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Abstract: The resonance problem of an industrial fluid-conveying pipeline system can be mitigated by shifting or 

assigning its natural frequencies. However, the desired natural frequencies are difficult to realize using typical numerical 

model-based parameter optimization technologies because of the modelling errors. Herein, the first theoretical and 

experimental study is reported on achieving desired natural frequencies of an industrial pipeline system by using 

measured receptances. This research involves the one-way fluid-structure interaction of the steady flow. On this basis, 

this paper considers the changeability of working conditions of the pipeline system and characterizes the uncertain flow 

speed as an interval uncertainty. The primary framework of the classic receptance method is employed, and a novel 

interval-based frequency assignment method is proposed. This method inherits the advantage of the receptance 

methodology, in which the determination of the optimal structural modifications entirely relies on the measured frequency 

response functions. More especially, the obtained stiffness modifications by using the proposed method can improve the 

robustness of the assignment results to uncertain flow speeds, and then actually achieved values of the assigned natural 

frequencies have a smaller perturbation. Several numerical examples demonstrate that the proposed method provides 

effective results. The application of the method to the modification of a real U-shaped fluid-conveying pipeline system 

gives experimental evidence of its effectiveness. The effective experimental results give the confidence to use the 
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receptance-based structural modification method to improve the dynamical behaviour of real structures.  

Keywords: Fluid-conveying pipeline; natural frequency assignment; measured receptance; interval uncertainty. 

 

1. Introduction 

Fluid-conveying pipelines are widely used in aerospace, shipping, mechanical, nuclear power, civil engineering, and 

other fields. They convey fluid organically to ensure the normal operation of the whole system [1,2]. However, a fluid-

conveying pipeline inevitably vibrates during service because of internal and external factors [3]. In particular, when the 

excitation frequency of the motor connected to the pipeline is close or equal to a natural frequency of the pipeline system, 

the vibration of the pipeline system is amplified, leading to malfunction or even failure of the pipeline and affecting the 

normal operation of the whole system [4]. Therefore, assigning the natural frequency of the pipeline to shift it away from 

the excitation frequency is a useful and frequently-used way to suppress pipeline vibration, on the premise that the 

excitation frequency of the equipment cannot be changed [5]. 

Generally speaking, the material and dimensions of a pipeline usually cannot be changed due to the requirements of 

pipeline design standards [6]. Therefore, parameter optimization of pipeline supports, especially their stiffness, has 

received extensive attention in recent years and is expected to remain a popular solution to the resonance problem of 

pipelines. As pioneers in the study of pipeline support parameters, Kwong and Edge [7] employed the transfer matrix 

method to calculate frequency response functions (FRFs) for a fluid-conveying pipeline system and used them as input 

data to optimize pipeline support locations and stiffness. Huang et al. [8] investigated the one-way fluid-structure 

interaction (FSI) (the effect of carried fluid on structure) in a straight pipeline by using the eliminated element-Galerkin 

method, calculated the natural frequency of the fluid-conveying pipeline with different support stiffness values, and 

derived its optimal stiffness for assigning the desired frequency from the calculation results. Ritto et al. [9] and Zhai et 
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al. [10] used the nonparametric probabilistic and refined response-surface methods, respectively, to analyse the effect of 

the carried fluid on the vibration characteristics of the fluid-conveying pipeline. Recently, Guo et al. [11] focused on the 

uncertainty of the pipe parameters, support parameters, and fluid parameters and proposed an uncertain frequency 

response surrogate function to evaluate the effect of those uncertainties on the frequency response. Moreover, Wu and 

Tijsseling [12], Herrmann et al. [13], Wang et al. [14], and Chai et al. [15] conducted some similar but valuable studies. 

Regarding the abovementioned literature, it should be noted that natural frequency assignment or optimization of 

pipelines is mainly performed based on the probabilistic design method, which usually involves a numerical model 

[16,17]. However, industrial fluid-conveying pipeline systems are often equipped with multiple shock absorbers as elastic 

supports, and their carried fluid also interacts with the structure [18]. These complex factors make it difficult to establish 

an accurate numerical model of a fluid-conveying pipeline system [19]. Most researchers ignore or model simplistically 

the influence of these factors when establishing simulation models of pipeline systems [6,20], which allow optimization 

of pipeline support parameters in simulation but often perform poorly in practice. More importantly, the process of finding 

optimal solutions involves many data samples, so making natural frequency assignment is time-consuming even when 

using a simplified model of a fluid-conveying pipeline system.  

In order to overcome the limitations of numerical models for optimization, the receptance method is employed in 

this study as the basis to solve the natural frequency assignment problem of fluid-conveying pipeline systems. The 

receptance method neither involves the numerical model of the structures under study nor requires complete physical 

information. Optimal modifications (such as stiffness modifications) can be directly acquired from experimental FRFs 

(receptance) at the modification-related locations. Based on the implementation, the receptance method can be further 

divided into structural modification by passive elements and active vibration control using sensors and actuators. Active 

control is not the focus of this study and thus will not be touched upon from this point onward. Interested readers may 

consult relevant studies [21-23]. 
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Passive modification was comprehensively discussed by Mottershead and Ram in a review paper [24]. Focusing on 

rank-one modifications, they suggested several modification approaches, including mass modification, grounding spring 

modification, and connecting spring modification. Their systematic study serves as the foundation for applying and 

popularizing the receptance method. Çakar [25] extended the rank-one modifications to the case where some desired 

natural frequencies were kept unchanged after one or more mass and stiffness modifications. Ouyang et al. [26,27] 

introduced the convex optimization method in the receptance method to overcome the difficulty of solving higher-rank 

modifications. Their work ensures that the obtained modification can be physically realized by imposing constraints on 

the design variables, thereby enhancing the applicability of the receptance method. Recently, Liu et al. [28] summarized 

the general form of higher-rank structural modifications, thereby making them easier to implement and improving the 

practicability of the receptance method. Kyprianou et al. [29], Richiedei et al. [30], and Zhang et al. [31] further improved 

the receptance method and addressed its shortcomings. 

Even though the receptance method has unique advantages in structural modification or optimization, early studies 

on the receptance method concentrated on theoretical verification due to the restriction of the backward testing techniques. 

With the progress of testing technology in recent years, many researchers have focused on solving practical engineering 

problems. Mottershead et al. [32] obtained the torsional FRFs of an aircraft tail via an attached X-shaped sub-structure 

and then calculated the required mass modification by using the receptance method. Zarraga et al. [33] shifted the natural 

frequency of a brake-clutch system by applying stiffness modification, thereby successfully suppressing friction noise. 

Tsai et al. [34] determined the required structural modifications of a geared rotor-bearing system to assign frequencies by 

only using the measured receptance. 

Unlike the aforementioned studies, the structural modification of the industrial pipeline system is more complex 

since it involves the FSI. The FSI causes the dynamic behaviour of the fluid-conveying pipeline to change, and such 

changes are uncertain since an industrial pipeline usually has multiple working conditions (flow speeds) [9,35,36]. 
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Consequently, the receptance matrix used in the calculation actually varies with flow speed and can be considered an 

uncertain matrix [11], and the objective of structural modification is no longer a deterministic function but an uncertain 

function, too. Therefore, this paper places emphasis on the variation of working conditions on the natural frequencies and 

utilizes the interval method [37,38] to describe the uncertainty of the FRFs caused by the uncertain flow speed. The 

objective function interval of the natural frequency assignment is converted to a linear combination of two deterministic 

objective functions based on the order relationship of the interval [39]. More importantly, multiple natural frequencies 

can be assigned by means of higher-rank modification, which makes the structural modification problem a multi-objective 

optimization problem (MOP). The non-dominated sorting genetic algorithm II (NSGA-II) [40] with good global 

convergence performance is adopted to find the optimal solutions for the MOP. 

The focus of this study is on only utilizing the measured receptance to realize the assignment of multiple frequencies 

for real fluid-conveying pipeline systems. This paper is organized as follows: In Section 2, the theoretical model of the 

fluid-conveying pipeline involved in one-way FSI is derived, and the interval-based natural frequency assignment method 

is proposed by employing the basic framework of the classic receptance method. Section 3 introduces the experimental 

model of a U-shaped fluid-conveying pipeline system with elastic supports as well as its corresponding dynamic 

behaviour. In Section 4, the effectiveness of the receptance method on the pipeline system with a constant flow speed is 

demonstrated numerically and experimentally. Section 5 describes details of the structural modification of the pipeline 

system with an uncertain flow speed, in which the changeable flow speed is characterised as interval uncertainty and the 

proposed interval-based method is employed to achieve the robust assignment of its natural frequency. Finally, 

conclusions are presented in Section 6. 
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2. Natural frequency assignment method of the fluid-conveying pipeline system 

2.1 Problem statement and basic assumptions 

This work intends to overcome the limitations of numerical models and solve the following two problems.  

Problem 1: Assign the desired natural frequencies of a real fluid-conveying pipeline system directly by using the 

measured FRFs (receptance). 

Problem 2: Improve the robustness of the assigned natural frequencies to the uncertain flow speed (or changeable 

working conditions). 

In order to deal with the abovementioned problems, the receptance method is employed as the basic theory, and the 

equation of motion for the fluid-conveying pipeline system is presented. Therefore, all important assumptions about the 

equation of motion are highlighted here: 

(i) The pipeline system involved in this work is slender, that is, the outside diameter of the pipe is much smaller than 

the pipe length [41]. 

(ii) The carried fluid in the pipeline is incompressible, and the FSI is considered a one-way coupling. For a common 

steel fluid-conveying pipeline in the industry, the carried fluid influences the dynamic behaviour of the structure, while 

the effect of structure on carried fluid at low speeds is marginal and can be ignored [5,46].  

(iii) The flow speed of the carried fluid in the pipeline changes according to different working conditions, while the 

flow is uniform and steady at any of the determined working conditions of the pipeline [11]. Moreover, it should be noted 

that flow variations caused by testing or other factors are regarded as uncertainty in the flow speed. 

(iv) Only the linear vibration of the pipeline is concerned, and the nonlinear vibration is ignored [42].  

(v) The effect of Coriolis force of fluid on the structure is considered, and the Poisson coupling and fluid friction are 

neglected [41]. 
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2.2 Dynamic equation of the fluid-conveying pipeline system with one-way FSI 

In the framework of the assumptions mentioned above, the plug flow model is used to describe the flow of the 

carried water [41]. The fluid-conveying pipeline system without any branches can be approximated as an assembly system 

consisting of n straight pipeline elements [2]. According to the extended Hamilton principle, the vibration of each fluid-

conveying pipeline element is governed by following Eq. (1) 

2

1
1 2δ( )d 0

t

t
T T U t   , (1) 

where t represents time; T1 and T2 are the kinetic energy of the pipe wall and the carried fluid, respectively; U is the 

elastic potential energy of the pipe structure. The energies of all parts involved can be found in Ref [2]. 

By employing the wave method [43] or the transfer matrix method (TMM) [44-46] and the dynamic substructure 

assembly technology [41], the impedance matrix of the pipeline under free boundary conditions is obtained 

2

p f p f p f( , ) ( + ) ( + ( )) +( + ( ))s V s V s V Z M M C C K K , (2) 

where s denotes the complex frequency; ( , )s VZ   represents the impedance matrix of the pipeline element, whose 

dimension is 6(n+1) × 6(n+1) (since n straight pipeline elements have n+1 nodes in total, and each node has 6 degrees of 

freedom); pM  and fM  are the positive-definite mass matrices of structure and fluid, respectively; pK  is the positive-

definite bending stiffness matrix; f ( )VK   is the negative-definite fluid stiffness matrix; f ( )VC   is the fluid damping 

matrix (which is skew-symmetric), p p p  C M K is the Rayleigh damping matrix, in which α and β are the Rayleigh 

damping coefficients. Moreover, it should be noted that f ( )VK  and f ( )VC  are related to the flow speed V of the carried 

water and contain only zeros when V = 0 m/s. 

Subsequently, the lumped masses and elastic supports (a kind of ground spring) connected to the pipeline are 

considered, and the equation of motion of the fluid-conveying pipeline system with a general boundary condition is 

established [44] 
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2

b b( , ) ( , ) ( ( , ) ( )) ( , ) ( )s V s V s V s s V s   Z u Z M K u f , (3) 

where ( , )s Vu  and ( )sf  are the displacement and force vectors, respectively. ( , )s VZ  is the whole impedance matrix 

under a general boundary condition; bM  is the mass matrix of lumped masses attached to the pipeline nodes; bK  is 

the stiffness matrix of the elastic supports. 

For an industrial fluid-conveying pipeline system (V<10 m/s), the fluid damping does not entail energy dissipation 

(this part of damping cannot lead to a real part of the complex frequency), and the complex frequency s can be 

approximate as jω [9]. Therefore, Eq. (3) can be rewritten as 

2

b( j , ) ( j , ) ( ( j , ) ( )) ( j , ) ( j )bV V V V         Z u Z M K u f , (4) 

where ω represents real frequency, and j is the imaginary unit. It should be stressed that the application ( ) ( , j )s V f u

(the symbol  represents a mapping) is linear, but ( , j )V V u  is nonlinear. 

According to the orthogonality of vibration modes, the receptance matrix ( j , )VH  can be expressed as [47] 

1

2 2
1

( ) ( )
( j , ) ( j , )=

2j ( ) ( )

L RN
i i

i i i i

V V
V V

V V
 

    






  


φ φ

H Z , (5) 

where L

iφ  and R

iφ  are the ith left and right eigenvector, respectively; i  and i  represent the ith natural frequency 

and the damping ratio, respectively. For arbitrary element ( j , )pqh V  in ( j , )VH , it is often called the displacement 

FRF and can be written as 

T

2 2
1

( ) ( )
( j , )= ( j , ) =

2j ( ) ( )

L RN
pi qi

pq p q

i i i i

V V
h V V

V V

 
 

       
e H e , (6) 

where pe  is a 6(n+1)-dimensional unit column vector where the pth element is one and the remaining ones are zeros. 

For arbitrary natural frequency i , ( j , )pq ih V  is theoretically the poles of the FRF ( j , )pq ih V . Therefore, the natural 

frequencies in practice can be identified by picking the peaks of the obtained FRF.  

The aforementioned Eqs. (4-6) theoretically demonstrate that the fluid-conveying pipeline system with a steady flow 
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(with a constant flow speed) can be approximated as a linear, lightly damped system, and the receptance method is 

theoretically suitable for its structure modification. Moreover, those equations can provide assistance in creating the 

theoretical model of a real pipeline and numerically proving the effectiveness of the proposed natural frequency 

assignment method. 

2.3 Receptance-based natural frequency assignment method 

According to Eq. (5), the free vibration equation of the fluid-conveying pipeline system can be expressed as 

2

b( j , ) ( j , ) ( ( j , ) ( )) ( j , )R R

i i i i b i i iV V V V        Z φ Z M K φ 0 . (7) 

Once again, i  is a real number and represents the ith natural circular frequency; ( j , )R

i i Vφ  is the corresponding ith 

complex right-eigenvector. 

In this work, natural frequency assignment is realized by changing the stiffness of the elastic supports. Essentially, 

modifying their stiffness means adding an unsolved stiffness modification K  to the original pipeline system. Hence, 

the free-vibration equation for the modified system becomes 

ˆ ˆ ˆ( ( j , )+ ) ( j , )R

i i iV V  Z K φ 0 , (8) 

where ˆ
i  is the ith natural frequency of the modified system, and ˆ ˆ( j , )R

i i Vφ  is the corresponding ith complex right-

eigenvector of the modified system. 

Suppose that ˆ
i  is the desired natural frequency and already known from the industrial requirement. The target of 

the natural frequency assignment (Problem 1) is to find the required stiffness modifications to realize the desired 

frequency [24]. That is to say, the structural modification problem becomes an inverse problem of solving the required 

stiffness modification K . 

In order to solve the abovementioned inverse problem, both sides of Eq. (8) are pre-multiplied by the receptance 

matrix -1ˆ ˆ( , ) ( j , )i iV V H Z  of the original system at desired frequency ˆ
i  [24]. Eq. (8) can be rewritten as 
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ˆ ˆ ˆ( + (j , ) ) ( j , )R

i i iV V  I H K φ 0 . (9) 

It should be stressed that stiffness modification K  contains a large number of zero elements, and its rank (r) is 

equal to 5 in this study. Therefore, K  can be expressed as [33]  

1 1 1

( )
T

( )

Δ
r r rx y x

xy x y

x x y y x

K
 

  K e e

, 
(10) 

where xyK  is a nonzero entry in the matrix ΔK , where x and y represent its row and column numbers, respectively. 

Meanwhile, set  1,  ,  rx x  is identical to the set  1,  ,  ry y  since ΔK  is a symmetric matrix.  

Therefore, ΔK  can be rewritten with elementary transformations as follows 

0 0
Δ

0 Δ rr

 
  
 

K
K

, (11) 

where rrK  is the unsolved stiffness modification matrix applied to the elastic supports; r is the number of elastic 

supports allowed to be modified. 

Furthermore, Eq. (9) with the transformation of ΔK  can be rewritten as [28] 

( - )( - ) ( - )( - )( - ) ( )

( )

ˆ ˆ(j , ) (j , ) ˆ ˆ(j , )

ˆ ˆ(j , ) (j , ) ˆ ˆ(j , )

R
n r n r i n r r in r n r n r i i

R
r n r i rr irr rr ri i

V V V

V V V

  

  





       
        

        

H HI 0 0 0 φ
0

H H0 I 0 ΔK φ
. (12) 

Simplifying Eq. (12) leads to [28]  

ˆ ˆ ˆ( + (j , ) ) (j , )R

rr rr i rr ri iV V  I H ΔK φ 0 . (13) 

At the same time, one can conclude that [33] 

ˆdet( + (j , ) )rr rr i rrV I H ΔK 0 , (14) 

where ˆ(j , )rr VH  is an asymmetric matrix and renamed the modification-related receptance matrix consisting of the 

cross- and point- FRFs at all modification-related locations in the original system. Eq. (14) clearly shows that only these 

FRFs are required, and the ones at other locations do not need to be known.  
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When multiple desired natural frequencies 
1 2i

ˆ ˆ ˆ( ,  , , )
ai i    are required, this means that all of the equations in 

the following equation set must be true 

1

2

ˆdet( + ( , ) ) 0

ˆdet( + ( , ) ) 0

ˆdet( + ( , ) ) 0
a

rr rr i rr

rr rr i rr

rr rr i rr

V

V

V













 

I H ΔK

I H ΔK

I H ΔK

. (15) 

Clearly, the abovementioned equation set is difficult to solve, and so the equation-solving problem is converted into 

a MOP that is easier to solve, as it is suggested in Ref [26,31]. The objective-function vector of the MOP can be expressed 

as 

1 2= min{ , , ,  }a  Ψ , (16) 

where a is the number of desired natural frequencies (sub-objective) and the λth sub-objective function is the Euclidean 

norm of det( + ( , ) )rr rr i rrV


I H ΔK  [26] 

2
ˆdet( + ( , ) )rr rr i rrV

   I H ΔK . (17) 

For arbitrary FRF ( j , )pqh V   required to form ˆ( , )rr i V


H  , it can be measured by processing the signal of 

vibration excited by an impact hammer (applying hammer force to coordinate q and measuring the response of coordinate 

p) [48]. Therefore, neither the finite element model of the system nor complete modal testing of the structure needs to be 

conducted theoretically. 

The to-be-determined rrK can be obtained by using an optimization algorithm to minimize the objective-function 

vector Ψ synthetically. A mature and widely-used NSGA-Ⅱ algorithm provided by MathWorks called gamultiobj is 

adopted to solve this optimization problem. Generally speaking, NSGA-II gives rise to a set of Pareto-optimal solutions 

instead of a single optimal solution, which allows engineers to choose the appropriate modifications according to their 

preferences. As far as this paper is concerned, the Pareto-optimal solutions corresponding to the minimum mean square 
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root of objective function values are selected as the required modifications. The NSGA-Ⅱ algorithm is not the focus of 

this paper, which is why its history, developments, and essential features are not presented here. Specific details of the 

NSGA-Ⅱ algorithm can be found in [40,49].  

2.4 Interval-based natural frequency assignment method 

Considering that the working condition of the industrial fluid-conveying pipeline is changeable, the flow speed of 

its carried fluid may not have a constant value, which will lead to the measured FRFs being different at different working 

conditions and having an interval characteristic [11] 

( , ) ( ),  ( )pq pq pqh V h h     . (18) 

In which pqh  and pqh  represent the lower and upper bounds of the changeable FRF, which can be theoretically 

determined by the FRF at the maximum and minimum flow speeds. 

min max

min max

( ) min( ( , ),  ( , ))

( ) max( ( , ),  ( , ))

pq pq pq

pq pq pq

h h V h V

h h V h V

  

  





. (19) 

Considering that the industrial pipeline has a variety of working conditions, the changeable flow speed of the carried 

fluid can be regarded as an uncertain parameter of the system. Given the interval characteristic of the FRF variation, the 

changeable FRF of the pipeline system is redefined as interval FRF by introducing the interval analysis [50,51]. 

( , ) ( ),  ( )pq pq pqH V h h      . (20) 

For arbitrary circular frequency ω, the centre and width of the interval FRF can be expressed as 

( ) ( )
( , )

2

 ( ) ( )
( , )

2

pq pqc

pq

pq pqw

pq

h h
H V

h h
H V

 


 








, (21) 

where superscripts c and w represent the midpoint and width of the interval FRF, respectively. 

Similarly, the λth objective function of the natural frequency assignment in Eq. (16) can be recast as an interval form 
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ˆ ˆ ˆΨ ( , ) Ψ ( ),  Ψ ( )i i i i i iV
  

      . (22) 

By using the natural interval extension [37], the upper and lower bounds of the interval objective can respectively 

be written as 

1 1

1 1

ˆ ˆ( )= ( , )

ˆ ˆ( )= ( , )

r r

r r

cp q
c wi

i i i i pqc
p p q q pq

cp q
c wi

i i i i pqc
p p q q pq

V H
H

V H
H

 

 


 




 



 

 

 
  




  


 

 

, (23) 

where 
2

ˆ ˆ( , ) det( + ( , ) )c c

i i rr rr i rrV V
 

   I H ΔK , in which ˆ( , )c

rr i V


H  is the centre receptance matrix consisting of the 

centre of the interval FRFs at all modification-related locations. 

It should be noted that interval numbers cannot be directly compared, which is not conducive to the evaluation of 

evolutionary individuals in the optimization calculation. Therefore, this paper introduces order relationships to compare 

interval numbers in interval number programming: for two interval numbers A and B, A B   needs to satisfy the 

following conditions [39] 

if  and c c w wA B A B A B   . (24) 

Correspondingly, the minimum problem of the interval objective ˆ( , )i i V


  can be converted to a programming 

problem with two deterministic objectives as follows [39]  

1 1

ˆ ˆ ˆ ˆmin{ ( , )} min{ ( , ),  ( , )} min{ ( , ),  }
r r cp q

c w c wi

i i i i i i i i pqc
p p q q pq

V V V V H
H   


   

 


        . (25) 

By using the linear combination method, the two deterministic objective functions can be integrated as a new 

objective function [52] 

1 1

ˆ ˆ ˆ ˆ( , ) ( , ) (1 ) ( , ) ( , ) (1 )
r r cp q

c w c wi

i i i i i i i i pqc
p p q q pq

V V V V H
H   


       

 


            , (26) 
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where 0 ≤χ≤ 1 is a weighting factor that can be chosen appropriately based on the practical problem and the experience 

of the designer. 

When multiple natural frequencies need to be assigned, Eq. (16) can be recast as 

1 2=min{ , , ,  }a  Γ . (27) 

It should be stressed that the first term of Eq. (27) is used to control the assignment accuracy of the natural frequency, 

while the second term is used to control the perturbation range of the assigned natural frequency. By choosing a reasonable 

weight factor and minimizing the objective-function vector Ψ synthetically, the optimal stiffness modifications of the 

elastic supports are obtained and can be used to solve the two problems in Section 2.1. 

 

3. The experimental model for the fluid-conveying pipeline system 

3.1 Test setup 

The experimental setup shown in Fig. 1 is a U-shaped pipeline (marked by a solid red line). The two ends of the 

pipeline are clamped to a very rigid cast iron test bench, and the supports in the middle are five shock absorbers of the 

same type. The outer diameter and thickness of the pipeline are 32 and 1.5 mm, respectively. The pipeline is made from 

304L stainless steel with a Young’s modulus value of 196 GPa and a density of 7850 kg/m3. Each shock absorber is 

composed of a housing and an inner spring (this structural type is similar to that of commercial shock absorbers); the 

housing is an approximately rigid body with a weight of 0.47 kg, and the inner spring is an elastic element with an axial 

stiffness of 22 kN/m. 

The carried fluid is common freshwater with a density of 1000 kg/m3. According to previous research [2,35,36,53], 

the effect of one-way FSI on the lateral dynamic behaviour of the pipeline system is mainly reflected in the mass and 

flow speed of the carried water. Therefore, this paper places emphasis on the impact of mass and flow speed on the natural 
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frequency of the fluid-conveying pipeline (the flow direction of the carried water is marked by a blue arrow in Fig. 1). In 

each test, the flow of the carried water is monitored by the flowmeter on the pipeline, and the corresponding flow speed 

can be calculated based on the flow-monitor value and section dimensions of the pipeline. 

 

Fig. 1. The experimental model for the fluid-conveying pipeline system. 

Schematics of the control and related pieces of the fluid-flow equipment are displayed in Fig. 2. In this study, the 

flow speed of the carried water (V) mainly depends on the initial pressure in the pressure vessel. Before each test, the 

water in the reservoir is injected into the pressure vessel via a high-pressure water pump, and the water delivery is stopped 

until the pressure gauge reaches the set initial pressure. Subsequently, the inlet and outlet water valves are opened 

simultaneously, and the impact hammer test is performed. It should be noted that the water pump is turned off during the 

impact hammer test so that the measured FRFs are only excited by the impact hammer and not by the water pump. 

javascript:;
javascript:;
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Fig. 2. A schematic of the pipeline system. 

Four different working conditions (the corresponding flow velocity is 0.0, 3.7, 6.5, and 8.9 m/s, respectively) are 

considered (the initial pressures corresponding to the three flow states ( 0)V   are 2.1, 2.8, and 3.5 MPa). It should be 

noted that the flow speed of the carried water cannot be calculated directly by using Bernoulli's equation since the 

frictional head loss of the carried water is very large when flowing past the high-pressure water hose [2]. 

In practice, the direction of the excitation source is generally the same as the pipeline’s installation direction (the Z-

direction in this study). As far as this structure is concerned, the Z-direction vibration of the pipeline is not theoretically 

coupled with X- and Y-directional vibrations. Thus, the Z-direction vibration of the pipeline is only related to the Z-

direction stiffness of the elastic supports and is not affected by its X- and Y- direction stiffness. Considering the 

abovementioned factors, the Z-direction stiffness of the shock absorber is required to modify to assign the pipeline 

system’s Z-direction natural frequency. The Z-direction stiffness of the shock absorber can be changed by replacing its 

inner spring. The five shock absorbers are denoted as 1k  to 5k , as shown in Fig. 2. 

A total of five measurement points (P1 to P5) are set along the pipeline, as shown in Figs. 2 and 3. The Z-coordinate 
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of each measuring point is the same as that of one of the shock absorber installation locations; for example, the Z-

coordinate of P1 is the same as that of 1k . The point and cross FRFs of P1–P5 are measured via impact hammer tests 

(employing the impact hammer as the excitation mechanism and the accelerometer as the response monitoring sensor) 

[48]. Before each impact hammer test, five Donghua miniature accelerometers (Model 1A116E) weighing 6.62 g each 

are used to monitor accelerations at the measurement points and simultaneously minimize the mass-loading effect. The 

impact hammer is an LC02 impact hammer (Model 3A102) with a plastic hammer tip. Signals are sampled through a 

DH5902 signal acquisition system (capable of transferring test data to a PC in real-time) at a sampling rate of 2.56 kHz. 

DHDAS software is used for signal processing and modal parameter estimation, after which the measured FRFs are 

exported directly from the DHDAS software. 

3.2 Theoretical model of the U-shaped pipeline system 

The theoretical dynamic model of the experimental U-shaped pipeline system is established by using Eq. (1-3) and 

solved by using Zhang et al.’s method [2], and then a semi-analytical solution for the FRFs of the U-shaped pipeline 

system can be obtained. It should be noted that the theoretical dynamic model does not play a direct role but is only used 

to assist in demonstrating the proposed method, and the natural frequency assignment of real pipelines can be done 

entirely using measured receptances (FRFs).  

The physical parameters of the theoretical model quantitatively well represent those for the test model in Section 

2.1. The shock absorber is simulated as a spring with a stiffness of 22 kN/m and a point mass with a weight of 0.157 kg 

(one-third of the housing weight), whose values are measured. 

3.3 Dynamic performance of fluid-conveying pipeline systems at various flow speeds 

In this study, symbol h is used to represent the FRFs and Z Zp qh  is the Z-direction harmonic response at coordinate 

p caused by a single Z-direction unit harmonic force applied to coordinate q [48]. For example, 1Z1Zh  represents the point 
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FRF of measured point P1, which is the Z-direction frequency response of P1 caused by the Z-direction hammer force 

applied to P1; 2Z3Zh represents the cross FRF of measured point P3 to P2, the Z-direction frequency response of P2 caused 

by the Z-direction hammer force applied to P3. 

Fig. 3a displays the magnitudes of experimental point FRFs 1 1Z Zh  at the four different flow speeds; the frequency 

range of interest is limited to below 120 Hz, which covers the first four modes of the fluid-conveying pipeline. The first 

four natural frequencies are identified by using the peak picking method and recorded in Table 1 [54]. 

The modal analyses of the theoretical model are carried out, and its natural frequencies at the four flow speeds used 

in the tests are also collected in Table 1. By comparing with the experimental results, the dynamic behaviours of the 

experimental pipeline are effectively explained and the assumptions about the theoretical model are demonstrated.  

 

Fig. 3. The point FRFs of P1 in the Z-direction 1Z1Zh : (a) experimental result; (b) numerical results. 
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Table 1. Natural frequencies of the fluid-conveying pipeline system. 

 

 Natural frequency (Hz) 

 V=0.0 m/s (static) V=3.7 m/s V=6.5 m/s V=8.9 m/s  

Mode 1 

Experimental 21.56 21.35 21.15 20.89 

Numerical 20.93 20.75 20.63 20.50 

Mode 2 

Experimental 30.08 29.74 29.55 29.43 

Numerical 30.08 29.91 29.75 29.58 

Mode 3 

Experimental 70.63 70.47 70.31 70.08 

Numerical 72.08 72.00 71.92 71.78 

Mode 4 

Experimental 93.44 93.12 92.63 92.33 

Numerical 93.02 92.87 92.75 92.63 

It is clear from Fig. 3 and Table 1 that the experimental results are in good agreement with the numerical results. 

However, it is necessary to explain the error between the numerical results, compared with the experimental ones. The 

modelling error mainly lies in the numerical model's system parameters. This error is primarily caused by the inaccurate 

representation of the boundaries of the experimental model in the theoretical model [55]. However, such an error is not 

important in this paper, since the main purpose of the theoretical model is to assist in verifying the rationality of the 

simplified treatment of the FSI effect and the effectiveness of the receptance method. It is unnecessary to spend much 

time in tuning the numerical model to fit the test data, since the natural frequency assignment of the experimental fluid-

conveying pipeline is only based on the measured FRFs (receptances), not the numerical FRFs. Therefore, this paper only 

requires the theoretical model to have dynamic characteristics approximate to the test one. 

Moreover, it should be noted in Fig. 3 that the FSI has only a marginal impact on the system's natural frequencies 

and can be regarded as a kind of perturbation. Such perturbation renders the FRFs(receptance) at the non-resonance zone 

becoming an interval-uncertain form [11]. 
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Fig. 4. The shapes of the first four modes at the static state. 

Fig. 4 displays the mode shapes of the first four natural frequencies in the static fluid state (V = 0 m/s). It should be 

highlighted that the eigenvectors of the fluid-conveying pipeline in the static fluid state are real vectors, whereas those in 

the flow state are complex vectors. It should be noted that the skew-symmetry of the fluid damping matrix means that 

the left eigenvectors of the pipeline system L

iφ    are equal to the conjugate transpose of the corresponding right 

eigenvectors R

iφ when the system is in the flow state [36]. 

 

4. Natural frequency assignment of the fluid-conveying pipeline with a constant flow speed 

The interval-based natural frequency assignment method is based on the framework of the receptance method, and 

so it is necessary to verify the effectiveness of the receptance method. The verification work of the receptance method is 

carried out on the pipeline system with a constant flow speed, which is a deterministic linear system.  
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4.1 Numerical validation of receptance method  

In order to make the verification more reliable, the receptance-based natural frequency assignment is firstly achieved 

on the theoretical model of the pipeline system. It should be stressed again that the numerical validation is just used to 

check the effectiveness of the receptance method, and the subsequent natural frequency assignment of the experimental 

pipeline system is entirely based on the measured receptance (FRFs) and not on the numerical ones [22]. 

In the present example, the higher-rank structural modification is conducted, in which the second and third natural 

frequencies of the system are assigned simultaneously. In order to avoid the loss of generality, the minimum and 

maximum flow speeds in tests, 0 m/s and 8.9 m/s, are considered. The desired frequencies are assumed as 40 Hz and 80 

Hz. The FRFs of the modification-related locations P1-P5 of the theoretical model are obtained by a series of harmonic 

analyses, and then the required receptance matrices are constructed. It should be stressed that the cross FRF pq qph h  

at V=8.9 m/s since the fluid-conveying pipeline at a flow state is an asymmetric system. 

 For each flow speed scenario, Eq. (16) is used to establish the objective functions, and the NSGA-II algorithm is 

employed to search for the corresponding optimal solutions (modifications), as shown in Table 2. It should be noted that 

the feasible domain for all of the optimal solutions (modifications) is set as [−22, 200] kN/m to ensure that the calculated 

results have physical implications.  

Table 2. A summary of the stiffness modifications. 

Flow speed 

Stiffness modification 

1k  (kN/m) 2k  (kN/m) 3k  (kN/m) 4k  (kN/m) 5k  (kN/m) 

V=0 m/s 30.33 0.63 150.74 25.01 -0.86 

V=8.9 m/s 33.55 5.46 148.86 24.65 2.33 

The two sets of stiffness modifications in Table 2 are applied to the pipeline system with fluid flow speeds of 0 m/s 

and 8.9 m/s respectively, and then the FRFs of the modified system 1Z1Zh  are obtained by harmonic analysis and shown 

in Fig. 5. The first four natural frequencies of the modified system are calculated by modal analysis and shown in Table 
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3. For each flow speed scenario presented previously, the natural frequencies of the modified system have been shifted 

exactly at the desired location, which proves the effectiveness of the receptance method.  

 

Fig. 5. The point FRFs of P1 in the Z-direction 1Z1Zh  before and after modification: (a) V=0 m/s; (b) V=8.9 m/s. 

Table 3 The first four natural frequencies of the fluid-conveying pipeline system before and after modification. 

  Mode 1 Mode 2 Mode 3 Mode 4 

V=0 m/s 

Original 20.93 Hz 30.08 Hz 72.08 Hz 93.02 Hz 

Modified 30.65 Hz 40.00 Hz 80.00 Hz 97.58 Hz 

V=8.9 m/s 

Original 20.50 Hz 29.58 Hz 71.78 Hz 92.63 Hz 

Modified 29.25 Hz 40.00 Hz 80.00 Hz 97.60 Hz 

Moreover, it should be highlighted that the required stiffness modifications at V=8.9 m/s have slight differences 

from those at V=0 m/s. Such minor differences are impossible to be considered when implementing stiffness modification 

in real due to the machining error of the elastic element (such as spring) [56]. Moreover, those tiny difference indicates 
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that the influence of FSI on structural modification calculation is marginal. Once again, it is reasonable to regard the 

changeable flow speed as an interval uncertainty when the carried water of the pipeline system is in a low flow state.  

4.2 Natural frequency assignment of the experimental pipeline system 

This section aims to realize the natural frequency assignment of 40 Hz and 80 Hz for the experimental pipeline 

system in section 3.1 and demonstrate the working of the receptance method from a profound perspective. Due to the 

similarity of the structural modification at different flow speeds and the difficulty of the physical implementation of 

precise modifications, the receptance-based natural frequency assignment is realized only on the experimental pipeline 

system with a flow speed of V=8.9 m/s. In the present example, the calculation of the structural modification is entirely 

based on the measured receptance. The relevant settings for optimization calculation are the same as in Section 4.1, and 

the obtained optimal modifications are shown in the third column of Table 4.  

Table 4. the stiffness modifications obtained by measured receptance. 

Stiffness modification (kN/m) 
1k  2k  3k  4k  5k  

The calculated 25.09 8.21 156.50 -2.56 11.73 

The real 26.31 7.44 161.28 0 15.45 

Difference +1.22 (4.87%) -0.77 (9.38%) +4.78 (3.05%) +2.56 (100%) +3.72 (31.71%) 

The required stiffness ( ˆ
i i ik k k   ) of the inner spring for realizing the natural frequency assignment is calculated 

by using the stiffness modifications in Table 4, after which the structural modification could be implemented physically. 

The specific modification process is as follows 

(i) Design and manufacture new inner springs 1k̂ – 5k̂  with the designated stiffness based on the standards for 

cylindrical spiral springs [57] (Fig. 6a). 

(ii) Measure the real stiffness of the new springs on a compression tester (Fig. 6b) and record the real stiffness 

modifications (the fourth column in Table 4). The stiffness of the designed springs needs only be approximately equal 
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to the target stiffness due to several restrictive factors. 

(iii) Replace the original inner spring in each shock absorber with the designed spring. 

(iv) Reinstall the shock absorbers in the pipeline system and conduct a series of impact hammer tests to measure 

the FRFs of the modified pipeline system. 

 

Fig. 6. The inner spring design and stiffness testing. (a) the original and designed springs and (b) stiffness testing of the spring. 

The desired natural frequencies of the pipeline system are assigned after executing the above procedure. Fig. 7 shows 

the experimental values of FRF 
1Z1Zh   before and after modification. Subsequently, the natural frequencies of the 

modified pipeline system are estimated by applying the peak picking method, the results of which are presented in Table 

5. 

Fig. 7 and Table 5 clearly show that the assigned natural frequencies of the pipeline system are very close to the 

desired frequencies even though there is a certain error between the real modifications and the calculated ones. Such an 

accurate structural modification demonstrates the rationality of the experimental implementation procedure, which 

provides a reasonable and reliable approach for the structural modification of the fluid-conveying pipeline system. 

In order to evaluate the receptance method comprehensively, the experimental results are compared with the 
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numerical ones, and the consistencies between the two are checked. Comparison results show that (i) the stiffness 

modifications obtained by numerical receptance and those obtained by measured receptance are similar; (ii) the modified 

first four natural frequencies of the theoretical and experimental models are approximately equal, and the maximum error 

is not even more than 2 Hz. This fact also provides solid evidence of the rationality of those assumptions about the 

theoretical model in Section 2.1. This investigation improves the confidence in realizing the natural frequency assignment 

of a fluid-conveying pipeline by using the receptance method. 

 

Fig. 7. FRF 1Z1Zh  of the pipeline system before and after modification when flow speed is 8.9 m/s. 

Table 5. The first four natural frequencies of the fluid-conveying pipeline system before and after modification. 

 Mode 1 Mode 2 Mode 3 Mode 4 

Before modification 21.09 Hz 29.53 Hz 70.08 Hz 92.43 Hz 

After modification 29.06 Hz 40.32 Hz (0.78%) 79.84 Hz (-0.21%) 95.78 Hz 
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5. Natural frequency assignment to the fluid-conveying pipeline with an uncertain flow speed 

5.1 Numerical verification of interval-based natural frequency assignment method 

In order to assess the effectiveness of the interval-based natural frequency assignment method numerically, it has 

been firstly applied to the structural modification of the pipeline system with changeable working conditions. It is assumed 

that the flow speed of the carried water in the pipeline varies from 0 m/s to 8.9 m/s and the desired natural frequencies 

are 35 Hz and 80 Hz. Clearly, the uncertain flow speed will lead to the FRFs of the pipeline system becoming interval–

uncertain functions and the natural frequencies becoming interval-uncertain values [11,36]. In order to analyse the effect 

of the weighting factor χ on the working of the interval-based natural frequency assignment method, four values of this 

weighting factor are considered, and the corresponding stiffness modification schemes are determined using Eq. (27) and 

shown in Table 6.  

Table 6. Stiffness modification scheme at the four values of the weighting factor 

 Weighting factor 
1k  (kN/m) 2k  (kN/m) 3k  (kN/m) 4k  (kN/m) 5k  (kN/m) 

Scheme 1 χ=0.25 -0.14 88.61 47.88 87.19 -3.46 

Scheme 2 χ=0.5 -14.44 61.60 58.65 60.66 -3.45 

Scheme 3 χ=0.75 29.89 65.38 82.54 33.42 34.90 

Scheme 4 χ=1 27.66 45.09 110.34 32.19 29.41 

By implementing the four modification schemes, the interval FRFs of the modified system are obtained and shown 

in Fig. 8. Clearly, the first and third natural frequencies of the modified system in the four schemes are gathered around 

35 Hz and 80 Hz, respectively. However, the intervals of the assigned natural frequencies in the four schemes have a 

significant difference. In order to display such a difference clearly, the midpoint and width of the natural frequency 

interval and the perturbation error (whose definition is given in Eq. (28)) are employed, and the merits and demerits of 
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all modification schemes are evaluated.  
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  is the λth desired natural frequency; 
a

i
  and 

a

i
  represents the lower and upper bounds of the perturbation 

interval of the λth assigned natural frequency, respectively. 

 

Fig. 8. The point FRFs of P1 in the Z-direction 1Z1Zh  of the modified pipeline system with an uncertain flow speed: (a) χ=0.25; (b) χ=0.5; 

(c) χ=0.75; (d) χ=1. 

It can be easily found from Table 7 that the obtained stiffness modification scheme with a greater χ can make the 

center frequency of the assigned interval natural frequency closer to the desired frequency and thus more accurate, but 



 

28 

 

the interval of the assigned natural frequency wider and thus less robust. This fact indicates that there is a clash between 

accuracy and the robustness in frequency assignment with interval uncertainty, and selecting a too large or small 

weighting factor will increase the perturbation error of the assigned natural frequency. Therefore, the weighting factor 

should be chosen appropriately to balance the robustness and accuracy requirements in frequency assignment and 

minimize the perturbation error. As far as the four cases are concerned, the weighting factor χ should be set to about 0.5 

according to the magnitude of the perturbation error in Table 6. 

Table 7. Results of the natural frequency assignment. 

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Weighting factor χ=0.25 χ=0.50 χ=0.75 χ=1.00 

Mode 1 

Frequency interval [34.92, 35.48] Hz [34.78, 35.40] Hz [34.70 35.46] Hz [34.62, 35.53] Hz 

Centre frequency 35.20 Hz 35.09 Hz 35.08 Hz 35.08 Hz 

Interval width 0.56 Hz 0.62Hz 0.76 Hz 0.91 Hz 

Perturbation error 1.37% 1.14% 1.31% 1.51% 

Mode 3 

Frequency interval [79.98, 80.15] Hz [79.95, 80.13] Hz [79.93, 80.13] Hz [79.93, 80.13] Hz 

Centre frequency 80.06 Hz 80.04 Hz 80.03 Hz 80.03 Hz 

Interval width 0.17 Hz 0.18 Hz 0.20 Hz 0.20 Hz 

Perturbation error 0.17% 0.16% 0.16% 0.16% 

By comparing and analysing the four cases, the effectiveness of the proposed interval-based frequency assignment 

method has been demonstrated. 

5.2 Natural frequency assignment of the experimental pipeline with an uncertain flow speed 

As stated previously, the uncertain flow speed will lead to the FRFs of the pipeline system becoming interval-

uncertain functions [36]. Fig. 9 displays the measured interval FRFs in the Z-direction of all the modification-related 

locations (P1-P5), where the maximum and minimum flow speeds are 8.9 and 0 m/s, respectively. 

The desired frequencies in this section are the same as those in Section 5.1, 35 Hz and 80 Hz. The measured interval 
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FRFs at the two desired frequencies are extracted from Fig. 9 and substituted in Eq. (27) to calculate the optimal stiffness 

modifications. The obtained experimental stiffness modification schemes are shown in Table 8. Two weighting factors, 

the best and worst ones (χ=0.5 and χ=1) in Section 5.1, are considered in this section.  

 

Fig. 9. Measured interval FRFs in the Z-direction of all the modification-related locations. 

Table 8. Experimental stiffness modifications. 

 

Combination 1 (χ=0.5)  Combination 2 (χ=1) 

The calculated The used Difference  The calculated The used Difference 

Stiffness 

modification 

1k
 -22.00 -22.00 +0.00 (0.00%)  -22.00 -22.00 +0.00 (0.00%) 

2k
 101.49 107.34 +5.85 (5.76%)  68.77 70.41 +1.64 (2.38%) 
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(kN/m) 
3k
 81.31 79.57 -1.74 (2.14%)  135.82 127.11 -8.71 (6.41%) 

4k
 63.04 61.60 -1.44 (2.28%)  67.78 71.60 +3.82 (5.64%) 

5k
 -10.24 -8.96 +1.28 (12.5%)  34.65 30.58 -4.07 (11.75%) 

By implementing the structural modification procedure described in Section 4.2, the two desired natural frequencies 

are assigned to the experimental fluid-conveying pipeline system. The interval FRF 
1 1Z Zh   of the modified system 

pipeline with the uncertain flow speed is measured by using the impact hammer test, the result of which is displayed in 

Fig. 10. Subsequently, the interval natural frequencies after modification are estimated through peak picking and recorded 

in Table 9. 

 

Fig. 10. Interval FRF 1 1Z Zh  values of the modified pipeline system with the uncertain flow speed: (a) Combination 1; (b) Combination 2. 
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It is clear from Fig. 10 and Table 9 that the two desired natural frequencies of the fluid-conveying pipeline are all 

successfully assigned at the two stiffness modification schemes, as is expected. More importantly, the assigned natural 

frequencies by using Combination 1 have higher robustness to the uncertain flow speed and smaller perturbation error 

than those by using Combination 2. Such a result is in good with that obtained by the numerical model in Section 5.2 and 

experimentally proves the effectiveness of the proposed interval-based natural frequency in Section 2.4. 

Table 9. Natural frequencies of the experimental fluid-conveying pipeline system after modification. 

  Frequency interval Centre frequency Interval width Perturbation error 

Combination 1 

(χ=0.5) 

Mode 1 [34.53, 35.00] Hz 34.77 Hz 0.47 Hz 1.34% 

Mode 3 [79.06, 80.16] Hz 79.61 Hz 1.10 Hz 1.18% 

Combination 2 

(χ=1) 

Mode 1 [34.51, 35.31] Hz 34.91 Hz 0.80 Hz 1.40% 

Mode 3 [78.97, 80.47] Hz 80.03 Hz 1.50 Hz 1.29% 

 

6. Conclusions 

An enhanced receptance-based method for assigning higher-rank natural frequencies for a fluid-conveying pipeline 

system is proposed and verified experimentally. Determining the necessary modifications did not involve numerical 

models of the pipeline system, and only a small number of measured receptance values (FRFs) are required instead. By 

using a reliable implementation procedure, the structural modification of the pipeline system is firstly realized in reality. 

The errors between the assigned and desired natural frequencies for the pipeline system are no more than 2.5%, thereby 

confirming that the proposed method can accurately realize the natural frequency assignment of the fluid-conveying 

pipeline system, even considering the FSI effect in the steady flow state. The proposed method can help overcome the 

difficulties in the traditional modelling approaches and calculations for fluid-conveying pipeline optimization. 

Focuses on the fluid-conveying pipeline system with an uncertain flow speed, this study extends the theory of 

receptance method and proposes an interval-based natural frequency assignment method. In this method, the changeable 



 

32 

 

flow speed as a feature of real working conditions is viewed as a kind of uncertainty of the system, and the concept of 

the interval is used to describe the effect of such uncertainty on the FRF. The accuracy of the natural frequency 

assignment and the robustness to the uncertain flow speed of the results are considered simultaneously, when finding 

the optimal stiffness modification. The numerical and experimental evidence of the effectiveness of the proposed method 

is provided. The structural modifications determined using this method are found to be very good in the sense that the 

assigned natural frequencies with a low error and high robustness are achieved.  
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