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Abstract14

Typically, non-deterministic models of spatial or time dependent uncertainty are modelled using the

well-established random field framework. However, while tailored for exactly these types of time and

spatial variations, stochastic processes and random fields currently have only limited success in industrial

engineering practice. This is mainly caused by its computational burden, which renders the analysis

of industrially sized problems very challenging, even when resorting to highly efficient random field

analysis methods such as EOLE. Apart from that, also the methodological complexity, high information

demand and rather indirect control of the spatial (or time) variation has limited its cost-benefit potential

for potential end-users. This data requirement was recently relaxed by some of the authors with the

introduction of imprecise random fields, but so far the method is only applicable to parametric p-box

valued stochastic processes and random fields. This paper extends these concepts by expanding the

framework towards distribution-free p-boxes. The main challenges addressed in this contribution are

related to both the non-Gaussianity of realisations of the imprecise random field in between the p-box

bounds, as well as maintaining the imposed auto-correlation structure while sampling from the p-box.

Two case studies involving a dynamical model of a car suspension and the settlement of an embankment

are included to illustrate the presented concepts.

Keywords: Stochastic process; imprecise probability; probability box; random field; scarce data15

1. Introduction16

1.1. General rationale17

Stochastic processes are applied and studied in various domains, reaching from engineering [1] to18

financial economics, to represent stochastic quantities that vary over time- and/or space [2]. However,19



due to the theoretical and computational difficulties, usually these processes are assumed to be Gaussian,20

which might not always be a truthful representation of reality [10]. Furthermore, the definition of a21

stochastic process requires the rigorous description of the governing distribution function. This includes22

selecting the appropriate distribution family as well as the governing hyper-parameters. In practice, an23

accurate definition of these quantities might not be possible due to limitations on the available data24

(quantity of the data, corrupted or missing data, etc.), but also conflicting sources of information (e.g.,25

expert opinions). Recently introduced approaches based on Bayesian compressed sensing alleviate this26

problem (see e.g., [3, 4] by making the estimated stochastic process robust to missing data, even when27

these processes are non-Gaussian and have an unknown non-stationary auto-correlation function [5].28

Furthermore, also de-trending is not required in these cases [5]. In [6], these methods were extended29

to also account for the general case of multivariate, uncertain, unique, sparse, incomplete spatial data30

(denoted MUSIC-X by the authors).31

As a possible alternative pathway to account for low data availability is to resort to the more general32

framework of imprecise probabilities [7]. According to this framework, epistemic uncertainty that results33

from data deficiencies are taken explicitly into account in the analysis. In the context of stochastic34

processes, parametric p-box valued stochastic processes have been introduced in e.g., [13], [14] and [15].35

However, such approaches still require the definition of a (Gaussian) distribution family, which is not36

always possible. This paper aims to go further than the available methods for simulating from imprecise37

stochastic processes by introducing a type of distribution-free p-box stochastic process. Such process38

is obtained by applying an interval-valued translation map to a standard normal Gaussian stochastic39

process. As such, a distribution-free p-box stochastic process is obtained. Two examples are included40

to illustrate the definition and propagation of these structures. The paper is constructed as follows: the41

remainder of this section retakes some important concepts concerning the definition and simulation of42

non-Gaussian stochastic processes; Section 3 introduces the approach for defining distribution-free p-box43

processes; Section 4 briefly discusses a double-loop approach to propagate these structures; Section 5 and44

Section 6 provide two case studies as illustration of the approach; Section 7 lists the conclusions of the45

work.46

2. Background theory47

This section retakes some background theory on non-Gaussian stochastic processes to facilitate the48

understanding of the developments presented further in the paper. Specifically, the general theory behind49

stochastic processes is reproduced for the sake of unifying some definitions and highlighting some key50

concepts. Further, translation theory is explained in detail since the ensuing developments are largely51
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based on this concept.52

2.1. Stochastic processes53

A finite-dimensional stochastic process x(t, ω) describes a set of correlated random variables x(ω),54

which are assigned to a countable number nt of locations t ∈ Ωd in the model domain Ωd ⊂ Rd with55

dimension d ∈ N. Note that Ωd may comprise both space and/or time dimensions. Each random56

variable x(ω) : (Ω, ς, P ) 7→ R as such maps from a complete probability space to the real domain,57

with ω ∈ Ω a coordinate in sample space Ω and ς the sigma-algebra. This condition holds as long58

as x(t, ω) ∈ L2(ω, P ), with L2(ω, P ) the Hilbert space of second-order random variables (i.e., finite59

variance). For a given event ωi ∈ Ω, the corresponding x(t, ωi) is a realization of the stochastic process.60

A stochastic process is considered Gaussian if the distribution of (x (t1, ω) , x (t2, ω) , . . . , x (tnt , ω)), with61

nt ∈ N, is jointly Gaussian ∀t ∈ Ωd. In this case, x(t, ω) is completely described by its mean function62

µx(t) : Ωd 7→ R = Eω[x(t, ω)] and its auto-covariance function Cxx(τ) : Ωd×Ωd 7→ R, given by Cxx(τ) =63

Eω[(x(t, ω) − µx(t)), (x(t′, ω) − µx(t))] [2]. In the remainder of the paper, uni-variate scalar stochastic64

processes (i.e., Ω ∈ R1) are considered for the sake of conciseness of notation. Note that the concepts65

explained in this paper scale straightforwardly to multidimensional random fields as well (i.e., random66

fields defined over Rd, d > 1, with the only difference that t and τ become vector-valued. Also the67

extension towards multi-variate and multi-index random fields should not pose too many challenges,68

since the concepts upon which the methods are built (i.e., translation theory) are well-understood in this69

context (see e.g., [34]). An in-depth discussion of such extension is left for further work.70

Generally, when applying stochastic processes in an engineering context, for instance to represent71

a spatially uncertain input quantity of a finite element model, the process has to be discretized over72

Ωd. In this context, the Karhunen-Loève expansion is a very powerful tool to represent stochastic pro-73

cesses [8]. Specifically, following the Karhunen-Loève (KL) series expansion, a stochastic process x(t, ω)74

is represented as:75

x(t, ω) = µx(t) + σx

∞∑
i=1

√
λiψi(t)ξi(ω), (1)

with σx the standard deviation of the random process and where the quantities λi ∈ (0,∞) and ψi(t) :76

Ωd 7→ R are respectively the eigenvalues and eigenfunctions of the continuous, bounded, symmetric and77

positive (semi-)definite auto-correlation function ρxx(τ) : Ωd × Ωd 7→ [0, 1], in accordance with Mercer’s78

theorem:79

ρxx(τ) =
∞∑
i=1

λiψi(t)ψi(t
′), (2)

These quantities are in practice obtained by solving the homogeneous Fredholm integral equation of80
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the second kind:81 ∫
Ωd

ρxx(τ)ψi(t
′)dt′ = λiψi(t), (3)

where t′ = t + τ for which many efficient discretization schemes exist [9]. Since ρxx(τ) is bounded,82

symmetric and positive semi-definite, and furthermore in most practical cases can be assumed positive83

definite, these eigenvalues λi are non-negative and the eigenfunctions ψi(t) satisfy the following orthog-84

onality condition:85

〈ψi(t),ψj(t)〉 =

∫
Ωd

ψi(t)ψj(t)dt = δij (4)

with δij the Kronecker delta and 〈·, ·〉 : Ωd × Ωd 7→ R an inner product space. Hence, the eigenfunctions86

form a complete orthogonal basis on an L2 Hilbert space. In this case, the series expansion in Eq. 2 can87

be shown to be optimally convergent [8].88

The variables ξi(ω), i = 1, . . . ,∞, introduced in Eq. 1, are uncorrelated random variables, which are89

determined according to:90

ξi(ω) =
1√
λi

∫
Ωd

[x(t, ω)− µx(t)]ψi(t)dt, (5)

which can be shown to be independent standard normally distributed in the case of a Gaussian random91

process. For practical reasons, the infinite series expansion in Eq. 1 is usually truncated after a finite92

number of terms nKL ∈ N:93

x(t, ω) = µx(t) + σx

nKL∑
i=1

√
λiψi(t)ξi(ω), (6)

where nKL should be selected such that a well-chosen variance error metric is minimized [11] .94

In the context of applying stochastic processes in an imprecise probabilistic context, the Gaussian-95

assumption is no longer generally valid. This has several implications for their discretization. For96

non-Gaussian processes, the ξi(ω), i = 1, . . . , nKL represented in Eq. 5 are non-Gaussian too and their97

distribution needs to be solved for explicitly. Furthermore, in this case, the corresponding random98

variables ξi(ω) may exhibit higher order dependencies that are difficult to quantify [10]. Finally, Eq. 599

reveals that the distribution of ξi(ω) depends on sample path realisations x(t, ω) of the stochastic process,100

and hence, iterative methods such as presented by [11] need to be applied. Alternatively, also translation101

theory as introduced by Grigoriu [21] provides a viable approach towards simulating from (strongly)102

non-Gaussian stochastic processes.103

2.2. Translation stochastic processes104

Translation process theory, as introduced by Grigoriu [21], provides a different pathway for the sim-105

ulation of non-Gaussian stochastic processes. Specifically, a Gaussian stochastic process η(t, ω) with106

autocorrelation function ρxx(τ) is transformed using a nonlinear transformation into a non-Gaussian107
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process x(t, ω). This is formally expressed as:108

x(t, ω) = F−1
X ◦ Φ(η(t, ω)) = g(η(t, ω)), (7)

with g := F−1
X ◦Φ the so-called translation mapping, F−1

X the inverse of the target non-Gaussian cumula-109

tive distribution function (CDF) that represents the distribution of the non-Gaussian stochastic process110

and Φ the marginal standard normal CDF, i.e., Φ(η) = P (η(t, ω) < η).111

It can be shown (see [21]) that the mean µx, variance σ2
x and correlation function rxx(τ) of x(t, ω)112

have closed-form expressions, that are given respectively by:113

µx = Eη[x(t, ω)] = Eη[g(η(t, ω))] =

∫ ∞
−∞

g(η)φ(η)dη (8)

114

σ2
x = Eη[x(t, ω)− µx]2 =

∫ ∞
−∞

(g(η)− µx)2φ(η)dη (9)

115

rxx(τ) = E[x(t, ω)−µx]E[x(t+τ, ω)−µx] =

∫ ∞
−∞

∫ ∞
−∞

(g(η1)−µx)(g(η2)−µx)φ(η1, η2, ρxx(τ))dydz (10)

with φ(η1, η2, ρxx(τ)) the density of a bivariate standard Gaussian vector with correlation coefficient116

ρxx(τ), given by:117

φ(η1, η2, ρxx(τ)) =
1√

2π(1− ρxx(τ)2)
exp−η

2
1 + η2

2 − 2η1η2ρxx(τ)

2(1− ρxx(τ))2
(11)

These equations can be readily solved by standard numerical quadrature schemes. Furthermore, it can118

be shown that the forward transformation of a Gaussian process to a non-Gaussian process is always119

possible ([21]).120

On the other hand, given a non-Gaussian rxx(τ), it is not always possible to determine the corre-121

sponding Gaussian autocorrelation ρxx(τ) that, when transformed, yields rxx(τ) [21]. This happens when122

either the inverse of Eq. 10 yields an autocorrelation function that is not positive semi-definite, or when123

the normalized autocorrelation ξ(τ) has values that lie outside of the admissible range [ξmin(τ), ξmax(τ)]124

which can be found by setting ρxx(τ) to respectively 1 and -1 in Eq. 10 [22]. In literature, iterative meth-125

ods have been introduced to find the closest approximation of rxx(τ) that is an admissible autocorrelation126

function (see e.g., [12]).127

3. P-box stochastic processes128

In practical engineering cases, it is not always possible to define a precise distribution function FX(x)129

to construct the non-Gaussian stochastic process. In this context, p-boxes can provide a valuable tool to130
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represent the uncertainty an analysist has on the specification of the appropriate distribution function131

(see [16] for a recent review on computational methods). This section introduces p-box-valued stochastic132

processes.133

As a practical example on how such a P-box can be established in geotechnical analysis, consider134

Figure 1. This figure shows a normal probability plot for the Rock Mass Rating (RMR) values at the135

Izmir subway site (taken from [19]). As may be seen, the 95% probability bounds corresponding to a136

performed normality fit indicate that the estimation of the Normal distribution with these data is the137

most accurate around the mean value, and that the uncertainty of the fit increases towards the tails of the138

distribution. This particular point was also made by Ching et al., who showed that statistical uncertainty139

for random field parameters can be very big due to strong data constraints in geotechnical engineering [20].140

In this case, one might consider to rather make calculations with the bounds provided by the confidence141

interval, and all therein included distributions, rather than with the precise Normal estimate, as it relaxes142

the quite restricting Normality assumption. Indeed, by considering a set of distributions, a more robust143

and natural approach to deal with the existing uncertainties is followed, yielding more objective estimates.144

Similar scarce data examples can be found in multiple engineering applications, ranging from modelling145

wind loads on buildings, predicting earthquakes, or dealing with highly advanced engineered materials146

such as encountered in Additive Manufacturing.147
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Figure 1: Normal probability plot, including the confidence interval bounds for the Rock Mass Rating data, taken from the
Izmir subway site (taken from [19]). The black dashed line indicates the fitted normal distribution, the green dash-dotted
lines indicate the confidence interval on this fit.
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A scalar distribution-free p-box is usually described by a lower CDF FX ∈ F and an upper CDF148

FX ∈ F, where F expresses the the set of all CDFs on R. They are collected as a pair
[
FX , FX

]
which149

yields a set of possible CDFs via FX(x) ≤ FX(x) ≤ FX(x), x ∈ R. A distribution-free p-box as such150

corresponds to defining a lower probability P and upper probability P on events {X ≤ x} = (−∞, x],151

i.e., P (X ≤ x) = FX(x) and P (X ≤ x) = FX(x) for x ∈ R, which define a credal set of probability152

measures. In case additional information on the uncertainty is available, constraints on the p-box can153

be enforced. For instance, if the (class of) distribution functions F is known, the set of possible CDFs154

{FX(·,θ) ∈ F | θ ∈ Dθ} can be defined conditional on a vector of hyper-parameters θ. Since this is a155

special case of the distribution-free p-box, the following discussion on distribution-free p-box stochastic156

is equally applicable. An important side-note should be made with respect to distribution-free p-boxes.157

Due to the relaxed constraints on the set of admissible CDFs, generally, also non-physical distribution158

functions are explicitly modelled in the p-box. It should be noted that developments in this context159

have been made, focusing on imposing some constraints on the realisations within the distribution-free160

p-box [18, 17].161

As explained in Section 2, a (precise) stochastic process x(t, ω) can be considered as a collection162

of nt correlated random variables distributed throughout the model domain Ωd. Imprecise stochastic163

processes x̂(t, ω) can be regarded as a natural extension of this idea, where for each discrete location164

ti ∈ Ωd, a scalar p-box is defined. However, since all x(ti, ω), i = 1, . . . , nt are correlated according to165

ρxx(τ), these scalar p-boxes also are correlated to each other. This observation complicates the analysis166

of distribution-free imprecise stochastic processes significantly, since the direct simulation from a set of167

correlated distribution-free p-boxes is far from trivial from both a theoretical as well as from a numerical168

point of view. Furthermore, since distribution-free p-boxes are considered, also non-Gaussian processes169

are inherently included in the imprecise stochastic description.170

A potential solution to this issue is to start from a precise standard normal Gaussian stochastic process171

η(t, ω) with predefined correlation function ρxx(τ) and pass this representation through an imprecisely172

defined translation map which is defined as:173

x̂(t, ω) =
[
F−1
X , F

−1
X

]
◦ Φ(η(t, ω)), (12)

which can be further expanded as:174

x̂(t, ω) =
[
F−1
X , F

−1
X

]
◦ Φ

(
nKL∑
i=1

√
λiψi(t)ξi(ω)

)
, (13)

where Φ
(∑nKL

i=1

√
λiψi(t)ξi(ω)

)
represents a re-scaling of η(t, ω) to the interval [0, 1]. Since a CDF is175
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by definition a monotonic function, i.e., FX(x1) < FX(x2) ⇐⇒ x1 < x2, the bounds of x̂(t, ω) are176

determined by
[
F−1
X , F

−1
X

]
. It can be noted that the outer part of the interval-valued translation map,177

i.e.,
[
F−1
X , F

−1
X

]
in effect represents the inverse of a distribution-free p-box. As such, the interval-valued178

translation map at first scales η(t, ω) to [0, 1], after which a set-valued transformation is applied to179

transform this stochastic process into an imprecise stochastic process according to the p-box that is180

bounded by
[
F−1
X , F

−1
X

]
.181

In essence, for each x, the p-box
[
FX , FX

]
provides an interval

[
FX(x), FX(x)

]
. Therefore,

[
F−1
X , F

−1
X

]
◦182

Φ analogously represents an interval-valued mapping of each realisation of η(t, ω). As such, each reali-183

sation of the stochastic process η(t, ωj), corresponding to the event ωj is translated towards an interval184

process that is consistent with the bounds on the CDF (due to the monotonicity of the CDF), and which185

is given as:186

xI(t, ωj) =
[
F−1
X , F

−1
X

]
◦ Φ

(
nKL∑
i=1

√
λiψi(t)ξi(ωj)

)
, (14)

with the lower bound given as:187

x(t, ωj) = F
−1
X ◦ Φ

(
nKL∑
i=1

√
λiψi(t)ξi(ωj)

)
, (15)

and the upper bound defined as:188

x(t, ωj) = F−1
X ◦ Φ

(
nKL∑
i=1

√
λiψi(t)ξi(ωj)

)
. (16)

It should be noted that this is not an explicit interval process, i.e., an interval process that is repre-189

sented as a series expansion with interval-valued coefficients as described in [23], since the interval-valued190

nature in this process stems from the mapping that is performed on a single realisation of the precise191

Gaussian process, rather than from a series expansion with interval-valued weights. As such, typically192

applied interval propagation methods, as described in [24], cannot be applied to propagate this interval193

process in a straightforward way. Furthermore, the auto-dependence function of realisations within this194

interval process becomes inter-valued too. Intermediate realisations of xk(t, ωj) ∈ xI(t, ωj) can be gen-195

erated by drawing admissible CDFs (F kX)−1 ∈
[
F−1
X , F

−1
X

]
. For reasons of clarity, the explanation of a196

possible procedure to do so is deferred to a later section. For more information about interval processes197

(and -fields), the reader is referred to the work of [25], [26] or [27], who all defined interval processes198

according to different formalisms.199

Conversely, when collecting all xk(t, ω), that corresponds to a certain realisation of the p-box (F kX)−1 ∈200

[F−1
X , F

−1
X ], this becomes again a precise random process, the properties of which can be computed by201
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virtue of translation process theory as:202

µxk(t,ω) =

∫ ∞
−∞

(F kX)−1 ◦ Φ(η)φ(η)dη (17)

203

σ2
xk(t,ω) =

∫ ∞
−∞

((F kX)−1 ◦ Φ(η)− µxk(t,ω))
2φ(η)dη (18)

204

rxk(τ) =

∫ ∞
−∞

∫ ∞
−∞

((F kX)−1 ◦ Φ(η1)− µxk(t,ω))((F
k
X)−1 ◦ Φ(η2)− µxk(t,ω))φ(η1, η2, ρxx(τ))dη1dη2 (19)

with φ(η1, η2, ρxx(τ)) as defined in Eq. (11). Note that this random process is stationary in case the205

underlying Gaussian process is stationary since it is mapped through a precise (F kX)−1. Evidently every206

(F kX)−1 will yield a random process with generally different central moments for every (F kX)−1 ∈ [F−1
X ,207

F
−1
X ].208

Based on the preceding discussion, it can be seen that an imprecise stochastic process can jointly be209

regarded as a stochastic collection of interval processes as well as as a credal set of stochastic processes.210

Since each stochastic realisation of the imprecise stochastic process is an interval process, and vice versa,211

each realisation within the p-box corresponds to a stochastic process, also the mean of the corresponding212

imprecise process is interval-valued. Due to the monotonicity of the translation map, this mean is formally213

given as:214

µIx = [µ
x
, µx] = [Eω [x(t, ω)] , Eω [x(t, ω)]] . (20)

These bounds can be computed in a straightforward manner by invoking Eq. 17 twice: once on the215

ensemble of lower bounds and once on the ensemble of upper bounds. As an illustration of these concepts,216

consider the example in Figure 2. This figure shows two stochastic realisations of the precise zero-mean217

Gaussian stochastic process, as well as their transformation into two realisations of the distribution-free218

p-box random process, which manifest themselves in the shape of two interval processes. From this figure,219

it can also be seen that the collection of all upper bounds of these interval processes, denoted x(t, ω),220

represent a stochastic process that has FX(x) as a distribution. The same obviously holds for the lower221

bound, as well as any intermediate realisation (F kX)−1 ∈
[
F−1
X , F

−1
X

]
.222

It should further be noted that the auto-correlation function of xI(t, ω), being rxx(τ) also has become223

an interval-valued function that may be modelled as an interval process due to the interval-valued trans-224

lation map. This might have important implications for structural dynamical problems, where the match225

of a dominant frequency of the loading process might interfere with a natural frequency of the structure.226

The detailed treatment of this issue and a potential solution hereto however fall outside the scope of this227

paper.228

As a final comment, Figure 1 hints at a possible, very straighforward, approach to infer the bounds229
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Figure 2: Illustration of the transformation of two stochastic realisations of the precise zero-mean Gaussian stochastic process
into two realisations of the distribution-free p-box random process, which manifest themselves in the shape of two interval
processes.

of the p-box valued translation map based on a small data-set. As is clear in the Figure, the confidence230

bounds in the normality fit of rock data are clearly expanding towards the tails of the distribution. One231

possible approach could be to use those confidence bounds as the bounds of the p-box to ensure robustness232

of the results with respect to the (lack of) confidence in the normal fit. Of course, also more elaborate233

schemes can be imagined, for instance based on Kolmogorov-Smirnov bounds or robust Bayesian analysis.234

This is however left for future work.235

4. Propagation of distribution-free imprecise stochastic processes236

Usually, an analyst who is confronted with imprecise probabilistic model quantities is concerned with237

finding the bounds on some probabilistic measure P of the model’s responses of interest. In case a precise238

density function fX is known, the nnt central moment of the model’s response Ey[Y n] or the probability239

of failure pF is determined by solving an integral equation of the following form:240

P(F kX) =

∫
Rnx

H
(
x
∣∣∣F kX) fkX(x) dx, (21)

where P denotes, depending on the context, the nth central moment of the model’s response Ey[Y n]241

or the probability of failure pF . In case P ≡ Ey[Y n] is considered, H ≡ gn(x), where g(x) represents242

the so-called performance function of the model. On the other hand, in case the calculation is aimed at243

computing pF , H ≡ Ig(x), where Ig is the indicator function which is 1 in case g(x) ≤ 0, x ∈ Rnx , and244

0 otherwise.245
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To infer the bounds on P, two optimization problems need to be solved to actively search the param-246

eter space spanned by [FX(x), FX(x)]. Specifically, the lower bound is obtained as:247

P = min
Fk
X∈[FX(x),FX(x)]

P(F kX), (22)

whereas the upper bound is determined as:248

P = max
Fk
X∈[FX(x),FX(x)]

P(F kX) (23)

Note that each realisation F kX drawn from this interval represents a non-Gaussian random process with249

auto-correlation structure as described in Eq. (10). As such, this is effectively a double-loop approach,250

which might entail a non-negligible computational cost to solve. The main difficulty associated with251

solving these optimization problems lies in the fact that the optimisation has to be performed over the252

infinite-dimensional space of bounded, strictly monotonically increasing functions in the interval [0, 1]253

(i.e., càdlàg functions). Such calculation is intractable, even for the most simple cases. In this paper, it254

is therefore proposed to approximate these optimization problems as discrete problems. Specifically, it is255

aimed at solving following problems:256

P = min
FX∈F I

X

P(F kX) (24)

P = max
FX∈F I

X

P(F kX)

subject to:257

AFX ≤ 0 (25)

where FX = FX(xs), with xs ∈ Rns representing ns equally spaced sample points throughout the258

support of [FX(x), FX(x)]. Similarly, F I
X = [FX(xs), FX(xs)] ∈ IRns represents an ns dimensional259

interval vector collecting the bounds of the p-box for each sample point in the support. The inequality260

shown in Eq. (23) enforces the realisations drawn from the interval vector F I
X to be strict monotonic to261

ensure that they represent admissible CDFs, where A ∈ Rns−1×ns represents an upper-triangular band262

matrix with A1,: = [1 −1 0 . . . 0]. As such, the infinite-dimensional optimisation problem is converted263

to a linear-inequality-constrained optimization problem over ns variables. Finally, it can be noted that264

the translation mapping explained in section 3 requires the calculation of the inverse of the CDF (see265

e.g., Eq. 17). This is for instance required to generate the required sample paths of xk(t, ω) to estimate266
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the performance function g(xk(t, ω)). Hereto, a piece-wise cubic Hermite polynomial interpolation is267

performed using the Fritsch-Carlson algorithm to estimate a functional relationship between xs and FX .268

This approach is selected as this allows for generating a strictly monotonic, C1 continuous interpolation269

of the inverse of FX(xs). For a detailed treatment of this algorithm, the reader is referred to [28].270

5. Case study 1: a quarter car model271

The case study represents a quarter-car model, which is a 2-DOF idealisation of the realistic dynamics272

of the suspension of a car. Specifically, this case study is concerned with assessing the bounds on several273

comfort metrics of a vehicle suspension, given a p-box process-valued base excitation. The quarter-car274

dynamics can be represented as a set of two ordinary differential equations:275

msẍs + cs(ẋs − ẋus) + ks(xs − xus) = 0 (26)

276

musẍus − cs(ẋs − ẋus)− ks(xs − xus) + ct(ẋus − ẋ0) + kt(xus − x0) = 0 (27)

with •̇ the time derivative of •, xus the displacement of the unsprung mass (i.e., the suspension com-277

ponents, wheel and other components directly connected to them), xs the displacement of the sprung278

mass (i.e., all components resting on the suspension), mus and ms the unsprung and sprung mass of a279

quarter of the car, cs and ct respectively the damping coefficients of the suspension and tire, ks and kt280

respectively the stiffness coefficients of the suspension and tire. Finally, x0 and ẋ0 are the displacement281

and velocity in vertical direction that excite the bottom of the wheel (i.e., the road profile). The com-282

plete road profile is denoted x0(t). The dynamics of the car are simulated over a distance of 50 (m),283

when the car is travelling at a speed of 10 (m/s). The one dimensional spatial domain is discretized into284

1000 equidistant points and the time domain is discretized into time intervals of 0.005 (s). A schematic285

representation of the model is given in figure 3.286

Figure 3: Schematic illustration of the quarter-car model
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For the solution of this coupled system of ODEs, a state-space model is employed:287

d

dt


xus − x0

ẋus

xs − xus

ẋs

 = A


xus − x0

ẋus

xs − xus

ẋs

+


−1

4ct
mus

0

0

 ẋ0 (28)

with the matrix A equal to:288

A =


0 1 0 0

−4kt
mus

−4(cs+ct)
mus

4ks
mus

4cs
mus

0 −1 0 1

0 4cs
ms

−4ks
ms

−4cs
ms

 (29)

Four state variables are considered, being respectively the tire deflection (xus − x0); the unsprung289

mass velocity ẋus; the suspension stroke xs− xus, and sprung mass velocity ẋs. Typically, in the context290

of assessing the dynamical comfort of a car, two parameters are of interest: the suspension stroke (i.e.,291

the relative displacement of the car body with respect to the unsprung mass) and the acceleration of the292

sprung mass. In the proceeding study, the damping effect of the tire, ct is considered negligible.293

Table 1: Considered case studies for the distribution free p-box process. B and N represent respectively the Beta and
Normal distribution.

Case FX(x) FX(x) bt
1 min [B(1, 3),B(5, 5)]) max [B(1, 3),B(5, 5)]) 0.5
2 min [B(3, 1),B(5, 5)]) max [B(3, 1),B(5, 5)]) 0.5
3 min [B(1, 1),B(2, 5)]) max [B(1, 1),B(2, 5)]) 0.5
4 min [B(1, 0.2),B(5, 5)]) max [B(1, .02),B(5, 5)]) 0.5
5 min [N (0, 0.75),B(1, 0.2)]) max [N (0, 0.75),B(1, 0.2)]) 2

The complete road profile x0(t) is modelled as a p-box valued stochastic process. The auto-correlation294

of the underlying Gaussian process η(t, ω) is governed by a squared exponential auto-correlation func-295

tion with a correlation length of 0.5 m. Sample path realisations of η(t, ω) are generated using the296

Karhunen–Loève series expansion, while retaining 32 terms. The stochastic content of the imprecise297

stochastic process is represented using via a distribution-free p-box. For illustrative reasons, the bounds298

of the p-box, [FX(x), FX(x)] are generated by taking the extremes of a set of distributions. Hereto, 5299

different case studies are considered, which are summarized in Table 1. The corresponding p-boxes area300

also visualized in figure 4. Each random process corresponding to a realisations of these p-boxes is given301

as:302

xk0(t, ω) = (F kX)−1 ◦ Φ

(
nKL∑
i=1

√
λiψi(t)ξi(ω)

)
(30)
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which are generated by the optimization algorithms introduced in Section 4. Applying the double-loop303

optimization algorithm introduced in Section 4, the bounds on the probability of failure of the structure304

are computed. In this context, the performance function g(x) of the car model is given as:305

g(x,y) = 1− max
i=1,...,m

(
|xs (x, ti)− xus (x, ti) |

d

)
(31)

where the threshold value bt is also given in Table 1. This corresponds to a first passage probability.306

Since the process is non-Gaussian, highly efficient and dedicated sampling methods such as Directional307

Importance Sampling [29], as also applied in the context of imprecise probabilities in [30] or [31], are308

not applicable. Therefore, the integral equation in the inner loop of the optimization is solved using309

Subset-∞, as presented in [32], with an initial sample size of 5000 and a proposal standard deviation of310

0.1. The discretisation of FX(s), as described in Section 4, is performed using ns = 40 slices, yielding a311

40-dimensional optimization problem, which is solved using a gradient-free pattern search optimization312

algorithm. Pattern search is specifically selected to avoid the need to calculate gradients of pF .313

The results of performing the double-loop optimization problem are shown in Table 2. In this table,314

p∗
F

and p∗F indicate the bounds on pF obtained by means of optimization, whereas p
F

and pF are the315

failure probabilities corresponding to the bounds of the p-box. As is clear, the bounds obtained by just316

propagating FX(x) and FX(x) are not conservative. This is a direct result from the fact that the car317

model acts as a filter on the excitation towards the responses of interest.318

Table 2: Bounds on the probability of failure based on propagating the bounds, as well as performing optimization. Herein,
p∗
F

and p∗F indicate the bounds on pF obtained by means of optimization, whereas p
F

and pF are the failure probabilities
corresponding to the bounds of the p-box.

Case p
F

pF p∗
F

p∗F
1 3.25 · 10−4 0.065 2.77 · 10−4 0.385
2 3.25 · 10−4 0.061 9.95 · 10−6 0.378
3 0.0045 0.400 0.0028 0.624
4 0.0038 0.469 3.01 · 10−4 0.571
5 0.0062 0.015 9.43 · 10−6 0.423

A further explanation of these results can be given based on Figure 4. This figure shows clearly319

that the CDF corresponding to the highest probability of failure pushes the probability mass as much320

as possible towards the bounds of the p-box. This makes sense from a physical standpoint since the321

performance function contains an absolute value operation, and hence, positive and negative responses322

contribute both equally to the failure. Furthermore, the considered system is a 2-degree-of-freedom323

oscillator where the quantity of interest is the relative displacement between the two masses. This as324

such constitutes a perfect symmetric system. The CDF that minimizes pF on the other hand aims at325

getting as much of the probability mass as possible towards the centre of the support.326
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Figure 4: P-boxes corresponding to the 5 cases, as well as the realisations F
∗
X and F ∗

X that yield respectively p∗
F

and p∗F .

6. Case study 2: an embankment settlement problem327

6.1. Case introduction328

As a second case study, a 2-dimensional imprecise random field is considered as the source of uncer-329

tainty in an embankment settlement problem. Hereto, a 2D Finite Element model with random Young’s330

modulus is constructed based on the geometrical description illustrated in Figure 5 under a plain strain331

assumption.332

1.6 m4 m 2.9 m

2 m

2.5 m

Figure 5: Schematic illustration of the embankment model

The boundary conditions of the model are that: the bottom-side is considered fully fixed, the left and333

right side of the geometry are free in vertical direction, and the top is free. The embankment settlement334
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is evaluated under self-gravity using an elastic constitutive model, which is represented as:335

εx =
1− ν2

E
(σx −

ν

1− ν
σy), (32)

336

εy =
1− ν2

E
(σy −

ν

1− ν
σx), (33)

where ε and σ indicate respectively the strain and stresses in the model, E is Young’s modulus and ν is337

the Poisson’s ratio, which is set to 0.43. The earth gravity is calculated as:338

σeg = γ − y, (34)

where γ is the volumetric weight, which is 19.62 kg/m3 in this model. y is the depth of the soil. This339

geometry is discretized into 144 quadratic rectangular finite elements with a regular size of 22.22 ×340

53.28 [cm]. The mesh, together with the solution of a deterministic simulation is illustrated in Figure 6.341

This figure in addition shows the magnitude of the displacement field umax. In the ensuing analysis,342

the maximum vertical displacement is utilised to evaluate the embankment settlement and failure is343

considered when this quantity exceeds 24.4 cm.344

2

4

6

Figure 6: Finite element discretization of the geometry, together with the magnitude of the displacement fields

6.2. Imprecise random field modelling345

As mentioned in the previous section, Young’s modulus of the soil is modelled as an imprecise random346

field. The Gaussian random field η(t, ω) that is used as a basis for the analysis is modelled with a sym-347

metric squared exponential kernel with correlation length of 25 [cm]. The resulting correlation function348

is discretized over the midpoints of the elements and the eigenvalues and eigenvectors are calculated with349

an iterative Krylov-Shur procedure. The truncation of the random field is selected such that 99 % of the350

variance is retained.351
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The imprecise random field is specifically defined as:352

E(t, ω) = 1 · 1008 + 1 · 1007 ·
[
F−1
X , F

−1
X

]
◦ Φ(η(t, ω)), (35)

where the lower and upper bound of the CDF are in this case defined as:353

FX = min [N (0, 0.5),N (0, 0.75)] (36)

FX = max [N (0, 0.5),N (0, 0.75)] , (37)

with N (µ, σ) indicating a Normal distribution with mean µ and standard deviation σ. One sample of354

the underlying Gaussian random field η(t, ω), together with one realisation of the p-box random field,355

are shown in Figure 7.356

The inverse of samples that are drawn within this p-box is calculated by fitting a piece-wise cubic357

Hermite polynomial to the realisation via the Fritsch-Carlson algorithm, which are generated by the358

optimization algorithms introduced in Section 4. Applying the double-loop optimization algorithm in-359

troduced in Section 4, the bounds on the probability of failure of the structure are computed, taking360

the failure criterion discussed in the previous subsection into account. Hereto, SubSet-∞ is used in the361

’inner loop’ with an initial sample size of 1000 samples and a proposal standard deviation for each level362

of [0.1, 0.1, 0.2, 0.4, 0.5, . . .]. The discretization of the p-box is performed using ns = 50 slices, yield-363

ing a 50-dimensional optimization problem. This optimization problem is solved using a gradient-free364

patternsearch optimization algorithm.365

Figure 8 illustrates the realisations in the p-box that yield the best- and worst-case response in the366

bank settlement. The corresponding bounds on the probability of failure, consistent with the p-box are367

respectively 5.03 · 10−05 and 2.38 · 10−02. Unsurprisingly, the worst and best case behaviour in of the368

embankment are to be expected at the boundaries of the p-box. This is caused by the linear relation369

between Young’s modulus and the maximum displacement in the embankment.370

7. Conclusions371

This paper discusses the concept of distribution-free p-box stochastic processes and processes. To372

generate realisations of such a process, it is proposed to pass realisations of a standard Gaussian process373

through an imprecisely defined translation map such that the auto-correlation of the original process is374

largely maintained. Furthermore, an optimization approach is introduced to actively look for those real-375

isations inside the p-box that yield a stochastic process that yields an extreme in a probabilistic measure376

of a response of interest. Two case studies are included to illustrate the theoretical and computational377
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Figure 7: Top: Gaussian random field that is mapped through the interval-valued translation map. Bottom: one realisation
of the resulting p-box random field.

Figure 8: Imposed P-box together with the resulting realisations that yield worst and best case behaviour in the embankment.

aspects of the presented approach. The first case study on a quarter car model illustrated that the378

bounds of the P-box in fact do not necessarily coincide with the bounds on the probability of failure,379

which motivates the application of optimization algorithms. The second case study illustrates how the380

framework has to be applied in combination with 2-dimensional random fields in a Geotechnical case381

18



study.382

Future work will focus on propagating the p-box process such that a target auto-correlation of the383

p-box process can be predefined by looking for an appropriate pre-mapped auto-correlation function for384

each realisation F kx in the p-box. Furthermore, the application of more advanced approaches such as385

e.g., based on sparse polynomial chaos expansions as discussed in [33] to propagate the p-box will be386

investigated.387
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