large at high masses. This is of particular importance

when searching for new heavy resonant gauge bosons (Chapter 5), where state-of-the-art background

descriptions are crucial to detect unexpected excesses of data with respect to Standard Model predictions.

2.3 Parton distribution functions

Parton distribution functions describe the probability of finding a parton of a certain flavour and momentum

fraction inside the proton. There is no practical way in QCD to predict the shapes of these functions,

and much of this information comes from electron-proton deep inelastic scattering data [37]. However,

proton-proton data is starting to play an increasingly important role in testing PDFs with the inclusion

of Drell-Yan, gauge boson production and jet production data providing valuable insight [42]. There are

many groups dedicated to the QCD fits of parton distribution functions, with varying model assumptions

and large uncertainties at very high (x > 0.5) and small (x < 0.0001) Bjorken x values [37, 42, 43, 44].

In high-energy deep inelastic scattering, the time taken by an electron or photon to traverse the proton

is extremely small, and can therefore be considered as an interaction with a stationary distribution of

partons inside the proton. Since the time-scale is so short, the partons have no time to interact with one

another, and therefore the electron (or photon) probes the probability distribution of finding a parton of

flavour i and momentum fraction x inside the proton. In practice, this is done by measuring a variety

of differential cross sections as a function of Bjorken x at various values of Q2 and performing a global

QCD fit [45].

The Bjorken x value is related to the scale, momentum transfer and proton momentum (p) of the

interaction

x =
Q2

2p · q
. (2.13)

In the case of the Drell-Yan process, the scale is equal to the square of the mass of the exchanged

vector boson (Q2 = M2), and the Bjorken x value is related to the rapidity (y) of the produced boson at

leading-order

x1,2 =
M√
s
· e±y. (2.14)

The rapidity can be expressed in terms of experimental observables by measuring the energy (E) and
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longitudinal momentum (pz) of the boson,

y =
1

2
ln
E + pz
E − pz

. (2.15)

The functional form of the fit is generally a polynomial of fixed order in Bjorken x, taking for example

the assumed parameterisation of parton distribution functions f(x) at some starting scale used by the

ZEUS collaboration,

xf(x) = p0x
p1(1− x)p2(1 + xp4). (2.16)

The scale of the interaction can be measured very precisely in deep inelastic scattering by measuring

the difference between the incoming (k) and outgoing (k′) lepton four-momentum,

Q2 = −q2 = − (k − k′)2
. (2.17)

Similarly, the Bjorken x of the probed parton can be accurately measured by measuring the inelasticity

(y) of the scattered electron in the lab-frame

y = 1− E′e
2Ee

(1− cos θe) , (2.18)

where Ee (E′e) is the incoming (outgoing) electron energy and θe is the angle between the scattered

electron and the proton beamline (following the same convention as the HERA experiment). The Bjorken

x of the scattered parton is given by

x =
Q2

s · y
, (2.19)

where s is the centre-of-mass energy of the electron-proton system,

s = 4EeEp. (2.20)

Bjorken scaling states that the parton distribution functions are independent of the scale at which they

are measured (Q2
exp) [46]. This foundational observation was pivotal in the discovery of the point-like

constituents of the proton, but is only approximately true, as scaling breaks down due to quark-gluon

interactions. PDFs can be extrapolated to scales far outside the range at which they are measured using

the DGLAP equations [47, 48, 49, 50]. This is essential since the mass range covered by the experiments

dedicated to determining PDFs is different to that of the LHC.

Furthermore, each flavour of quark has its own distribution, as well as a corresponding distribution for
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its anti-particle and the gluon. These are determined by measuring specific processes; for example, photon

exchange is identical for u and ū, whereasW exchange is sensitive to the charge of the parton involved.

This also helps to define what is meant by the valence quarks, since we know that there are many more

quarks inside the proton than the simple constituents. The valence quark distribution of the proton can be

calculated using the isospin sum rule constraints by taking the difference between the number of up and

down type quarks and anti-quarks,

∫
uv(x)dx =

∫
(u(x)− ū(x)) dx = 2, (2.21)∫

dv(x)dx =

∫ (
d(x)− d̄(x)

)
dx = 1. (2.22)

Integrated over all Bjorken x values there should be two more up type quarks than anti-up quarks, and

one more down type quark than anti-down quark in order to ensure that the proton is colourless and restore

the simple constituents. This parameterisation relies on the assumption that the number of sea quarks of

each flavour is equal to the number of anti-quarks of that flavour, qsea = q̄. Another important assumption

is that the sum momentum of all partons in the proton must equal the momentum of the proton itself, or in

other terms, that the sum probability of all quarks across all Bjorken x values must be 1,

∫
(xuv + xud + xS + xg) dx = 1. (2.23)

The parton distribution functions can be further parameterised in terms of the sea quark (xS) and

gluon (xg) densities, where

xS = 2x(ū+ d̄+ s̄+ c̄). (2.24)

Figure 2.2 shows the HERAPDF2.0 parton distribution functions, obtained by performing a QCD

analysis at NNLO using a combination of H1 and ZEUS data [37]. At x < 0.1 the gluon term is the

dominant contribution to the total parton momentum, followed by the sea and valence quark terms. This

gluon dominance is even greater at higher values of Q2, as Bjorken scaling begins to break down further.

At approximately x = 1/3 the valence terms are dominant and account for almost all of the protons

momentum (xuv ≈ 2/3 and xud ≈ 1/3).

13
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Figure 2.2: HERAPDF2.0 parton distribution functions at NNLO at Q2 = 10 GeV2. The sea and gluon
contributions have been scaled down by a factor of 20. The red, yellow and green bands represent the
experimental, model and parameterisation uncertainties respectively. Figure source: [37].

Parton distribution functions also have associated experimental, model and parameterisation systematic

uncertainties. Experimental uncertainties arise due to the fact that experiments do not have perfect precision

or accuracy, and this must be taken into account when evaluating the results. Model and parameterisation

uncertainties arise due to the assumptions that must be made when performing QCD fits to the data, for

instance certain physical parameter values or the functional form of the fit itself. The total uncertainty is

obtained by adding these three components in quadrature.

2.4 Higher order corrections

2.4.1 Overview

The diagrams in Figure 2.1 show the Drell-Yan process at LO, not taking into account higher order

electroweak and QCD emissions. However, the Drell-Yan process is much more complicated, and there

can be additional gluon radiation by the initial state quarks (next-to-leading-order) and even radiation of

additional quarks (next-to-next-to-leading-order), as well as final state photon radiation and virtual loop

corrections. It is vitally important that these higher order corrections are calculated accurately, so that the

predicted cross section best describes the experimental observables.

Calculating higher order corrections to the Drell-Yan cross section relies on the factorisation theorem,

which allows one to express the total cross section in terms of universal, non-perturbative infrared long
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range PDF components and a short range ultraviolet hard scattering component [51],

dσ

dQ2
=
∑
i,j

∫
dx1dx2

(
qi(x1, Q

2) · qj(x2, Q
2) · σi,j(Q2, µr, µf )

)
. (2.25)

The term σi,j(Q
2, µr, µf ) is the partonic hard scattering cross section and is the short range component

of the factorised cross section, which must be calculated using pertubation theory. The long range

components are the parton distribution functions (qi,j), and as discussed are measured experimentally. The

hard scattering cross section has contributions from the leading order prediction, electroweak radiative

corrections and perturbative QCD corrections,

σi,j = σLO
i,j (1 + δQCD

virtual + δphoton
virtual + δweak

virtual) + σreal,photon
i,j + σreal,QCD

i,j . (2.26)

The factors δvirtual describe the virtual corrections to the leading order matrix element, which, as

will be discussed in the next section, has contributions from QCD and electroweak processes while the

real contributions are a result of initial or final state QCD or QED radiation. The renormalisation (µr)

and factorisation scales (µf ) are introduced to eliminate UV and IR divergences respectively. Many

calculations use the minimal subtraction (MS) renormalisation scheme [52, 53] with both scales are set to

M2 = Q2.

2.4.2 NLO electroweak corrections

At next-to-leading-order (NLO) there are virtual corrections to the Drell-Yan cross section due to diagrams

with a single loop containing aW , Z or a photon, and real corrections due to the emission of a single

photon. Examples of some of the one-loop diagrams which contribute to virtual EW corrections can be

found in Figure 2.3. The following discussion uses the theoretical framework outlined in Refs. [54, 55].

W W

q

q̄

`

ν`

W

γ

W

W

q

q̄

`

ν`

W

q2

γ

`

q1 ν`

q2 `

Figure 2.3: Examples of NLO one-loop electroweak virtual corrections.

Virtual corrections

Higher order virtual corrections affect both the propagator and coupling constant of the process [54], both

of which impact the calculation of the matrix element (cross section). Different schemes are available

which parameterise the matrix element as a function of different electroweak quantities which are free

parameters. One of the most popular EW schemes for hadron-hadron colliders is the Gµ scheme, which
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uses the relationship between the weak coupling (g) to the Fermi constant (Gµ) and theW (Z) mass,mW

(mZ),

Gµ√
2

=
g2

8m2
W

(1 + ∆r), (2.27)

where ∆r represents the radiative corrections to muon decay [56]. The effective weak coupling at

tree-level is then given by

g2 = 4
√

2Gµm
2
W (1−∆r) (2.28)

with an effective electromagnetic coupling of

αGµ =

√
2Gµ sin2 θWm

2
W

π
, (2.29)

which differs from the fine structure constant (α) as a result of higher order effects. These effective

couplings permit the calculation of higher-order cross sections by pertubatively expanding the matrix

element to the desired order in the couplings. The one-loop virtual amplitude (Mvirt
α ) has contributions

from counterterm, self-energy, vertex and box corrections. This amplitude is added to the Born level

amplitude (M0), which is the parton level matrix element in the absence of higher order corrections,

M =M0 +Mvirt
α + ... . (2.30)

In the Feynman-’t Hooft gauge [39], theW , Z and Zγ interference propagators at one-loop [54, 55]

are given by,

PW = (−igµν)
1

s−m2
W + iΓWmW

(
Re(ΠWW (s)) + δm2

W + (s−m2
W )δΦW

) 1

s−m2
W

, (2.31)

PZ = (−igµν)
1

s−m2
Z + iΓZmZ

(
Re(ΠZZ(s)) + δm2

Z + (s−m2
Z)δΦZ

) 1

s−m2
Z

, (2.32)

PZγ = (−igµν)
1

s−m2
Z + iΓZmZ

(
Re(ΠγZ(s)) +

(s−m2
Z)

2
δΦγZ +

1

2
δΦZγ

)
1

s
, (2.33)

where ΠW (Z) is the transverse part of theW (Z) self-energy corrections, δm2
W (Z) is theW (Z) mass

renormalisation constant and ΦW (Z) is the wave function renormalisation constant. In practice, matrix

elements are calculated numerically using specially designed software packages, an example of which is

MCSANC [57].
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Real corrections

In addition to the virtual corrections, there are real corrections to the cross section due to the emission of

Bremsstrahlung photons, by far the biggest radiative correction to the Drell-Yan process. Photon emission

can come from any of the charged particles involved in the process, and impacts both the cross section

of the process and experimental observables. Inclusion of higher-order effects can significantly shift the

value of theW mass by values which are comparable with the experimental precision of measurements at

hadron-hadron colliders [58]. For example, a measurement of theW boson mass at ATLAS yielded an

experimental value ofmW = 80370± 19 MeV [59]. QED final state radiation of γ∗ → `` contributes

a systematic uncertainty of 0.8 to 4.4 MeV, a considerable fraction of the total uncertainty of the final

measurement. 2

The NLO Bremsstrahlung corrections can be split into two distinct hard and soft regions, where the

sum of the two contribute to the NLO matrix element

M1 =Msoft
1 +Mhard

1 . (2.34)

Below the photon energy threshold (∆E) the photon is considered as soft and does not modify the

kinematics of the leading order process. In this region the matrix element is proportional to the Born level

matrix element, where the proportionality factor depends only on the charge (qi) and momentum (pi) of

the external particles [60],

Msoft
1 = −eM0

∑
i

±qi
εpi
kpi

, (2.35)

where k is the momentum of the radiated photon and ε is the photon polarisation vector. The soft

photon cross section can then be calculated by squaring the matrix element and integrating over the photon

polarisations and phase space, requiring the photon energy to satisfy λ < E < ∆E. The photon mass (λ)

must be introduced to avoid infrared divergences [60], and the sum of the real and virtual corrections is

independent of the choice of λ, provided λ is sufficiently small. Furthermore, the sum of the soft and hard

photon contributions is independent of the photon energy threshold ∆E.

Above the photon energy threshold radiated photons are considered hard and change the kinematic

properties of the radiating fermions. While the soft photon contribution can be calculated exactly

analytically, the hard photon contribution must be calculated numerically using programmes such as

PHOTOS [61], which computes radiative corrections as a result of single- or multiple-photon emission.

The squared matrix element is integrated over the phase space defined by ∆E < E < Emax to obtain the

2The systematic uncertainty associated with physics-modelling is ±14MeV, with statistical and experimental systematic
uncertainties of ±7MeV and ±11MeV respectively.
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hard photon contribution to the cross section.

Photon induced processes

At the high-energies achieved by hadron colliders such as the LHC, the quarks inside the proton can also

radiate photons in addition to gluons, leading to the formation of a photon sea inside the proton [62]. As

such, both neutral and charged-current Drell-Yan processes receive corrections as a result of so called

photon-induced processes, where a quark interacts with a photon, for example processes such as γγ → ``

(LO) and γq → q′`ν, γq → ``q′ (NLO). In charged-current Drell-Yan interactions these effects are quite

small [63], however they can become large in the neutral-current, particularly at high (low) dilepton

invariant masses [64]. This can become important when performing searches for new heavy gauge bosons

with masses in the TeV range, and for neutral-current Drell-Yan precision measurements at low masses

(m`` < 60 GeV).

2.4.3 QCD corrections

Higher order QCD effects are calculated using perturbative QCD, which relies on the asymptotic freedom

of the strong coupling constant which becomes small for extremely small distances (high energies).

Perturbative QCD can be used to expand the cross section to the desired order in the strong coupling

constant, with most modern predictions going to order α2
S (NNLO) [65, 66, 67]. Recent advancements

have also been made in the calculation of next-to-next-to-next-to leading order (N3LO) corrections [68].

Experimental observables such as the transverse momentum of final state leptons are sensitive to

further QCD radiation. At LO, the transverse momentum of the produced boson (pVT ) is zero, and NLO

is the first perturbative order with a non-zero boson transverse-momentum due to initial state parton

emissions. Programmes such as FEWZ [69, 70] and DYNNLO [65, 71] are used to calculate differential

cross sections at NNLO. Calculations of theW boson transverse-momentum differential cross section

agree with the observed data in pp data produced at
√
s = 7 TeV to within 20% [72], with the agreement

improving towards high pWT .

Similar to the case of EW higher order corrections, in QCD there are both virtual and real corrections,

resulting from initial state gluon radiation and loop corrections respectively. At NLO, real corrections

are the result of the emission of a single hard gluon, which is reconstructed as an additional jet; virtual

corrections arise due to diagrams with a single loop. These contributions are individually infrared divergent

but are convergent when the sum of both effects are taken into account [65]. At NNLO there are three

processes which contribute: the emission of two initial state gluons (real-real), diagrams with an ISR

gluon at one-loop level (real-virtual) and diagrams at two-loop level (virtual-virtual). Again these three

contributions are separately divergent and must be summed together to cancel out the divergences.
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The NNLO cross section is given by,

σVNNLO = HVNNLO × σVLO +
(
σV+jets
NLO − σ

CT
NLO

)
, (2.36)

whereHVNNLO is the perturbative expansion of the of the hard scattering up to order α2
S ,

HVNNLO = 1 +
αS
π
HV1 +

(αS
π

)2

HV2 . (2.37)

The theoretical form of HV1 is known through perturbative expansion, and HV2 can be calculated

analytically [65]. The counter term (σCTNLO) accounts for the divergent behaviour of σ
V+jets
NLO in the limit of

zero transverse momentum [73] and σV+jets
NLO is the cross section for V production in association with an

additional hard jet. Both σCTNLO and σV+jets
NLO can be calculated accurately using the so-called subtraction

procedure [74].

2.4.4 Combining higher order electroweak and QCD corrections

Once NNLO QCD and NLO EW (excluding FSR3) cross sections are obtained they must be combined in

order to calculate state-of-the-art theoretical predictions. A practical approach to this problem is to use

mass-dependent k-factors [75], defined as follows,

kQCD =
σNNLOQCD

σLOQCD

, (2.38)

kfactEW =
σLOQCD,NLOEW

σLOQCD

, (2.39)

kaddEW = 1 +
σLOQCD,NLOEW − σLOQCD

σNNLOQCD

, (2.40)

where the ratio of the higher order QCD and EW cross sections relative to the LO QCD cross section

provides a measure of the shift due to the higher order effects. This formalism requires that whatever PDF

is used to calculate the highest order QCD term is also used to calculate the LO QCD (EW) term. Each

of these k-factors is calculated as a function of the Born level invariant mass of the boson in order to

encapsulate the main kinematic dependence, which is then applied as an additional weight to simulated

Drell-Yan Monte Carlo events(Section 3.6)

The superscripts "fact" and "add" refer to the two main methods of using these k-factors to obtain a

state-of-the-art NNLO QCD + NLO EW (except QED FSR) cross section prediction: the factorised and

additive methods. The factorised method assumes that the fractional higher order EW corrections are the
3QED final-state-radiation is modelled in Monte Carlo simulations using programmes such as PHOTOS [61]. In the context of

this discussion (Eq. 2.41-2.44), EW refers specifically to higher-order electroweak except QED final state radiation.
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same for all orders of QCD, and can therefore be determined relative to the leading order calculation and

applied to any higher order,

σNNLOQCD+NLOEW
= kQCD × kfactEW × σLOQCD

(2.41)

=
σNNLOQCD

σLOQCD

×
σLOQCD,NLOEW

σLOQCD

× σLOQCD
. (2.42)

The additive method assumes that the NLO EW (except QED FSR) cross section contribution is the

same for all orders of QCD and can be added to the predicted cross section. Since the EW contribution is

the same for each order in QCD, the fractional EW correction varies depending on the order in QCD,

σNNLOQCD+NLOEW
= σNNLOQCD

× kaddEW, (2.43)

= σNNLOQCD
×
(

1 +
σLOQCD,NLOEW

− σLOQCD

σNNLOQCD

)
. (2.44)

Predictions for combined NNLO QCD + NLO EW are obtained using the additive method. A

systematic uncertainty is estimated by calculating the difference with respect to the results obtained

using the factorised method which is then symmetrised. These techniques are utilised to estimate the

Drell-Yan related background in exotic searches such as that presented in Chapter 5, and for high-precision

measurements of Drell-Yan production cross sections in pp collisions at ATLAS [38].
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Chapter 3

Experimental setup

This chapter presents an outline of the accelerator complex at the Large Hardon Collider and introduces the

ATLAS detectors subsystems and how they are used to reconstruct particles from pp collisions. Particular

focus is placed on the reconstruction of leptons and missing energy, as these are the primary objects dealt

with in the analyses presented within (Chapters 4-5).

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [76], measuring 27 km in circumference and operating at a centre-

of-mass energy of 13 TeV throughout Run 2, is the largest and most powerful particle collider in the

world. Based at CERN, the LHC occupies the former Large Electron Positron (LEP) collider tunnel, with

installations beginning in 1998 and finishing in 2008. While LEP collided beams of electrons and positrons,

the LHC primarily collides beams of protons, although heavy ion collisions also take place. Herein all

discussions will pertain to proton-proton (pp) collisions as the dataset which is the focus of this thesis is a

pp dataset recorded by the ATLAS detector [77]: one of the four main detector experiments based at CERN,

the other three being ALICE [78], CMS [79] and LHCb [80]. Each of these experiments is positioned at

one of the four LHC interaction points (IPs - the point at which the primary beam collisions take place),

and record the resulting particles produced by the colliding beams in order to measure properties and

interactions of the fundamental particles of the Standard Model.

The protons which are accelerated around the LHC beamline are produced using a simple bottle of

hydrogen gas. These hydrogen atoms are then passed through an electric field, in order to strip them of

their electrons, and are then accelerated incrementally through a chain of accelerators in order to achieve

an energy of 6.5 TeV. The layout of these accelerators is presented in Figure 3.1.

The first accelerator is Linac 2, which, as the name suggests, is a linear collider that accelerates the
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Figure 3.1: Schematic layout of the CERN accelerator complex. Figure source: [81].

protons to an energy of 50 MeV. Acceleration is achieved by means of radiofrequency (RF) cavities,

which are metal chambers constructed in such a way as to contain a resonant electromagnetic field. When

charged particles pass through this cavity at the same frequency as the resonant field, a force is applied

along their direction of motion, thereby accelerating them to higher energies. The protons then pass into

the Proton Synchrotron Booster (PSB), a circular accelerator where they are accelerated to an energy of

1.4 GeV. Consisting of four superimposed rings of 50 m diameter, the PSB is a synchrotron accelerator

and works by accelerating particles whilst simultaneously keeping them on an orbit of constant radius.

Acceleration is again achieved by using RF cavities, while a varied magnetic field is used to ensure the

particles remain on a constant trajectory, as the bending achieved by a magnetic field is proportional to

both the field strength and the velocity of the particle in question. Therefore, as the particles accelerate the

magnetic field strength is also increased such that their radius of orbit remains constant.

The next stage in the acceleration is also provided by a synchrotron accelerator, the Proton Synchrotron

(PS), which operates according to the same principles and accelerates the protons to 25 GeV. In addition to

accelerating the beam, the PS also splits the beam into bunches by separating the beam longitudinally and

merging/splitting bunches until the desired bunch structure is achieved. In the most common configuration,

successive bunches are separated by 25 ns, which corresponds to a distance of 7.5 m between each bunch

at 6.5 TeV. Each bunch contains approximately 1.15×1011protons and has a width of around 3.5µm.
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These bunches are then injected into the Super Proton Synchrotron (SPS), where they are accelerated

to 450 GeV, before finally being injected into the main LHC beamline. Further acceleration is obtained

by 16 RF cavities placed around the main LHC beamline, increasing the energy of the beams from

450 GeV to 6.5 TeV. To keep the bunches on their circular orbit, magnetic fields are used to provide

force perpendicular to both the direction of the field and the velocity of the bunches. Dipole magnets are

responsible for keeping the particles on their trajectory, while quadrupole, sextupole and octupole magnets

are used to keep the beam focused [82]. Once the proton bunches have achieved an energy of 6.5 TeV

collisions begin at each of the LHC interaction points, starting what is known as an LHC fill. Collisions

continue to occur until the beam is dumped, at which point data-taking stops.

3.2 The ATLAS detector

ATLAS (A Toroidal LHC ApparatuS) is a general purpose detector experiment positioned at IP4 on the

LHC beamline [83] and was installed between 2003 and 2008 with data first recorded later that same year;

the first good-for-physics data was recorded in 2010. ATLAS is designed to perform a range of different

measurements of physics phenomena, ranging from precision tests of the Standard Model to searches for

new physics beyond. ATLAS is a collection of subdetectors, all working in unison to provide optimal

reconstruction of various final state objects. A schematic view of the ATLAS detector can be seen in

Figure 3.2 illustrating the positions of the various subdetectors, a description of which will be given in the

subsequent sections.

Figure 3.2: Schematic view of the ATLAS detector indicating the various subsystems. Figure source: [84].
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ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the

centre of the detector and the z-axis along the direction of the LHC beam 2. The x-axis points from the

IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used

in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in

terms of the polar angle θ as

η = − ln

(
tan

θ

2

)
. (3.1)

Eq. 3.1 shows that the pseudorapidity is zero when θ = π/2, and is infinite when θ = 0. These two

scenarios correspond to being perpendicular and collinear with the beam line respectively. Psuedorapidity

is related to rapidity y, in the relativistic limit where a particles energy far exceeds its rest mass,

y =
1

2
ln

(
E − pz
E + pz

)
(3.2)

=
1

2
ln

(√
p2 +m2 − pz√
p2 +m2 + pz

)
(3.3)

In the limit where p >> m, both the numerator and denominator can be binomially expanded, the

numerator being equal to cos2 θ
2 and the denominator sin2 θ

2 ; Substituting the identity tan θ
2 =

cos θ2
sin θ

2

yields Eq. 3.1. This is a useful quantity as it is far easier and faster to calculate in complex proton-

proton collisions at the LHC. Angular distance is measured in units of the Lorentz invariant quantity

∆R =
√

(∆η)2 + (∆φ)2.

3.2.1 Inner detector

The first component of the ATLAS detector which particles interact with is the tracking system known as

the Inner Detector (ID). The ID consists of four separate systems which together can measure the direction,

momentum and charge of the particles it interacts with. These are, in order of radial distance from the

beampipe, the Insertable B-Layer (IBL), the Pixel Detector, the Semiconductor Tracker (SCT) and the

Transition Radiation Tracker (TRT). A schematic diagram of the Inner Detector can be seen in Figure 3.3.

The entire system is immersed in a 2 T magnetic field parallel to the beamline. This magnetic field is

provided by the central solenoid and is necessary in order to extract information on a particles charge and

momentum.

The IBL is the closest component to the beamline and was installed during Long Shutdown 1 in order

to mitigate the effects of accumulated radiation damage and bandwidth limitations, and maintain full ID

tracking performance throughout Run 2 [85]. The IBL consists of 14 staves of width 2 cm and length
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Figure 3.3: Cross section of the ATLAS Inner Detector without the Insertable B-Layer. Figure source: [77].

64 cm, each of which supports 20 pixel sensor modules made up of 250× 50 µm2 pixels1. Two types

of sensors are used, planar and 3D, with approximately 12 million total pixels throughout the IBL. The

addition of the IBL improves the tracking resolution of low-pT tracks: the z0 and d0 resolution of 1 GeV

tracks increased by a factor of approximately 2 with the addition of the IBL [86].

The Pixel Detector is the second closest component to the beamline and uses 50× 400 µm2 silicon

pixels with resolution of 14 µm2 × 115 µm2 as the active material. These pixels consist of n-doped silicon

on the readout side and a p-n junction on on the back side. This p-n junction has a depletion zone, where

there are essentially no free holes or electrons. When a charged particle passes through electron hole pairs

are created. A bias voltage is applied which causes the electrons and holes to drift across the pixel, and

the electrical signal is read out if it exceeds a certain threshold. This constitutes a hit in the sensor. In

total there are 80 million such pixels that make up the Pixel Detector, arranged in three concentric barrels

around the beamline, as well as three disks in each end cap. The barrel layer is the curved surface of the

cylindrical detector, and the end caps are the flat edges.

After particles interact with the Pixel Detector, they then move into the SCT which uses strips of

silicon as the active material. Pairs of strip sensors are glued back-to-back at an angle of 2.3° to provide

tracking information in 2-dimensions. The entire SCT system consists of a barrel of 2112 modules, where

a module is defined as a pair of strip sensors, as well as 1976 more modules in the end caps (988 in each).

Both the Pixel Detector and the SCT have pseudorapidity coverage up to |η| < 2.5.

The final Inner Detector component is the TRT. Operating within pseudorapidities of |η| < 2.0, the

TRT consists of 300,000 straw tubes of 4 mm diameter. There are 50,000 such tubes in the barrel layer

(|η| < 1.0), each of which is 144 cm long, while in the endcaps (1.0 < |η| < 2.0) there are 250,000 tubes

1In (φ, z) space.
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of 39 cm length. In the barrel layer the tubes are aligned with the beamline and each end of the tube is

read out separately, while in the endcaps the tubes are arranged perpendicularly to the beamline and there

is a single readout channel per tube; meaning that there are 350,000 distinct readout channels.

Each of these tubes is made up of a central anode (30 µm gold-plated tungsten wire), surrounded by

a gas-mixture of 70 % Xenon, 27% CO2 and 3% Oxygen encased in a 60 µm thick multi-layer film of

carbon-polyimide-aluminum-Kapton-polyurethane acting as a cathode. Particles passing through can

ionise this gaseous mixture, and the subsequent electrons can be read out as an electrical signal. Transition

radiation is also produced when a highly relativistic particle crosses the boundary between two materials

of different dielectric constants. The amount of radiation produced is proportional to the relativistic γ

factor (γ = E/m), which is much larger for electrons than pions, for instance. This provides a rudimentary

identification of the type of particle passing through the TRT.

3.2.2 Calorimetry

The ATLAS electromagnetic calorimeter (ECAL) consists of a cylindrical barrel around the beamline

and two endcaps. Liquid argon is used as the active material, in an accordion design with lead absorbers

layered throughout. Ionisation caused by the showering particles is measured directly from the liquid

argon with readout electrodes. The ECAL has pseudorapidity coverage up to |η| < 4.9, however the

granularity becomes coarser outside of the region |η| < 2.5. The barrel (|η| < 2.5) region has granularity

∆η×∆φ = 0.025×0.025, while the endcaps (2.5 < |η| < 4.9) have granularity∆η×∆φ = 0.125×0.125.

The electron energy scale can be measured with uncertainties of around one per-mille in the barrel region

and two to five per-mille in the endcaps, while the energy resolution is less than 1% in the barrel region and

around 1-2% in the endcaps [87]. The high precision of the barrel region provides precise measurements

of electrons and photons in this region (muons do not interact much with the ECAL), while the endcaps

provide important information in the determination of the missing energy component (Section 3.4.4). The

region between 1.37 < |η| < 1.52 contains non-active materials necessary to cool the detector, and as

such is usually excluded from the fiducial region of most precision analyses.

The hadronic calorimeter (HCAL) also uses liquid argon calorimeters for the end cap and forward

calorimeters and tile calorimeters for the barrel region. The barrel component covers the pseudorapidity

range up to |η| < 1.7, and consists of scintillating tiles as the active material with steel providing absorption.

Photons are produced in the scintillating material by the particles of the hadronic shower, which can

then be read out by photomultiplier tubes. The endcap component (1.5 < |η| < 3.2) operates in the

same way, using copper as the absorbers and liquid argon as the active material. The forward calorimeter

(3.1 < |η| < 4.9) consists of three modules of increasing radial distance from the interaction point. The

module closest to the interaction point uses copper as the absorbing material and is an electromagnetic
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calorimeter; the remaining two modules are made mostly of tungsten and are used to detect hadronic

activity.

3.2.3 Muon spectrometer

Muons produce significantly less Bremsstrahlung than electrons due to their large mass, approximately

200 times larger than the electron. Therefore, muons are not stopped by the ECAL system, and since they

do not interact strongly they also pass through the hadronic calorimter. As a result, the Muon Spectrometer

(MS) is the outermost piece of the ATLAS detector and along with the ID provides tracking information

for muons. The entire system is immersed in a magnetic field, provided by three toroidal magnets - one

for the barrel and one for each endcap.

The MS consists of 4 different types of chambers: monitored drift tubes (MDTs), cathode strip

chambers (CSCs), resistive plate chambers (RPCs) and thin gap chambers (TGCs). Each of these chambers

cover different pseudorapidity regions of the Muon Spectrometer, as detailed in Table 3.1.

Pesudorapidity range Sensor
|η| < 1.05 Resistive plate chambers

1.05 < |η| < 2.4 Thin gap chambers
|η| < 2 Monitored drift tubes

2 < |η| < 2.7 Cathode strip chambers

Table 3.1: Types of sensor used in each region of the muon detector.

The barrel region is covered by three concentric layers of resistive plate chambers and monitored drift

tubes, while the endcaps consist of 4 wheels composed of thin gap chambers and monitored drift tubes.

Precision measurement of tracks is handled by MDTs over most of the pseudorapidity range, which work

in a similar manner to the TRT of the Inner Detector. CSCs are high granularity multiwire proportional

chambers and are used in the forward region to withstand the demanding rates (up to 100 kHz) which

would not be well suited to MDTs. The RPCs and TGCs are gaseous ionisation chambers and provide

trigger information for the barrel and endcap regions respectively.

3.2.4 ATLAS trigger system

In the nominal configuration bunches in the LHC are separated by a 25 ns gap, leading to a bunch crossing

rate of 40 MHz. If all of the information from these collisions were to be stored to disk, the data-rate would

be approximately 60 TB/s, which is completely infeasible based on the bandwidth of the data-acquisition

system and the available disk space. Hence, ATLAS uses the trigger system to select events which could

contain interesting physics objects such as muon [88], electron [89], photon, tau lepton, jet, and b-jet

candidates, as well as significant amounts of missing energy. Triggers are even defined to select events
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with different combinations of physics objects, for example ee, µµ or even eµ

There are two levels to the ATLAS trigger system [90]: the hardware based level-1 trigger (L1), which

reduces the output rate from 40 MHz to 100 kHz in 2.5 µs; and the software based high-level trigger (HLT),

which further reduces the output rate from 100 kHz to 1 kHz within a few seconds. The L1 trigger is

comprised of multiple detector subsystems, primarily the L1Calo [91] and L1Muon [92] systems. The

L1Calo system uses information from the electromagnetic and hadronic calorimeter systems by combining

individual cells into trigger towers of size ∆η ×∆φ = 0.1× 0.1. The L1Muon system provides a rough

measurement of muon candidates transverse momentum, pseudorapidity and azimuthal angle using the

RPC system in the barrel and the TGC system in the endcaps. All of this information is fed to the Central

Trigger Processor (CTP) [93], which then decides whether to accept or reject the event based on the tower

energies and muon pT with respect to predefined thresholds.

Once an event has been accepted by the L1 trigger, it is buffered in the Read-Out System (ROS)

before being processed by the HLT. The HLT uses the full granularity of the calorimeter information, as

well as incorporating information from the Inner Detector and Muon Spectrometer to allow for better

identification of lepton and high-pT jet signatures. If an event is selected by the HLT it is stored in local

storage at the site of the ATLAS detector before being passed to the Tier-0 computing facility for offline

reconstruction. There are many different trigger menus to cover the range of signal topologies measured

at ATLAS, ranging from events with high-pT electrons or muons, large missing energies, high-pT jets and

many more. These triggers are designed for precision measurements of Standard Model particles such as

the Higgs,W and Z bosons, as well as searches for physics beyond the Standard Model such as heavy

gauge bosons, supersymmetric particles and leptoquarks.

3.3 Luminosity determination at ATLAS

Instantaneous luminosity (Linst.) is a measure of how many collisions occur per unit time and per cm−2,

and is the proportionality factor between the production rate (dNdt ) of a particle and its cross section (σ),

dN

dt
= Linst.(cm2) · σ(cm−2). (3.4)

The instantaneous luminosity for a single colliding bunch pair is given by

Linst.
b =

frn1n2

2πΣxΣy
[cm−2 s−1], (3.5)

where fr is the revolution frequency of the colliding bunches, n1,2 are the bunch populations of the

colliding bunches and Σx,y are the convolved beam sizes in the x and y planes. This can be integrated
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over a given time period to obtain the integrated luminosity delivered to the detector.

The primary luminometer (luminosity measuring device) in ATLAS is the Cherenkov radiation detector

LUCID [94]. LUCID consists of 32 photomultiplier tubes (PMTs) placed either side of the interaction

point at a distance of 17 meters (16 photomultipliers on each side). Cherenkov light is produced in the

quartz windows of the photomultipliers as charged particle pass through, which can then be read out as

an electronic signal. The measured number of hits (signal over threshold) in the PMTs is converted to a

visible interaction rate per bunch crossing (µvis), which can in turn be divided by the visible cross section

(σvis) to obtain a luminosity estimate,

Lb =
µvis · fr
σvis

. (3.6)

Since LUCID is not 100% efficient, the visible interaction rate is the product of the detector/algorithm

efficiency and the total interaction rate (µvis = ε · µ). The total interaction rate, or the number of inelastic

proton-proton collisions per bunch crossing, is known as the pileup parameter (µ = µvis

ε ), and is a result

of the fact that there are many protons in each colliding bunch. This type of pileup is also known as

in-time pileup, but is commonly referred to simply as pileup. In contract, out-of-time pileup is a result of

additional proton-proton collisions occuring in bunch crossings either just before or just after the current

collision. The visible cross section is the fraction of the total inelastic cross section (σinel) which is

measured by the detector (σvis = σinel · ε).

The visible cross section is measured using the van der Meer (vdM) scan calibration procedure [95].

The vdM calibration method works by sweeping the colliding beams through different beam separations in

the x− y plane. By measuring any quantity (R) that is proportional to luminosity as a function of beam

separation (∆x or ∆y), the convolved beam size can be measured,

Σx(y) =
1√
2π

∫
R(∆x(y))d∆x(y)

R(0)
. (3.7)

R(∆x(y)) is the instantaneous luminosity as a function of beam seperation and R(0) is the peak

instantaneous luminosity. The total normalisation of these two values cancels, hence any quantity which

is proportional to instantaneous luminosity can be used to perform the measurement. Figure 3.4 shows the

visible interaction rate of the LUCID lucBiHitOR algorithm during the 2016 vdM scan [96]. A scan curve

is fit to this data using a Gaussian function multiplied by a polynomial to extract the maximum interaction

rate (µmax
vis ) and the convolved beam size, which is taken as the standard deviation of the distribution.
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Figure 3.4: Visible interaction rate per bunch crossing and per unit bunch-population product for the
LUCID algorithm (lucBiHitOR) versus nominal beam separation during horizontal scan 1 in the May
2016 luminosity-calibration session. The total rate is shown as red circles, and the background-subtracted
rate as magenta squares. The background-subtracted rate is fitted by a Gaussian multiplied by a sixth-order
polynomial (dashed curve). The error bars are statistical only. Figure source: [96].

Once the maximum interaction rate and the convolved beam sizes in the x − y planes have been

measured, the visible cross section can be measured by

σvis = µmax
vis

2πΣxΣy
n1n2

, (3.8)

where n1 and n2 are the bunch populations. Throughout Run 2, vdM scans were performed once

per-year at ATLAS and used to calibrate the luminosity delivered during that period.2 Relative luminosity

measurements from various detectors/algorithms are used to constrain the potential shift in calibration

throughout the year; this is known as the scan-to-scan reproducibility uncertainty.

vdM scans are performed during special running periods with low-luminosity/pileup and isolated

bunches. Since the van der Meer scan is performed under conditions vastly different to the standard

ATLAS physics data-taking, the visible cross section calibration must be corrected to account for the

difference in beam conditions. This is done via a procedure known as calibration transfer [96], which uses

a track-based relative-luminosity measurement to correct for the significant non-linearities (with respect

to pileup) in the µvis value measured by LUCID in the data-taking regime.

As luminosity is a key quantity for most physics analyses, it is important that the associated uncertainty

is as well understood as possible. There are many components to this uncertainty [96], but the dominant

contributions come from the absolute vdM scan calibration, calibration transfer and the long-term stability

(scan-to-scan reproducibility). The long-term stability of the baseline ATLAS luminosity can be monitored

by measuring the relative time-dependent stability of various luminosity measurements. Each of these
2With the exception of 2015 and 2016 which are combined into a single dataset.
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luminosity measurements are normalised to the same integrated luminosity as the baseline ATLAS

measurement in a reference LHC fill, so that the absolute scale of all measurements is the same. The

normalised fill-by-fill integrated luminosity ratio therefore shows the relative stability of each of these

measurements over the course of the data-taking period. The long-term stability can be evaluated by

calculating a stability band which encloses the bulk of the points, providing an estimate of the systematic

uncertainty associated with the baseline ATLAS luminosity. Chapter 4 will discuss a new method for

monitoring the stability of the baseline ATLAS luminosity estimate by measuring the production rate of

the Z boson.

3.4 Object reconstruction

ATLAS records data as electrical signals in different sub-components of the detector. This data is then

subject to high-level reconstruction to extract information on the particles which produced these signals,

such as their transverse momentum, pseudorapidity, charge etc. This section will detail the reconstruction

of the main physics objects used in the analyses presented in this thesis; namely electrons, muons and jets.

Other objects such as photons and taus can be reconstructed by the ATLAS detector [84], but will not be

discussed herein as they are not pertinent to the analyses presented.

3.4.1 Electron reconstruction

Electron reconstruction at ATLAS starts with a seed cluster in the electromagnetic calorimeter matched

to a track in the Inner Detector [97], while clusters which have no associated track are reconstructed

as photons. Energy deposits in calorimeter cells are clustered using the superclustering method [98].

This innovative method uses variable sized clusters, which are determined dynamically according to

the kinematics of the specific electron/photon, rather than the fixed size clusters used previously in the

sliding-window algorithm technique at ATLAS [99]. The advantage of this method is that it provides

greater energy recovery due to losses from bremsstrahlung, since the variable sized cluster can pick up on

radiated photons that may be missed when using a sliding-window technique. Clusters are formed from

proto-clusters formed by the topo-cluster reconstruction algorithm [100]. Proto-clusters are formed by

measuring the significance (ψ) of all calorimeter cells by taking the ratio of the energy deposit (E) and

expected cell noise (σ),

ψ =
E

σ
. (3.9)

Cells with |ψ| > 4 are considered as seeds to the cluster, and neighbouring cells with |ψ| > 2
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are added to the cluster and considered as seeds, iteratively repeating the process until no significant

neighbouring cells are found. Once the clustering is complete, these preliminary clusters can then

be processed with the superclustering algorithm. The procedure is similar to the one outlined above,

matching satellite clusters to the main energy cluster [98]. Clusters which are within |∆η| < 0.05 and

−0.10 < q · (φtrack − φclus) < 0.05 3 of an Inner Detector track are considered to be matched, and

correspond to an electron; clusters which have no associated tracks correspond to photons.

Electron identification

Electrons are selected using a likelihood-based identification, using information from the tracking and

calorimeter systems to determine whether an electron candidate is signal- or background-like. Here,

signal-like electrons are prompt leptons coming from the primary vertex, while background-like electrons

refer to non-prompt electrons or jets which have similar signatures as prompt electrons, as detailed in

Ref. [97]. A brief outline of the methodology is presented.

The electron likelihood is calculated by considering the probability density functions for signal

(background)-like electrons (LS(B)),

LS(B)(~x) =

n∏
i

PS(B),i(xi), (3.10)

where ~x is a vector of all the discriminating variables used to calculate the likelihood and PS(B),i(xi)

is the value of the signal (background) pdf for quantity i at value xi. From Eq. 3.10 a discriminant can be

formed for each electron candidate,

dL =
LS

LS + LB
, (3.11)

which has a sharp peak at unity for signal-like electrons, and a sharp peak at zero for background-

like electrons. This is inconvenient, as it would require an extremely fine binning in order to be able

to effectively select working points of varied efficiency. Instead, the inverse sigmoid function of this

discriminant (d′L) is used to determine the cut value for a given working point,

d′L = −τ−1 ln
(
d−1
L − 1

)
, (3.12)

where τ is a constant value set to 15 (explained in Ref. [101]). This inverse sigmoid function transforms

the discriminating variable such that it varies smoothly between 0 and 1, allowing for effective separation

between signal- and background-like electrons without the need for extremely fine binning. Working

3Where q is the reconstructed charge of the track.
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points of varied efficiencies can be defined by a selection on this likelihood-discriminant with some

additional requirements. Figure 3.5 shows the identification efficiency for the Loose, Medium and

Tight likelihood working points. These working points have typical efficiencies of 93%, 88% and 80%

respectively, decreasing as a function of pileup due to deterioration of the discriminating power of the

likelihood-discriminant with increasing pileup.
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Figure 3.5: The electron identification efficiency in data for electrons with ET > 30 GeV as a function
of the average number of interactions per bunch crossing for the Loose, Medium and Tight likelihood
operating points. The efficiencies are measured in Z → e+e− events in data recorded in the year 2017.
The shape of the 〈µ〉 distribution is shown as a shaded histogram. The bottom panel shows the data-to-
simulation ratios. The total uncertainties are shown but are not visible. Source: [98].

The above description corresponds to what is known as likelihood-based identification, which can

be contrasted with cut-based identification. Cut-based identification applies sequential requirements on

selected variables, with an electron candidate passing identification if it passes all requirements. The

benefits of likelihood-based compared to cut-based identification are that if an electron fails a single (or

even multiple) selection criteria, it will not necessarily fail identification completely, since the likelihood

combines the information of all discriminating quantities.

Electron isolation

The activity surrounding an electron can be quantified by both the number of tracks by which it is

surrounded and by the nearby energy deposits in the calorimeter. Therefore, there are two types of isolation

variables: track- and calorimeter-based. An isolated electron has little activity in a surrounding cone

of ∆R =
√

(∆η)2 + (∆φ)2. This is used to further refine the selection and reconstruction of electron

candidates to ensure that the probability that the selected object is a prompt electron is as high as possible.

Track based isolation uses information from the tracking system to build up a discriminating variable
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which is capable of determining (with some efficiency) whether or not an electron is prompt or not. An

isolation variable can then be constructed by calculating the sum of the transverse momenta (psumT ) of all

tracks within a cone of radius ∆R around the electron candidate, excluding the transverse momentum

of the candidate itself. To minimise the pileup contribution, a cut is placed on the longitudinal impact

parameter (z0) of |z0 sin θ| < 3 mm, helping to ensure that the tracks originate from the primary vertex,

and not from pileup activity. A variable radius cone can then be defined as a function of the pT of the

electron candidate,

∆R = min

(
10 GeV
pT[GeV]

, Rmax

)
, (3.13)

where the value 10 GeV is derived from tt̄MC and Rmax is the maximum cone size [97]. This cone

size decreases for high-momentum particles, where it is expected that other decay products can be very

near to the electron candidate, hence a smaller cone is required to identify the isolated electron.

Calorimeter based isolation relies on summing the transverse energies of all topological clusters

around an electron candidates position [100]. This is defined as the raw energy, EisolatedT,raw , from which

is subtracted: the contribution from the electron candidate itself, ET,core, the contribution from leakage

due to energy from the candidate being deposited in adjacent cells, ET,leakage, and finally the pileup,

ET,pileup, and underlying-event contributions,ET,UE . Underlying-event activity refers to additional quark

or gluon scatters in the pp interaction in addition to the primary scattering vertex.

The resulting distribution (Econe
T ) can then be used to define working points of varied efficiency by

applying different selections. Figure 3.6 shows the efficiency of the Gradient, HighPtCaloOnly, Loose and

Tight working points, the selection requirements for which are summarised in Figure 3.7. Similar to the

identification efficiency, the electron isolation efficiency decreases with increasing pileup. This is due to

increased activity in both the inner tracker and calorimeter systems due to the increased number of pp

interactions.
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Figure 3.6: Efficiency of the different isolation working points for electrons from inclusive Z → e+e−

events as a function of the number of interactions per bunch crossing 〈µ〉. The electrons are required
to fulfil the Medium selection from the likelihood-based electron identification. The lower panel shows
the ratio of the efficiencies measured in data and in MC simulations. The total uncertainties are shown,
including the statistical and systematic components. Source: [98].

Working point Calorimeter isolation Track isolation
Gradient ε = 0.1143 × pT + 92.14% (with Econe20

T ) ε = 0.1143 × pT + 92.14% (with pvarcone20
T )

HighPtCaloOnly Econe20
T < max(0.015 × pT, 3.5 GeV) -

Loose Econe20
T /pT < 0.20 pvarcone20

T /pT < 0.15
Tight Econe20

T /pT < 0.06 pvarcone20
T /pT < 0.06

Figure 3.7: Definition of the electron isolation working points and isolation efficiency. In the Gradient
working point definition, the unit of pT is GeV. All working points use a cone size of ∆R = 0.2 for
calorimeter isolation and ∆Rmax = 0.2 for track isolation. Source: [98].
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3.4.2 Muon reconstruction

Three distinct methods are used when reconstructing muon tracks to ensure maximum efficiency across a

broadmomentum spectrum, ranging from as low as 3 GeV to as high as 3 TeV. Muons can be reconstructed

using only the Muon Spectrometer (stand-alone muon); using a combination of Inner Detector and Muon

Spectrometer tracks (combined-muon); using an ID track and an MS segment, where a segment is a

straight line track in an inner muon station (segment-muons).

Muon reconstruction starts by forming segments out of hit information in the MS. Segments are

formed in individual muon stations by using a Hough transformation [102], and can then be combined

into a preliminary muon track by performing a global χ2 fit [103]. Standalone muons which do not have

any associated Inner Detector track information are formed in this way, while combined muons can be

formed by combining this preliminary MS track with a matched ID track and performing a track fit. Muon

reconstruction efficiency is close to 99% in the fiducial region |η| < 2.5 and pT > 5 GeV, with a relatively

flat momentum resolution of approximately 2%, rising to 3% at pµT = 2 TeV [104].

3.4.3 Jet reconstruction

The process of jet reconstruction is very similar to the procedure used to reconstruct electrons (Eq. 3.9).

Calorimeter cells are clustered by considering the cell significance (ψ) of all calorimeter cells, which is

defined as the ratio of the energy deposited in the cell (E) and the expected ambient noise (σ). From the raw

calorimeter data topological clusters are formed by iteratively merging proto clusters with neighbouring

cells above the noise threshold of ψ > 2 [100]. Jet clustering algorithms can then be applied to topological

clusters to reconstruct jet objects, with themain algorithm used at ATLAS being the anti-kT algorithm [105]

with a distance parameter of ∆R =
√

(∆η)2 + (∆φ)2 < 0.4. An additional threshold is applied requiring

the energy of the jet candidates to be greater than 7 GeV. Once the jet candidates have been constructed,

they must be calibrated to particle level using a jet energy scale (JES) correction factor [106, 107, 108].

These corrections are derived from Monte Carlo in order to account for differences in the truth-level

and reconstruction-level detector response, and are then applied as scale factors as a function of the jet

four-momentum [109]. Further considerations can be made for the jet energy resolution, but these are

usually considered as systematic uncertainties rather than scale factors applied as a correction.

The above description applies to what is known as EMTopo jet reconstruction, which has been used by

ATLAS throughout Run-1 and Run-2. Another method of jet reconstruction is known as particle flow,

which utilises the trackers ability to accurately reconstruct charged particles and the calorimeters ability to

reconstruct both charged and neutral particles [110, 111]. Making use of tracking information allows for

better pileup rejection by identifying tracks which are not associated with the primary vertex and removing
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them and their associated calorimeter cluster from the reconstruction. In order to avoid double counting

when using the tracking information, the track energy must be subtracted from the associated calorimeter

cluster. This is achieved by matching each track in the ID to a single topological cluster based on their

angular separation,

∆R =

√(
∆φ

σφ

)2

+

(
∆η

ση

)2

, (3.14)

where ∆φ (∆η) is the distance between the track and topo-cluster barycentre in angular coordinates

and σφ (σφ) is the width of the topo-cluster. Tracks and topo-clusters are matched by minimising ∆R, i.e.

the track-cluster pair with the smallest value is paired. Similar to the EMTopo jet reconstruction method,

particle flow jets are reconstructed using the anti-kT algorithm, where the inputs are energy-corrected

topological clusters and the selected tracks coming from the primary vertex.

3.4.4 Missing energy reconstruction

Missing energy (Emiss
T ) refers to an imbalance of energy deposited inside the detector volume, a result

of particles passing through the detector without interacting/depositing their energy. The only example

of such a particle in the Standard Model is the neutrino, but many searches are performed at ATLAS

for particles with similar signatures (the neutralino for example). Colliding beams at the LHC have no

transverse component to their momentum, so the net pT in the initial state is zero. As a result of the

conservation of four-momentum, the final state must also have pT = 0. The presence of neutrinos can

therefore be detected by reconstructing the momentum imbalance of all particles inside the detector volume.

This is done by taking the vector sum of the transverse momenta of all reconstructed particles, which is

equal and opposite to the missing energy,

∑
reco

pT + Emiss
T = 0. (3.15)

Expanding Eq. 3.15 over all reconstructed particles and rearranging for the missing energy gives,

Emiss
T = −

∑
selected
electrons

pe
T −

∑
selected
photons

pγT −
∑

selected
τ -leptons

pτhadT −
∑

selected
muons

pµT −
∑

selected
jets

pjet
T

hard term

−
∑
unused
tracks

ptrack
T

soft term

. (3.16)

The main distinction in Eq. 3.16 is between the hard and soft terms. The hard term takes into account all

reconstructed objects associated with an event after final selection and calibration, usually corresponding

to the high-pT objects in the event. This means that the four-momentum of selected particles and jets is
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known as accurately as possible, leading to a better measurement of the missing transverse energy. Only

particles and jets which pass the event selection criteria defined by the analysis are considered in the

calculation of the hard term, otherwise their tracks are included in the soft-term. This ensures that there is

a consistent definition between what is considered as a hard object in the analysis and what is considered

in the hard term of the Emiss
T .

The soft term is constructed by taking the vector sum of the pT of all tracks associated with the hard-

scatter vertex that are not associated with any high-pT (hard) object. Typically the soft term is calculated

using tracking information exclusively from the Inner Detector (track-based soft term), however, there is

also a calorimeter-based soft term which uses calorimeter clusters to calculate the Emiss
T soft term, albeit

with worse resolution due to residual pileup effects in the calorimeter [112].

3.5 The ATLAS Run 2 dataset

This thesis will focus on the pp dataset recorded by ATLAS at
√
s = 13 TeV throughout Run 2 (2015 –

2018), an overview of which is given in Table 3.2. As discussed in Section 3.3, the luminosity delivered

to ATLAS is recorded by the Cherenkov radiation detector LUCID. Approximately 5% of the delivered

luminosity is not recorded by ATLAS due the data acquisition system (DAQ) not being 100% efficient. In

addition to this, a small amount of data is not recorded due to the time it takes for the ATLAS tracking

detectors to ramp up their high-voltage systems and the turning on of the pixel system’s preamplifiers.

Data is recorded at ATLAS in 60 second intervals known as luminosity blocks (LBs), over which the

experimental conditions are assumed to be constant. Not all of the data that is recorded by the detector is

suitable for physics analysis, and further data-quality criteria are applied to remove any data which was

recorded under conditions when the detector performance was not optimal. This is known as the Good

Run List (GRL), which is a set of XML files that contain a list of luminosity blocks that are certified for

use in physics analyses [113]. The final GRLs are listed in Table 3.3; these contain all the luminosity

blocks recorded in pp collisions throughout Run-2 at 13 TeV that are used in physics analyses. The

overall data-taking efficiency of ATLAS throughout Run-2 was 95.6%. Figure 3.8 shows the luminosity

delivered to and recorded by ATLAS, as well as the fraction of recorded data which is good for physics,

and Figure 3.9 shows the pileup profile of each of the data-taking periods of Run 2.

In Run 2 the luminosity delivered to ATLAS was 156 fb−1, with 139 fb−1 found to be good for physics.

The amount of luminosity delivered increased throughout each year of Run 2, reaching a maximum of

63.4 fb−1 in 2018. The average pileup at which this data was recorded was 33.7, averaged over the entire

dataset. These values are not the final Run 2 measurement, and a further luminosity calibration will be

performed with the aim of reducing the associated uncertainties.
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2015 2016 2017 2018 Run-2

Date 03/06 - 15/11 22/04 - 26/10 23/05 - 26/11 17/04 - 26/10 03/06/15 - 26/10/18
Run range 266904 - 284484 296939 - 311481 324320 - 341649 348197 - 364485 266904 - 364485

LHC fill range 3817 - 4569 4724 - 5452 5697 - 6417 6570 - 7358 3817 - 7358
Nruns 132 187 226 243 788

Lint.delivered (fb
−1) 4.0 38.5 50.2 63.4 156.1

Lint.recorded (fb
−1) 3.9 35.6 46.9 60.6 147.0

Lint.good (fb
−1) 3.3 32.9 44.3 58.5 139.0

Linst.peak (1033 cm−2 s−1) 5.0 13.8 20.9 21.0 21.0
〈µ〉 13.4 25.1 37.8 36.1 33.7

Table 3.2: Overview of the ATLAS full Run 2 dataset. The baseline ATLAS luminosity values were
calculated using the preliminary calibration presented in Ref. [96].

Data-taking Period Good Run List
2015 20190708/data15_13TeV.periodAllYear_DetStatus-v105-pro22-13

_Unknown_PHYS_StandardGRL_All_Good_25ns.xml
2016 20190708/data16_13TeV.periodAllYear_DetStatus-v105-pro22-13

_Unknown_PHYS_StandardGRL_All_Good_25ns_WITH_IGNORES.xml
2017 20190708/data17_13TeV.periodAllYear_DetStatus-v105-pro22-13

_Unknown_PHYS_StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
2018 20200426/data18_13TeV.periodAllYear_DetStatus-v102-pro22-04

_PHYS_StandardGRL_All_Good_25ns_BjetHLT.xml

Table 3.3: Good run lists used to select events for different datasets.

Month in Year
Jan '15

Jul '15
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Jul '16
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Figure 3.8: Cumulative luminosity versus time delivered to ATLAS (green), recorded by ATLAS (yellow),
and certified to be good quality data (blue) during stable beams for pp collisions at

√
s = 13 TeV in

2015-2018. The delivered luminosity accounts for the luminosity delivered from the start of stable beams
until the LHC requests ATLAS to put the detector in a safe standby mode to allow a beam dump or beam
studies. The recorded luminosity reflects the DAQ inefficiency, as well as the inefficiency of the so-called
"warm start": when the stable beam flag is raised, the tracking detectors undergo a ramp of the high-voltage
and, for the pixel system, turning on the preamplifiers. Source: [114].

39



EXPERIMENTAL SETUP

0 10 20 30 40 50 60 70 80

Mean Number of Interactions per Crossing

0

100

200

300

400

500

600

/0
.1

]
-1

R
ec

or
de

d 
Lu

m
in

os
ity

 [p
b

Online, 13 TeVATLAS -1Ldt=146.9 fb∫
> = 13.4µ2015: <
> = 25.1µ2016: <
> = 37.8µ2017: <
> = 36.1µ2018: <
> = 33.7µTotal: <

2/19 calibration

Figure 3.9: Luminosity-weighted distribution of the mean number of interactions per crossing for the
2015-2018 pp collision data at

√
s = 13 TeV. All data recorded by ATLAS during stable beams is shown,

and the integrated luminosity and the mean pileup value are given in the figure. The luminosity shown
represents the preliminary 13 TeV luminosity calibration for 2018, released in February 2019, that is
based on van-der-Meer beam-separation scans. Source: [114].

3.6 Modelling physics processes

The use of simulated data to test model predictions is ubiquitous in particle physics. Therefore, it is of the

utmost importance that the simulated data accurately models the underlying physics processes. When

searching for evidence of new fundamental particles, incorrect modelling of the expected Standard Model

background could lead to the observation of spurious signals. Likewise, precision measurements of the

properties of Standard Model particles rely on extremely accurate modelling to compare with the observed

data. Simulated data is produced using the Monte Carlo method [115], which relies on random sampling

to model the properties of particle interactions. This process can be broadly split into three main stages;

event generation, detector simulation and object reconstruction.

Event generation

The first stage of generating simulated data for high-energy physics experiments is to generate the hard

scattering process. This involves using parton distribution functions to describe the momentum of the

incoming partons, and then using perturbation theory to build and sample a probability distribution of

outgoing particles. These events are generated in a format known as HepMC [116], and can be filtered to

keep events with a specific type of particle; for example, events containing aW or a Z boson. The event-

generator simulates the production of prompt particles, while also simulating and storing the subsequent

decay products. For example, an event-generator can simulate the production of Z bosons, and the

subsequent decay into a pair of charged leptons. One of the most popular event-generators in use at

ATLAS is Powheg [117, 118].
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Since the simulated partons and leptons are electrically (and in the case of partons colour) charged,

they can emit secondary radiation in the form of photons and gluons. In the case of partons radiating

gluons, this causes a cascade of secondary emissions known as a parton shower. As a result of colour

confinement, the parton shower undergoes hadronisation to form colour neutral particles, corresponding

to what is actually measured by the detector. This stage of simulation corresponds to what is known as

generator-level, and describes the properties of the incoming and outgoing simulated particles before they

interact with the detector. There are many programmes to simulate parton showering and hadronisation,

with Pythia [119], Sherpa [120] and Herwig [121] being the most popular in use at ATLAS. The effects

of final state photon radiation are simulated using Photos [122].

Detector simulation

Next, the simulated particles are passed through a detailed simulation of the detector response. At ATLAS

this simulation is performed using GEANT4 [123], which simulates energy deposits (hits) in the sensitive

regions of the detector, taking into account any misalignments and imperfections. After detector simulation

the Monte Carlo data is stored at the so-called truth-level. Simulated Data Objects (SDOs) are then created

through a process called digitisation by mapping the simulated detector hits (truth-level) back to the

simulated particles (generator-level) that deposited the energy. Finally Raw Data Objects (RDOs) are

produced by simulating digits, the electrical signals that are read out by the detector during data-taking.

The ATLAS read-out driver system is then emulated to produce the simulated RDOs in exactly the same

format as real data.

Object reconstruction

These RDOs are then passed through the same trigger, reconstruction, identification, isolation and tagging

software as is used to process the real data. Therefore, the final output of the ATLAS simulation framework

are reconstruction-level objects, which can then be compared with real ATLAS data.

Further experimental corrections can be applied to the simulated Monte Carlo data in the form of scale

factors, which describe the relative efficiencies in data and Monte Carlo (SF = εdata/εMC ). Scale factors

are applied either as event-level or object-level weights to the simulated data, and aim to improve the

agreement with the data measured by the detector. Common scale factors include identification, isolation,

trigger and reconstruction efficiency corrections. These are derived by the ATLAS combined performance

(CP) group in dedicated analyses, and used by many analysis groups throughout the experiment. Another

such scale factor is the pileup reweighting factor, which takes into account the difference between the

simulated pileup profile and the actual pileup profile of the data. Since Monte Carlo is often generated

before data-taking, the exact pileup distribution cannot be perfectly known/modelled in advance. Therefore,
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an additional event-level weight is applied to the reco-level Monte Carlo samples to shift the generated

pileup distribution to more accurately reflect that of the real data. This is done separately for each

data-taking campaign.
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Chapter 4

Luminosity determination using

Z → `+`− events

As discussed in Section 3.3, luminosity is a key quantity to describe how many collisions occur in the

ATLAS interaction region. A precise measurement of the luminosity delivered to the detector is crucial,

especially for cross section measurements where it is often one of the largest systematic uncertainties.

Therefore, it is important to have various tools to monitor the baseline ATLAS luminosity measurement,

not only to get a handle on the systematic uncertainty, but also to correct the central values as well. One such

tool is the so called Z-counting method, which monitors the stability of the baseline ATLAS luminosity

measurement by measuring the production rate of the Z boson. This method has been succesfully

implemented at ATLAS since 2015 by measuring the rate of reconstructed Z → µ+µ− decays. The

Z → e+e− channel was implemented in early 2018, and greatly increases the power of the method by

allowing for internal cross checks between the channels, as well as the combination of their statistics.

All plots, with the exception of Figure 4.10, were produced by the author. Those marked as "ATLAS

Preliminary" (with the exception of Figure 4.2, where the image source is given) were produced for the

ATLAS Public Note ATL-DAPR-PUB-2021-001 [1], while those marked as "ATLAS Work in progress"

are the unpublished work of the author.

4.1 Introduction

The cross section of any physics process, σX→Y Z , measured at ATLAS is given by

σX→Y Z =
NX→Y Z
L

, (4.1)
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where NX→Y Z is the decay rate of X → Y Z and L the luminosity delivered to the detector.

By rearranging Eq. 4.1 and substituting σX→Y Z for a theoretical prediction, σtheoryX→Y Z , a luminosity

measurement can be obtained by

L =
NX→Y Z

σtheoryX→Y Z
. (4.2)

The decay of the Z-boson into a pair of electrons or muons is an excellent candidate process for such

a measurement. It has a large cross section of 2 pb in pp collisions at
√
s = 13 TeV, for dilepton pairs

withm`+`− > 60 GeV, which can be precisely predicted from theoretical calculations. Figure 4.1 shows

the Feynman diagram for this interaction, where off-shell photon production (γ∗) interferes with the Z

boson. By requiring selected events to have dilepton invariant masses (m`+`− ) close to the Z resonance,

the γ∗ → `+`− is largely suppressed and the process can simply be considered a Z → `+`−.

Z/γ∗

q̄

q

`+

`−

Figure 4.1: Neutral current Drell-Yan scattering at lowest order.

Measuring the decay rate of Z → ττ or Z → qq̄ is not feasible at a hadron collider, since these

processes are much more difficult to reconstruct in the detector and have much larger background

contributions. Therefore, the following discussion will pertain specifically to Z → e+e− and Z → µ+µ−

decays, which will be referred to collectively as Z → `+`−.

The value of the Z → `+`− cross-section is predicted by calculations at next-to-next-to-leading order

QCD with a total uncertainty of 3–4% at 90% CL, dominated by the current knowledge of the proton

parton distribution functions (PDFs) [124]. Since the uncertainties associated with the baseline ATLAS

luminosity measurement are approximately 2% [96], the Z-counting method is not yet competitive as an

absolute measurement, but is nevertheless a powerful tool to monitor the stability of other luminometers.

The method is robust against non-time-dependent systematic uncertainties, and a study by Harry Lyons

showed that the simulated correction factor has systematic uncertainties in the per-mille range [125].

Currently a full evaluation of all time-dependent systematics has not been performed, however these are

44



expected to be small.

In order to accurately measure the number of Z → `+`− decays that take place in the interaction

region, it is important to ensure that detector inefficiencies are accurately modelled. As the detector is not

perfectly efficient, not all Z → `+`− decays that take place at ATLAS are successfully reconstructed, and

so it is crucial that the fraction of events not recorded be accounted for so that the production rate is not

underestimated. Conditions in the detector can vary significantly over the course of a single LHC fill, as

well as between successive fills, so it is important that this be modelled in a granular way by measuring

the detector inefficiencies over relatively short time periods. To do this, data-driven techniques are used,

measuring the inefficiency of the detector using the data itself over some time period, which is then applied

to the data recorded in the same time period to obtain a corrected measurement of NZ→`+`− .

4.2 Methodology

The simple relationship in Eq. 4.2 assumes that the production rate has been corrected to account for

detector inefficiencies and background, and that the cross section prediction corresponds to the fiducial

volume used by the analysis. As discussed previously, data-driven techniques are used to derive the various

efficiency components (εT&P
Z→`+`−), which are themselves then subjected to a correction derived from

Monte Carlo (FMC
Z→`+`−(〈µ〉)). The fraction of generated events that are reconstructed inside the fiducial

volume (acceptance, AMC
Z→`+`−) is also derived from Monte Carlo. Combining all of these factors with

those given in Eq. 4.2, a Z-counting luminosity can then be obtained using Eq. 4.3, and an overview of all

terms can be found in Table 4.1. The splitting of Eq. 4.3 into two terms is a cosmetic choice, in order to

differentiate between the components which are time-dependent and those that are time-independent. This

section will present a review of the Z-counting methodology, outlining the event-selection, data-driven

efficiency corrections and Monte Carlo based correction factors.

LZ→`+`−(LB) =
NZ→`+`−(LB)

εT&P
Z→`+`−(LB) · FMC

Z→`+`−(〈µ〉) · t(LB)
× 1− fbkg

σtheory
Z→`+`− ·A

MC
Z→`+`−

. (4.3)

Luminosity block live-time (t(LB)) The live time of a luminosity block at ATLAS is typically around

60 seconds, and takes into account the time lost due to trigger or data acquisition down times. For example,

if a luminosity block was 62 seconds long, but the data acquisition system was down for 4 seconds, the

live time of this LB would be 58 seconds.
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Term Meaning Section
LZ→`+`−(LB) Z-counting luminosity 4.2
NZ→`+`−(LB) measured number of Z → `+`− events 4.2.1
εT&P
Z→`+`−(LB) event-level tag-and-probe efficiency 4.2.2
FMC
Z→`+`−(〈µ〉) residual correction factor from simulation 4.2.3
t(LB) live-time corrected luminosity block length 4.2

1− fbkg background correction factor to account for tt̄ and diboson contamination 4.2
σtheory
Z→`+`− theoretical cross section prediction 4.2

AMC
Z→`+`− fiducial acceptance factor 4.2.4

Table 4.1: Summary of all terms used in calculating a Z-counting luminosity, where LB indicates
time-dependence and 〈µ〉 the dependence on the pileup parameter.

Background subtraction (1− fbkg) The factor fbkg is the fraction of events in the signal region that

originate from diboson or tt̄ production and is determined from Monte Carlo studies. Since the signal

region uses a tight mass window around the Z peak, this factor is extremely small, and is taken to be 0.005

in both Z → e+e− and Z → µ+µ− decays. In principle, there is also small contribution from multijet

events, but this is even smaller at approximately 0.0005 and is therefore neglected.

Theoretical cross section (σtheory
Z→`+`− ) σtheory

Z→`+`− is the inclusive Z → `+`− cross section for dilepton

pairs with invariant massm`+`− > 60 GeV, and has a value ofσtheory
Z→`+`− = 1970±0.3 (stat)+69.6

−67.5 (pdf) pb.

This is calculated at next-to-next-to leading order QCD using the FEWZ 3.1.b2 framework [126] and

CT18ANNLO proton PDF [43]. As discussed in Section 4.1, the absolute scale of Z-counting luminosity

is limited by this uncertainty, and so this thesis will focus on using Z-counting to monitor the stability

of other luminometers. By normalising the integrated Z-counting luminosity over some time period to

another luminosity measurement, the stability over time and pileup can be monitored by measuring the

spread of the ratio around unity. Comparisons between the Z → e+e− and Z → µ+µ− luminosities are

not sensitive to the choice of cross section or its uncertainty, and therefore provide a powerful internal

cross check of the method.

4.2.1 Event selection

The first selection requirement is the application of the GRLs listed in Table 3.3. Events which pass

the GRL requirements are then required to pass one of the unprescaled single-lepton triggers listed in

Table A.1, as well as the selection criteria listed in Table 4.2.

Electron or muon candidates are required to have p`T > 27 GeV and |η`| < 2.4, with the additional

requirement that electrons do not fall within the region 1.37 < |ηe| < 1.52. They are also required

to originate from the primary vertex of the event, defined as the vertex whose associated tracks have
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the highest sum of squared transverse momenta, with at least two reconstructed tracks with transverse

momentum pT > 0.4 GeV. The transverse impact parameter (d0) is the closest distance between a track

and the primary vertex in the plane perpendicular to the beam direction, and the longitudinal impact

parameter (|z0sinθ|) is defined as the longitudinal distance between the track and the primary vertex along

the beam line. The significance of the transverse impact parameter (|d0|/σ(d0)) is required to be less than

3 for muons and less than 5 for electrons, and the longitudinal impact parameter is required to satisfy

|z0sinθ| < 0.5 mm in both channels.

Electron candidates are required to pass a likelihood-based identification selection, using the LHMedium

working point [97]. Muon candidates are required to be combined muons, as defined in Section 3.4.2, and

to also satisfy the Medium muon selection criteria [104]. Both electrons and muons are required to satisfy

the LooseTrackOnly isolation criteria [104]. If the invariant mass of two oppositely-charged, same-flavour

leptons passing all of these criteria is within the range 66 < m`+`− < 116 GeV the event is selected.

Figure 4.2 shows the dielectron (left) and dimuon (right) invariant mass distributions for events passing

these selections in an example LHC fill. The raw number of Z → e+e− and Z → µ+µ− counts (before

efficiency corrections) per luminosity block can be seen for each data-taking period in Figure 4.3. Due to

the increasing instantaneous luminosity over the course of Run 2, the number of reconstructed Z → `+`−

events per LB increases, improving the statistical precision of the Z-counting method. The shape of the

distribution in 4.3 also reflects that of the pileup distribution in each of the data-taking periods of Run 2.

Selection criteria Electron channel Muon channel

Single-lepton

Transverse momentum peT > 27 GeV pµT > 27 GeV

Pseudorapidity |ηe| < 1.37 OR 1.52 < |ηe| < 2.4 |ηµ| < 2.4

Track-vertex association |z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm
|d0|/σ(d0) < 5 |d0|/σ(d0) < 3

Identification LHMedium Medium, ID+MS combined muon
Isolation LooseTrackOnly LooseTrackOnly

Event-level Invariant mass 66 < me+e− < 116 GeV 66 < mµ+µ− < 116 GeV

Table 4.2: Overview of event selection criteria, where two oppositely charged leptons (of the same flavour)
passing the single-lepton selection criteria with invariant mass in the range 66 < m`+`− < 116 GeV are
required to form a Z-boson candidate. The fiducial volume is defined by the p`T, η` andm`+`− selections,
independently for each lepton flavour.
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Figure 4.2: Dielectron (left) and dimuon (right) invariant mass distributions, where both leptons pass the
selections listed in Table 4.2.
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Figure 4.3: Distributions of the raw NZ counts per luminosity block in the electron (left) and muon
(right) channels for each data-taking period.

4.2.2 Data-driven efficiency estimation

Since the efficiency to trigger and reconstruct an electron or muon is not 100%, not all Z → `+`− decays

produced in the detector are recorded. Therefore, it is important to accurately measure the trigger and

reconstruction efficiencies so that the Z-production rate can be corrected accordingly. These efficiencies

apply to a single lepton, and must be combined to an event-level efficiency, i.e. the efficiency of triggering

and reconstructing two leptons of the same flavour. As mentioned in Section 4.2, these efficiencies

are measured using a data-driven tag-and-probe method over the duration of a single luminosity block.

Measuring the efficiencies with such fine time granularity ensures that changes in the beam and detector

conditions are accurately modelled. The pileup at which the data is recorded greatly influences the

efficiency of triggering and reconstructing an electron or muon, and the Z-counting benefits from being

able to track this variation in real time.
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Single-lepton trigger efficiency

By selecting all events with 2 electrons or muons passing the selection criteria listed in Table 4.2 (N ),

and counting the number of events where one (N1) or two (N2) leptons pass the trigger requirements, the

single-lepton trigger efficiency (εtrig,1`) can be determined,

N1 = 2×N × εtrig,1` × (1− εtrig,1`), (4.4)

N2 = N × ε2
trig,1`, (4.5)

εtrig,1` =
1

N1

2N2
+ 1

. (4.6)

This means that the trigger efficiency specifically refers to the probability that one of the selected

leptons also passes the trigger, not the probability of any lepton passing the trigger requirements. In

principle there is a small background component to N1 and N2, however due to the strict isolation and

identification requirements, as well as the tight mass window around theZ peak (66 < m`+`− < 116GeV),

this contribution is negligible and therefore neglected.

Figures 4.5 and 4.7 show the trigger efficiency (black circles) for an example LHC fill in the electron

and muon channel respectively. The time-dependent efficiencies in Figures 4.5 and 4.7 have been averaged

over groups of 20 LBs to improve the statistical precision, as discussed in Section 4.3, while the pileup-

dependent efficiencies are averaged using the same procedure in each individual pileup bin. This is not

how the efficiencies are applied when calculating the luminosity, and is only presented this way to monitor

trends over the course of the fill. As expected, the trigger efficiency decreases with increasing pileup, and

some other finer shapes can be resolved which could reflect the data-taking conditions of the detector

itself. For example, the small dip in the muon trigger efficiency between LBs 920 and 1000 corresponds

to a slight decrease in the coverage of the barrel muon trigger in this period.

Since the analysis uses single-lepton triggers, applied as an event-level selection and not per-lepton,

the selected di-electron and di-muon events can contain either one or two leptons which passed the trigger.

Therefore, the event-level trigger efficiency (εtrig, event) is defined as

εtrig, event = 1− (1− εtrig,1`)2, (4.7)

taking into account the fact that either or both of the leptons can pass the trigger requirements. All

statistical uncertainties are calculated by propagating the Poisson counting uncertainties on N1 and N2.
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Single-lepton reconstruction efficiency

Both the single-electron and single-muon reconstruction efficiencies are determined using the tag-and-

probe method. The tag-and-probe method works by selecting two leptons near a resonant peak, in this

case the Z, to ensure that they have a high probability of being genuine prompt leptons and minimise the

background contribution. One of the leptons (tag) is required to pass strict selection criteria to further

increase the probability that the event is a genuine Z event, while the other lepton (probe) is subject to

a looser selection. It is this loose probe object that is used to determine the reconstruction efficiency

of the selected leptons in a Z → `+`− event. The tag and probe selection criteria can be found in

Tables 4.3 and 4.4.

Tag selection criteria Electron channel Muon channel
Transverse momentum peT > 27 GeV pµT > 27 GeV

Pseudorapidity 0 < |ηe| < 1.37 OR 1.52 < |ηe| < 2.4 0 < |ηµ| < 2.4

Track-vertex association |z0 sin θ| < 0.5 mm |z0 sin θ| < 0.5 mm
|d0|/σ(d0) < 5 |d0|/σ(d0) < 3

Identification LHTight Medium, ID+MS combined muon
Isolation LooseTrackOnly LooseTrackOnly

Single lepton trigger object matched matched

Table 4.3: Selection criteria defining the tag lepton in the electron andmuon channels. All selection criteria
are identical to those in Table 4.2, other than the identification working point used in the electron channel,
and the fact that both electrons and muons are required to pass the single-lepton trigger requirements.

Electron channel Muon channel
Preselection criteria

Object Cluster loosely matched to ID track ID track
Transverse momentum peT > 27 GeV pµT > 27 GeV

Pseudorapidity |ηe| < 1.37 or 1.52 < |ηe| < 2.4 |ηµ| < 2.4
Track-vertex association — |z0 sin θ| < 2 mm

Probe selection criteria
Requirement passes the single-electron matched to combined muon which passes the

selection criteria single-muon selection criteria listed in Table 4.2
listed in Table 4.2 but with looser pµT > 21.6 GeV

Table 4.4: Probe lepton preselection and selection criteria. All probe candidates are required to pass the
preselection criteria, and the selection criteria determine whether a probe passes or fails.

All probe candidates are required to pass the preselection criteria in Table 4.4, and by measuring the

fraction which also pass the selection criteria, an estimate of the efficiency to reconstruct a signal lepton

can be obtained. The probe selection criteria are equal to the signal selection criteria given in Table 4.2,

other than the pT selection in the muon channel which is reduced to avoid a bias near the phase space

boundary. 1 This is not the full efficiency to reconstruct a signal lepton, as it does not take into account
1If a track is reconstructed with pT = 27.1GeV and a combinedmuonwith pT = 26.9GeV, but both have a cut of pT > 27.0GeV

there would be a bias, and so the muon pT selection is relaxed.
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the efficiency to reconstruct the loose probe leptons. Any missing efficiency components (loose lepton

reconstruction, charge mis-identification) are estimated using Monte Carlo, as discussed in Section 4.2.3.

In each Z → `+`− candidate event, each lepton is considered alternatively as a tag and then as a probe

Due to the loose preselection of the probe lepton, mis-identified leptons and combinatorial backgrounds

can be significant, andmust therefore be taken into account. Themethod used for the background estimation

is the main way in which the electron and muon channel reconstruction efficiency determinations differ,

and the tag-and-probe procedure will be outlined in detail for the electron and muon channels separately

in the following sections. However, the general form of the tag-and-probe reconstruction efficiency is

given by,

εreco,1` =
NOS

pass −Nbkg
pass

(NOS
pass +NOS

fail)− (Nbkg
pass +Nbkg

fail )
, (4.8)

where NOS
pass (NOS

fail) is the number of opposite-charge tag-and-probe pairs where the probe satisfies

(fails) the selection criteria in Table 4.4 and Nbkg
pass (N

bkg
fail ) is the corresponding background estimate. The

event-level reconstruction efficiency to reconstruct two leptons is given by,

εreco,event = ε2
reco,1`. (4.9)

Electron channel Electron candidates which pass the selection criteria given in Table 4.3 are considered

as tags, and clusters of energy in the electromagnetic calorimeter which are loosely matched to an inner

detector track are used as probe candidates. As mentioned previously, the tag-and-probe method does

not measure the efficiency to reconstruct the loose probe object, which instead comes from Monte Carlo

simulation. The efficiency of the probe preselection with respect to generated electrons is approximately

98% [97].

The reconstruction efficiency is estimated by counting the fraction of opposite-sign events which

pass (NOS
pass,peak) or fail (NOS

fail,peak) the probe selection criteria in Table 4.4, where the subscript peak

refers to the invariant mass range 75 < mee < 105 GeV. To estimate the background contribution, a

background-enriched sample of events with minimal signal contribution is required. This is achieved

by a so-called template method (Ntemplate), which relies on inverting the isolation and identification

requirements in Table 4.2, meaning that probe electrons are explicitly required to fail both isolation and

identification but pass all other selections.

In order to obtain a smooth distribution over the entire invariant mass range, the statistics of an entire

LHC fill are used to estimate the background template shape in each luminosity block. Therefore, the
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template shape must be normalised to the statistics of the individual luminosity block, as shown in Eq. 4.10.

εreco,1e =
NOS

pass,peak −NOS
template,peak ·

NSS
pass,tail

NSS
template,tail

(NOS
pass,peak +NOS

fail,peak)−NOS
template,peak ·

NOS
fail,tail

NOS
template,tail

. (4.10)

Opposite-sign template events (NOS
template,peak) are used to estimate the background shape in the peak

region, normalised independently for both numerator and denominator using a high-mass sideband in

the invariant mass range 120 < mee < 250 GeV (tail). In the numerator, the template is normalised by

taking the ratio of the number of same-sign events in the tail where the probe passes selection (NSS
pass,tail),

and the number of same-sign template events (NSS
template,tail) in order to avoid signal contamination. The

procedure is the same in the denominator, however the number of opposite-sign events where the probe

fails selection (NOS
fail,tail) and the opposite-sign template (NOS

template,tail) are used. Figure 4.4 shows the

invariant mass distributions of the numerator (left) and denominator (right) terms for an example LHC fill,

where the normalised template distribution is indicated by Npass
bkg and N total

bkg . The resulting efficiencies

can be seen in Figure 4.5 (red squares), where it can be seen how the tag-and-probe procedure tracks the

time/pileup dependence over the course of a single LHC fill.
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Figure 4.4: Invariant di-electron mass distributions used to calculate the reconstruction efficiency as
given in Eq. 4.10, where the left (right) figure shows the contribution to the numerator (denominator).
The vertical dashed lines illustrate the peak and tail ranges for the electron template method. The error
bars show statistical uncertainties only.
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Figure 4.5: Data-driven single-electron trigger (black circles) and reconstruction (red squares) efficiencies
determined using the tag-and-probe method. The x-axis represents the elapsed time in units of Luminosity
Blocks (left) and average pileup (right). For display purposes only, each of the efficiencies has been
averaged over 20 luminosity blocks (Section 4.3). The error bars show statistical uncertainties only.

Muon channel Muon candidates which pass the selection criteria in Table 4.3 are considered as tags and

inner detector tracks are used as probes. These tracks must pass the preselection criteria given in Table 4.4,

and a pass or fail of the probe is determined by the probe selection criteria. A probe is considered to pass

selection if it is matched to a combined muon passing the selection criteria discussed previously. The

probe preselection efficiency for generated muons is approximately 99% and well described by Monte

Carlo simulation [104].

The background estimation in the muon channel is simply taken as the number of same-sign events

which pass/fail selection, as the dominant background processes are roughly charge symmetric [104].

A tight mass window of 86 < mµµ < 96 GeV is used to further reduce the background contamination.

Following the general form of Eq. 4.8, the reconstruction efficiency in the muon channel is given by

εreco,1µ =
NOS

pass −NSS
pass

(NOS
pass +NOS

fail)− (NSS
pass +NSS

fail)
. (4.11)

The invariant mass distributions for the numerator and denominator terms can be seen in Figure 4.6,

with the corresponding efficiencies in Figure 4.7 (red squares). Similar trends are observed as in the

electron channel, with the muon reconstruction efficiency increasing over time (decreasing with pileup) as

expected.
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Figure 4.6: Invariant di-muon mass distributions used to calculate the reconstruction efficiency as
given in Eq. 4.11, where the left (right) figure shows the contribution to the numerator (denominator).
The vertical dashed lines illustrate the peak region (86 < mµµ < 96 GeV) used in the muon channel
tag-and-probe procedure. The error bars show statistical uncertainties only.

0 200 400 600 800 1000 1200 1400 1600

Luminosity Block Number

0.7

0.75

0.8

0.85

0.9

0.95

1

E
ff

ic
ie

n
c
y

ATLAS Preliminary

 = 13 TeVsData 2017, 
LHC Fill 6362

 countingµµ →Z 

µsingle
recoε

µsingle

trig
ε

10 20 30 40 50 60

>µ<

0.7

0.75

0.8

0.85

0.9

0.95

1
E

ff
ic

ie
n

c
y

ATLAS Preliminary

 = 13 TeVsData 2017, 
LHC Fill 6362

 countingµµ →Z 

µsingle
recoε

µsingle

trig
ε

Figure 4.7: Data-driven single-muon trigger (black circles) and reconstruction (red squares) efficiencies
determined using the tag-and-probe method. The x-axis represents the elapsed time in units of Luminosity
Blocks (left) and average pileup (right). For display purposes only, each of the efficiencies has been
averaged over 20 luminosity blocks (Section 4.3). The error bars show statistical uncertainties only.

Event-level efficiency

Once the single-lepton trigger and reconstruction efficiencies have been determined they must be combined

to account for the fact that there are two leptons in a Z → `+`− event. This is done independently for

di-electron and di-muon events, and as mentioned, only one lepton is required to pass the trigger selection,

but both leptons must pass the signal selection criteria (reco). The event-level efficiency (εT&P
Z→`+`−(LB))

is given by

εT&P
Z→`+`−(LB) = εtrig,event × εreco,event, (4.12)

εT&P
Z→`+`−(LB) = (1− (1− εtrig,1`)

2)× ε2
reco,1`. (4.13)
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This is then used to correct the raw number of Z → `+`− events per luminosity block in each decay

channel separately. Figure 4.8 shows the single-lepton and event-level efficiencies in the electron (left) and

muon (right) channels as a function of luminosity block. Since the event-level efficiency depends on the

square of both the trigger and reconstruction efficiencies, the trends seen in the single-lepton efficiencies

are compounded. This is especially noticeable in the electron channel, where the pileup-dependence of

the event-level efficiency is approximately 12% over the fill, while the single-lepton efficiencies have

a pileup dependence of about 6%. The statistical uncertainty on εT&P
Z→`+`−(LB) is also larger than the

individual components, as it is calculating by propagating the uncertainties on the square of each single-

lepton efficiency. As the event-level tag-and-probe efficiency estimate does not take into account all

efficiency effects, it is corrected with a pileup-dependent correction factor, determined from Monte Carlo

(Section 4.2.3).
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Figure 4.8: Data-driven single electron (left) and muon (right) trigger (black circles), reconstruction (red
squares) and event-level (blue triangles) efficiencies. The x-axis represents the elapsed time in units of
Luminosity Blocks with a typical length of one minute per LB. For display purposes only, each of the
efficiencies has been averaged over 20 luminosity blocks (Section 4.3). The error bars show statistical
uncertainties only.

Bunch position dependence of efficiencies

So far the only dependencies that have been tracked via data-driven efficiency estimation are time and

pileup. Many luminosity monitoring algorithms monitor the bunch position dependence of the delivered

luminosity, and for Z-counting to do the same bunch-dependent efficiencies would be required. Most

proton bunches colliding at the ATLAS detector are not isolated bunches, but rather part of a larger bunch

train. As such, there can be inter-bunch effects, due to the fact that the spacing between bunches is quite

small (typically 25 ns for most of Run-2).

Figure 4.9 shows the dependence of the single-lepton trigger- and reconstruction-efficiencies on the

position of the colliding bunches in the bunch train. These efficiencies are calculated using the entire 2018

dataset (58.5 fb−1), in 48 bunch-position bins and four different pileup bins. Separating the data into
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pileup bins shows the correlation, if any, between the position of the bunch in the train and the number of

interactions per bunch crossing. The 2018 dataset is a good illustrative example to test the bunch position

dependence, as the high luminosity ensures good statistical precision, and the bunch filling pattern was

consistent throughout the year (48 filled bunches in the train).
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Figure 4.9: Data-driven single electron (left) and muon (right) reconstruction (top) and trigger (bottom)
efficiencies as a function of the position of the colliding bunch in the train. The data have been split
into various pileup bins, as well as an inclusive measurement over the entire pileup range. The deviation
measures the difference of each pileup bin with respect to the inclusive measurement. The error bars show
statistical uncertainties only.

In both channels, the dependence of the single-lepton efficiencies on the position of the bunch in the

train is extremely small, while the pileup dependence is at the percent level, as seen earlier. In the electron

channel, the first bunch in the train shows both a higher trigger and reconstruction efficiency, relative to

the rest of the bunches in the train. This is an approximately 2% effect, which could be a result of the

first bunch having less out-of-time pileup, and hence having slightly better energy resolution compared to

the other bunches in the train as the energy correction is calculated as an average over all bunches in the

train. As this affects only the first bunch in the train however, and the effect itself is so small, the impact of

neglecting this dependence in the efficiency calculation is negligible (the effect would be approximately

0.07% if propagated to the event-level efficiency, taking into account both electrons and the fraction of data

effected). The remarkable stability across all bunch positions (in all pileup bins) shows that measuring

56



the Z-counting efficiencies as a function of time/pileup sufficiently models the efficiencies dependence

on the changing run conditions in the ATLAS detector, and as such no further bunch-dependencies are

propagated in the analysis.

4.2.3 Monte Carlo correction factor

The event-level efficiencies determined in the previous section do not necessarily account for all possible

efficiency losses. For example, the muon reconstruction efficiency does not consider the inner-detector

track reconstruction efficiency, and the electron reconstruction efficiency does not account for the track-

to-cluster matching efficiency or the electron charge mis-identification probability. Furthermore, the

assumption that the two efficiencies can be factorised into single-lepton components could lead to a small

bias, if the efficiencies of the two leptons are correlated. All of these effects can be estimated by measuring

the true Z → `+`− reconstruction efficiency in Monte Carlo and comparing to that measured by the

tag-and-probe procedure, also in Monte Carlo. The closure of this ratio shows how well the tag-and-probe

efficiencies are probing the true efficiency, indicating the magnitude of all untracked efficiencies and

potential biases, and is then applied to the data-driven efficiency estimate as an additional correction factor

(FMC
Z→`+`−(〈µ〉)),

FMC
Z→`+`−(〈µ〉) =

N reco,fiducial,MC
Z→`+`− (〈µ〉)
N true,nocut,MC
Z→`+`− (〈µ〉)

× 1

AMC
Z→`+`− · ε

T&P,MC
Z→`+`− (〈µ〉)

. (4.14)

An overview of all terms can be found in Table 4.5. All quantities are evaluated with Monte Carlo

simulated events and, with the exception of AMC
Z→`+`− , as a function of the pileup parameter 〈µ〉. The

simulated Z/γ∗ → `+`− signal events used for this analysis are generated using Powheg [117, 118] (hard

scattering) and Pythia8 [127] with AZNLO tune [128] (fragmentation and hadronisation). Simulated

minimum-bias events, generated with Pythia 8.186 using the NNPDF2.3LO set of PDFs [42] and A3

tune [129], are overlaid on the hard-scattering event in order to model the effect of pileup. The signal

events are generated with dilepton invariant masses ofm`+`− > 60 GeV; therefore, a fiducial acceptance

factor (AMC
Z→`+`−) must be applied in order for the fiducial volume of the generated events to match that

of the data.

The fraction on the left-hand-side of Eq. 4.14 is the true acceptance times efficiency, meaning the total

fraction of generated events which are lost due to the phase space and selection requirements in Table 4.2.

The inclusion of the factor AMC
Z→`+`− on the right-hand-side is therefore necessary, in order to compensate

for the acceptance effects and to determine only the non-closure of the efficiency determination. Since

this factor is in the denominator of Eq. 4.14, and is then applied again in Eq. 4.3, the final luminosity

measurement is insensitive to the measured AMC
Z→`+`− value, and the purpose of this factor is to ensure
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Term Meaning
N reco,fiducial,MC
Z→`+`− (〈µ〉) number of reconstructed MC events (‘reco’) which pass the

fiducial phase space (‘fiducial’) and event selection requirements
outlined in Table 4.2

N true,nocut,MC
Z→`+`− (〈µ〉) number of generated Z boson MC events (‘true’) without

any selection requirements (’nocut’)

AMC
Z→`+`− fiducial acceptance, calculated using leptons

originating from a true Z boson as described in Section 4.2.4

εT&P,MC
Z→`+`− (〈µ〉) event-level tag-and-probe (’T&P’) efficiency estimate using

reconstructed MC events following the same
procedure as outlined in Section 4.2.2

Table 4.5: Summary of all terms used in calculating Monte Carlo based efficiency correction factors.

the closure of the measured correction factors.

The factor εT&P,MC
Z→`+`− (〈µ〉) is the event-level efficiency determined using reconstructed Monte Carlo

events following the same procedure as outlined in Section 4.2.2. However, since each event contains

a genuine generated Z → `+`− event, there is no background contamination due to jets misidentified

as leptons, which is the primary background contribution to the reconstruction efficiency estimate. A

small amount of background could be present due to non-prompt lepton production and overlaid pileup

events, and so every reconstructed lepton is required to originate from one of the generated leptons in

the Z → `+`− decay (truth-matching). The single-lepton trigger efficiency is calculated using Eq. 4.6,

with the condition that all reconstructed leptons be trigger-matched, while the single-lepton reconstruction

efficiency is determined using

εMC
reco,1` =

NOS
pass

NOS
pass +NOS

fail

. (4.15)

where again all reconstructed leptons are required to be triggermatched. These single-lepton efficiencies

are then combined in the same way as those in data, using Eq. 4.13. A comparison between the tag-and-

probe efficiencies obtained in Monte Carlo and data can be found in Appendix A.

The event-level efficiency (multiplied by AMC
Z→`+`− ) is then compared with the true acceptance times

efficiency, as shown in Eq. 4.14. To calculate the true acceptance times efficiency, the full signal selection

(Table 4.2) is applied to the reconstruction level simulated events, and the number of selected events inside

the mass window counted. This is then divided by the total number of generated events with no fiducial or

object selections applied, in order to measure the fraction of events lost due to all detector efficiency and

acceptance effects. The resulting ratios are fitted with a second order polynomial as a function of 〈µ〉, and

the results can be seen in Figure 4.10.
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Figure 4.10: Z → e+e− (left) and Z → µ+µ− (right) correction factors used for each year of data (2015,
2016, 2017 and 2018) produced using the dedicated Monte Carlo campaigns.The lines show second-order
polynomial fits to the correction factor for the corresponding 〈µ〉 range per year, with bands indicating the
statistical uncertainties. The behaviour of the fits for the 2016 samples, at the low and high ends of the
pileup range, is due the limited MC statistics and affects only a very small fraction of the data. Source: [1],
credit: Harry Lyons.

In order to effectively model the different conditions during each data-taking period, correction factors

are derived for each period separately from Monte Carlo simulated events generated with similar pileup

conditions to that of the data. The Z → µ+µ− correction factors are within 0.9% (〈µ〉 = 10) to 2.5%

(〈µ〉 = 70) of unity over the pileup range at which the bulk of the data were recorded. As the ratio of the

true and tag-and-probe efficiencies is close to one, the efficiency effects not tracked by the tag-and-probe

method must be small. However, the difference between the true and tag-and-probe efficiencies increases

with pileup, suggesting that with increasing pileup the tag-and-probe method is slightly over-estimating

the efficiency.

The Z → e+e− correction factors are within 10% (〈µ〉 = 10) to 13% (〈µ〉 = 70) of unity. This

suggests that the non-closure of the tag-and-probe efficiency estimate is approximately 10%, suggesting

that there are more significant untracked efficiency components in the electron channel than in the muon

channel. One contribution to this non-closure could be the track-cluster matching efficiency for electrons,

as well as the charge misidentification probability, which is larger for electrons than muons. The pileup-

dependence of the ratio is also slightly larger in the electron channel, around 3% across the entire range,

although the effect in both channels is still relatively mild. The statistical uncertainty shown in Figure 4.10

is not propagated to the analysis. However, these uncertainties are extremely small, and are below 0.5%

across the entire pileup range in both channels, with the bulk of the statistics falling into the pileup range

with sub per-mille uncertainties.
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4.2.4 Acceptance

The fraction of generated events inside the fiducial volume used in the analysis is known as the acceptance

factor (AMC
Z→`+`− ), and is derived from Z → `+`− Monte Carlo. The only kinematic requirement of the

generated events is that the invariant mass of the dilepton system be greater than 60 GeV, while the fiducial

volume of the analysis requires two leptons with p`T > 27 GeV, |η| < 2.4 (with the additional removal of

the range 1.37 < |η`| < 1.52 for electrons) and 66 < m`+`− < 116 GeV. Therefore, the fraction of

generated events outside this range must be calculated and accounted for, by dividing the number of events

inside the fiducial volume (N true,fiducial,MC
Z→`+`− ) by the total number of generated events (N true,nocut,MC

Z→`+`− ),

AMC
Z→`+`− =

N true,fiducial,MC
Z→`+`−
N true,nocut,MC
Z→`+`−

. (4.16)

In the numerator, muons are selected after they have undergone QED final state radiation (FSR), since

this is how they are reconstructed in the detector. Likewise, electrons are selected after QED FSR, but the

energy of the radiated photons is added to that of the electron. All photons within a cone of ∆R = 0.1

around the electron are added to the energy of the electron, since electron energy deposits are measured in

the calorimeter, where the granularity is smaller than ∆R = 0.1 and so the energy deposits of the electron

and photons overlap. Table 4.6 gives the acceptance factors in the Z → e+e− and Z → µ+µ− channels.

AMC
Z→e+e− AMC

Z→µ+µ−

0.2996 ± 0.0002 0.3326 ± 0.0002

Table 4.6: Fiducial acceptance values, AMC
Z→`+`− , calculated for Z → e+e− and Z → µ+µ− decays

using the corresponding MC signal samples. The uncertainties reflect the statistical uncertainty of the
simulated data. Source: [1].

This factor is found in both Eq. 4.3 and Eq. 4.14, and therefore the final luminosity measurement is

insensitive to the measured AMC
Z→`+`− value. However, it is an important factor in Eq. 4.14, as an incorrect

value of AMC
Z→`+`− would have a large impact on the closure of the correction factors in Figure 4.10.

4.3 Results

Results will be presented for individual LHC fills (Section 4.3.1), as well as for the entire Run-2 dataset

(Sections 4.3.2 to 4.3.6). To improve the statistical precision of the measurement over the course of a

single LHC fill, the individual luminosity block values can be averaged over longer time periods. All

time-dependent results shown in Section 4.3.2 are averaged over bunches of 20 successive luminosity
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blocks, weighting by the live-time of each individual luminosity block,

X(20LB) =

∑LB+20
LB X(LB) · t(LB)∑LB+20

LB t(LB)
, (4.17)

where X is the Z-counting luminosity or single-lepton data-driven efficiency estimate. When

calculating pileup-dependent averages, the samemethodology is used to calculate the average efficiency/luminosity

in each individual pileup bin,

X(〈µ〉) =

∑N
LB X(〈µ〉, LB) · t(LB)∑N

LB t(LB)
. (4.18)

Luminosity blocks which do not pass the GRL requirements are not included in the averaging.

Therefore, in the time-dependent averages, each bunch of LBs does not necessarily contain 20 entries, as

some may have been rejected by the GRL.

Table 4.7 shows the average fractional uncertainty on the luminosity obtained in the electron and muon

channels for each data-taking period of Run-2. The uncertainty is calculated by propagating the statistical

uncertainties of the data-driven efficiency components, as well as the Poisson error on the number of

reconstructed Z events. At present, no systematic uncertainties are considered. Values are presented for

individual luminosity block measurements, as well as averaged over bunches of 20 LBs. As expected, the

statistical precision improves by a factor of approximately
√

20 by averaging over successive bunches of 20

LBs. The statistical precision also improves over the course of Run 2, due to the increased instantaneous

luminosity between 2015 and 2018.

∆LZ→`+`−(LB)/LZ→`+`−(LB) [%] ∆LZ→`+`−(20LB)/LZ→`+`−(20LB) [%]

Data-taking period Electron channel Muon channel Electron channel Muon channel

2015 17.7 14.6 4.6 3.5
2016 12.2 9.7 2.8 2.0
2017 10.9 8.8 2.5 1.9
2018 8.4 7.0 2.3 1.8

Table 4.7: Fractional uncertainty on the instantaneous luminosity determined in the electron and muon
channels. This is calculated by taking an average of the fractional uncertainty in each individual luminosity
block, as well as the combination of 20 successive luminosity blocks (Eq. 4.17), for each data-taking
period in Run 2.

When comparing the Z-counting luminosity to the ATLAS baseline measurement [96], the absolute

scale depends on the theoretically predicted cross-section, which is itself sensitive to the details of the

proton structure function. Since the associated PDF uncertainties are approximately 3–4%, Z-counting

cannot yet provide a competitive measurement of the absolute luminosity, as the uncertainty of the baseline

ATLAS measurement is 1.7% [96]. However, the relative stability can be monitored by normalising the
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integrated Z-counting and baseline ATLAS luminosities to the same value over some time period. This

can be done over the course of a single LHC fill (Section 4.3.1), or over the course of the entire data-taking

period (Sections 4.3.2 to 4.3.5). Normalising the luminosity in this way ensures that the absolute scale of

the measurements is the same, removing the dependence on the theoretical cross-section, and the relative

stability can be monitored by measuring the spread of the ratio around unity. The spread is estimated by

the 68th percentile of all points (neglecting their statistical uncertainties) closest to unity (or the mean in

the case of LZ→e+e−/LZ→µ+µ− ).

In contrast, the Z → e+e− to Z → µ+µ− luminosity ratio is insensitive to the cross-section

prediction, and by measuring the absolute value of this ratio, the efficacy of the of the data-driven

efficiency determination and residual Monte Carlo correction factors can be quantified. A ratio near unity

suggests that the corrections are working well, which is a non-trivial statement since both the methodology

and magnitude of the corrections in the two channels are vastly different. The ratio of the Z → e+e− and

Z → µ+µ− luminosities can also provide insight on trends observed in the comparison to the baseline

ATLAS measurement. If the ratio of LZ→e+e−/LZ→µ+µ− is flat, but LZ/LATLAS is not, this suggests

that there are some time (pileup) dependent effects in the baseline ATLAS luminosity determination.

4.3.1 Z-counting results in typical LHC fills

Z-counting luminosity results are presented for an illustrative fill from each data-taking period. As

discussed in the previous section, the obtained values are averaged of groups of 20 luminosity blocks or

per pileup bin. An overview of the runs in question can be found in Table 4.8.

Data-taking period LHC fill Date Luminosity [pb−1] Average pileup 〈µ〉
2015 4485 11/10/15 163.5 15.1
2016 4985 03/06/16 313.0 21.8
2017 6362 04/11/17 725.3 39.9
2018 7144 09/09/18 416.8 37.5

Table 4.8: Information for the selected LHC fills used to illustrate the Z-counting methodology for each
of the Run-2 data-taking periods [96].

Figure 4.11 shows the ratio of the luminosities determined in the electron and muon channels, with

the corresponding mean and spread values given in Table 4.9. Since the sensitivity to the theoretical

cross section cancels in this ratio, the absolute value can be monitored and the agreement with unity is

physically meaningful. The mean is stable across all the fills, at approximately 0.990, and within each fill

the spread ranges from approximately 4% (2015) to 2% (2018), indicating that the method is extremely

stable over the course of a single LHC fill as well as between LHC fills. Such good agreement between the

62



two channels suggests that the remaining non-closure of the efficiency corrections must be small (within

around 1%), which, as mentioned, is a non-trivial result given the distinct methodology used in the two

channels.
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Figure 4.11: Time-dependent ratio of the instantaneous luminosities determined from Z → e+e− and
Z → µ+µ− counting for an example LHC fill in each data-taking year. No normalisation factor is applied
in the ratio, and hence the agreement with unity is a reflection of the absolute agreement between the
channels.

LZ→e+e−/LZ→µ+µ−

Data-taking period LHC fill Mean Spread
2015 4485 0.985 0.039
2016 4985 0.990 0.029
2017 6362 0.993 0.027
2018 7144 0.991 0.018

Table 4.9: Summary of the mean and spread (68% of all points centred around the mean) of the time-
dependent LZ→e+e−/LZ→µ+µ− ratio for each of the LHC fills listed in Table 4.8.

Figures 4.12 and 4.13 show a comparison between the normalised Z-counting and ATLAS baseline

luminosities as a function of time and pileup respectively, with the corresponding spread values given

in Table 4.10. Over the course of a single LHC fill, the stability of the baseline measurement can be

monitored by normalising the integrated Z-counting luminosity to the baseline ATLAS luminosity and
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monitoring the spread around unity. In addition to this, time dependent trends can also be observed over

the course of a single fill. For each lepton flavour, both as a function of time and pileup, the Z-counting

luminosity shows good a stability with respect to the baseline ATLAS measurement. The time-dependent

(pileup-dependent) ratios have spreads ranging from 1.5% to 2.9% (0.9% to 1.8%) for these example LHC

fills.

Time-dependence Pileup-dependence
Data-taking period LHC fill LZ→e+e−/LATLAS LZ→µ+µ−/LATLAS LZ→e+e−/LATLAS LZ→µ+µ−/LATLAS

2015 4485 0.025 0.029 0.012 0.015
2016 4985 0.028 0.018 0.015 0.009
2017 6362 0.021 0.017 0.017 0.014
2018 7144 0.015 0.017 0.015 0.018

Table 4.10: Summary of the spread (68% of all points centred around unity) of the LZ→e+e−/LATLAS
andLZ→µ+µ−/LATLAS ratio, as a function of time and pileup, for each of the LHC fills listed in Table 4.8.
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Figure 4.12: Time-dependence of the instantaneous luminosity determined from Z-counting (open
circles) and the ATLAS-preferred luminosity measurement (blue line), as well as their ratio (full circles) for
an example LHC fill in each data-taking year. The fill-integrated Z-counting luminosity is normalised to
the corresponding baseline ATLAS luminosity for the electron (left) and muon channel (right) separately.
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Figure 4.13: Pileup-dependence of the instantaneous luminosity determined from Z-counting (open
circles) and the ATLAS-preferred luminosity measurement (blue line), as well as their ratio (full circles).
The x-axis represents the bunch-averaged pileup parameter 〈µ〉, defined as the mean number of inelastic
pp interactions per crossing and is inferred from the baseline ATLAS luminosity The fill-integrated
Z-counting luminosity is normalised to the corresponding baseline ATLAS luminosity for the electron
(left) and muon channel (right) separately.
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4.3.2 Time-dependence of LZ→e+e−/LZ→µ+µ−

Figure 4.14 shows the ratio of the integrated LZ→e+e− and LZ→µ+µ− luminosities for each LHC fill

of Run 2. The data is separated into the constituent data-taking periods (2015 – 2018), and plotted as

a function of the time at which the data were recorded (the start of the fill). Runs less than 40 minutes

in length are excluded, as there are not enough reconstructed Z events to provide a statistically precise

measurement. Monitoring the stability of this ratio over the whole Run-2 period provides a powerful

cross check of the data-driven efficiency determination and the internal consistency of the Z-counting

method. The two channels agree to within approximately 0.8% of unity (the mean ratio is around 0.992),

similar to the values seen in the individual LHC fills in Figure 4.11, which, as discussed in Section 4.3.1,

suggests that the time-dependent efficiency corrections are accurately modelling the detector conditions.

This ratio is extremely stable throughout Run-2, and has a spread ranging from 1% (2015) to 0.6% (2018),

suggesting there are no discernible time-dependent effects in either channel.

Figure 4.15 shows the same ratio, however, for the entire Run-2 dataset rather than each data-taking

period separately. A consistent mean ratio of 0.992 is obtained over the full Run-2 period, with a spread of

0.6%. The extremely stable ratio clearly demonstrates that there are no time-dependent effects, both within

each data-taking period as well as between successive periods. This value is similar to the long-term-

stability error associated with the ATLAS baseline luminosity (0.6%), calculated by comparing 5 reference

luminosity measurements in reference fills in each data-taking period. Table 4.11 summarises the results

(mean and spread) for each of these comparisons, both as a function of time and pileup (Section 4.3.3).

LZ→e+e−/LZ→µ+µ−

Time dependence Pileup dependence
Data-taking period Mean Spread Mean Spread

2015 0.993 0.011 0.9934 0.0066
2016 0.992 0.007 0.9924 0.0017
2017 0.993 0.005 0.9926 0.0027
2018 0.992 0.004 0.9918 0.0018
Run 2 0.992 0.006 0.9923 0.0015

Table 4.11: Summary of the mean and spread (68% of all points centred around the mean) of the
LZ→e+e−/LZ→µ+µ− ratio for each of the Run-2 data-taking periods, and for the full dataset as a function
of time and pileup.
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Figure 4.14: Ratio of the integrated luminosities obtained from the Z → e+e− and Z → µ+µ− channels
per LHC fill (LZ→e+e−/LZ→µ+µ−) in each data-taking period. Only ATLAS runs with a minimum
length of 40 minutes are included and error bars show the statistical uncertainties only. The red lines
indicate the mean, and the green bands contain 68% of all points centred around the mean (Table 4.11).
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Figure 4.15: Ratio of the integrated luminosities obtained from the Z → e+e− and Z → µ+µ− channels
per LHC fill (LZ→e+e−/LZ→µ+µ−) for the whole Run-2 data-taking period. Only ATLAS runs with a
minimum length of 40 minutes are included and error bars show the statistical uncertainties only. The red
line indicates the mean, and the green band contain 68% of all points centred around the mean (Table 4.11).
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4.3.3 Pileup-dependence of LZ→e+e−/LZ→µ+µ−

Similar to the fill-integrated luminosities shown in Section 4.3.2, the integrated Z → e+e− and Z →

µ+µ− luminosities can be calculated in bins of 〈µ〉 and compared. The relative 〈µ〉-dependence of the

electron and muon channel luminosities is presented in Figure 4.16 for each data-taking period of Run

2. The mean ratios are identical (to 3 s.f.) to those in Figure 4.14, while the spread per data-taking

period is significantly smaller; the 〈µ〉-dependent spread of the LZ→e+e−/LZ→µ+µ− ratio ranges from

0.66% (2015) to 0.18% (2018). Figure 4.17 shows the ratio of the electron and muon channel luminosities

for the whole of Run 2, which also has a mean value of 0.992, and a spread of 0.15%. For each year

separately, as well as for the full Run-2 combination, the LZ→e+e−/LZ→µ+µ− ratio exhibits no significant

pileup dependence, further demonstrating the robustness of the method against the changing LHC beam

conditions.
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Figure 4.16: Ratio of the integrated luminosities obtained from the Z → e+e− and Z → µ+µ− channels
(LZ→e+e−/LZ→µ+µ−) in each data-taking period. The x-axis represents the bunch-averaged pileup
parameter 〈µ〉, defined as the mean number of inelastic pp interactions per crossing and is inferred from
the baseline ATLAS luminosity on an LB-by-LB basis [96]. The red lines indicate the mean, and the
green bands contain 68% of all points centred around the mean (Table 4.11).
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Figure 4.17: Ratio of the integrated luminosities obtained from the Z → e+e− and Z → µ+µ− channels
(LZ→e+e−/LZ→µ+µ−) for the full Run-2 data-taking period. The x-axis represents the bunch-averaged
pileup parameter 〈µ〉, defined as the mean number of inelastic pp interactions per crossing and is inferred
from the baseline ATLAS luminosity on an LB-by-LB basis [96]. The red lines indicate the mean, and the
green bands contain 68% of all points centred around the mean (Table 4.11).

4.3.4 Time-dependence of LZ/LATLAS

The ratio of the normalised Z-counting and baseline ATLAS luminosities can be used to study their

relative stability over time and with respect to pileup (Section 4.3.5). To monitor the stability, and not the

agreement between the absolute scale of the two measurements, the Z-counting luminosity is normalised

to the baseline ATLAS measurement. This is done per data-taking period and lepton flavour separately,

by normalising the integrated Z-counting luminosity to the baseline ATLAS luminosity of that period,

with the resulting comparison presented in Figure 4.18. The relative stability of the two measurements is

quantified by calculating the spread of their ratio around unity, ranging from approximately 0.8% (2015)

to 0.4% in (2018), as shown in Table 4.12. The statistical precision of the method also improves over the

course of Run 2, due to increasing instantaneous luminosity delivered to the detector.

The year-to-year stability of theATLAS luminosity scale can bemonitored by comparing the normalised

Z-counting and baseline ATLAS luminosities over the full Run-2 period (Figure 4.19). Rather than

normalising each data-taking period separately, the full Run-2 integrated Z-counting luminosity is

normalised to the full Run-2 baseline ATLAS luminosity, and deviations from unity show the difference

in scale between the years. Since the LZ→e+e−/LZ→µ+µ− ratio is stable over the full Run-2 period

(Figure 4.15), these deviations can be attributed to the absolute scale of the baseline ATLAS luminosity,

determined via van der Meer scan and calibration-transfer procedures [96].

Both the Z → e+e− and Z → µ+µ− channels show the same trends, with deviations from unity of
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−0.4% in 2015, +0.6% in 2016, +0.2% in 2017, and −0.5% in 2018 (calculated by taking the difference

between the mean and unity in each data-taking period separately). The size of these deviations is within

the uncorrelated year-by-year uncertainties that affect the absolute scale of the baseline ATLAS luminosity

(1.3% for 2015/2016, 1.3% for 2017, and 1.0% for 2018 [96]). The overall spread of this ratio is 0.8%

in both channels (Table 4.12). A prominent trend is seen in the 2016 dataset, showing a slope in both

the Z → e+e− and Z → µ+µ− channels. Preliminary studies using an updated vdM scan calibration

suggest that this slope is due to residual pileup dependencies in the baseline ATLAS luminosity.

The statistical power of the Z-counting method can be improved by combining the statistics of both

channels, by calculating the arithmetic mean of the Z → e+e− and Z → µ+µ− luminosity values for

each individual luminosity block. Figure 4.20 shows the ratio of the normalised, combined LZ→`+`− and

baseline ATLAS luminosity values over the full Run-2 period. The same time dependencies as seen in

Figure 4.19 are observed, with improved resolution as a result of the better statistical precision (although

the spread around unity is the same at 0.8%). These results suggest that monitoring the year-to-year

variations of the relative Z-counting and baseline ATLAS luminosities could contribute to an improved

characterisation of the systematic uncertainties affecting the baseline ATLAS luminosity.

Time dependence vs. LATLAS Pileup dependence vs. LATLAS
Data-taking period LZ→e+e− LZ→µ+µ− LZ→`+`− LZ→e+e− LZ→µ+µ− LZ→`+`−

2015 0.008 0.008 0.007 0.0040 0.0035 0.0040
2016 0.006 0.006 0.005 0.0028 0.0022 0.0024
2017 0.005 0.005 0.004 0.0021 0.0022 0.0017
2018 0.005 0.004 0.004 0.0014 0.0011 0.0011
Run 2 0.008 0.008 0.008 – – –

Table 4.12: Summary of the spread (68% of all points centred around unity) of the LZ→e+e−/LATLAS ,
LZ→µ+µ−/LATLAS and LZ→`+`−/LATLAS ratio for each of the Run-2 data-taking periods as a function
of time and pileup, and as a function of time for the full Run-2 dataset.
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Figure 4.18: Ratio of the integrated Z-counting and baseline ATLAS luminosities per LHC fill taken
from pp collisions at

√
s = 13 TeV in 2015 (1st row), 2016 (2nd row), 2017 (3rd row) and 2018 (4th row)

for the Z → e+e− (left) and the Z → µ+µ− (right) channels. The Z-counting luminosity is normalised
to the integrated baseline ATLAS luminosity per data-taking period [96]. The x-axis represents the date
when the fill started, and only ATLAS runs with a minimum length of 40 minutes are included. The error
bars show statistical uncertainties only, and the green bands contain 68% of all points centred around the
mean.
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Figure 4.19: Ratio of the integrated Z-counting and baseline ATLAS luminosities per LHC fill taken
from pp collisions at

√
s = 13 TeV for the full Run-2 data taking period for the Z → e+e− (upper plot)

and the Z → µ+µ− (lower plot) channels. The Z-counting luminosity is normalised to the baseline
ATLAS luminosity integrated over the Run-2 data-taking period [96]. The x-axis represents the date when
the fill started, and only ATLAS runs with a minimum length of 40 minutes are included. The error bars
show statistical uncertainties only, and the green bands contain 68% of all points centred around the mean.
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Figure 4.20: Ratio of the integrated, combined Z-counting and baseline ATLAS luminosities per LHC
fill taken from pp collisions at

√
s = 13 TeV for the full Run-2 data-taking period. The combined Z-

counting luminosity is normalised to the baseline ATLAS luminosity integrated over the Run-2 data-taking
period [96]. The x-axis represents the date when the fill started, and only ATLAS runs with a minimum
length of 40 minutes are included. The error bars show statistical uncertainties only, and the green bands
contain 68% of all points centred around the mean.
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4.3.5 Pileup-dependence of LZ/LATLAS

The baseline ATLAS luminosity detector (LUCID) suffers from significant non-linearity with respect to

〈µ〉, requiring a correction derived from other luminosity monitoring algorithms [96]. This correction can

be as large as 10% at an 〈µ〉 of 50. In contrast, the Z-counting data-driven efficiencies and Monte Carlo

non-closure corrections are determined as a function of pileup (or time), which gives the method extremely

good stability with respect to the changing LHC beam conditions. Figure 4.21 shows the normalised ratio

of the Z-counting and baseline ATLAS luminosities for each lepton flavour and data-taking period as

a function of pileup, with the combination (LZ→`+`−) shown in Figure 4.22. The spread around unity

ranges from approximately 0.4% (2015) to 0.1% (2018) (Table 4.12) which is approximately a factor of

two to three times smaller than the corresponding time-dependent values.

Some small trends are observed in both channels, as well as their combination; for example in the

low-pileup regime in 2016 and the high-pileup regime in 2016. Such trends were not observed in the

comparison between the electron and muon channel Z-counting luminosities (Figure 4.17), which is

independent of the baseline ATLAS luminosity measurement. This suggests that there could be some

〈µ〉-dependent effects in the baseline ATLAS luminosity determination, however, these trends could be a

result of residual time-dependencies. Since the 〈µ〉 distribution is not uniform within each data-taking

period, trends Figures 4.21 and 4.22 could in principle reflect those of Figures 4.18 and 4.20.
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Figure 4.21: Ratio of the integrated Z-counting, Z → e+e− (left) and Z → µ+µ− (right), and baseline
ATLAS luminosities for 2015 (1st row), 2016 (2nd row), 2017 (3rd row) and 2018 (4th row) ATLAS
data from pp collisions at

√
s = 13 TeV. The x-axis represents the bunch-averaged pileup parameter 〈µ〉,

defined as the mean number of inelastic pp interactions per crossing and is inferred from the baseline
ATLAS luminosity on an LB-by-LB basis. The Z-counting luminosity is normalised to the integrated
baseline ATLAS luminosity per data-taking period. The error bars show statistical uncertainties only, and
the green bands contain 68% of all points centred around the mean.
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Figure 4.22: Ratio of the integrated Z → `+`− and baseline ATLAS luminosities in each data-taking
period. The x-axis represents the bunch-averaged pileup parameter 〈µ〉, defined as the mean number of
inelastic pp interactions per crossing and is inferred from the baseline ATLAS luminosity on an LB-by-
LB basis. The Z-counting luminosity is normalised to the integrated baseline ATLAS luminosity per
data-taking period. The error bars show statistical uncertainties only, and the green bands contain 68% of
all points centred around the mean.
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4.3.6 Time-dependence of LZ→`+`−/Ltrack−counting

An important alternative luminosity measurement can be obtained by counting the number of tracks

reconstructed in the inner detector, known as the track-counting method. This method uses the fact that

the number of charged particles produced in an inelastic collision (reconstructed as tracks in the ID),

is proportional to the average number of inelastic interactions per bunch crossing. Tracks candidates

are required to have pT > 900 MeV, η < 1.0 and at least nine hits in the ID. However, not all inelastic

interactions are measured by the detector, only some fraction of them. This is known as the number of

visible interactions. A measurement of the average number of visible inelastic interactions per bunch

crossing (〈µ〉track−counting
vis ) can be obtained by measuring the mean number of reconstructed tracks per

luminosity block.

The track-counting luminosity is obtained as follows. The number of visible inelastic interactions

is multiplied by the revolution frequency of protons in the LHC (frev) and the number of filled proton

bunches (nB), and then divided by the visible cross section, σvis, as measured using the van der Meer

scan procedure [130, 131],

Ltrack−counting =
〈µ〉track−counting

vis · frev · nB
σvis

. (4.19)

Figure 4.23 shows the time-dependent ratio of the Z-counting and track-counting luminosities over

the Run-2 period. To remove the dependence on the theoretical Z production cross section, LZ→`+`−

is normalised to the same integrated luminosity as Ltrack−counting following the same procedure as

performed in Section 4.3.5. This ratio has a spread around unity of 0.3%, showing that the relative

stability of LZ→`+`−/Ltrack−counting is significantly better than that of LZ→`+`−/LATLAS . Likewise,

the year-to-year differences in scale are smaller than those given in Section 4.3.4, with deviations from

unity of +0.1% in 2015, −0.04% in 2016, +0.05% in 2017, and −0.05% in 2018 as summarised in

Table 4.13.

The results in Table 4.13 and Figure 4.23 suggest that the Z-counting and track-counting methods are

in excellent agreement with one another over the Run-2 period. The spread of the results around unity is

much tighter than the corresponding LZ→`+`−/LATLAS values, further corroborating the conclusion that

the Z-counting method can contribute to a better understanding of the systematic uncertainties affecting

the baseline ATLAS luminosity measurement.
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Deviation from unity

Data-taking period LZ→`+`−/LATLAS LZ→`+`−/Ltrack−counting

2015 -0.4% +0.1%
2016 +0.6% -0.04%
2017 +0.2% +0.05%
2018 -0.5% -0.05%

Table 4.13: Deviation from unity of the time-dependent, globally normalised LZ→`+`−/LATLAS and
LZ→`+`−/Ltrack−counting ratios. The normalisation is calculated over the full 2016 – 2018 period, and
the mean calculated in each individual data-taking period, with the deviation given by the difference
between the mean and unity.
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Figure 4.23: Ratio of the integrated, combined Z → `+`−-counting and track-counting luminosities
per LHC fill taken from pp collisions at

√
s = 13 TeV over the Run-2 period. The combined Z-counting

luminosity is normalised to the track-counting luminosity integrated over the Run-2 period. The x-axis
represents the date when the fill started, and only ATLAS runs with a minimum length of 40 minutes are
included. The error bars show statistical uncertainties only, and the green bands contain 68% of all points
centred around the mean.
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4.3.7 Interactive dashboard

An interactive dashboard was also developed and deployed to allow members of the ATLAS luminosity

group to lookup a whole suite of Z-counting information for a specific LHC fill or data-taking period.

Information such as the trigger- and reconstruction-efficiency, Z-counting vs. baseline ATLAS luminosity

comparison and LZ→e+e− vs. LZ→µ+µ− can be viewed for any given LHC fill. Drop-down menus

allow the user to select the desired data-taking period and fill, as well an option to visualise time- or

pileup-dependencies.

The input data is hosted on the CERN EOS server in the form of CSV files and is loaded to the

web-page in real-time. This allows for rapid turnaround during data-taking, as the Tier-0 Z-counting

outputs can output to the EOS server and loaded directly into the dashboard without any down-time.

The application was developed in Python and deployed as an official CERN webpage using the CERN

OpenShift platform.2 Figure 4.24 shows some example screenshots from the dashboard using the 2017

LHC fill 6362. These plots contain the same information as those shown in Section 4.3.1, however they are

available on-demand for all LHC fills. This represents a powerful tool for rapid visualisation of ATLAS

data, which could be expanded to include other luminometers and significantly improve the efficiency of

monitoring the luminosity delivered to ATLAS during the data-taking period.

2The webpage is deployed using a Docker image built based on the source-to-image (S2I) framework.
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Figure 4.24: Screenshots from the interactive Z-counting dashboard illustrating the information which
users can obtain for any given ATLAS data-taking run [132].
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4.4 Conclusion

The Z-counting method is a powerful tool to monitor the luminosity recorded by the ATLAS detector.

Detector inefficiencies are modelled in a granular, time-dependent way, giving the method excellent stability

both with respect to time and pileup dependent effects. No bunch-position dependence is observed in the

tag-and-probe efficiency measurements, indicating that the Z-counting method is stable with respect to

the LHC bunch-structure. A luminosity measurement is obtained using both Z → e+e− and Z → µ+µ−

events, with independent data-driven and simulated corrections for each. Electrons and muons also depend

on different subdetectors and use different triggers, meaning the two channels are completely independent

of one another, which allows for a powerful internal cross check of the results. Over the whole Run-2

period, the luminosity values determined in the electron and muon channels show excellent agreement,

with a mean of 0.992 and a spread of 0.6% (0.15%) as a function of time (pileup).

Measurements are obtained for each individual luminosity block (60 seconds), which can then be

averaged over periods of roughly 20 minutes to monitor the stability over the course of a single fill, or

integrated over every LHC fill within a data-taking period to monitor trends over longer time periods.

When averaged over periods of roughly 20 minutes, statistical uncertainties ranging from approximately

4% (2015) to 2% (2018) can be achieved, with the statistical precision improving at higher instantaneous

luminosities. The Z → e+e− and Z → µ+µ− luminosities can be compared directly to the baseline

ATLAS luminosity measurement, or they can be combined (Z → `+`−), with similar trends found in

each channel as well as their combination. Over the course of individual LHC fills, the comparison of the

normalised Z-counting and baseline ATLAS luminosities has a spread around unity of approximately 2%.

In each data-taking period, the time-dependent ratio of the normalised Z-counting and baseline

ATLAS luminosity values has a spread around unity of about 0.8% (2015) to 0.4% (2018), while the

pileup-dependent ratio has a spread of approximately 0.4% (2015) to 0.1% (2018). Over the full Run-2

period, the time-dependent ratio has a spread of 0.8%, with deviations from unity of −0.4% in 2015,

+0.6% in 2016, +0.2% in 2017, and −0.5% in 2018. The Z-counting luminosity is also compared to the

track-counting luminosity, with deviations from unity of +0.1% in 2015, −0.04% in 2016, +0.05% in

2017, and −0.05% in 2018. The long term stability of the baseline ATLAS luminosity is also 0.6% over

the Run-2 period, meaning that the Z-counting value is competitive with this measurement, which utilises

5 other luminometers to achieve this precision. Monitoring the year-to-year variations of the relative

Z-counting and baseline ATLAS luminosities could contribute to an improved characterisation of the

time-dependent systematic uncertainties affecting the baseline ATLAS luminosity.
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Chapter 5

Search for new heavy charged gauge

bosons

5.1 Introduction

There are many theoretical candidates for beyond the Standard Model (BSM) particles. One such candidate

is the W ′ boson, which in the simplest model is a heavy charged Spin-1 gauge boson and has similar

properties to the Standard ModelW boson but a much larger mass. Many searches for these signatures

have been performed at ATLAS, both in Run-1 and Run-2 [133, 134], and similar analyses have also been

performed at CMS [135, 136]. This section presents a new search for this particle using the full Run-2

ATLAS dataset consisting of 139 fb−1 of pp data. The previous paper published by ATLAS analysed

36 fb−1 of pp data, meaning this analysis benefits from an approximately factor four increase in luminosity.

Furthermore, this analysis extends the range of theoretical interpretations by including model independent

results for the first time. The dominant source of background is Drell-Yan production of the Standard

ModelW boson, and the primary search variable is the transverse mass, which is calculated using the

transverse momentum (pT) of the selected electron and the missing energy (Emiss
T ) in the event,

mT =
√

2pTEmiss
T (1− cosφeν), (5.1)

where φeν is the azimuthal angle between the selected electron and missing energy. This section

provides an overview of the theoretical motivation for such an exotic signal, outlines the techniques used

in the analysis and presents the final results. All plots are the work of the author except Figures 5.16 and

5.17-5.19, which were produced by Magnar Bugge using input data provided by the author for the ATLAS

publication [3]. The author was the lead analyser in the electron channel, as such, the following section
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will focus on the analysis details of theW ′ → eν channel.

5.2 Theoretical motivation

Many models predict the existence of heavy charged spin-1 gauge bosons (W ′), the signal for which is

a resonant peak over a flat background. Some example models include: Left-Right symmetry models

[137, 138], Little Higgs models [139], models with extra dimensions [140, 141], the Sequential Standard

Model (SSM) [142] and the Heavy Vector Triplet (HVT) model [143, 144]. These models aim to solve

the hierarchy problem, which refers to the difference in scale between the mass of the Higgs boson

(mh = 125 GeV) and the Planck mass (mP = 1019 GeV). This difference in scale is a problem, as the

Higgs mass term has contributions from all scales at which it interacts, meaning that the quantum field

theory prediction for the Higgs mass is actually much larger than the effective value which is measured in

experiment. Currently this is explained by the process of renormalisation [145, 146, 147] however, the

introduction of new physics at the TeV scale offers a physical explanation for the cancellation of large

quadratic terms in the Higgs mass.

Various theoretical interpretations are presented in this analysis, all of which focus on the Drell-Yan

production ofW ′ bosons decaying leptonically to an electron or muon (pp → W ′ → `ν). Due to the

difficulty of reconstructing τ leptons, they are the subject of a separate dedicated analysis. The flagship

result of this analysis is the interpretation in the context of the SSM, which has been used as the historical

baseline. Preliminary results will also be presented in the framework of the HVT model as well as in more

model independent contexts, allowing for a greater potential range of reinterpretation.

Sequential standard model In the SSM theW ′ boson has the same couplings to fermions as the SM

W boson and there can be significant mixing between the SMW andW ′. An extension to this model is

to apply a mixing factor of O(M2
W /M

2
W ′) to the coupling, mimicking the effect of models with extended

gauge symmetries and significantly suppressing the mixing [142]. To simplify the theoretical description

in this analysis and reduce the model dependence of the obtained results, the interference betweenW ′ and

W/Z is neglected altogether. This simplified model is a useful benchmark in order to provide results that

can be conveniently converted to specific models and is thus the primary theoretical framework used in

this analysis.

Heavy vector triplet model In the HVT model, a new electroweak triplet is introduced consisting of

the chargedW ′± bosons and the neutral Z ′ boson by extending the electroweak gauge symmetry to

SU(2)× U(1)→ SU(2)× U(1)× SU(2)′. (5.2)
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These 3 gauge bosons are almost degenerate in mass, and in the analysis presented within, theW ′± and

Z ′ states are assumed to be fully degenerate. The HVTLagrangian is constructed using a phenomenological

approach, only taking into consideration those free parameters of the model which effect the mass and

width of the resonance. These are the only parameters which the resonant search is sensitive to, and to

simplify the underlying model description the free parameters which do not affect the mass and width

can be neglected. This approach greatly increases the model independence of the interpretation, as the

experimental results can be presented in the parameter space of the phenomenological Lagrangian. The

phenomenological interaction Lagrangian is

Lint
W = −gqWa

µ q̄kγ
µσa

2
qk − g`Wa

µ
¯̀
kγ

µσa
2
`k − gH

(
Wa
µH
†σa

2
iDµH + h.c.

)
, (5.3)

where qk and `k represent the left-handed quark and lepton doublets for fermion generation k (k =

1, 2, 3), H represents the Higgs doublet, σa (a = 1, 2, 3) are the Pauli matrices and gq, g`, and gH

correspond to the coupling strengths between the triplet fieldW and the quark, lepton, and Higgs fields,

respectively. The results can then be transferred to a specific model scenario where the phenomenological

parameters can be calculated.

5.3 Event selection

In the electron channel, events are selected using the selection criteria outlined in Table 5.1. The

pseudorapidity requirements are determined by the region over whichATLAS has good electron reconstruction

efficiency, i.e. excluding the barrel endcap transition region between 1.37 < |η| < 1.52 and only using the

region fully covered by the Inner Detector up to |η| < 2.47. The transverse momentum of the triggered

electron is required to be pT ≥ 65 GeV, with an associated missing energy of Emiss
T ≥ 65 GeV. This

threshold is determined by the triggers used in the analysis, and the transverse mass is the sum of the Emiss
T

and pT cuts, i.e. mT ≥ 130 GeV. These selection criteria also reflect the topology of the signal, namely a

final state consisting of a high-pT electron and a large missing energy. The event-level trigger information

can be seen in Table 5.2.

Following on from the description given in Section 3.4, the three ID working points used in this

analysis are Loose, Medium and Tight, and a description of the requirements of each can be found in Ref.

[97]. These are constructed such that electrons which pass Tight will also pass Medium, and those which

pass Medium will also pass Loose. In addition to the likelihood identification criteria, there are also the

isolation requirements. The Gradient working point is used in the electron channel in this analysis, also

described in Ref. [97]. This working point has been tuned for both calorimeter and track based isolation,

and is designed in a similar manner to the Loose working point, with a rising efficiency up to a plateau of
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99% at approximately 60 GeV. Therefore, the isolation efficiency should be roughly flat at 99% across the

entire phase space of interest in this analysis.

In order to suppress background due to dielectron final states, signal events are required to contain

exactly one electron passing the selections outlined in Table 5.1. An additional loose lepton (electron or

muon) veto is also applied, rejecting events which pass the selection criteria listed in Table 5.3. Events

with an electron and a muon in the final state have a significant contribution from processes involving top

quark final states, which can be significantly suppressed with this additional lepton veto. Furthermore,

events are required to pass basic data quality criteria as defined in Table 3.3.

Electron channel event selection
Feature Criteria

Pseudorapidity (|η| < 1.37) OR (1.52 < |η| < 2.47)
Object quality Not from a bad calorimeter cluster

Transverse momentum pT > 65 GeV
Bad-jet veto LooseBad

Track-vertex association |dBL
0 |/σ(dBL

0 ) < 5
Identification Tight
Isolation Gradient

Missing transverse energy Emiss
T > 65 GeV

Transverse mass mT > 130 GeV

Table 5.1: Summary of the event selection criteria in the electron channel, see text for further explanations.

Electron channel trigger information
Period Used Trigger Properties

2015 HLT_e24_lhmedium_L1EM20VH pT > 24 GeV
ID: LHMedium
Emiss

T > 20 GeV*
(variable, compensate for E loss in passive material)

Emiss
T dependent veto

2015 - 2018 HLT_e60_lhmedium pT > 60 GeV
ID: LHMedium

2015 HLT_e120_lhloose pT > 120 GeV
ID: LHLoose

2016 - 2018 HLT_e140_lhloose_nod0 pT > 140 GeV
ID: LHLoose (no d0 cut)

Table 5.2: Summary of the triggers used in the electron channel.
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Electron veto
Feature Criteria

Transverse momentum pT > 20 GeV
Pseudorapidity (|η| < 1.37) OR (1.52 < |η| < 2.47)
Object quality Not from a bad calorimeter cluster

Track-vertex association |dBL
0 |/σ(dBL

0 ) < 5
Identification LHMedium
Isolation Gradient

Muon veto
Feature Criteria

Transverse momentum pT > 20 GeV
Pseudorapidity η < 2.4

Selection working point Medium or High-pT
Isolation FCTightTrackOnly

Table 5.3: Summary of the additional lepton vetoes used in the electron channel, see text for further
explanations.
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Figures 5.1-5.2 shows the event yields in the 2015-2016 and 2017-2018 data-taking periods respectively.

The event yield is the number of events which pass the selection per ATLAS run normalised to the

luminosity of that run. This can be seen to be relatively stable across data-taking periods, as one would

expect as this quantity is related to the production cross section and should therefore be independent of

the machine running conditions.
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5.4 Monte Carlo simulation

5.4.1 Signal

Signal samples were generated in the context of the Sequential Standard Model with subsequent decay

into an electron and a neutrino. These samples were produced at LO with the Pythia v8.183 [119] event

generator with A14 tune [148] for parton shower and hadronisation. To remove the mass dependence of the

generator level Monte Carlo, the square of the matrix element is divided by a function of lepton-neutrino

invariant mass (m`ν) of the form

f(mlν) =

(
m`ν√
s

)p2
× exp

(
−p1m`ν√

s

)
, (5.4)

where p1 and p2 are parameters that minimise the mass dependence of the cross section and
√
s is

the centre-of-mass energy. This mass-independent sample can then be reweighted to a range of different

pole masses in order to scan the entire phase space ofW ′ signals. Event-by-event weights are applied

depending on the invariant mass of the lepton-neutrino system and the desired signal pole mass (M ).

Therefore, the exact shape of the resonance depends the event kinematics, the signal pole mass and the

width assumptions. The event weights are calculated using Eq. 5.5.

w =
1012

(m2
`ν −M2)

2
+ (m2

`νΓ)
2 . (5.5)

Γ is the relative width of the W ′ signal, which is calculated in the context of the SSM with W ′

couplings to fermions being set equal to the SMW and neglecting the interference betweenW ′ andW ,

Γ =
1 +

((
1 + 1

3.5 log (M/0.151142)

)
×
(

3− 1.5
(
Mt

M

)2
+ 0.5

(
Mt

M

)6))
4sin2θW

(
1

αEM
+ 1.45 log (MZ/M)

) . (5.6)

θW is the weak mixing angle,Mt is the top quark mass,MZ is the Z boson mass and αEM is the

fine structure constant at the Z mass scale. An additionalm`ν dependent factor is applied to the weight

w to obtain the final event weight (wW ′). This factor has a distinct functional form, depending on the

magnitude ofm`ν relative to the weak mixing angle.

wW ′ =


w

102.77 exp(11.5m`ν) , if m`ν√
s
< sin2θW

10

w
exp(16.1m`ν−1.2 log(m`ν)) , if sin

2θW
10 < m`ν√

s
< sin2θW

w
1.8675×10−3×exp(31.7m`ν)−4.6 log(m`ν) . if m`ν√

s
> sin2θW

(5.7)

The branching ratio of theW ′ → eν is 10.8% at low mass (150 GeV) and is approximately constant
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at 8.2% above the tb production threshold, while the width ranges from 2.7% at low mass to 3.5% above

the tb threshold. The generator level transverse mass distributions for various mass hypotheses and the

acceptance times efficiency (A× ε) for all signals at final selection can be seen in Figure 5.3. As expected,

the signal line-shapes become significantly broader as the pole mass increases, due to more of the cross

section being concentrated in the off-shell tail, and the number of events drops off rapidly due to the

decreasing cross section (Figure 5.3 left). Likewise, the acceptance times efficiency of high mass signals

begins to decrease as more of the signal is concentrated in the parton luminosity tail (m`ν << mW ′ ) and

the kinematic cuts remove a larger fraction of events (Figure 5.3 right). However, the acceptance times

efficiency is high over the entire the entire high-mass region, with A× ε ≥ 62% over the entire region

abovemW ′ ≥ 1 TeV. This can be contrasted with the muon channel where the acceptance is as low as

45% at 7 TeV, thereby reducing the sensitivity in the muon channel at high-mass compared to the electron

channel.
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Figure 5.3: Left: Signal generator-level transverse mass distributions for variousW ′ pole mass hypotheses.
Right: Signal acceptance times efficiency versusW ′ pole mass after final selection in the electron channel.

5.4.2 Background

To reach sensitivities to very high masses where signals become increasingly broad, exotic searches such

as this one rely on having an accurate description of the expected Standard Model background in order to

measure a potential excess. As such, it is important to consider all SM processes with a final state with a

similar topology to the proposed signal (high-pT lepton and large missing energy). Monte Carlo simulation

is used to evaluate all background contributions, other than the multijet contribution, where multijet refers

to production of jets and non-prompt leptons which are misidentified as electrons and subsequently pass

signal selection. The evaluation of the multijet contribution is the topic of Section 5.5.

The Standard Model backgrounds which are evaluated using Monte Carlo simulation are summarised

in Table 5.4.2. Each of these samples is shown with its corresponding event generator, parton showering

programme, PDF and approximate contribution to the total SM background.
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Sample Generator Parton Shower PDF Contribution [%]
W → `e,τνe,τ Powheg-Box v2 [117, 118, 149, 150] Pythia v8.186 [119] (AZNLO tune [128]) CT10 [151] 70

t/t̄/tt̄ Powheg-Box [152, 153, 154] Pythia v8.183 [119] (A14 tune [148]) NNPDF30 NNLO [155] 16
Z → `e,τ `e,τ Powheg-Box v2 [117, 118, 149, 150] Pythia v8.186 [119] (AZNLO tune [128]) CT10 [151] 2.5
Diboson Sherpa v2.2.1 [120] – NNPDF30 NNLO [155] 1.5

Table 5.4: Overview of Standard Model background processes modelled using Monte Carlo simulation.
All samples are shown with their event generator, parton showering programme, PDF and their
percentage contribution to the total background, including the data-driven multijet background component
(Section 5.5).

To ensure sufficient statistics at high mass, both charged and neutral current DY backgrounds are

generated in bins of invariant mass. Inclusively generated samples would require unrealistically large

numbers of events to accurately estimate theW/Z boson background at high mass, where the contribution

is a result of off-shell production. Summing the mass binned samples allows for an accurate description

of the SMW/Z boson background across the whole mass spectrum. High statistics inclusive samples

are also generated in the region before the mass binned sample starts (m < 120 GeV). These samples

were generated at NLO QCD with the Powheg-Box v2 event generator [117, 118, 149, 150] using the

CT10 NLO PDF set [151]. The higher order QCD corrections were computed with VRAP v0.9 [156]

using the CT14 NNLO PDF set [157] and the NLO EW ISR and virtual corrections were calculated with

MCSANC [57]. QED FSR effects are applied directly to the Monte Carlo during event generation using

PHOTOS++ [61]. The central value of the NNLO QCD + NLO EW cross section for each mass bin

is calculated using the additive method (see Section 2.4.4), and a symmetric systematic uncertainty is

estimated by calculating the difference between the additive and factorised methods. Due to these higher

order corrections, the NLO QCD cross section is reduced by approximately 10% at m`ν = 1 TeV and

20% atm`ν = 6 TeV.

While the DY samples are generated in slices of invariant mass, both the top and diboson backgrounds

are generated inclusively across the whole mass spectrum. Therefore, these samples also suffer from

limited statistics in the high-mass region, and so a transverse-mass-dependent functional form is fit to the

background distribution to mitigate this effect. This is done by fitting the background distribution with a

polynomial function in the high-statistics low-mTregion, and then using the results of this fit to estimate

the background at high-mTwhere statistics are low. The multijet background is also subject to such an

extrapolation, more details of which are discussed in Section 5.6.

5.5 Data-driven background estimation

Backgrounds arising from multijet production are poorly modelled using Monte Carlo due to the very large

cross section of jet production in pp collisions, hence the data-driven matrix method is used instead. The

matrix method exploits the different probabilities for real and fake leptons to pass certain selection criteria.
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For example, a genuine prompt electron will have a high probability of passing tight identification criteria,

compared to a non-prompt electron or a misidentified jet. By exploiting these different probabilities, the

contribution of "fake" electrons to the measured data can be extracted.

The number of fake electrons in the data is not an observable quantity, and must be determined by

measuring the relative proportion of "tight" and "loose" electrons. Tight selection is defined by strict

selection cuts, designed to minimise the fake contribution, while the loose selection is designed to maximise

the fake contribution. The number of real (NR) and fake (NF ) electrons is statistically independent, and

so must be the tight and loose selection requirements. Therefore, events which pass the loose selection

are explicitly required to fail the tight selection. The observed number of tight (NT ) and loose (NLnT )

electrons is dependent on the number of real and fake electrons, with the proportionality factor being the

real (εR) and fake (εF ) efficiencies. These efficiency factors measure the probability that a real or fake

electron which passes loose selection, also passes tight selection. Eq. 5.8 shows the relation between the

"true" number of real and fake electrons and the number which pass the tight and loose selection criteria,

 NT

NLnT

 =

 εR εF

1− εR 1− εF

 NR

NF

 (5.8)

In this case, the tight selection is equivalent to the signal selection outlined in Section 5.3. The loose

selection is similar to the signal selection, with looser identification requirements and no requirement on

isolation. While not strictly necessary in the matrix method, in this analysis the loose region is defined

in two separate regions of pT < 145 GeV and pT > 145 GeV. The reason for this is so that the selection

criteria in each of these regions closely matches the trigger requirements. In the region of pT < 145 GeV

the LHMedium ID working point is used, while in the pT > 145 GeV region the LHLoose ID working

point is used (closely matching the selection outlined in Table 5.2).

The aim of the matrix method is to determine the number of fake electrons which pass selection (εFNF ).

By inverting the matrix, an expression forNF can be obtained in terms of measurable reconstruction level

quantities (Eq. 5.9 and Eq. 5.10).

 NR

NF

 =
1

εR(1− εF )− εF (1− εR)

1− εF −εF

εR − 1 εR

 NT

NLnT

 (5.9)

NF =
1

εR − εF
(εR(NLnT +NT )−NT ) (5.10)

In order to calculate the real efficiency component, the contribution from prompt leptons can be

determined from MC. The real efficiency, εR, quantifies what fraction of real electrons which pass loose

selection also pass tight selection. To ensure a high purity of prompt electrons, onlyW → eν MC is used,

94



with an additional truth matching cut of ∆R(etruth, ereco) < 0.2 applied. The efficiency is calculated by

taking the ratio of the number of events which pass the tight and loose selections defined previously, without

the Emiss
T andmT requirements applied in order to increase the statistics of the efficiency evaluation,

εR =
Nreal
T

Nreal
LnT +Nreal

T

=
Nreal
T

Nreal
L

, (5.11)

where NL is simply the number of events that pass loose selection, with no requirement that they also

fail tight selection. The Emiss
T and mT cuts can be relaxed due to the high purity of the samples, since

there is little-to-no contamination at low Emiss
T /mT due to misidentified jets or non-prompt leptons. Figure

5.4 shows the real efficiency determined from W → eν Monte Carlo as a function of η and pT. The

real efficiency is greater than 94% over the entire phase space, and exhibits only a slight dependence on

transverse mass and pseudorapidity.
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Figure 5.4: Real-electron efficiency as a function of η and pT determined from W Monte Carlo samples.

While the real efficiency component can be determined fromMC, the fake efficiency must be estimated

using a data-driven approach, due to the fact that Monte Carlo should consist of almost entirely prompt

electrons. To estimate the fake efficiency, the non-prompt contribution in real data must be calculated,

with a background subtraction from MC in order to remove the contribution of prompt electrons which

have been misidentified as fake. This subtraction is calculated by applying the same selection to MC as is

applied in data1

εF =
Nfake,data
T −Nfake,MC

T

Nfake,data
L −Nfake,MC

L

. (5.12)

The tight and loose selection criteria follow those previously defined, with some additional cuts in

order to minimise the prompt-lepton contribution from W and Z decays. These selection criteria are

detailed in Table 5.5.

1The prompt dilution in the fake efficiency determination can be seen in Figures B.1 and B.2.
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Targeted background Selection
W Emiss

T < 60 GeV

Z
|mee −mZ | > 20 GeV

for events with 2 electrons
passing LHLoose and pT > 20 GeV

Table 5.5: Additional selection cuts applied to the fake efficiency region. Events with large missing energy
are vetoed in order to reduce theW contribution, while events with 2 electrons which pass LHLoose ID
and have pT > 20 GeV and are within 20 GeV of the Z mass are vetoed to minimise the Z contribution.

Figure 5.5 shows the fake efficiency as a function of pT and ∆φ. It can also be noted that this figure

shows the effect of systematic variations on the selection used in defining the enriched fake region. This

is simply due to the fact that the definition of the control region is rather arbitrary, so varying it slightly

gives an estimate of the systematic uncertainty associated with the phase-space definition. The efficiency

labelled as "Nominal" shows the efficiency obtained using the selection given previously, while the other

efficiencies are obtained by adding the selections listed in Table 5.6. The fake efficiency exhibits a strong

dependence both on the transverse momentum of the selected lepton and the ∆φ between the selected

lepton and the missing energy. The discontinuity at pT = 145 GeV is a result of the LHLoose identification

working point being used in the high-pT region, while the LHMedium working point is used at low-pT.

Since the requirements of the LHMedium working point are stricter than those of LHLoose, the probability

that an electron which passes LHMedium also passed LHTight is higher than for LHLoose electrons.

Selection
Emiss

T < 20 GeV
20 GeV <Emiss

T < 60 GeV
No Z veto applied

Table 5.6: Variations applied to the fake efficiency control region. Each of these selections can be
propagated to an efficiency estimate, and in turn an estimate of the multijet background.
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Figure 5.5: Fake efficiency variations as a function of pT (left) and ∆φe,Emiss
T

(right) determined from
fake enriched data sample.

In order to increase the granularity of the real and fake efficiency estimates, those which are applied
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to the data are binned in two dimensions (Figures 5.4 and 5.5 are for illustrative purposes). The real

efficiency component is binned as a function of the pT and η of the selected electron, and the fake efficiency

component is binned as a function of the pT of the electron and the ∆φeEmiss
T

between the electron and

missing energy. The real/fake efficiency estimates can then be obtained on an event-by-event basis, based

on the kinematics of the event. Figure 5.6 shows the 2-dimensional real (left) and fake (right) efficiencies.

The real efficiency is high at ε > 94% across the entire phase space, while the fake efficiency is high in

the pT < 145 GeV region and low above pT > 145 GeV. High fake efficiencies lead to a larger multijet

background estimate, and so the multijet background is larger in the low transverse mass/missing energy

region due to the dependence on peT and ∆φeEmiss
T

.
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Figure 5.6: Real efficiency as a function of pT and |η| is shown on the left. Fake efficiency as a function
of pT and |∆φe,Emiss

T
| is shown on the right.

In principle, the efficiencies could be binned in as many variables as necessary, however given statistical

limitations previous iterations of the analysis chose to use 2-dimensions only. Given that this dataset is

a factor 4 larger than the previously published version, a test was performed to see how extending the

binning to 3-dimensions effected the multijet estimate in the signal region. Figure 5.7 shows the result of

this comparison, where the fake efficiency is binned in 3-dimensions as a function of pT, ∆φe,Emiss
T

and

η. It should be noted that the uncertainties shown in this figure are not representative of the uncertainty

on this ratio, and it is the central value which defines the uncertainty between the two methods, i.e. the

relative agreement. No pseudorapidity dependence was included for the real efficiency, as the variations

are negligible at below the 1% level. While there is an approximately 10% difference between the two

estimates above 300 GeV, this is within the systematic uncertainties shown in Figure 5.9, and so the final

estimation of the multijet background was obtained using the two-dimensional fake efficiencies. It is

important to note that the error bars shown in this figure should not be taken into consideration in this

comparative analysis. The uncertainties shown are simply the combined Gaussian errors on the 3D/2D

multijet estimates, without propagating the fake efficiency uncertainties or using Poisson statistics.
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Figure 5.7: Comparison of the multijet background estimate obtained when using 2-dimensional vs.
3-dimensional binning for the fake efficiency estimate.

5.5.1 Multijet validation region

In order to test the predictive power of the matrix method, a validation region is defined which is designed

to have an enriched multijet contribution. This validation region is defined similarly to the signal region,

only releasing the requirement on Emiss
T andmT, as the multijet contribution is dominant in the low-Emiss

T

region. The η, φ, pT, Emiss
T , ∆φe,Emiss

T
, mT distributions in the multi-jet validation region can be seen

in Figure 5.8, where it can be seen that the multi-jet contribution can be as large as 40% of the total

background contribution.

Overall agreement in this region is good, with some small disagreement seen at high-η and a roughly

flat shift from unity in the Emiss
T distribution above 50 GeV. This Emiss

T mis-modelling is assumed to

be attributable to mis-modelling of non-leptonic activity such as jet emissions, parton showering and

underlying event activity, leading to a better Emiss
T resolution in Monte Carlo than data (studies performed

by M. K. Bugge in the muon channel and documented in Ref. [158]). An excess of data over background

can also be seen in themT distribution in the 100− 200 GeV region, which is also attributed to the Emiss
T

resolution mis-modelling. This excess is well described when taking into account the pulls of nuisance

paramaters associated with the jet energy resolution and Emiss
T soft term.

5.5.2 Systematic uncertainty

As discussed in Section 5.5 (Figure 5.5), the selections used to calculate the fake efficiency can be

varied to estimate the systematic uncertainty. No such variation is applied to the real efficiency, as it

is stable with respect to the selection criteria as the selected events are genuine prompt electrons. The

statistical uncertainty associated with both the real and fake efficiencies is negligible. Two-dimensional

fake efficiencies are calculated using each of the selections in Table 5.6, and an estimate of the multijet

contribution in the signal region calculated with each. Each of these variations is then compared with the
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nominal, and the envelope of all ratios used to set the systematic uncertainty on the multijet background

normalisation. Figure 5.9 shows the ratio of each of multijet background variation with respect to the

nominal as a function ofmT (left) and pT (right). From this figure, a flat systematic uncertainty of 15% is

set on the multijet background normalisation as a function of transverse mass. The systematic uncertainty

as a function of pT is slightly larger, however, the statistical analysis uses the transverse mass as the primary

search variable so the pT dependence is neglected.
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Figure 5.9: Ratio of multi-jet background variations for the different fake efficiency variations and the
nominal, as a function of transverse mass and the transverse momentum.
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5.6 Background extrapolation

As some samples (top, multijet and diboson) run out of statistics at high-mTand it becomes too computationally

expensive to produce more, a fit is performed and the functional form used to estimate the background

contribution in this region. Searches at CDF, ATLAS and CMS [159, 160, 161] have shown that the

functional forms in Eq. 5.13 and 5.14 provide a good description of top, diboson and multijet backgrounds

at high-mT.

f(mT) = e−amb
Tm

c log(mT)
T , (5.13)

f(mT) =
a

(mT + b)c
. (5.14)

Various fits are performed using both fit functions, varying both the upper and lower bound of the

fitting range. For the top and diboson backgrounds, the fit with the best χ2/Ndof is taken as the central

value and used to estimate the background in the high-mass region. The raw Monte Carlo estimate is used

in the low-mass region, and the two distributions are stitched together to obtain a background estimate

across the entire phase space. The ratio of each fit with respect to the central value is then calculated,

and the ratio furthest from unity is used to estimate a symmetric systematic uncertainty. This is done

for eachmT bin individually so that the uncertainty is constructed from the most discrepant fit in each

bin, thereby covering all possible fits across the entiremT spectrum. All fits are consistent with the data

in the high-statistics region of the phase space. While the fitting procedure is the same for the multijet

contribution, the choice of central value is determined differently. Instead of using χ2 minimisation, the

quantity Q is defined as

Q =
1

NB

nestb >0∑
b>bs

(
nestb − n

fit
b

)2

σ2
b

, (5.15)

where NB is the number of bins, bs the stitching bin, nestb and nfitb the number of entries according to

the matrix method and the fit and σb is the uncertainty in bin b. This quantity is defined such that Q ≈ 1

for fits which describe the high-mT tail well. The fit with the smallest Q value is taken as the central

value, and only fits with Q < 1.5 are considered when calculating the uncertainty.

Table 5.7 shows the range over which the fits are performed, as well as the step size (Lower/Upper
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Increment) and stitch point. The step size is the size by which the lower and upper point of the fits are

varied, and the stitch point the point beyond which the resulting functional form is used as the background

extrapolation. The fit range of the central value is also presented, as well as which functional form was

used to obtain said central value. Figure 5.10 shows the obtained fits for each channel, where the central

value is shown by a dashed red line.

Sample mT [GeV ] Fit FunctionLower Fit Range Lower Increment Upper Fit Range Upper Increment Stitch Point Central Value Fit Range
Top 300 - 450 10 1000 - 1400 20 800 400 - 1000 Eq. 5.13

Multi-jet 350 - 500 25 800 - 1000 10 1000 350 - 1000 Eq. 5.14
Diboson 350 - 500 15 1000 - 2000 40 700 425 - 1000 Eq. 5.13

Table 5.7: Fit parameters for top, multijet and diboson backgrounds, showing themTrange (in GeV) over
which the start of the fit is varied, the step size with which it is varied, and the corresponding range/step
size for the end point of the fit. The stitch point is the point above which the extrapolation is used to
estimate the background, and the central value fit range shows the start and end point of the fit with the
best χ2/Ndof .
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Figure 5.10: Results of fitting and extrapolation for the top, multijet and diboson backgrounds. The full
set of individual fits can be seen, with the central value given by the dashed red line. The envelope of all
these fits gives the associated uncertainty due to this extrapolation.
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5.7 Scale factors and calibrations

Differences in detector response between data and Monte Carlo can be corrected for by the application of

scale factors. Within the ATLAS collaboration, there are dedicated groups who study such differences and

provide the analysis teams with scale factors to apply to their Monte Carlo (and sometimes data). Examples

of such scale factors are the electron trigger, reconstruction, identification and isolation efficiencies [97].

By studying the efficiencies or energy scales in both data and MC, small differences are observed, from

which can be derived scale factors to account for this small mis-modelling. These type of scale factors are

applied as an event-wise weight to deteriorate the Monte Carlo in order to better model the data. The total

weight of the event is equal to the product of all individual scale factor weights.

Furthermore, the pileup distribution of the Monte Carlo is corrected to more closely resemble that of

the data. This is necessary as the pileup profile is not known exactly before the data is taken, and therefore

any Monte Carlo that is generated before the entire dataset has been collected will likely have an imperfect

estimate of the pileup profile. An additional event-level weight is applied to account for this difference.

Finally, the number of generated events are normalised to the measured luminosity by calculating

wlumi =
L× σ × εfilter

Ngen
, (5.16)

where L is the luminosity of the recorded dataset, σ is the production cross section of the process,

εfilter is the filter efficiency (ratio of events kept after removing events deemed not-of-interest to the total

number of generated events) and Ngen is the number of generated events. The Monte Carlo samples are

scaled to higher orders in QCD or EW using a k-factor, hence providing a more accurate description of

the process without the need to generate the full statistics at this order. The tt̄ background is generated at

NLO in QCD, and has an additional reweighting to correct it to NNLO [162].

In addition to applying scale factors, corrections can be applied to variables themselves, examples of

which are the electron and jet energy scale calibrations. Both of these calibrations are applied to data and

Monte Carlo, with centrally produced calibrations provided by Refs. [87] and [163]. The energy values

in data are corrected to those provided by the groups, while in MC the simulated resolution is smeared

in order to more closely resemble that of data. These groups also provide the systematic uncertainties

associated with these calibrations, as seen in Section 5.8.

5.8 Systematic uncertainties

Evaluation of sources of systematic uncertainty is an important component of any search for new physics

beyond the Standard Model. There are many potential sources of systematic uncertainty, broadly falling
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into two categories: experimental and theoretical. The following sections will give an overview of the

main sources of each and how they are evaluated.

5.8.1 Experimental Uncertainties

As discussed previously, experimental calibrations lead to sources of potential systematic uncertainty.

When there is a calibration applied to a quantity, taking the example of the energy scale calibration, there

is a central value corresponding to the value of the applied scale factor, which has associated with it

its own uncertainty. By shifting the central value by its uncertainty and applying this as the calibration,

propagating the result through the entire analysis chain and evaluating how it effects the final result, one

can obtain an estimate of the systematic effect of this calibration by comparing to the nominal result.

Table 5.8 summarises the main sources of experimental uncertainty, the number of associated nuisance

parameters and their references.

Uncertainty Nuisance Parameters Reference Legend
Electron reconstruction efficiency 1 [98] EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR__1up

Electron trigger efficiency 1 [89] EL_EFF_Trigger_TOTAL_1NPCOR_PLUS_UNCOR__1up

Electron isolation efficiency 1 [98] EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR__1up

Electron identification efficiency 1 [98] EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR__1up

Electron energy resolution 1 [98] EG_RESOLUTION_ALL__1up

Electron energy scale 1 [98] EG_SCALE_ALL__1up

Jet energy resolution 8 [109]

JET_JER_DataVsMC__1up

JET_JER_EffectiveNP_1__1up

JET_JER_EffectiveNP_2__1up

JET_JER_EffectiveNP_3__1up

JET_JER_EffectiveNP_4__1up

JET_JER_EffectiveNP_5__1up

JET_JER_EffectiveNP_6__1up

JET_JER_EffectiveNP_7restTerm__1up

Emiss
T resolution parallel 1 [112] MET_SoftTrk_ResoPara

Emiss
T resolution perpendicular 1 [112] MET_SoftTrk_ResoPerp

Emiss
T scale 1 [112] MET_SoftTrk_ScaleUp

Pileup 1 [164] PRW_DATASF__1up

Multijet background extrapolation 1 [3] QCD_extrapolation

Top background extrapolation 1 [3] TTST_extrapolation

Diboson background extrapolation 1 [3] DB_extrapolation

Multijet background normalisation 1 [3] -

Table 5.8: Sources of experimental systematic uncertainty considered in the electron channel analysis.
The Legend column shows the names of these nuisance parameters as shown in Figure 5.11.

Any given uncertainty can be estimated by using many nuisance parameters, or all the contributions

can be considered as fully uncorrelated and summed in quadrature, leading to a slight overestimate in the

uncertainty. Other than the missing energy and jet energy resolution uncertainties, this analysis assumed

all nuisance parameters associated with a given source of systematic uncertainty are fully correlated. This
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has the benefit of simplifying the statistical analysis, as well as ensuring that the estimate of the systematic

uncertainty is slightly generous.

Not all sources of systematic uncertainty are estimated by shifting some nominal scale factor by its

uncertainty however. For instance, the multijet background normalisation, as well as the multijet, top

and diboson background extrapolation uncertainties are all estimated by the analysis team. As discussed

previously, the mulitjet background normalisation uncertainty is estimated by varying the selection used

in the determination of the fake efficiency, while the uncertainty associated to each of the background

extrapolations is estimated by taking the envelope of all fits performed as the total systematic uncertainty.

Figure 5.11 shows all sources of experimental systematic uncertainty on the total background considered

in the electron channel analysis. Not all of these sources of systematic uncertainty are considered in the

final statistical analysis, as some sources have a negligible impact on the final uncertainty (some examples

of which are jet energy resolution and scale uncertainties). The systematic uncertainties associated with

the missing energy are dominant in the low-mT region, while the background extrapolation uncertainties

dominate the high-mT region.

Only experimental systematic uncertainties are considered for the signal Monte Carlo in the statistical

analysis, shown in Figure 5.12 for the 1 TeV SSM signal template. As this signal template is only one

of many across the entire mass spectrum, the uncertainty estimate is only really important around the

pole mass under consideration, and the plot is just shown as an illustrative example. In the limit setting

procedure (Section 5.10.1), all of the signal templates have associated to them their respective errors.

As can be seen from Figure 5.11, by far the dominant systematic at high-mT is the multijet background

extrapolation, while at low-mT the dominant contribution comes from the jet energy resolution (JER)

uncertainties. The distributions in the figure have also been smoothed using the ROOT TH1::Smooth

function, which is based on the "hsmoof" algorithm [165]. As the shape of the systematics influences the

statistical analysis, this is an important step, as fluctuations due to low Monte Carlo statistics can lead to

unphysical structures in the shapes of the systematics.

Some systematic uncertainties have an additional smoothing applied due to large fluctuations, particularly

at high-mT. This was achieved by rebinning the distribution before smoothing, in order to reduce large

bin-by-bin fluctuations due to limited statistics. The electron identification efficiency systematic also has

further smoothing applied, due to a sharp discontinuity at aroundmT > 500 GeV. This discontinuity is a

result of the fact that the tag-and-probe method of estimating the efficiency runs out of statistics at high

mass. To counteract this effect, a flat uncertainty of 5% was used in the regionmT > 500 GeV with a

smooth straight line belowmT < 500 GeV.
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Figure 5.11: Relative experimental systematic uncertainties on the total background yield in the electron
channel.
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Figure 5.12: Relative experimental systematic uncertainties on them = 1 TeV SSM signal in the electron
channel. The electron energy scale (green line) and resolution (red line) are the dominant uncertainties at
high-mT.

5.8.2 Theoretical uncertainties

The main sources of theoretical uncertainty in this search are the PDF uncertainties at high-mT, which

effect the cross section (event yield) of the background processes. In this analysis, the PDF uncertainties are

only applied to the charged and neutral current Drell-Yan Monte Carlo background samples. No theoretical

uncertainty is calculated for the signal Monte Carlo as this would be model dependent, especially in the

case of EW corrections.
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The primary evaluation of the PDF uncertainties comes from the eigenvectors of the nominal PDF

choice. These are asymmetric systematic uncertainties associated with the nominal CT14 NNLO PDF

fit, and are evaluated at 90% CL by varying the central value of each fit parameter by its uncertainty and

repeating the fit. There are 28 such eigenvectors associated with the nominal PDF set used to generate the

Drell-Yan background samples (CT14NNLO). To efficiently follow mass-dependent shape changes, these

were bundled into 7 nuisance parameters (EV1-7), each of which propagated to a k-factor calculation

which is then used to calculate the effect of the PDF systematic uncertainties on the event yields in the

analysis.

The predicted cross sections obtained using the CT14NNLO PDF set are compared to predictions

obtained using other PDF sets (MMHT2014 [166], CT14 [157], NNPDF3.0 [155], ABM12lhc [167],

HERAPDF2.0 [168], JR14 [169]). Each of these predictions falls within the total uncertainty of the

CT14NNLO PDF set, except for the NNPDF3.0 and HERAPDF2.0 predictions. An additional uncertainty

is therefore applied to account for the fact that the predictions from NNPDF3.0 do not fall within the 90%

CL uncertainty band of the CT14NNLO PDF set (REDCHOICE); the HERAPDF2.0 is not accommodated

for since the HERA fits do not include data with high Bjorken x. This uncertainty becomes large at high

transverse mass, approximately 30%, due to the difficulty of predicting PDFs at low Bjorken x. For NLO

EW corrections, the difference between the additive and factorised k-factor approaches is also taken as

an estimate of the systematic uncertainty. The full set of PDF uncertainties for the charged and neutral

current Drell-Yan backgrounds can be found in Figure 5.13.
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Figure 5.13: Relative theoretical systematic uncertainties on the total background yield in the electron
channel.

A further source of uncertainty is the top background normalisation, which arises due to variations in

the PDF and αs values leading to a roughly 6% uncertainty on its normalisation. An additional systematic

uncertainty is considered due to the mis-modelling in a top control region, defined by inverting the muon

veto, thereby selecting events containing a signal like electron and a loose muon. By fitting the data/MC

ratio with a smooth function, one can obtain a correction which in principle could be applied to the Monte
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Carlo to more closely resemble data. Rather than changing the central value however, this function was

simply used to define an additional systematic to the top background.

5.9 Kinematic distributions

Figure 5.14 shows a comparison of data and Monte Carlo after final signal selection for the main kinematic

distributions studied in the analysis. Good agreement is observed across most of the phase space with

some minor discrepancies observed at large pseudorapidities, as well as an excess of data/Monte Carlo in

the low Emiss
T /mT region, similar to what is seen in the multijet validation region.

The transverse mass distribution for each data taking period can be seen in Figure 5.15. No background

extrapolation is applied to the top, multijet and diboson backgrounds in this figure. An excess of data

is observed with respect to the expected Standard Model background in the low-mT region, ranging

from 10% at 130 GeV to approximately unity at around 200 GeV. Figure 5.16 shows the transverse

mass spectrum when taking into account the nuisance parameter pulls from a background only fit, and

also applying the background extrapolation to the top, multijet and diboson backgrounds as discussed in

Section 5.6. In the low-Emiss
T /mT region, the jet energy resolution andEmiss

T soft term nuisance parameters

are significantly pulled, and taking into account these pulls brings the agreement between data/background

closer to unity across the whole spectrum.
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Figure 5.14: Electron channel kinematic distributions at final selection, shown with their full associated
systematic uncertainties. Top: electron pseudorapidity (left), electron azimuthal angle (right). Middle:
electron transverse momentum (left), missing energy (right). Bottom: transverse mass (left), cumulative
transverse mass (right).
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Figure 5.15: Transverse mass distribution in the electron channel after final selection for the 2015+2016
(top), 2017 (middle) and 2018 (bottom) datasets individually.

110



E
v
e
n
ts

1−10

1

10

210

310

410

510

610

710

810

1 = 13 TeV, 139 fbs

Data

W

Top quark

Multijet
*γZ/

Diboson

W’ (3 TeV)
W’ (4 TeV)
W’ (5 TeV)
W’ (6 TeV)

ATLAS

 selectionν e→W’ 

D
a

ta
 /

 B
k
g

0.6
0.8

1
1.2
1.4

Transverse mass [GeV]
200 300 1000 2000

  
(p

o
s
t

fi
t)

D
a

ta
 /

 B
k
g

0.6
0.8

1
1.2
1.4

Figure 5.16: Transverse mass distribution in the electron channel including a post-fit ratio panel which
takes into account the pulls on the nuisance parameters observed in the statistical analysis. Figure source:
plot produced by M. K. Bugge using input data provided by the author [3].
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5.10 Results

Table 5.9 shows the selected number of data and background events in different regions of transverse mass.

All background event estimates are displayed with their associated statistical and systematic uncertainties,

as well as being fully weighted to reconstruction level, and so can be compared directly to the data. Also

displayed is the expected number of SSM W’ events for different mass hypotheses in the range 2 - 6 TeV.

As no excess is observed in data with respect to the total SM background, limits on the production cross

section are set.

Process mT [GeV ]
130-400 400-600 600-1000 1000-2000 2000-3000 3000-10000

W 2300000 ± 200000 25700 ± 1400 6000 ± 400 740 ± 60 18.0 ± 2.2 1.07 ± 0.21
Top 550000 ± 33000 5650 ± 280 580 ± 40 27 ± 8 0.28 ± 0.20 0.018 ± 0.016

Multi-jet 330000 ± 50000 2110 ± 320 400 ± 60 40 ± 12 1.1 ± 1.4 0.1 ± 0.4
Diboson 55500 ± 2700 1200 ± 60 247 ± 15 26 ± 5 0.7 ± 0.4 0.09 ± 0.11
Z/γ∗ 78000 ± 17000 190 ± 50 18 ± 7 1.5 ± 3.0 0.0113 ± 0.0018 0.00035 ± 0.00012

Total SM 3320000 ± 250000 34800 ± 1500 7200 ± 400 830 ± 80 20.2 ± 3.1 1.3 ± 0.5
Data 3538403 35568 7358 818 17 0

W’ (2 TeV) 574 ± 22 720 ± 40 2190 ± 120 12200 ± 600 1130 ± 290 3.20 ± 0.25
W’ (3 TeV) 68.4 ± 1.9 58.6 ± 2.6 127 ± 7 448 ± 22 860 ± 40 87 ± 23
W’ (4 TeV) 19.6 ± 0.5 13.2 ± 0.5 22.1 ± 1.1 44.3 ± 2.2 49.2 ± 2.3 86 ± 4
W’ (5 TeV) 7.85 ± 0.19 4.99 ± 0.18 7.26 ± 0.35 9.9 ± 0.5 5.82 ± 0.28 13.6 ± 0.7
W’ (6 TeV) 3.76 ± 0.09 2.35 ± 0.08 3.28 ± 0.16 3.82 ± 0.18 1.41 ± 0.07 2.01 ± 0.10

Table 5.9: Number of selected background events for different transverse mass regions, where the
uncertainties include both statistical uncertainty and all systematic uncertainties. All backgrounds are
fully weighted, as such the total background level can be compared directly to the selected data in the
electron channel. The systematic uncertainty includes all systematic uncertainties which are included in
the statistical analysis.
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5.10.1 Statistical interpretation

A statistical analysis was performed to determine whether or not there is any evidence of new physics.

A p-value scan was performed to calculate the probability that the background fluctuates to produce an

excess equal to or greater than what is observed. The expected number of counts in each bin can be

parameterised as the sum of the signal (si(σ, θ)) and background (bi(θ)) components,

λi = si(σ, θ) + bi(θ). (5.17)

The parameter of interest (σ) is the cross section times branching ratio of theW ′ signal model, and

the nuisance parameters (θ) account for the effect of systematic uncertainties in the background estimate.

The expected number of signal and background events are described by the log-normal probability density

function

xi = xi · exp

nsys∑
j=1

sgn[(δxi)j)] θj

√√√√ln

[
1 +

(
(δxi)j
xi

)2
] , (5.18)

where xi represents either si(σ, θ) or bi(θ) with central value xi, and (δxi)j is the shift in xi due to

nuisance parameter θj . The probability density function in Eq. 5.18 is only log-normal when the nuisance

parameters are Gaussian distributed, a constraint which is enforced when calculating the likelihood function

later on. The central value for signal events is calculated as the product of the integrated luminosity Lint,

the cross section times branching ratio, the acceptance times efficiency (A) and the fraction of selected

events in bin i (εi),

si = Lint · σ ·A · εi. (5.19)

The central value of the background (bi) is taken directly from the total background estimate, as

detailed in Section 5.4.2 and Section 5.5. The likelihood function can then be constructed by assuming

that the number of events in each bin is Poisson distributed

L(σ, θ) =

nbins∏
i=1

λi(σ, θ)
Nie−λi(σ,θ)

Ni!
(5.20)

where Ni is the observed number of events in bin i. To ensure that the signal and background

distributions are log-normal the nuisance parameters are constrained to be Gaussian distributed (f(θi))

L(σ, θ)⇒ L(σ, θ)

nsys∏
i=1

f(θi). (5.21)
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Eq. 5.21 corresponds to the single-channel case, which can be extended to multiple channels by

summing over all channels in the likelihood function. To simplify the notation, the following discussion

will pertain to a single channel, but the procedure is identical for multiple channels, once the correlations

between their nuisance parameters has been accounted for. Once the likelihood has been constructed, the

test statistic used to determine the p0-value can be defined. A profile likelihood test statistic (q0) is used,

q0 =


0 for σ̂ < 0,

−2 ln
[
L(0,θ̂0)

L(σ̂,θ̂)

]
for σ̂ > 0,

(5.22)

where σ̂ and θ̂ are the values that maximise the likelihood function, and θ̂0 are the nuisance parameter

values which maximise the likelihood function under the background only hypothesis and the signal cross

section set to zero. Large q0 values are obtained when there is a large excess of data with respect to the

background only hypothesis. The restriction below σ̂ < 0 is due to the fact that the cross section of the

process cannot be negative. The p0-value corresponding to the observed test statistic (qobs
0 ) is measured

by calculating the probability of observing a value equal to or greater than the observed value under the

background only hypothesis

p0 = P (q0 > qobs
0 |σ = 0), (5.23)

where P is a Poisson distribution. The p0-value can then be converted to a significance (S) using the

quantile of the Gaussian distribution (Φ−1)

S = Φ−1(1− p0) =
√

2 erf−1(1− 2p0). (5.24)

Eq. 5.24 corresponds to the local significance, which describes the significance of an excess of data

at a specific mass point. Since many mass points are probed, it is more useful to measure the global

significance, which measures the probability observing an excess as significant as the one observed

anywhere in the phase space of all mass points. The global significance (pglobal) can be obtained by

measuring the probability density function of all local significances (f(S)), and using the relationship

pglobal =

∫ ∞
S

f(S) dS. (5.25)

This is also known as the look elsewhere effect, and is necessary to properly determine the significance

of any result due to the fact that many mass points are used and a p value of 1/n is expected to occur

once (on average) for every n measurements. In the absence of any globally significant results upper

limits are set on theW ′ signal cross section. This is done using the Bayesian technique implemented in
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ROOT [170], where the cross section is assumed to be zero for σ < 0 and constant for σ > 0. Upper

limits on the cross section are set at 95% confidence level (CL), meaning that the W ′ boson only has

a 5% chance of existing below this limit, which is the standard level used in exotic physics searches.

Observed limits are obtained from the data directly, while the expected limits are obtained by sampling a

Poisson distribution of central value bi under the background only hypothesis (si(σ, θ) = 0). Frequentist

limits were also calculated following the procedure outlined by Ellis Kay [171]. In the case of the SSM,

10% (20%) agreement was obtained between the Bayesian and frequentist observed (expected) limit, see

Appendix B.4 for further details. A contributing factor to this level of agreement could also be the use

of the asymptotic approximation in the frequentist analysis, whereby the test statistic is assumed to be

Gaussian and Wilks’ theorem is used to sample the distribution [172]. This reduces the computational

load of the calculations, but is limited by the lack of statistics in the high mass region.

5.10.2 Sequential Standard Model limits

As was the case in previous rounds of the analysis, the primary interpretation of the results is in the

context of the Sequential Standard Model. Continuing to provide updated limits in this context allows for

a comparison with previously published results to see how the sensitivity increases with luminosity, and

also allows for a comparison with the corresponding CMS result as the same model is used there. Signals

are generated for many different pole masses, using the full signal line shape in the limit setting procedure

and neglecting interference effects. The mass grid used in the analysis aims to provide good coverage

across the entire spectrum, with mass points ranging from 150 GeV to 7 TeV, ensuring a high level of

statistical precision.

Figure 5.17 shows the observed and expected upper limits on σ(pp→W ′ → `ν) at 95% CL in the

electron, muon and combined channels. These results are then converted to a lower limit on the W ′

mass by finding the point at which the theoretical cross section intercepts with the observed and expected

limit measurements, as summarised in Table 5.10. The limits obtained in the muon channel are weaker

than those of the electron channel, due to the worse acceptance and momentum resolution at high mass

(Figure 5.3). In the combined channel, an observed (expected) lower limit of 6 TeV (5.8 TeV) is set at 95%

CL on the mass ofW ′ bosons in the context of the SSM, dominated by the sensitivity of the electron

channel at high-mass.

The agreement between the observed and expected limits in the electron channel is approximately

2σ, due to a deficit of signal-like events at high-mT. This was studied by loosening the identification

requirements from LHTight to LHLoose, and removing the isolation requirement completely. Doing so

tests whether or not the deficit is a result of some inefficiency in the chosen working points. The ratio of

the number of events selected using the nominal and loosened selection probes the efficiency of the ID
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Figure 5.17: W ′ cross section limit results for the electron (top-left), the muon (top-right) and combined
channels (bottom). Figure source: plot produced by M. K. Bugge using input data provided by the
author [3].

mW ′ lower limit [TeV ]
Decay Expected Observed

W ′ → eν 5.7 6.0
W ′ → µν 5.1 5.1
W ′ → `ν 5.8 6.0

Table 5.10: Expected and observed 95% CL lower limit on theW ′SSM mass in the electron and muon
channels and their combination.

and isolation working points as a function ofmT, since an inefficiency would lead to a decreasing ratio

towards high masses. No such gradient was observed, suggesting that the deficit of events is a feature of

the data and not a result of acceptance effects.

In order to quantify the dependence of the limits on the parton luminosity tail, limits were placed

on a restricted signal template by isolating the peak region only. The peak region is defined as m`ν >

0.85×m(W ′), which was found to be optimal based on a study of the acceptance times efficiency for

different pole mass cuts. These cuts were placed on the generator level invariant mass distributions, where

the invariant mass of the electron neutrino system is well defined, and applied to both the signal shape

and acceptance. The limits obtained with these truncated signal templates can be seen in Table 5.11. As
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expected, these limits are not as strong as those obtained using the full signal templates, as the width of the

signal increases with increasing mass, thereby causing high-mass signals to have considerable low-mass

tails. The observed (expected) limits are weaker by approximately 300 GeV (100 GeV) in the electron

channel, and 50 GeV (50 GeV) in the muon channel, suggesting that even though the low-mass tail is

considerable, it does not greatly effect the obtained mass limits. The difference is most noteworthy in the

electron channel observed limit, where due to the deficit of events at high-mT, the sensitivity to the parton

luminosity tail is increased.

mW ′ lower limit [TeV ]
Decay Expected Observed

W ′ → eν 5.58 5.71
W ′ → µν 5.05 5.04
W ′ → `ν 5.68 5.79

Table 5.11: Expected and observed 95% CL lower limit on theW ′SSM mass in the electron and muon
channels and their combination. The numbers correspond to the limits calculated using signal templates
with a generator level mass cut ofm`ν > 0.85×m(W ′).

5.10.3 Generic signal model interpretation

An interpretation with generic signal models of fixed Γ/m ranging from 1% to 15% is also presented.

These signal models were produced by reweighting the same flat Monte Carlo as described in Section 5.4.1,

however instead of calculating the relative width using an SSM calculation, fixed values of Γ/m =

1%, 2%, 5%, 10% and 15% are used. Such signal samples are completely independent of the specifics of

any givenW ′ model, as the relative width is fixed for each individual mass point and does not come from

a model prediction. These limits can therefore be interpreted in the context of any given model which

predicts aW ′ signal with one of the widths presented, hence greatly increasing the theoretical scope of

the analysis.

In order to reduce the dependence on the parton luminosity tail, which can be model dependent, these

limits are set on the fiducial cross section defined by applying an invariant mass cut ofmlν > 0.3×mW ′ in

the acceptance calculation. The full signal template is used over the entire mass range, but the acceptance

is calculated relative to the fiducial phase space defined by the mass cut, meaning that the full signal

template is normalised using the fiducial cross section. Figure 5.18 shows observed and expected limits

on the fiducial cross section at 95% CL in the electron and muon channels, as well as their combination.

The limits become relatively flat at high mass, as the total cross section has a larger component in the

low-mass tail removed by the fiducial mass cut. These limits appear to be stronger than those obtained in

Section 5.10.2, however it is important to consider that the corresponding fiducial theoretical prediction

would also be lower at high-mass, so it is not necessarily the case that more stringent limits would be

117



SEARCH FOR NEW HEAVY CHARGED GAUGE BOSONS

obtained.
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Figure 5.18: Expected (left) and observed (right) limits in the electron channel (top), muon channel
(middle) and their combination (bottom). Figure source [3]. Plot produced by M. K. Bugge using input
data provided by the author.
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5.10.4 Model independent interpretation

Completely model independent limits are also set on the visible cross section, i.e. on the number of "signal

like" events per unit of luminosity. These limits are set as a function of mmin
T , which is the threshold

mT above which the visible cross section is defined. This can be thought of as a variety of single-bin

signal regions, where the signal region is defined by the lower limit onmT. The obtained limits can then

be interpreted in the context of any given model, by comparing the observed number of events in data

to the expected background and model prediction; no assumption needs to be made about the kinematic

properties of theW ′ boson in this interpretation. Figure 5.19 shows the observed and expected limits

at 95% CL in the electron channel, with numerical results provided in Table 5.12. The observed visible

cross section limit ranges from 4.6 pb atmmin
T = 130 GeV to 22 ab at high-mT. Table 5.12 also provides

limits on the number of expected signal events (Nsig) for 139 fb−1 of pp data; the visible cross section is a

more universal quantity since it is independent of the total integrated luminosity of the data. The observed

number of signal like data (Ndata) and background (b) events are also shown.
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Figure 5.19: Model independent limit on the visible signal cross section σvis at final selection as function
of the mT threshold mmin

T for the electron channel. Figure source [3]. Plot produced by M. K. Bugge
using input data provided by the author.
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mmin
T [GeV] Ndata b ∆b Upper limit at 95% CL

Nobs
sig Nexp

sig σobs
vis [pb] σexp

vis [pb]
130 3582164 3360000 250000 6.4× 105 4.6× 105 4.6 3.3

139 3018934 2850000 200000 5.1× 105 3.8× 105 3.7 2.7

149 2345269 2240000 150000 3.6× 105 2.8× 105 2.6 2.0

159 1784938 1720000 110000 2.5× 105 2.0× 105 1.8 1.4

170 1352988 1310000 80000 1.7× 105 1.4× 105 1.3 1.0

182 1028353 1000000 60000 1.2× 105 1.1× 105 0.90 0.76

194 784509 770000 40000 9.1× 104 7.7× 104 0.66 0.55

208 599989 588000 31000 6.7× 104 5.8× 104 0.48 0.42

222 459843 451000 23000 5.0× 104 4.4× 104 0.36 0.31

237 352825 347000 18000 3.8× 104 3.4× 104 0.27 0.24

254 270299 267000 14000 2.9× 104 2.6× 104 0.21 0.19

271 207728 204000 11000 2.3× 104 2.0× 104 0.16 0.15

290 159319 157000 8000 1.7× 104 1.6× 104 0.13 0.11

310 122150 120000 6000 1.4× 104 1.2× 104 0.10 0.088

331 93335 92000 5000 1.1× 104 9.5× 103 0.078 0.069

354 71416 70000 4000 8.6× 103 7.4× 103 0.062 0.053

379 54642 53500 3100 6.6× 103 5.8× 103 0.048 0.042

405 41745 40800 2400 5.3× 103 4.5× 103 0.038 0.033

433 31792 31100 1900 4.1× 103 3.6× 103 0.030 0.026

463 24257 23600 1500 3.3× 103 2.8× 103 0.023 0.020

495 18484 18000 1200 2.6× 103 2.2× 103 0.019 0.016

529 13937 13600 900 1.9× 103 1.7× 103 0.014 0.012

565 10548 10300 700 1.5× 103 1.3× 103 0.011 0.0096

604 7938 7800 500 1.1× 103 1.0× 103 0.0080 0.0074

646 5926 5900 400 7.8× 102 8.0× 102 0.0056 0.0057

691 4469 4470 330 6.2× 102 6.2× 102 0.0044 0.0044

739 3342 3360 250 4.6× 102 4.8× 102 0.0033 0.0034

790 2499 2510 190 3.6× 102 3.7× 102 0.0026 0.0026

844 1876 1850 140 3.0× 102 2.8× 102 0.0022 0.0020

902 1358 1370 110 2.1× 102 2.2× 102 0.0015 0.0016

965 1021 1010 80 1.8× 102 1.7× 102 0.0013 0.0012

1031 727 740 60 1.2× 102 1.3× 102 0.00088 0.00093

1103 495 540 50 74 1.0× 102 0.00053 0.00072
1179 354 390 40 56 78 0.00040 0.00056
1260 260 278 27 48 60 0.00035 0.00043
1347 175 198 20 33 47 0.00024 0.00034
1441 113 140 15 21 37 0.00015 0.00027
1540 74 98 11 16 29 0.00011 0.00021
1647 55 68 8 15 24 0.00011 0.00017

1760 39 46 6 14 19 9.9× 10−5 0.00013

1882 23 31 5 9.6 15 6.9× 10−5 0.00011

2012 17 20.9 3.4 9.4 12 6.8× 10−5 8.9× 10−5

2151 8 13.7 2.5 6.0 10 4.3× 10−5 7.4× 10−5

2300 1 8.9 1.8 3.4 8.4 2.4× 10−5 6.1× 10−5

2458 0 5.7 1.4 3.0 7.3 2.2× 10−5 5.2× 10−5

2628 0 3.6 1.0 3.0 5.3 2.2× 10−5 3.8× 10−5

2810 0 2.2 0.8 3.0 4.9 2.2× 10−5 3.5× 10−5

3004 0 1.3 0.6 3.0 4.1 2.2× 10−5 2.9× 10−5

3212 0 0.8 0.5 3.0 4.2 2.2× 10−5 3.1× 10−5

3434 0 0.5 0.4 3.0 3.0 2.2× 10−5 2.2× 10−5

3671 0 0.28 0.28 3.0 3.0 2.2× 10−5 2.2× 10−5

3924 0 0.16 0.22 3.0 3.0 2.2× 10−5 2.2× 10−5

4196 0 0.09 0.17 3.0 3.0 2.2× 10−5 2.2× 10−5

4485 0 0.05 0.13 3.0 3.0 2.2× 10−5 2.2× 10−5

4795 0 0.03 0.10 3.0 3.0 2.2× 10−5 2.2× 10−5

5127 0 0.02 0.08 3.0 3.0 2.2× 10−5 2.2× 10−5

Table 5.12: Electron channel model independent limits on the expected number of signal events (Nsig)
and corresponding visible cross section (σvis) at final selection for differentmT thresholds (mmin

T ). The
number of observed events in data is also presented (Ndata), as well as the expected SM background (b)
and its associated uncertainty (∆b). Table source [3].
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5.10.5 Heavy resonance combination

Many different searches for new heavy gauge bosons are performed at ATLAS which can be combined to

increase their sensitivity. The previous combination of heavy resonance results decaying to bosonic and

leptonic final states was published by ATLAS using 36 fb−1 of pp data at
√
s = 13 TeV [173]. A full

Run-2 analysis is currently ongoing using 139 fb−1 of data, and extending the channels to include hadronic

final states, as well as final states containing τ leptons. This section will present some preliminary results

of theW ′ → `ν inputs to this combination.

The W ′ and Z ′ searches can be combined in the context of the HVT model, which predicts the

existence of a new triplet stateW , where the chargedW ′ states are degenerate in mass with the neutral Z ′

state [143, 144]. Signal templates were generated using the HVT model prediction (Section 5.2), with

couplings of gq = 0.5540, g` = 0.5540 and gH = 0.5596, where gq,`,H represent the coupling strength

between the triplet fieldW and the quark, lepton, and Higgs fields. To reduce the effects of interference

with SM processes, a generator level mass cut of (mT −mpole)/
√
mpole <

√
8 GeV is applied to the

signal shape and the acceptance. This restricts both the line shape and the cross section to the fiducial

phase space, which should cancel out in the normalisation to yield a limit on the total HVT cross section

in the absence of interference.

Figure 5.20 shows the upper limits on the cross section at 95% CL in the electron and muon channels.

The corresponding observed (expected) lower mass limits at 95% CL are 5.3 TeV (5.3 TeV) in the electron

channel and 4.6 GeV (4.7 GeV) in the muon channel. These limits are slightly weaker than those obtained

in the context of the SSM (Section 5.10.2), due to the loss of acceptance at high-mT (mT > 1 TeV) due

to the mass cut applied to the signal templates.
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Figure 5.20: HVT signal templates with generator level (mT −mpole)/
√
mpole <

√
8 GeV cut. The

sharp up-turn in the limit is a result of loss of acceptance at high-mT due to the mass cut. Plots produced
by the author, where the inputW ′ → µν data was provided by M. K. Bugge.

In addition to the HVT signal interpretation, a generic signal model of fixed Γ/m was also investigated,
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using the same procedure as outlined in Section 5.10.3. The largest Γ/m value that is probed over the

phase space covered by the analysis is approximately 5%, which is then used as a conservative estimate

for all mass points. This interpretation uses the narrow width approximation (NWA), which assumes

that theW ′ boson is always produced very near to its pole mass (and not off-shell) and that there is no

interference betweenW ′ and SMW . In practice this is achieved by applying a generator-level mass cut

of m`ν > 0.3 ×mW ′ to the signal shape only, but not applying any mass cut to the acceptance. This

ensures that the cross section of the reduced template is equal to the fullW ′ signal cross section, thus

assuming that it is all concentrated in the "peak" region. The same procedure is followed in the Z ′ → ``

channel [30], where Γ/m = 2.5%.

Figure 5.21 shows the limits for these signal models overlaid with the HVT model prediction. As

expected, these limits become flat at high mass due to a large part of the signal being concentrated in the low

mass tail. These results are similar to those obtained in Section 5.10.3, although those limits were set on

the fiducial cross section and these are set on the total cross section under the narrow width approximation.

These signal templates will be propagated to the full combination analysis, where 2-dimensional limits

will be set on the coupling between the triplet field and quarks, leptons and the Higgs boson.
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Figure 5.21: Generic templates with fixed Γ/m = 5% and a generator level mass cut ofm`ν > 0.3×mW ′

applied to the signal shape only, i.e. under the narrow width approximation. Plots produced by the author,
where the inputW ′ → µν data was provided by M. K. Bugge.

5.11 Conclusion

A search for a new heavy resonance decaying into a lepton-neutrino pair has been presented in this chapter.

The transverse mass of the lepton-neutrino system is used as the discriminating variable in this search,

and no significant deviations are found between the data and the Standard Model background prediction.

Upper limits are set on the pp→W ′ → `ν cross section at 95% CL. Different model interpretations are

provided in the context of the Sequential Standard Model and Heavy Vector Triplet model, as well as
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generic limits that can be interpreted by a range of models. In the context of the SSM, a lower limit of 6

TeV is set on the mass of theW ′ boson by combining the statistics of the electron and muon channels.

This result is dominated by the sensitivity of the electron channel in the high-mass region, where the muon

channel suffers from poor resolution. Preliminary results are presented in the context of the HVT model

using both a HVT model prediction, as well as signals with a conservative Γ/m of 5% under the narrow

width approximation.

Fiducial cross section limits are set on resonances of fixedΓ/m ranging from 1% to 15%, facilitating the

reinterpretation of the results over a range of potential model predictions. Completely model independent

results are provided by measuring the visible cross section (number of selected signal events per unit of

luminosity) in single-bin signal regions defined by a minimum transverse mass threshold. These range

from 4.6 (15) pb at mmin
T = 130 (110) GeV to 22 (22) ab at high-mT in the electron (muon) channel.

The results of this search have also been used to constrain scalar leptoquark models which could explain the

mystery of the discrepancy between the observed and expected magnetic dipole moment of the muon [174].

In addition to this, these results have been used to constrain heavy quark effective field theory (HQEFT)

models by investigating the semi-leptonic decays of B̄ → D(∗)`ν [175].
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Chapter 6

Final remarks

This thesis focuses on the Drell-Yan production of gauge bosons at the ATLAS detector using the full

Run-2 dataset recorded in
√
s = 13 TeV pp collisions, both in the context of the Standard Model (Z) and

beyond (W ′).

The first analysis presents a new method for monitoring the luminosity recorded by the ATLAS detector

by measuring the production rate of the Z boson. This is done independently in the Z → e+e− and

Z → µ+µ− channels, which rely on different sub-detectors and have independent data-driven and

simulated corrections. These measurements are made over time periods of approximately 60 seconds,

which provides good granularity with respect to the changing conditions inside the detector. Excellent

agreement is observed between the two-channels, with a mean absolute ratio of 0.992 across the entire Run

2 dataset; suggesting that the data-driven corrections are effectively modelling the detector inefficiencies.

The Z → e+e− and Z → µ+µ− luminosity estimates can be combined to an average Z → `+`−

luminosity, all three of which can be used to monitor the stability of the baseline ATLAS luminosity

measurement. By normalising the Z → `+`− luminosity to the same integrated luminosity as the baseline

ATLAS measurement, the time and pileup stability can be monitored by measuring the spread of their

ratio around unity. This can be done for each individual data-taking period, or for the whole of Run 2. The

time-dependent ratio has a spread around unity of about 0.8% (2015) to 0.4% (2018), while the pileup-

dependent ratio has a spread of approximately 0.4% (2015) to 0.1% (2018). Across the whole Run-2 period

the time-dependent ratio has a spread of 0.8%, almost twice as large as the corresponding 2016–2018

spreads (the vast majority of the data). This method could contribute to an improved characterisation of

the systematic uncertainties affecting the baseline ATLAS luminosity, as this large spread over the entire

Run-2 period suggests that there are significant inter-year calibration scale differences in the baseline

ATLAS luminosity measurement. These results were published in an ATLAS Public Note [1], and were

124



presented at the 2020 ICHEP conference [2]. Additional comparisons with the track-counting-based

luminosity are also presented. The ratio of the Z-counting and track-counting luminosities has a spread of

0.3% over the full Run-2 data-taking period, further indicating the excellent stability of the Z-counting

method.

The second analysis covers a search for a new heavy charged gauge boson (W ′) and the author’s

contribution to one of the first ATLAS analyses using the full Run 2 dataset. No significant excesses were

observed with respect to the Standard Model, and limits are set in the context of the Sequential Standard

Model. In the combined channel, a world leading observed (expected) lower limit of 6 TeV (5.8 TeV) is

placed on the mass of theW ′ boson at 95% CL, which is dominated by the high-mass sensitivity of the

electron channel analysis presented within. Generic limits are also provided for signal templates of fixed

Γ/m, ranging from 1% to 15%, which can then be reinterpreted in the context of any signal model with

signals covered by this range. To further increase the model independence of these limits, a fiducial cut

ofm`ν > 0.3×mW ′ is applied to the signal models to reduce the dependence on the low-mass parton

luminosity tail. Completely model independent results are also provided in single-bin signal regions, by

setting upper limits the number of signal events and on the visible cross section above a given transverse

mass threshold. The visible cross section limits range from 4.6 pb to 22 ab over the transverse mass

range covered by the analysis. These results were published in Phys. Rev. D [3]. Preliminary results are

also presented in the context of the Heavy Vector Triplet model as part of the ongoing heavy resonance

combination analysis, where many channels are combined to increase the sensitivity to new neutral or

charged gauge bosons.
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Appendix A: Z-counting auxiliary information

Dataset Muon triggers Electron triggers
2015 high-µ HLT_mu20_iloose_L1MU15 HLT_e24_lhmedium_L1EM20VH

HLT_mu50 HLT_e60_lhmedium
HLT_e120_lhloose

2016-8 high-µ HLT_mu26_ivarmedium HLT_e26_lhtight_nod0_ivarloose
HLT_mu50 HLT_e60_lhmedium_nod0

HLT_e140_lhloose_nod0

Table A.1: Triggers used to select events for different datasets.

A.1 Modelling of tag-and-probe efficiencies

Comparing the tag-and-probe efficiencies (Section 4.2.2) obtained in data and Monte Carlo shows how

well the simulation models real events recorded by the detector. The same tag-and-probe procedure is

performed in both cases, with the only difference being that no background estimation is performed in

Monte Carlo; events are required to be truth-matched instead (as discussed in Section 4.2.3). Figures A.1

and A.2 compare the single-lepton trigger and reconstruction efficiencies in each data-taking period with

their corresponding Monte Carlo samples. In this comparison, the efficiencies in data are calculated for a

single luminosity block, and a weighted average taken across the entire data-taking period as a function

of 〈µ〉. Figure A.3 shows a similar comparison of the combined even-level efficiency in data and Monte

Carlo.

The single-electron trigger efficiencies in Monte Carlo agree with those of data to within around

2% in all data-taking periods except for 2016, where the agreement is at the 5% level. Similarly the

single-electron reconstruction efficiencies show agreement at the 1-3% level, with the worst agreement

again seen in the 2016 data-taking period. As these single-electron efficiencies are combined into an

event-level efficiency (Eq. 4.13), the effects are compounded due to the presence of two electrons. This

can be seen clearly in Figure A.3, where the data is described by the Monte Carlo to within around 2% in

2015, 2017 and 2018, but the agreement is much worse in 2016 at around 8%.

The single-muon trigger efficiencies show slightly worse agreement than the electron channel, at

approximately 5% in all years. However, the single-muon reconstruction efficiency is extremely well

modelled, with agreement within approximately 1% in all years. While there is some small mis-modelling

of the event-level efficiencies present in both channels, it does not necessarily negatively impact the final
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results in data. The important thing is that the simulation correctly models the relationship between born

level and reconstructed electrons, assuming that the same then applies to recorded data.
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Figure A.1: Single-electron (left) and muon (right) trigger efficiency in data and Monte Carlo. The x-axis
represents the average pileup parameter 〈µ〉.
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Figure A.2: Single-electron (left) and muon (right) reconstruction efficiency in data and Monte Carlo.
The x-axis represents the average pileup parameter 〈µ〉.
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Figure A.3: Event-level (left) and muon (right) Z selection efficiency in data and Monte Carlo. The
x-axis represents the average pileup parameter 〈µ〉.
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B.1 Fake efficiency dilution
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Figure B.1: Dilution in η, pT and Emiss
T for the two denominator categories.
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Figure B.2: Dilution in η, pT and Emiss
T for the two numerator categories.
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B.2 High-mT deficit

Throughout Run-2, a deficit of data with respect to the Standard Model background has been observed

at high mT. Presented is a study investigating the effect of loosening the identification and isolation

requirements as a function of transverse mass, and the impact this has on the high-mT deficit.

The nominal definition of the signal region requires electrons to pass LHTight identification and

Gradient isolation, which was then loosened to LHLoose identification and no isolation requirement.

Doing so allows one to test whether or not the deficit at high-mT is a result of some inefficiency in the

chosen working points. Figure B.3 shows the ratio of (NL +NT )/NT in Data (left), MC (right) and the

ratio of Data/MC (bottom); where NL is the number of events which pass LHLoose (exclusively), with no

isolation requirement, and NT is the number of events which pass the nominal signal selection (LHTight

identification + Gradient isolation). Other than the differences in identification and isolation, all other

selection cuts are identical.
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Figure B.3: Ratio of "loose" selection over "tight" selection.

If the high-mT deficit was a result of some working point inefficiency, one would expect that the ratio

would increase at higher transverse masses. As such an effect is not observed, it can be concluded that this

is not in fact the case, while the actual cause of the deficit is still unknown. The excess in the ratio at low

mass is likely a result of a higher multijet contribution in this region, which has lowmT in spite of having
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relatively high pT (pT > 145 GeV cut applied to both numerator and denominator). This pT cut is applied

so that both regions are consistent, as the Loose region corresponds to the pT > 145 GeV region outlined

in Section 5.5, while the nominal "Tight" definition only has a 65 GeV pT cut applied.
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B.3 Signal mT-resolution

In order to help with reinterpretations, the electron/muon pT/mT resolution was quantified. Focusing on

the electron channel, the resolution was investigated by checking the migration of events in a small mass

window around the 2, 4 and 6 TeV mass points. Here migration refers to the phenomena of electrons being

reconstructed in a different bin of pT/mT than they were generated in. ThemT resolution itself is made

up of contributions from both the pT and Emiss
T resolutions, and by applying a similar procedure to these

variables, the dominant contribution can be determing.

The resolution was determined by performing a Gaussian fit between −0.15 and 0.15, i.e. in the peak

region only, with the standard deviation of this fit was then taken to be resolution. Example plots for

the 2 TeV mass window can be seen in Figure B.4, while Table B.1 documents the pT, Emiss
T and mT

resolution for all mass points studied. These results show that themT resolution is in fact dominated by

the Emiss
T resolution component, as one would expect, and is of the order 1.0-1.3%.
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Figure B.4: Signal pT (top), Emiss
T (middle) andmT (bottom) resolution of the 2 TeVW ′ signal in the

electron channel.
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Signal Mass [TeV] pT-resolution [%] Emiss
T -resolution [%] mT-resolution [%]

2 0.9 2.0 1.3
4 0.9 1.3 1.0
6 0.9 1.2 1.0

Table B.1: Signal pT,Emiss
T andmT resolution in a 400GeVmass window around various mass hypotheses.
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B.4 Frequentist limit setting

In addition to the Bayesian results presented in Section 5.10 a frequentist analysis was also performed.

This interpretation follows the same procedure as outlined by Ellis Kay [171], using a profile likelihood

test statistic similar to that used in the Bayesian analysis and the asymptotic approximation [176]. The

asymptotic approximation refers to the assumption that the distribution of the test statistic is Gaussian,

which in the limit of low statistics can start to break down. More accurate results can be obtained by

performing pseudo-experiments, however these are much more computationally intensive and since the

aim of this study is to cross check the limits obtained in the main analysis the asymptotic approximation is

sufficient.

Figure B.5 shows the observed and expected limits obtained using the frequentist framework under

the asymptotic approximation. The general shape and trend is similar to the limits shown in Figure 5.17,

and Figure B.6 shows the ratio of the frequentist and Bayesian limits. The observed limits agree well at

low mass with the agreement going to O(10%) at high mass, and the same trend is seen in the expected

limits, however the agreement at high mass is at the O(20%) level. The discrepancy at high-mass is likely

a result of the breakdown of the asymptotic approximation due to lack of statistics, however the general

level of agreement is consistent with the results obtained in previous iterations of the analysis.
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Figure B.5: Limits obtained in the frequentist analysis under the asymptotic approximation.
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AppendixC: Experimental test of Lorentz-invariance violation

using Z → `+`− events

In addition to monitoring the luminosity delivered to the ATLAS detector, the framework outlined in

Chapter 4 is also a powerful tool to test for time-dependent modulations in pp collisions as a result of

interactions with Lorentz invariance violating fields. Since time-dependent detector inefficiencies are

accurately accounted for over short time scales, this method is well suited to probing such modulations, as

the Z production rate should be accurately corrected for changes in event selection efficiency.

C.1 Introduction

The independence of the physical parameters of a particle with respect to its direction of motion or velocity

is a fundamental property of the Standard Model and is known as Lorentz invariance. All fields which obey

Lorentz symmetry also obey CPT symmetry, which refers to the physical law that any particle is invariant

under the simultaneous transformation of charge conjugation, parity inversion and time reversal [177].

Individually, each of these transformations do not form physical symmetries, and only the combination of

all three transformations is a symmetry of the Standard Model (CP symmetry was found to be broken in

1964 by measuring the decay of neutral kaons [178]).

The Standard Model Extension (SME) is an effective field theory that extends the Standard Model to

include General Relativity and operators that break Lorentz and CPT symmetry [35],

LSME = LSM + LGR + LLorentz−violating. (C.1)

The natural scale of this theory is the Planck mass (1019 GeV), which is well beyond the experimental

reach of any existing collider experiment. However, small variations in the couplings of SM particles to a

potential Lorentz-invariance violating field can be probed by measuring time-dependent modulations in

experimental variables.

In the context of the SME, time-dependencies arise due to the rotation of the Earth on its axis, which

transforms the couplings of the proposed Lorentz-invariance violating field. By convention, these couplings

are defined in the Sun-centred reference frame, and the rotation of the Earth constitutes a transformation

with period equal to one sidereal day. The Sun-centred frame has coordinates (T,X, Y, Z), where T = 0

is defined as the vernal equinox of the year 2000 (2000-03-20 07:35); X and Y are the basis vectors at a
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right ascension of 0° and 90° at time T = 0, and Z is the rotation axis of the earth [179]. This reference

frame is illustrated in Figure C.1.

Figure C.1: Illustration of the Sun-centred coordinate system: (a) Earth (b) orbit of the Earth in the
Sun-centred frame. Source: [180].

While this frame is the canonical choice in the literature, the results presented within are presented in

the so called J2000 frame. This frame has a time origin of 2000-01-01 12:00, and should be consistent

with the Sun-centred frame within a linear time translation. This difference in frame should be marginal

and should not drastically impact the observation of sidereal time-dependent modulations. 1

Sidereal time refers to the period of one rotation of the Earth around its axis and is measured by the

amount of time between two successive meridian passages of a distant star. A sidereal day is equal to

23 : 56 : 04.1 in solar time units, but can also be expressed as an angle of rotation, i.e. one sidereal

day is equal to 2π radians. Measurements of the tt̄ production cross section [181] and B0
s oscillation

asymmetry [180] as a function of sidereal time have been performed by the D0 collaboration, however, no

experimental evidence of Lorentz invariance has been observed.

C.2 Experimental methodology

In the SME, the cross section of pp→ Z → `+`− has a time dependence of the form

σ(t) ≈ σave(1 + fSME(t)), (C.2)

where t is the sidereal time, σave is the time averaged cross section and fSME is a function that

encapsulates: the coupling between the SM particle and Lorentz-invariance violating field; the event

kinematics in the lab frame; and a rotation matrix which transforms the kinematics from the lab frame to

the Sun-centred frame.

1In the planned follow up analysis the Sun-centred frame will be used. These results are intended to be a proof-of-principle for
the analysis.
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As a result of Eq. C.2, in the presence of Lorentz invariance violating fields there are small periodic

changes in the production cross section, which would therefore be visible in the number of reconstructed

events. These modulations would have a period of one sidereal day, as the LHC proton beams rotate with

the same frequency as the Earth’s rotation relative to distant stars. The methodology outlined in Chapter 4

is well suited to such a measurement, as detector inefficiencies are modelled over short time periods in

order to properly reflect the data-taking conditions at that time. The same event selection is applied as

described in Section 4.2.1, and the same efficiency and Monte Carlo corrections applied to each 60 second

interval of data. The corrected number of Z events and integrated luminosity is calculated for each 60

second interval, and then integrated in bins of sidereal phase (rotation angle divided by 2π). The fiducial

cross section (σ) is then measured by

σ =
NZ
LATLAS

, (C.3)

where NZ is the corrected number of selected Z events in each sidereal bin, and LATLAS is the

corresponding baseline ATLAS integrated luminosity. In addition to calculating the fiducial cross section

in each sidereal bin, the total fiducial cross section is calculated using the full Run-2 dataset. By calculating

the fractional difference between each sidereal bin (i) and the full Run-2 dataset (total), sidereal-time

dependent modulations in the ratio (R) can be probed

Ri =
σi − σtotal

σtotal
. (C.4)

In the absence of any sidereal dependencies, this ratio should be consistent with zero. However,

a sidereal variation would induce a sinusoidal variation in the ratio, where the phase and amplitude

are proportional to the SME couplings and the event kinematics in the Sun-centred frame. Fits can be

performed to extract limits on the SME couplings from the data [181]. In this analysis a simple test is

performed to probe the compatibility of the data with the Standard Model by computing a χ2 test statistic,

χ2 =
∑
i=1

(Ri − µ)
2

σ2
i

, (C.5)

where σi is the uncertainty onRi and µ = 0 under the null hypothesis, i.e. there are no time-dependent

modulations. The χ2 probability density function is given by,

f(x, k) =
1

2k/2Γ(k/2)
xk/2−1 exp(−x/2), (C.6)

where x is the obtained χ2 value and k the number of degrees of freedom. The probability of obtaining
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a value less than or equal to the observed value of x is given by,

F (x) =

∫ x

−∞
fk(x)dx. (C.7)

From this a p-value can be calculated, which is the probability of observing results at least as extreme

as the experimental measurement, under the assumption than the null hypothesis is true.

p = 1− F (x) (C.8)

The convention in particle physics is to reject the null hypothesis if the p-value is smaller than 3×10−7

(5σ). This simple methodology serves as a proof of concept for the analysis, which will be expanded upon

considerably by a new analysis team in ATLAS in collaboration with external theorists2.

C.3 Results

Figure C.2 shows the event-level Z → e+e− and Z → µ+µ− selection efficiencies binned as a function of

pileup and sidereal phase. As expected, there is a strong dependence of the efficiency on pileup, however,

there is no dependence on the sidereal phase.
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Figure C.2: Event-level Z → e+e− (left) and Z → µ+µ− (right) selection efficiency in bins of pileup
and sidereal phase. The event-level efficiency is calculated using the same methodology outlined in
Section 4.2.2.

Figure C.3 shows the modulation of the ratio Ri as a function of sidereal phase in the Z → e+e−

and Z → µ+µ− channels. The χ2 and p-values for these distributions are given in Table C.1, where

the Z → e+e− channel has a p-value of 0.18 and the Z → µ+µ− channel a p-value of 0.08. Neither
2As discussed in the conclusion.
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of these results suggest there are any significant deviations from the Standard Model, hence the null

hypothesis cannot be rejected in this simple test; indicating there is no evidence for any Lorentz invariance

violating effects. Visually, there does appear to be some periodic variation in the ratio, and perhaps tighter

constraints could be achieved by performing a more sophisticated fit to the data and extracting SME

coefficients, as will be done in the follow-up analysis.
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Figure C.3: Fractional difference in the fiducial cross section measured in each bin of sidereal phase with
respect to the full Run-2 fiducial cross section.

Z → e+e− Z → µ+µ−

χ2 30.26 32.94
D.o.f 23 23

p− value 0.14 0.08

Table C.1: χ2 and p-value of the fiducial Z cross section sidereal modulation relative to the Standard
Model.

C.4 Conclusion

This section has presented a reinterpretation of the Z-counting results in the context of probing sidereal-

time dependent modulations in the fiducial Z → `+`− cross section. No evidence for Lorentz-invariance

violating effects is observed in this simple test, however a more sophisticated analysis will be pursued

by a new analysis team which has been setup within ATLAS in collaboration with theory experts in the

field of Lorentz invariance violation. This team will perform a more detailed analysis of the data, looking

for evidence of sidereal-time dependent effects by performing fits to the data, and in the absence of any
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signal set constraints on SME coefficients. Such an analysis has to date not been performed at ATLAS,

and opens up an exciting new avenue to seek new physics with the LHC.
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