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ABSTRACT
This paper considers the stability problem of neutral systems with interval time-
varying delays and nonlinear disturbances. Firstly, an augmented vector containing
two double integral terms is introduced into the Lyapunov-Krasovskii functional
(LKF). In this case, a binary quadratic function with discrete and neutral delay arises
in the time derivative. To gain the negativity condition of such function, by taking
full advantage of the idea of partial differential of the binary quadratic function
and Taylor’s formula, a relaxed binary quadratic function negative-determination
lemma with two adjustable parameters is proposed, which contains the existing
lemmas as its special cases and shows the great potential of reducing conservatism
for the case where the tangent slope at the endpoint is far from zero. Then, based
on the improved lemma, more relaxing stability criteria have been obtained via an
augmented LKF. Finally, two classic numerical examples are given to attest the
effectiveness and strengths of the obtained stability criteria.

KEYWORDS
Stability, neutral systems, generalized reciprocally convex combination lemma, a
relaxed binary quadratic function negative-determination lemma

1. Introduction

As the widespread phenomenon in practical systems, the time-delay, which inevitably
appears in neural networks, robotic systems, automatic control, power systems and so
on (Lee & Bhattacharya , 2015; Sakthivel et al. , 2015; Shangguan et al. , 2021; Yao
et al. , 2015), has become a significant consideration due to its potentially harmful
impact on stability of system. Therefore, the issue that stability analysis of the systems
with time-delays has increasingly aroused much concern over the past decades (Lee &
Park , 2018; Seuret & Gouaisbaut , 2015; Zhang et al. , 2018b).

Particularly, in some practical control systems, time-delay is not only contained in
the state, but also in its state derivative. These kinds of systems are generally referred
to as neutral systems with time-delay (Park & Won , 2000), which can describe the
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dynamics of things more accurately. What needs to be pointed out is that the stability
problems become more complicated due to the existence of the delayed state derivative.
As a result of their successful applications in all sorts of fields such as models of current
and voltage fluctuations in lossless transmission lines, automatic control, population
dynamics and ecological models (Brayton , 1966; Lu & Ge , 2004; Niculescu , 2001),
the interest has gone up rapidly in the stability of neutral systems with time-delay.

For the purpose of gaining the stability conditions of neutral systems, until now,
the Lyapunov-Krasovskii functional (LKF) method is the most classic way together
with the linear matrix inequality (LMI) technique (Kim , 2011; Lien , 2001). Initially,
for the case where the discrete and neutral delay are constant, some effective meth-
ods have been extended from traditional time-delay system to neutral system with
constant time-delay to study the stability, such as model transformation (Fridman ,
2001; Ivanescu et al. , 2003), the Newton-Leibniz formula along with Park’s inequality
(Li & Liu , 2009), the free-weighting-matrix approach (He et al. , 2004; Qian et al. ,
2010) and so on. Furthermore, several delay-partitioning ideas (Du et al. , 2009; Han
, 2009; Lakshmanan et al. , 2013) are also proposed to construct LKF so as to reduce
conservatism. Note that the Du et al. (2009); Han (2009); He et al. (2004); Ivanescu
et al. (2003); Lakshmanan et al. (2013); Li & Liu (2009); Qian et al. (2010) only
discuss the stability of neutral systems with constant time-delays. It is universally
acknowledged that the time-delay is generally a differentiable function in the practical
systems, called time-varying delay. Moreover, because of model inaccuracy, noise and
environmental changes, nonlinear disturbances for neutral systems are inevitable in
practical dynamic systems (Krishnasamy & Balasubramaniam , 2015; Yang et al. ,
2007). Therefore, the research mentioned above is far from enough. It has an impor-
tant significance to study the stability of neutral systems with time-varying delays and
nonlinear disturbances, which has focused on considerable attention.

In recent years, plentiful stability results on the neutral systems with time-varying
delays and nonlinear disturbances have been reported. In Balasubramaniam et al.
(2012); Wang et al. (2014), by separating the delay interval into several subinter-
vals unevenly and selecting different weight matrices for each subinterval, a delay-
partitioning LKF is constructed to ensure a larger stability region. In Ren et al. (2016),
a second-order reciprocally convex inequality is first introduced to estimate double in-
tegral terms. Furthermore, ground on the interconnected information between discrete
delay and neutral delay, the triple integral terms (Wang et al. , 2017) and the quadru-
ple integral term (Zhang et al. , 2018a) were also introduced into the LKF, which
contribute to further increase the stability regions. It is not difficult to notice that
in Balasubramaniam et al. (2012); Wang et al. (2017); Zhang et al. (2018a), the
lower bound of discrete delay and neutral delay is limited to zero, which may lead to
relatively conservative stability conditions.

As mentioned in Chen & Zhao (2015); Kwon et al. (2014), in dynamic systems,
like networked control systems, time-varying delay may be a variation range whose
lower bound is not limited to zero, which is known as interval time-varying delay. Most
recently, a great attention has been devoted to the stability of the neutral systems with
interval time-varying delays and nonlinear disturbances (Chen et al. , 2020; Cheng et al.
, 2013; Lakshmanan et al. , 2011; Liu , 2016; Mohajerpoor et al. , 2017; Ramakrishnan
& Ray , 2011; Yu & Lien , 2008; Zhang & Yu , 2012). By introducing the central
point of interval time-varying delay and dividing delay interval into two equal length
subintervals, Cheng et al. (2013) proposed a piecewise delay method to obtain some
stability conditions. In Liu (2016), the delay interval is segmented into two subintervals
with an unequal length, and the robust stability conditions of the uncertain neutral
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system with interval time-varying delays were acquired. However, it is obvious that
the computational complexity increase as the number of segments increases.

In order to take system information and time-varying delay information into ac-
count enough, and reduce computational complexity, some augmented LKFs have been
brought up successively, which have flexibility and extensibility. In Lakshmanan et al.
(2011); Mohajerpoor et al. (2017), an augmented LKF containing triple integral terms
was proposed, combined Wirtinger-based single and double integral inequalities with
reciprocally convex approach, new stability criteria in terms of LMIs were presented.
Further, by taking full account of the state time-varying delay, neutral time-varying
delay and the relationship between upper and lower bounds, a novel augmented LKF
was raised in Chen et al. (2020). The integral terms were dealt with by using the
integral intervals decomposition method and some integral inequalities (Chen et al. ,
2017), which give rise to the advent of two nonlinear time-varying delay square terms
in its time derivative. When this occurs, the determination of negative-definite con-
ditions of such binary quadratic function is a crucial step to obtain stability criteria
expressed as LMIs.

For the sake of obtaining strict LMI-based conditions, a few jobs on the negative-
determination of the binary quadratic functions have so far been achieved. In Chen
et al. (2021), a new nonlinear optimization technology was adopted to linearize the
nonlinear time-varying delay square terms when its quadratic coefficients are negative.
In Liu et al. (2021), by taking full advantage of the property of partial differential, the
convexity/concavity and the tangents’ slope characteristic, a binary quadratic function
negative-determination lemma is developed, which can be put into use to the case
where the plus-minus sign of the quadratic coefficients are misty. Notice that the lower
bound of time-varying delay variables are fixed at zero in the negative-determination
lemmas of Chen et al. (2021) and Liu et al. (2021), which makes it infeasible for
the case of interval time-varying delay. For this purpose, a new quadratic inequality
technology (Chen et al. , 2020) was presented to handle the nonlinear interval time-
varying delay square terms. However, the methods mentioned above only consider the
slope characteristic of tangent lines at the endpoints of time-varying delay variables,
which make it conservative in a large part when the slope of the endpoint tangent line
is far from zero.

As a matter of fact, up till now, numerous studies have been done on the negative-
determination of the quadratic function with a time-varying delay. The quadratic
function is the result of introducing double integral term into augmented vector. In
Kim (2016); Long et al. (2020a, 2021), some simple quadratic function negative-
determination lemmas were developed by using the convex/concave property. Sub-
sequently, Zeng et al. (2020) proposed a hierarchical negative-determination lemma
by considering the idea of delay-partitioning, in which each subinterval of a curve
is constrained by two tangent lines. Further, in order to reduce conservatism, a
parameter-adjustable-based negative-determination lemma was put forward in Zhang
et al. (2020). Besides, an improved negative-definiteness determination method (Long
et al. , 2020b) is brought up by using Taylor’s formula and the interval-decomposition
technique. Obviously, in the methods (Long et al. , 2020b; Zeng et al. , 2020; Zhang
et al. , 2020), not only the slope characteristic of the endpoint tangent lines are con-
sidered, but also even more. It can be seen that, due to the introduction of some
adjustable parameters, the methods (Long et al. , 2020b; Zeng et al. , 2020; Zhang
et al. , 2020) work well for the case where the tangent slope at the endpoints is
much greater than zero. With the development of various quadratic function negative-
determination lemmas, the research on the stability of time-varying delay systems has
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made significant breakthroughs. These ideas offer the motivation that how to improve
the negative-determination method of the binary quadratic function.

To conclude, from the above discussions, it is shown that the current methods
(Chen et al. , 2021, 2020; Liu et al. , 2021) are still conservative in different degrees
and may be improved, so that a further study of the negative-determination method of
binary quadratic function is extremely essential. In addition, the current results mostly
employed the free-weighting-matrix approach, Wirtinger-based integral inequalities
and reciprocally convex approach to bound the LKF’s derivative, which are relatively
conservative to a certain degree. This drives the current study.

Inspired by the above-mentioned ideas, this paper focuses on improving the
negative-determination method of binary quadratic functions that appears in the
time derivative. In order to reduce conservatism, a relaxed binary quadratic func-
tion negative-determination lemma with two adjustable parameters is first presented
by giving enough thought to the partial differential property of the binary quadratic
function and Taylor’s formula, which shows its advantages when the tangent slope at
the endpoint is much bigger than zero. Moreover, by taking more augmented terms
into consideration, which involve two double integral terms of discrete delay and neu-
tral delay state vectors, a novel augmented LKF is constructed. Then, by employing
the presented negative-determination lemma, single/multiple integral inequalities and
generalized reciprocally convex combination lemma, two stability criteria with strict
LMIs are derived. Finally, two representative examples verified the availability of the
proposed methods and demonstrated their superiority compared with previous results.

Notations: Throughout this paper,Rn shows the n-dimensional Euclidean space; the
identity (zero) matrix is represented by I (0); the symbol ∗ stands for the symmetric
block in a matrix; Y > 0 refers to a positive-definite matrix; Sym{Y } = Y + Y T ;
col{y1, y2, . . . , yn} = [yT1 , y

T
2 , . . . , y

T
n ]

T ; and the diag{· · · } denotes a block-diagonal
matrix.

2. Problem formulation and preliminary

Consider the following neutral systems with nonlinear disturbances: ẋ(t)− Cẋ(t− τ(t)) = Ax(t) +Bx(t− h(t)) + g1(x(t), t)
+g2(x(t− h(t)), t) + g3(ẋ(t− τ(t)), t)

x(t) = ϕ(t), ẋ(t) = φ(t), ∀t ∈ [−max{h2, τ2}, 0]
(1)

where x(t) ∈ Rn is the state vector; A,B,C ∈ Rn×n are known constant matrices
with appropriate dimensions; ϕ(t) and φ(t) express the initial conditions; h(t) and
τ(t) represent the discrete and neutral delays in the state, respectively. And they
satisfy the following conditions

0 ≤ h1 ≤ h(t) ≤ h2, |ḣ(t)| ≤ µ1.
0 ≤ τ1 ≤ τ(t) ≤ τ2, |τ̇(t)| ≤ µ2.

(2)

where hi, τi and µi, i = 1, 2 are constants. Let h21 = h2 − h1 and τ21 = τ2 − τ1.
The functions gi(·, t) ∈ Rn, i = 1, 2, 3, are unknown nonlinear disturbances satisfying
gi(0, t) = 0 that are continuous in t and locally Lipschitz in their first argument, and

4



are assumed to satisfy the following conditions for any given scalars γi ≥ 0, i = 1, 2, 3,

gT1 (x(t), t)g1(x(t), t) ≤ γ21x
T (t)x(t),

gT2 (x(t− h(t)), t)g2(x(t− h(t)), t) ≤ γ22x
T (t− h(t))x(t− h(t)),

gT3 (ẋ(t− τ(t)), t)g3(ẋ(t− τ(t)), t) ≤ γ23 ẋ
T (t− τ(t))ẋ(t− τ(t)). (3)

The following lemmas are employed to estimate the quadratic integral terms in the
derivative of LKF, as shown below respectively.

Lemma 2.1. (Chen et al. , 2017) Let x be a differentiable signal in [α, β] → Rn, for
a symmetric matrix R ∈ Rn×n, and any matrices F11, F12, F13 ∈ R4n×n, then the
following inequalities hold:

−
∫ β

α
xT (s)Rx(s)ds ≤ ϖT (α, β)Υ1ϖ(α, β) (4)

−
∫ β

α
ẋT (s)Rẋ(s)ds ≤ ϖT (α, β)Υ2ϖ(α, β) (5)

−
∫ β

α

∫ β

θ
ẋT (s)Rẋ(s)dsdθ ≤ ϖT (α, β)Υ3ϖ(α, β) (6)

where

Υ1=−(β − α)(ΘT
11RΘ11 + 3ΘT

12RΘ12 + 5ΘT
13RΘ13)

Υ2=(β − α)ϵT1 (F11R
−1F T

11 +
1

3
F12R

−1F T
12 +

1

5
F13R

−1F T
13)ϵ1

+ Sym
{
ϵT1 F11Θ21 + ϵT1 F12Θ22 + ϵT1 F13Θ23

}
Υ3=−2ΘT

31RΘ31 − 16ΘT
32RΘ32 − 54ΘT

33RΘ33

ϖ(α, β)=

[
xT (β) xT (α)

1

β−α

∫ β

α
xT (s)ds

1

(β−α)2

∫ β

α

∫ β

θ
xT (s)dsdθ

1

(β−α)3

∫ β

α

∫ β

θ

∫ β

u
xT (s)dsdudθ

]T
Θ11 = λ3, Θ12 = λ3 − 2λ4, Θ13 = λ3 − 6λ4 + 12λ5,

Θ21 = λ1 − λ2, Θ22 = λ1 + λ2 − 2λ3, Θ23 = λ1 − λ2 + 6λ3 − 12λ4,

Θ31 = λ1 − λ3, Θ32 =
1

2
λ1 + λ3 − 3λ4, Θ33 =

1

3
λ1 − λ3 + 8λ4 − 20λ5,

ϵ1=[λ1 λ2 λ3 λ4]
T , λj=[0n×(j−1)n In 0n×(5−j)n]

T , j = 1, 2, · · · , 5.

Lemma 2.2. (Park et al. , 2015) Let x be a continuously differentiable signal in
[α, β] → Rn, for a symmetric matrix R ∈ Rn×n > 0, the following inequality holds:∫ β

α
ẋT (s)Rẋ(s)ds ≥ 1

β−α
χ̃T
1 Rχ̃1+

3

β−α
χ̃T
2 Rχ̃2+

5

β−α
χ̃T
3 Rχ̃3 (7)

where

χ̃1 = x(β)−x(α), χ̃2=x(β)+x(α)− 2

β−α

∫ β

α
x(s)ds
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χ̃3 = x(β)−x(α)+
6

β−α

∫ β

α
x(s)ds− 12

(β−α)2

∫ β

α

∫ β

θ
x(s)dsdθ

Lemma 2.3. (Seuret et al. , 2018) For a real scalar α ∈ (0, 1), the symmetric matrix
R ∈ Rn×n > 0 and any matrices with suitable dimensions S1, S2 and E, the following
inequality holds:

ET

[
1
αR 0
0 1

1−αR

]
E ≥ ET

[
(2−α)R 0

0 (1+α)R

]
E + Sym

{
ET

[
(1− α)ST

1

αST
2

]}
−αS1R

−1ST
1 − (1− α)S2R

−1ST
2 (8)

The following Lemma 2.4 is an improved result to ensure the negativity of binary
quadratic functions, which is indispensable to obtain next main results.

Lemma 2.4. Consider a binary quadratic function f(h(t), τ(t)) = a6h
2(t) + a5h(t) +

a4τ
2(t) + a3τ(t) + a2h(t)τ(t) + a1, where ai ∈ R, i = 1, 2, · · · , 6, h(t) ∈ [h1, h2]

and τ(t) ∈ [τ1, τ2]. For a6a4 ≥ 0, f(h(t), τ(t)) < 0 holds for ∀h(t) ∈ [h1, h2] and
∀τ(t) ∈ [τ1, τ2] if the following conditions hold for any given α, β within [0, 1]:

C1a : f(h1, τ1) < 0 C1b : f(h1, τ2) < 0

C1c : f(h2, τ1) < 0 C1d : f(h2, τ2) < 0 (9)

C2a : −α2(h2−h1)
2a6 − β2(τ2−τ1)

2a4 + f(h1, τ1) < 0

C2b : −α2(h2−h1)
2a6 − (1−β)2(τ2−τ1)

2a4 + f(h1, τ2) < 0

C2c : −(1−α)2(h2−h1)
2a6 − β2(τ2−τ1)

2a4 + f(h2, τ1) < 0

C2d : −(1−α)2(h2−h1)
2a6 − (1−β)2(τ2−τ1)

2a4 + f(h2, τ2) < 0 (10)

Proof. Firstly, when a6 > 0, a4 ≥ 0, f(h(t), τ(t)) is a convex function. Consequently,
on the basis of convex polyhedron method, if conditions C1a, C1b, C1c and C1d hold,
then f(h(t), τ(t)) < 0 for ∀h(t) ∈ [h1, h2], ∀τ(t) ∈ [τ1, τ2] is guaranteed.

Secondly, in the case of a6 ≤ 0, a4 < 0, based on the partial differential property,
h(t) is considered as the function variable firstly, and τ(t) is perceived as the constant.
For a6 ≤ 0, f(h(t), τ(t)) is concave. Then, it is expanded to its Taylor’s series at
h(t) = h0 as

f(h(t), τ(t))

=
f(h0, τ(t))

0!
+

f ′(h0, τ(t))

1!
(h(t)− h0) +

f ′′(h0, τ(t))

2!
(h(t)− h0)

2

.
= (2a6h0 + a5 + a2τ(t))h(t)− a6(h0)

2 + a4τ
2(t) + a3τ(t) + a1

+a6(h(t)− h0)
2, (11)

where h0 = (1− α)h1 + αh2, α ∈ [0, 1]. By relaxing the square term in equality (11),
a6(h(t)− h0)

2, the following holds:

f(h(t), τ(t)) ≤ (2a6h0 + a5 + a2τ(t))h(t)− a6(h0)
2 + a4τ

2(t) + a3τ(t) + a1

:= g1(h(t), τ(t)), (12)

Since g1(h(t), τ(t)) is a first-degree polynomial function. Thereupon, f(h(t), τ(t)) < 0,
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∀h(t) ∈ [h1, h2], holds if

g1(h1, τ(t)) = −α2(h2 − h1)
2a6 + f(h1, τ(t)) < 0, (13)

g1(h2, τ(t)) = −(1− α)2(h2 − h1)
2a6 + f(h2, τ(t)) < 0. (14)

Later on, on top of that the τ(t) is taken as a variable of the functions g1(h1, τ(t))
and g1(h2, τ(t)). Similarly, they are expanded to their Taylor’s series at τ(t) = τ0,
respectively, where τ0 = (1−β)τ1+βτ2, β ∈ [0, 1]. Then, under a4 < 0, inequality (13)
leads to conditions C2a and C2b, and inequality (14) leads to conditions C2c and C2d.
Thus, if conditions C2a, C2b, C2c and C2d hold, then f(h(t), τ(t)) < 0 is guaranteed.

Finally, for a6a4 ≥ 0, if the plus-minus sign of a6 and a4 are unknown, then the
above-mentioned both cases should be combined. Therefore, f(h(t), τ(t)) < 0 is guar-
anteed, under a6a4 ≥ 0, if conditions (9) and (10) hold. The proof is completed.

Remark 1. If only conditions C2a, C2b, C2c and C2d are introduced, and set α = 1,
β = 1, then Lemma 2.4 reduces to Lemma 3 of Chen et al. (2020). Besides, if h1 =
τ1 = 0 is added, Lemma 2.4 is equivalent to Lemma 3 of Chen et al. (2021). Moreover,
by taking h1 = τ1 = 0, α = 1, β = 1 or α = 0, β = 0, then Lemma 2.4 becomes Lemma
4 of Liu et al. (2021). Thus, the Lemmas of Chen et al. (2021, 2020); Liu et al. (2021)
can be viewed as special cases of Lemma 2.4. Obviously, the methods mentioned above
only consider the slope characteristic of tangent lines at the endpoints, which make it
conservative when the slope of the endpoint tangent line is far from zero. In Lemma
2.4, the introduction of two adjustable parameters α and β can provide more freedom
to linearize f(h(t), τ(t)) and make the reduction of conservatism promising.

Remark 2. On the strength of the idea of partial differential and Taylor’s formula,
two adjustable parameters α and β are introduced to decrease the conservatism. The
proof of the lemma 2.4 shows that these terms, −α2(h2−h1)

2a6, −(1−α)2(h2−h1)
2a6,

−β2(τ2 − τ1)
2a4 and −(1 − β)2(τ2 − τ1)

2a4, are non-negative in the case of a6 ≤ 0,
a4 < 0, and that they are additionally added to conditions C2a, C2b, C2c and C2d. The
aim was to give more freedom and weaken the influence of the non-negative terms in
order to reduce the conservatism. With α and β changing within [0, 1], the sizes of the
non-negative terms vary. Therefore, choosing suitable values of α and β within [0, 1]
can further reduce the conservatism.

3. Main results

For the sake of simplicity, several related notations are denoted:

h1t = h(t)− h1, h2t = h2 − h(t), τ1t = τ(t)− τ1, τ2t = τ2 − τ(t),

u(a, b, t) =

∫ t−b

t−a

x(s)

a− b
ds, v(a, b, t) =

∫ t−b

t−a

∫ t−b

θ

x(s)

(a− b)2
dsdθ,

w(a, b, t) =

∫ t−b

t−a

∫ t−b

θ

∫ t−b

u

x(s)

(a− b)3
dsdudθ,

χ̄0(a, b, t) = col
{
u(a, b, t), v(a, b, t)

}
, χ(a, b, t) = col

{
χ̄0(a, b, t), w(a, b, t)

}
,
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ξ(t) =
[
ξ1(t), ξ2(t), ξ3(t), ξ4(t), ξ5(t)

]T
,

ξ1(t) = col
{
x(t), x(t−h1), x(t−h(t)), x(t−h2), x(t−τ1), x(t−τ(t)), x(t−τ2)

}
,

ξ2(t) = col
{
ẋ(t−τ1), ẋ(t−τ(t)), ẋ(t−τ2), ẋ(t−h1)

}
,

ξ3(t) = col
{
χ(h1, 0, t), χ(h(t), h1, t), χ(h2, h(t), t), χ(τ1, 0, t), χ(τ(t), τ1, t), χ(τ2, τ(t), t)

}
,

ξ4(t) = col
{
χ̄0(τ(t), 0, t), h22v(h2, 0, t), τ22 v(τ2, 0, t)

}
,

ξ5(t) = col
{
g1(x(t), t), g2(x(t− h(t)), t), g3(ẋ(t− τ(t)), t), ẋ(t−h2), ẋ(t−h(t))

}
,

ei = [0n×(i−1)n In 0n×(38−i)n]
T , i = 1, 2, · · · , 38. (15)

Base on Lemma 2.4, the following main result of the stability of neutral system (1)
with nonlinear disturbances is stated.

Theorem 3.1. For given scalars 0 ≤ h1 < h2, 0 ≤ τ1 < τ2, µ1, µ2, γi, (i = 1, 2, 3),
and α, β ∈ [0, 1], under the nonlinear disturbances fulfilling conditions (3), the neutral
system (1) with any discrete and neutral delays satisfying (2) is asymptotically stable
if there exist positive definite matrices P0 ∈ R12n×12n, Pi ∈ R2n×2n, (i = 1,. . ., 4),
Qi ∈ R2n×2n, (i = 1,. . ., 6), R1 ∈ R2n×2n, Ri ∈ Rn×n, (i = 2,. . ., 6), Zi ∈ Rn×n, (i
= 1,. . ., 4), any matrices Si ∈ R38n×3n, (i = 1,. . ., 4), Fij ∈ R4n×n, (i = 1, 2, 3, j =
1, 2, 3), L1, L2 ∈ R6n×n, and real scalars ρi ≥ 0, (i = 1, 2, 3), such that the following
LMIs are satisfied:[

Ξ(h1, τ1) Γ11

∗ ∆1

]
< 0,

[
Ξ(h1, τ2) Γ12

∗ ∆1

]
< 0,[

Ξ(h2, τ1) Γ13

∗ ∆1

]
< 0,

[
Ξ(h2, τ2) Γ14

∗ ∆1

]
< 0, (16)[

Ξ(h1, τ1)− α2h221Ψh − β2τ221Ψτ Γ21

∗ ∆2

]
< 0,[

Ξ(h1, τ2)− α2h221Ψh − (1−β)2τ221Ψτ Γ22

∗ ∆2

]
< 0,[

Ξ(h2, τ1)− (1−α)2h221Ψh − β2τ221Ψτ Γ23

∗ ∆2

]
< 0,[

Ξ(h2, τ2)− (1−α)2h221Ψh − (1−β)2τ221Ψτ Γ24

∗ ∆2

]
< 0. (17)

where

Ξ(h(t), τ(t)) =

6∑
i=1

Ξi,

Ξ1 = Sym
{
ΠT

1 P0Π2

}
,

Ξ2 = µ1

(
ΠT

3aP1Π3a −ΠT
3aP2Π3a

)
+ µ2

(
ΠT

3cP3Π3c −ΠT
3cP4Π3c

)
+ Sym

{
h(t)ΠT

3aP1Π3b + h2tΠ
T
3aP2Π3b + τ(t)ΠT

3cP3Π3d + τ2tΠ
T
3cP4Π3d

}
,

Ξ3 = ΠT
3 (Q1 +Q3 +Q4 +Q6)Π3 +ΠT

3e(Q2 −Q1)Π3e −ΠT
3fQ2Π3f

− (1−µ1)Π
T
3gQ3Π3g +ΠT

4 (Q5 −Q4)Π4 −ΠT
5 Q5Π5 − (1−µ2)Π

T
6 Q6Π6,

8



Ξ4 = h21Π
T
3 R1Π3 + h221e

T
1 R2e1 + eTs (h

2
21R3 + τ21R4 + τ221R5 + τ(t)R6 +

h21
2
Z1 +

τ21
2
Z3)es

+
h221
2

eT11Z2e11 +
τ221
2
eT8 Z4e8 − h21h1t(H

T
21R2H21 + 3HT

22R2H22 + 5HT
23R2H23)

− h21h2t(H
T
31R2H31 + 3HT

32R2H32 + 5HT
33R2H33)

− (HT
11R1H11 + 3HT

12R1H12 + 5HT
13R1H13)− (HT

41R4H41 + 3HT
42R4H42 + 5HT

43R4H43)

− 2ΠT
21Z1Π21 − 16ΠT

22Z1Π22 − 54ΠT
23Z1Π23 − 2ΠT

31Z3Π31 − 16ΠT
32Z3Π32 − 54ΠT

33Z3Π33

− 2ΠT
41Z2Π41 − 16ΠT

42Z2Π42 − 54ΠT
43Z2Π43 − 2ΠT

51Z2Π51 − 16ΠT
52Z2Π52 − 54ΠT

53Z2Π53

− 2ΠT
61Z4Π61 − 16ΠT

62Z4Π62 − 54ΠT
63Z4Π63 − 2ΠT

71Z4Π71 − 16ΠT
72Z4Π72 − 54ΠT

73Z4Π73

+ (1−µ2)Sym
{
ΠT

11F11H51 +ΠT
11F12H52 +ΠT

11F13H53

}
+ h2tSym

{
ΠT

12F21H61 +ΠT
12F22H62 +ΠT

12F23H63

}
+ τ2tSym

{
ΠT

13F31H71 +ΠT
13F32H72 +ΠT

13F33H73

}
+Ω,

Ξ5 = Sym
{
N1L1

(
h21e13 + h21te16 + h22te19 + h2th1te15 + h21h1e12 − e32

)}
+ Sym

{
N2L2

(
τ21 e22 + τ21te25 + τ22te28 + τ2tτ1te24 + τ21τ1e21 − e33

)}
,

Ξ6 = ρ1
(
γ21e

T
1 e1 − eT34e34

)
+ ρ2

(
γ22e

T
3 e3 − eT35e35

)
+ ρ3

(
γ23e

T
9 e9 − eT36e36

)
,

Ψh = Sym
{
ΥT

ha
P0Υhb

+N1L1(e16 + e19 − e15)
}
,

Ψτ = Sym
{
ΥT

τaP0Υτb +N2L2(e25 + e28 − e24)
}
,

Ψh0
= −ΠT

12(F21Z
−1
2 F T

21 +
1

3
F22Z

−1
2 F T

22 +
1

5
F23Z

−1
2 F T

23)Π12,

Ψτ0 = −ΠT
13(F31Z

−1
4 F T

31 +
1

3
F32Z

−1
4 F T

32 +
1

5
F33Z

−1
4 F T

33)Π13,

Υha
= col

0, . . . , 0︸ ︷︷ ︸
10

, e18 − e15, 0

 , Υhb
= col

0, . . . , 0︸ ︷︷ ︸
7

, e15 − e18, 0, . . . , 0︸ ︷︷ ︸
4

 ,

Υτa = col

0, . . . , 0︸ ︷︷ ︸
11

, e27 − e24

 , Υτb = col

0, . . . , 0︸ ︷︷ ︸
9

, e24 − e27, 0, 0

 ,

Ω = −
[
Π7

Π8

]T  (
2− h1t

h21

)
R̃3 0

0
(
1+ h1t

h21

)
R̃3

[
Π7

Π8

]
− Sym

{[
Π7

Π8

]T [
h2t

h21
ST
1

h1t

h21
ST
2

]}

−
[

Π9

Π10

]T  (
2− τ1t

τ21

)
R̃5 0

0
(
1+ τ1t

τ21

)
R̃5

[
Π9

Π10

]
− Sym

{[
Π9

Π10

]T [ τ2t
τ21

ST
3

τ1t
τ21

ST
4

]}
,

N1 = col {e13, e16, e19, e18, e15, e32} , N2 = col {e22, e25, e28, e27, e24, e33} ,
Γ11 = [S2, S4, Γa] , Γ12 = [S2, S3, Γb] , Γ13 = [S1, S4, Γa] , Γ14 = [S1, S3, Γb] ,

Γ21 = [Γ11, Γc1, Γc3] , Γ22 = [Γ12, Γc1, Γc4] , Γ23 = [Γ13, Γc2, Γc3] , Γ24 = [Γ14, Γc2, Γc4] ,

Γa =
[
ε1Π

T
11F11, ε1Π

T
11F12, ε1Π

T
11F13

]
, Γb =

[
ε2Π

T
11F11, ε2Π

T
11F12, ε2Π

T
11F13

]
,

Γc1 =
[
αh21Π

T
12F21, αh21Π

T
12F22, αh21Π

T
12F23

]
, Γc3 =

[
βτ21Π

T
13F31, βτ21Π

T
13F32, βτ21Π

T
13F33

]
,

Γc2 =
[
(1−α)h21Π

T
12F21, (1−α)h21Π

T
12F22, (1−α)h21Π

T
12F23

]
,

Γc4 =
[
(1−β)τ21Π

T
13F31, (1−β)τ21Π

T
13F32, (1−β)τ21Π

T
13F33

]
,
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∆1 = diag{−R̃3,−R̃5,−R6,−3R6,−5R6},
∆2 = diag{−R̃3,−R̃5,−R6,−3R6,−5R6,−Z2,−3Z2,−5Z2,−Z4,−3Z4,−5Z4},
R̃3 = diag{R3, 3R3, 5R3}, R̃5 = diag{R5, 3R5, 5R5},

es = Ae1 +Be3 + Ce9 + e34 + e35 + e36, ε1 =
√

(1−µ2)τ1, ε2 =
√

(1−µ2)τ2,

Π1 = col {es, e11, e37, e8, e10, es − (1−µ2)e9, e1 − e2, e2 − e4, e1 − e5, e5 − e7, Eh1
, Eτ1} ,

Π2 = col {e1, e2, e4, e5, e7, e1 − e6, h1e12, Eh2
, τ1e21, Eτ2 , e32, e33} ,

Eh1
= h2e1 − h1e12 − h1te15 − h2te18, Eh2

= h1te15 + h2te18,

Eτ1 = τ2e1 − τ1e21 − τ1te24 − τ2te27, Eτ2 = τ1te24 + τ2te27,

Π3 = col {e1, es} , Π7 = col {e2 − e3, e2 + e3 − 2e15, e2 − e3 + 6e15 − 12e16} ,
Π4 = col {e5, e8} , Π8 = col {e3 − e4, e3 + e4 − 2e18, e3 − e4 + 6e18 − 12e19} ,
Π5 = col {e7, e10} , Π9 = col {e5 − e6, e5 + e6 − 2e24, e5 − e6 + 6e24 − 12e25} ,
Π6 = col {e6, e9} , Π10 = col {e6 − e7, e6 + e7 − 2e27, e6 − e7 + 6e27 − 12e28} ,
Π11 = col {e1, e6, e30, e31} , Π12 = col {e2, e3, e15, e16} , Π13 = col {e5, e6, e24, e25} ,
Π3a = col {e1, e3} , Π3b = col {es, (1−µ1)e38} , Π3c = col {e1, e6} ,
Π3d = col {es, (1−µ2)e9} , Π3e = col {e2, e11} , Π3f = col {e4, e37} ,
Π3g = col {e3, e38} , H13 = col {h1(e12 − 6e13 + 12e14), e1 − e2 + 6e12 − 12e13} ,
H11 = col {h1e12, e1 − e2} , H12 = col {h1(e12 − 2e13), e1 + e2 − 2e12} ,
H21 = e15, H22 = e15 − 2e16, H23 = e15 − 6e16 + 12e17,

H31 = e18, H32 = e18 − 2e19, H33 = e18 − 6e19 + 12e20,

H41 = e1 − e5, H42 = e1 + e5 − 2e21, H43 = e1 − e5 + 6e21 − 12e22,

H51 = e1 − e6, H52 = e1 + e6 − 2e30, H53 = e1 − e6 + 6e30 − 12e31,

H61 = e2 − e3, H62 = e2 + e3 − 2e15, H63 = e2 − e3 + 6e15 − 12e16,

H71 = e5 − e6, H72 = e5 + e6 − 2e24, H73 = e5 − e6 + 6e24 − 12e25,

Π21 = e1 − e12, Π22 =
1

2
e1 + e12 − 3e13, Π23 =

1

3
e1 − e12 + 8e13 − 20e14,

Π31 = e1 − e21, Π32 =
1

2
e1 + e21 − 3e22, Π33 =

1

3
e1 − e21 + 8e22 − 20e23,

Π41 = e2 − e15, Π42 =
1

2
e2 + e15 − 3e16, Π43 =

1

3
e2 − e15 + 8e16 − 20e17,

Π51 = e3 − e18, Π52 =
1

2
e3 + e18 − 3e19, Π53 =

1

3
e3 − e18 + 8e19 − 20e20,

Π61 = e5 − e24, Π62 =
1

2
e5 + e24 − 3e25, Π63 =

1

3
e5 − e24 + 8e25 − 20e26,

Π71 = e6 − e27, Π72 =
1

2
e6 + e27 − 3e28, Π73 =

1

3
e6 − e27 + 8e28 − 20e29. (18)

Proof. Consider the following LKF:

V (xt) =

5∑
i=1

Vi(xt) (19)
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where

V1(xt) = χT
0 P0χ0(t)

V2(xt) = h(t)χT
1 (t)P1χ1(t) + h2tχ

T
1 (t)P2χ1(t)

+τ(t)χT
2 (t)P3χ2(t) + τ2tχ

T
2 (t)P4χ2(t)

V3(xt) =

∫ t

t−h1

ηT (s)Q1η(s)ds+

∫ t−h1

t−h2

ηT (s)Q2η(s)ds+

∫ t

t−h(t)
ηT (s)Q3η(s)ds

+

∫ t

t−τ1

ηT (s)Q4η(s)ds+

∫ t−τ1

t−τ2

ηT (s)Q5η(s)ds+

∫ t

t−τ(t)
ηT (s)Q6η(s)ds

V4(xt) = h1

∫ 0

−h1

∫ t

t+θ
ηT (s)R1η(s)dsdθ + h21

∫ −h1

−h2

∫ t

t+θ
xT (s)R2x(s)dsdθ

+h21

∫ −h1

−h2

∫ t

t+θ
ẋT (s)R3ẋ(s)dsdθ + τ1

∫ 0

−τ1

∫ t

t+θ
ẋT (s)R4ẋ(s)dsdθ

+τ21

∫ −τ1

−τ2

∫ t

t+θ
ẋT (s)R5ẋ(s)dsdθ +

∫ 0

−τ(t)

∫ t

t+θ
ẋT (s)R6ẋ(s)dsdθ

V5(xt) =

∫ t

t−h1

∫ t

θ

∫ t

u
ẋT (s)Z1ẋ(s)dsdudθ +

∫ t−h1

t−h2

∫ t−h1

θ

∫ t−h1

u
ẋT (s)Z2ẋ(s)dsdudθ

+

∫ t

t−τ1

∫ t

θ

∫ t

u
ẋT (s)Z3ẋ(s)dsdudθ +

∫ t−τ1

t−τ2

∫ t−τ1

θ

∫ t−τ1

u
ẋT (s)Z4ẋ(s)dsdudθ

with

χ0(t) = col

{
x(t), x(t− h1), x(t− h2), x(t− τ1), x(t− τ2),

∫ t

t−τ(t)
ẋ(s)ds,

∫ t

t−h1

x(s)ds,∫ t−h1

t−h2

x(s)ds,

∫ t

t−τ1

x(s)ds,

∫ t−τ1

t−τ2

x(s)ds,

∫ t

t−h2

∫ t

θ
x(s)dsdθ,

∫ t

t−τ2

∫ t

θ
x(s)dsdθ

}
,

χ1(t) = col {x(t), x(t−h(t))} , χ2(t) = col {x(t), x(t−τ(t))} , η(t) = col {x(t), ẋ(t)} ,

Taking the derivative of V1(xt), V2(xt) and V3(xt), we respectively acquire

V̇1(xt) = 2χT
0 (t)P0χ̇0(t) = ξT (t)Ξ1ξ(t) (20)

V̇2(xt) = ḣ(t)χT
1 (t)P1χ1(t) + 2h(t)χT

1 (t)P1χ̇1(t)− ḣ(t)χT
1 (t)P2χ1(t)

+2h2tχ
T
1 (t)P2χ̇1(t) + τ̇(t)χT

2 (t)P3χ2(t) + 2τ(t)χT
2 (t)P3χ̇2(t)

−τ̇(t)χT
2 (t)P4χ2(t) + 2τ2tχ

T
2 (t)P4χ̇2(t)

≤ ξT (t)Ξ2ξ(t) (21)

V̇3(xt) ≤ ξT (t)
[
ΠT

3 (Q1+Q3+Q4+Q6)Π3 +ΠT
3e(Q2−Q1)Π3e −ΠT

3fQ2Π3f

−(1−µ1)Π
T
3gQ3Π3g +ΠT

4 (Q5−Q4)Π4 −ΠT
5 Q5Π5 − (1−µ2)Π

T
6 Q6Π6

]
ξ(t)

= ξT (t)Ξ3ξ(t) (22)
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Then, the derivative of V4(xt) and V5(xt) can be respectively acquired as

V̇4(xt) = ξT (t)[h21Π
T
3 R1Π3+h221e

T
1 R2e1+eTs (h

2
21R3+τ21R4+τ221R5+τ(t)R6)es]ξ(t)

+θ1+θ2+θ3 (23)

V̇5(xt) = ξT (t)[eTs (
h21
2
Z1+

τ21
2
Z3)es+

h221
2

eT11Z2e11+
τ221
2
eT8 Z4e8]ξ(t)+δ1+δ2 (24)

where

θ1 = −h1

∫ t

t−h1

ηT (s)R1η(s)ds− h21

∫ t−h1

t−h2

xT (s)R2x(s)ds− τ1

∫ t

t−τ1

ẋT (s)R4ẋ(s)ds,

θ2 = −h21

∫ t−h1

t−h2

ẋT (s)R3ẋ(s)ds− τ21

∫ t−τ1

t−τ2

ẋT (s)R5ẋ(s)ds,

θ3 = −(1−τ̇(t))

∫ t

t−τ(t)
ẋT (s)R6ẋ(s)ds,

δ1 = −
∫ t

t−h1

∫ t

θ
ẋT (s)Z1ẋ(s)dsdθ −

∫ t−h1

t−h(t)

∫ t−h1

θ
ẋT (s)Z2ẋ(s)dsdθ

−
∫ t−h(t)

t−h2

∫ t−h(t)

θ
ẋT (s)Z2ẋ(s)dsdθ −

∫ t

t−τ1

∫ t

θ
ẋT (s)Z3ẋ(s)dsdθ

−
∫ t−τ1

t−τ(t)

∫ t−τ1

θ
ẋT (s)Z4ẋ(s)dsdθ −

∫ t−τ(t)

t−τ2

∫ t−τ(t)

θ
ẋT (s)Z4ẋ(s)dsdθ,

δ2 = −h2t

∫ t−h1

t−h(t)
ẋT (s)Z2ẋ(s)ds− τ2t

∫ t−τ1

t−τ(t)
ẋT (s)Z4ẋ(s)ds.

By using inequalitiy (4) of Lemma 2.1, the estimation of θ1 can be derived as follows

θ1 ≤ ξT (t)
[
− (HT

11R1H11 + 3HT
12R1H12 + 5HT

13R1H13)

−h21h1t(H
T
21R2H21 + 3HT

22R2H22 + 5HT
23R2H23)

−h21h2t(H
T
31R2H31 + 3HT

32R2H32 + 5HT
33R2H33)

−(HT
41R4H41 + 3HT

42R4H42 + 5HT
43R4H43)

]
ξ(t) (25)

Based on Lemma 2.2 and Lemma 2.3, θ2 is computed as follows

θ2 ≤ −ξT (t)

[
h21
h1t

ΠT
7 R̃3Π7+

h21
h2t

ΠT
8 R̃3Π8+

τ21
τ1t

ΠT
9 R̃5Π9 +

τ21
τ2t

ΠT
10R̃5Π10

]
ξ(t)

≤ ξT (t)(Ω + Φ)ξ(t) (26)

where Ω is given in (18) and

Φ =
h1t
h21

S1R̃
−1
3 ST

1 +
h2t
h21

S2R̃
−1
3 ST

2 +
τ1t
τ21

S3R̃
−1
5 ST

3 +
τ2t
τ21

S4R̃
−1
5 ST

4

By using inequalities (6) and (5) of Lemma 2.1, the estimation of δ1, θ3 and δ2 can
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be respectively got as follows

δ1 ≤ ξT (t)
[
−2ΠT

21Z1Π21−16ΠT
22Z1Π22−54ΠT

23Z1Π23−2ΠT
31Z3Π31−16ΠT

32Z3Π32

−54ΠT
33Z3Π33−2ΠT

41Z2Π41−16ΠT
42Z2Π42−54ΠT

43Z2Π43

−2ΠT
51Z2Π51−16ΠT

52Z2Π52−54ΠT
53Z2Π53−2ΠT

61Z4Π61−16ΠT
62Z4Π62

−54ΠT
63Z4Π63−2ΠT

71Z4Π71−16ΠT
72Z4Π72−54ΠT

73Z4Π73

]
ξ(t) (27)

θ3 + δ2 ≤ ξT (t)
[
(1−µ2)τ(t)Π

T
11(F11R

−1
6 F T

11 +
1

3
F12R

−1
6 F T

12 +
1

5
F13R

−1
6 F T

13)Π11

+(1−µ2)Sym
{
ΠT

11F11H51 +ΠT
11F12H52 +ΠT

11F13H53

}
+h2th1tΠ

T
12(F21Z

−1
2 F T

21 +
1

3
F22Z

−1
2 F T

22 +
1

5
F23Z

−1
2 F T

23)Π12

+h2tSym
{
ΠT

12F21H61 +ΠT
12F22H62 +ΠT

12F23H63

}
+τ2tτ1tΠ

T
13(F31Z

−1
4 F T

31 +
1

3
F32Z

−1
4 F T

32 +
1

5
F33Z

−1
4 F T

33)Π13

+τ2tSym
{
ΠT

13F31H71 +ΠT
13F32H72 +ΠT

13F33H73

} ]
ξ(t) (28)

Thus, combining Eqs. (23) and (24) and inequalities (25)-(28), we have

V̇4(xt) + V̇5(xt) ≤ ξT (t) (Ξ4 +Θ) ξ(t) (29)

where

Θ = Φ+ (1−µ2)τ(t)Π
T
11(F11R

−1
6 F T

11 +
1

3
F12R

−1
6 F T

12 +
1

5
F13R

−1
6 F T

13)Π11

+ h2th1tΠ
T
12(F21Z

−1
2 F T

21 +
1

3
F22Z

−1
2 F T

22 +
1

5
F23Z

−1
2 F T

23)Π12

+ τ2tτ1tΠ
T
13(F31Z

−1
4 F T

31 +
1

3
F32Z

−1
4 F T

32 +
1

5
F33Z

−1
4 F T

33)Π13

For any matrices L1 and L2, the following hold

0 = 2ξT (t)N1L1

[
h21e13 + h21te16 + h22te19 + h2th1te15 + h21h1e12 − e32

]
ξ(t)(30)

0 = 2ξT (t)N2L2

[
τ21 e22 + τ21te25 + τ22te28 + τ2tτ1te24 + τ21τ1e21 − e33

]
ξ(t) (31)

Besides, from Eq. (3), for any given scalars ρi ≥ 0, i = 1, 2, 3, we can obtain

ρ1
[
γ21x

T (t)x(t)− gT1 (x(t), t)g1(x(t), t)
]
≥ 0,

ρ2
[
γ22x

T (t− h(t))x(t− h(t))− gT2 (x(t− h(t)), t)g2(x(t− h(t)), t)
]
≥ 0,

ρ3
[
γ23 ẋ

T (t− τ(t))ẋ(t− τ(t))− gT3 (ẋ(t− τ(t)), t)g3(ẋ(t− τ(t)), t)
]
≥ 0. (32)

So, combining formulas (20)-(22) and (29)-(32), V̇ (xt) can be bounded as

V̇ (xt) ≤ ξT (t)Ξ̄ξ(t) (33)

where Ξ̄ = Ξ+Θ, with Ξ and Θ are shown in (18) and (29), respectively. Notice that
some h2(t)-dependent and τ2(t)-dependent terms are involved in Ξ̄. Hence, V̇ (xt) can
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be expressed as f(h(t), τ(t)) in Lemma 2.4, with

f(h(t), τ(t)) := ξT (t)Ξ̄ξ(t) (34)

a6 := ξT (t)(Ψh +Ψh0
)ξ(t) (35)

a4 := ξT (t)(Ψτ +Ψτ0)ξ(t) (36)

where Ψh, Ψτ , Ψh0
and Ψτ0 are defined in (18), and the signs for a6 and a4 are the

same, but unknown. Therefore, by Lemma 2.4, V̇ (xt) < 0 can be guaranteed if the
following conditions (37) and (38) hold

Ξ(h1, τ1)+Θ(h1, τ1) < 0,

Ξ(h1, τ2)+Θ(h1, τ2) < 0,

Ξ(h2, τ1)+Θ(h2, τ1) < 0,

Ξ(h2, τ2)+Θ(h2, τ2) < 0. (37)

and

Ξ(h1, τ1)−α2h221Ψh−β2τ221Ψτ+Θ(h1, τ1)−α2h221Ψh0
−β2τ221Ψτ0 < 0,

Ξ(h1, τ2)−α2h221Ψh−(1−β)2τ221Ψτ+Θ(h1, τ2)−α2h221Ψh0
−(1−β)2τ221Ψτ0 < 0,

Ξ(h2, τ1)−(1−α)2h221Ψh−β2τ221Ψτ+Θ(h2, τ1)−(1−α)2h221Ψh0
−β2τ221Ψτ0 < 0,

Ξ(h2, τ2)−(1−α)2h221Ψh−(1−β)2τ221Ψτ+Θ(h2, τ2)

−(1−α)2h221Ψh0
−(1−β)2τ221Ψτ0 < 0. (38)

It is evident that there are some nonlinear terms Θ, Ψh0
and Ψτ0 in the above conditions

(37) and (38). To tackle this, on the basis of the Schur complement, the equivalent
conditions for inequalities (37) and (38) can be obtained as LMIs (16) and (17). As
a consequence, LMIs (16) and (17) ensure the asymptotical stability of the neutral
system (1) subjects to (2) and (3). This completes the proof.

Remark 3. A fresh augmented LKF, V (xt), is developed in Theorem 3.1, which not
only introduces four delay-product-type terms in V2(xt), but also involves some aug-
mented vectors. Particularly, the augmented vector χ0(t) considering the two double

integral terms
∫ t
t−h2

∫ t
θ x(s)dsdθ and

∫ t
t−τ2

∫ t
θ x(s)dsdθ as augmented variables is intro-

duced in LKF (19), which are not involved in the LKF of Chen et al. (2020). The
addition of those terms provides more information of the state-related vectors with dis-
crete and neutral delay, and makes the proposed LKF be more comprehensive, which
will be conducive to reduce the conservatism.

Remark 4. The two vector zero-valued equalities (30) and (31) containing discrete
and neutral delay, h(t) and τ(t), which give enough thought to the relationship be-
tween the system state vectors, are builded respectively. For example, for discrete de-

lay h(t), the relationship between vectors 1
h2
1

∫ t
t−h1

∫ t
θx(s)dsdθ,

1
h2
1t

∫ t−h1

t−h(t)

∫ t−h1

θ x(s)dsdθ,

1
h2
2t

∫ t−h(t)
t−h2

∫ t−h(t)
θ x(s)dsdθ, 1

h1t

∫ t−h1

t−h(t)x(s)ds,
1
h1

∫ t
t−h1

x(s)ds and
∫ t
t−h2

∫ t
θ x(s)dsdθ is tak-

en into consideration. Since adding the equalities (30) and (31) into the bound of LKF
derivative, the expression of relations between state vectors can be strengthened and
the information of cross terms can be increased, it has the ability to acquire stability
criteria with lower conservatism.
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Remark 5. What is noteworthy is that due to the introduction of the two double
integral augmented terms and two vector zero-valued equalities (30) and (31), and
the usage of the inequality (5) to estimate Z2-dependent and Z4-dependent terms,
the derived stability condition (33) contains two delay square terms, (Ψh +Ψh0

)h2(t)
and (Ψτ +Ψτ0)τ

2(t). In Theorem 3.1, the two nonlinear time-varying delay terms are
directly treated by Lemma 2.4. As a consequence, Theorem 3.1 with two adjustable
parameters α and β is obtained. For proper preset α and β, the conservatism of
Theorem 3.1 is reduced.

For the case where the discrete delay derivative µ1 is unknown, if let P1 = P2 =
Q3 = 0 in the Theorem 3.1, then the following Corollary 3.2 is directly acquired.

Corollary 3.2. For given scalars 0 ≤ h1 < h2, 0 ≤ τ1 < τ2, µ2, γi, (i = 1, 2, 3),
and α, β ∈ [0, 1], under the nonlinear disturbances fulfilling conditions (3), the neutral
system (1) with any discrete and neutral delays satisfying (2) is asymptotically stable
if there exist positive definite matrices P0 ∈ R12n×12n, P3, P4 ∈ R2n×2n, Qi ∈ R2n×2n,
(i = 1, 2, 4, 5, 6), R1 ∈ R2n×2n, Ri ∈ Rn×n, (i = 2,. . ., 6), Zi ∈ Rn×n, (i = 1,. . ., 4),
any matrices Si ∈ R37n×3n, (i = 1,. . ., 4), Fij ∈ R4n×n, (i = 1, 2, 3, j = 1, 2, 3),
L1, L2 ∈ R6n×n, and real scalars ρi ≥ 0, (i = 1, 2, 3), such that the following LMIs
are satisfied: [

Ξ̄(h1, τ1) Γ11

∗ ∆1

]
< 0,

[
Ξ̄(h1, τ2) Γ12

∗ ∆1

]
< 0,[

Ξ̄(h2, τ1) Γ13

∗ ∆1

]
< 0,

[
Ξ̄(h2, τ2) Γ14

∗ ∆1

]
< 0, (39)[

Ξ̄(h1, τ1)− α2h221Ψh − β2τ221Ψτ Γ21

∗ ∆2

]
< 0,[

Ξ̄(h1, τ2)− α2h221Ψh − (1−β)2τ221Ψτ Γ22

∗ ∆2

]
< 0,[

Ξ̄(h2, τ1)− (1−α)2h221Ψh − β2τ221Ψτ Γ23

∗ ∆2

]
< 0,[

Ξ̄(h2, τ2)− (1−α)2h221Ψh − (1−β)2τ221Ψτ Γ24

∗ ∆2

]
< 0. (40)

where

Ξ̄(h(t), τ(t)) = Ξ1 + Ξ̄2 + Ξ̄3 + Ξ4 + Ξ5 + Ξ6,

Ξ̄2 = µ2

(
ΠT

3cP3Π3c −ΠT
3cP4Π3c

)
+ Sym

{
τ(t)ΠT

3cP3Π3d + τ2tΠ
T
3cP4Π3d

}
,

Ξ̄3 = ΠT
3 (Q1 +Q4 +Q6)Π3 +ΠT

3e(Q2 −Q1)Π3e −ΠT
3fQ2Π3f +ΠT

4 (Q5 −Q4)Π4

−ΠT
5 Q5Π5 − (1−µ2)Π

T
6 Q6Π6,

ξ̄(t) =
[
ξ1(t), ξ2(t), ξ3(t), ξ4(t), ξ̄5(t)

]T
,

ξ̄5(t) = col
{
g1(x(t), t), g2(x(t− h(t)), t), g3(ẋ(t− τ(t)), t), ẋ(t−h2)

}
,

ēi = [0n×(i−1)n In 0n×(37−i)n]
T , i = 1, 2, · · · , 37.

In addition, other notations are given in Theorem 3.1.
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Table 1. The MAUBs of h2 for various h1 and γ3. (γ1 = 0)

h1 Methods
γ1 = 0

γ3 = 0 γ3 = 0.1

0.1
Chen et al. (2020) 1.3207 0.9822

Theorem 3.1
1.6241 1.1697

(α = 0.11, β = 0.58) (α = 0.13, β = 0.60)

0.5
Chen et al. (2020) 1.3763 1.0312

Theorem 3.1
1.6692 1.2208

(α = 0.40, β = 0.53) (α = 0.41, β = 0.53)

Table 2. The MAUBs of h2 for various h1 and γ3. (γ1 = 0.1)

h1 Methods
γ1 = 0.1

γ3 = 0 γ3 = 0.1

0.1
Chen et al. (2020) 1.1591 0.8472

Theorem 3.1
1.3463 0.9885

(α = 0.12, β = 0.57) (α = 0.15, β = 0.63)

0.5
Chen et al. (2020) 1.2084 0.8941

Theorem 3.1
1.3882 1.0390

(α = 0.46, β = 0.54) (α = 0.15, β = 0.59)

4. Numerical examples

Two numerical examples are provided to evaluate the performance of the presented
Lemma 2.4 and stability criteria.

Example 4.1. Consider the neutral system (1) with nonlinear disturbances having
the following constant matrices:

A =

[
−1.2 0.1
−0.1 −1

]
, B =

[
−0.6 0.7
−1 −0.8

]
, C =

[
0.1 0
0 0.1

]
Suppose that µ1 = µ2 = 0.5, τ1 = 0, τ2 = h2 and γ2 = 0.1. By taking different values

as h1 = {0.1, 0.5}, γ1 = {0, 0.1} and γ3 = {0, 0.1}, the maximum allowable upper
bounds (MAUBs) h2 for the discrete delay h(t) are obtained by LMIs (16) and (17)
in Theorem 3.1, which are made a comparison with the numerical results presented
in existing literature (Chen et al. , 2020). For various values of γ1, the MAUBs h2
are described in Tables 1 and 2, repectively. (The values of α and β are gained by
incrementing with a step size of 0.01 from 0 to 1 and choosing the best one that
minimizes the conservatism of Theorem 3.1.)

Tables 1 and 2 clearly show that the numerical results obtained in Theorem 3.1 are
superior to that of Chen et al. (2020). Moreover, it can be noted that the MAUBs h2
is downed for larger values of γ1 and γ3.

Example 4.2. Consider the neutral system (1) with nonlinear disturbances with the
parameters below:

A =

[
−2 0
0 −2

]
, B =

[
0 0.4
0.4 0

]
, C =

[
0.1 0
0 0.1

]
Suppose that γ1 = 0.1, γ2 = γ3 = 0.05, τ1 = 0, τ2 = h2 and µ1 = unknown. Given

µ2 = {0, 0.6} and h1 = {0, 0.5, 1}, Table 3 reveals the comparison of the MAUBs h2
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Table 3. The MAUBs of h2 for various µ2 and h1.

µ2 Methods
h1

0 0.5 1

0

Yu & Lien (2008) 1.8842 2.3032 2.8032
Ramakrishnan & Ray (2011) 3.7024 4.1064 4.6064
Lakshmanan et al. (2011) 4.4239 4.7392 5.0992
Cheng et al. (2013) 5.0237 5.2164 5.9862
Mohajerpoor et al. (2017) 6.6601 - 7.0600
Chen et al. (2020) - 7.3501 7.8499

Corollary 3.2
9.9205 10.3543 10.8541

(α = 0.55, β = 0.53) (α = 0.53, β = 0.50) (α = 0.54, β = 0.52)

0.6

Yu & Lien (2008) 1.6904 2.1094 2.6094
Ramakrishnan & Ray (2011) 3.3150 3.7189 4.2189
Lakshmanan et al. (2011) 3.9563 - 4.6391
Cheng et al. (2013) 4.6235 - 5.0052
Mohajerpoor et al. (2017) 6.4020 - 6.5010
Chen et al. (2020) - 6.5839 7.0839

Corollary 3.2
8.7436 9.1701 9.6673

(α = 0.52, β = 0.67) (α = 0.54, β = 0.46) (α = 0.54, β = 0.50)

Table 4. The MAUBs of h2 for various µ2 and h1.

µ2 Methods
h1

1 0.6 0.1

0.2
Chen et al. (2020) 8.0702 7.6701 7.1736

Corollary 3.2
10.7244 10.3415 9.8793

(α = 0.56, β = 0.55) (α = 0.56, β = 0.51) (α = 0.55, β = 0.43)

0.5
Chen et al. (2020) 7.5186 7.1186 6.6713

Corollary 3.2
10.1257 9.7460 9.2755

(α = 0.56, β = 0.48) (α = 0.55, β = 0.32) (α = 0.54, β = 0.29)

for the discrete delay h(t) obtained by LMIs (39) and (40) in Corollary 3.2 for various
discrete delay lower bounds h1 and neutral delay derivatives µ2 over the existing ones
(Chen et al. , 2020; Cheng et al. , 2013; Lakshmanan et al. , 2011; Mohajerpoor et al.
, 2017; Ramakrishnan & Ray , 2011; Yu & Lien , 2008), where “− ” denotes that the
MAUBs for corresponding cases are not provided.

Suppose that γ1 = 0.1, γ2 = γ3 = 0.05, τ1 = 0.5, τ2 = 1 and µ1 = unknown.
For µ2 = {0.2, 0.5} and h1 = {1, 0.6, 0.1}, Table 4 reports the MAUBs h2 for the
discrete delay h(t) calculated by Corollary 3.2 for different values of µ2 and h1, and
compares them against the results presented in existing literature (Chen et al. , 2020).
Based on the comparison of the MAUBs h2, it is noted that Corollary 3.2 provides
less conservative results than those of Chen et al. (2020).

As can be seen from Tables 3 and 4, it is clear that the MAUB h2 is dropped by
increasing neutral delay derivatives µ2. However, by increasing the lower bound h1 of
discrete delay, the MAUB h2 is improved. And the results calculated from Corollary
3.2 are notably much larger than that of Chen et al. (2020); Cheng et al. (2013);
Lakshmanan et al. (2011); Mohajerpoor et al. (2017); Ramakrishnan & Ray (2011);
Yu & Lien (2008).

It is clear from Tables 1-4 that the experimental results derived from Theorem
3.1 and Corollary 3.2 can generate the larger MAUBs h2 than before. Therefore, the
stability criteria obtained by applying the LKF (19) and Lemma 2.4 have greater
superiority in realizing less conservative stability regions.
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5. Conclusion

A new augmented LKF in which two double integral terms of discrete delay and neutral
delay state vectors are considered as augmented terms has been firstly built. Then,
the single/multiple integral inequalities, together with generalized reciprocally convex
combination lemma, have been employed to estimate the time derivative. To linearize
the h2(t)-dependent and τ2(t)-dependent terms appearing in the time derivative, based
on Taylor’s formula, a relaxed negative-determination lemma has been raised, which
introduces two adjustable parameters. Two delay-dependent stability criteria have
been put forward by using the proposed method. Lastly, the advantages of the derived
stability conditions have been testified by two typical examples. It is worth noting that
the proposed negative-determination lemma is still conservative, and future work on
avoiding this defect is meaningful.
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