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Aims: We aimed to explore the effect of pregnancy on bedaquiline pharmacokinetics

(PK) and describe bedaquiline exposure in the breast milk of mothers treated for

rifampicin-resistant tuberculosis (TB), where there are no human data available.

Methods: We performed a longitudinal PK study in pregnant women treated for

rifampicin-resistant TB to explore the effect of pregnancy on bedaquiline exposure.

Pharmacokinetic sampling was performed at 4 time-points over 6 hours in the third

trimester, and again at approximately 6 weeks postpartum. We obtained serial breast

milk samples from breastfeeding mothers, and a single plasma sample taken from

breastfed and nonbreastfed infants to assess bedaquiline exposure. We used liquid

chromatography–tandem mass spectrometry to perform the breast milk and plasma

bedaquiline assays, and population PK modelling to interpret the bedaquiline

concentrations.

Results: We recruited 13 women, 6 of whom completed the ante- and postpartum

PK sampling. All participants were HIV-positive on antiretroviral therapy. We

observed lower ante- and postpartum bedaquiline exposures than reported in non-

pregnant controls. Bedaquiline concentrations in breast milk were higher than mater-

nal plasma (milk to maternal plasma ratio: 14:1). A single random plasma bedaquiline

and M2 concentration was available in 4 infants (median age: 6.5 wk): concentrations

in the 1 breastfed infant were similar to maternal plasma concentrations; concentra-

tions in the 3 nonbreastfed infants were detectable but lower than maternal plasma

concentrations.

Conclusion: We report low exposure of bedaquiline in pregnant women treated for

rifampicin-resistant TB. Bedaquiline significantly accumulates in breast milk;

breastfed infants receive mg/kg doses of bedaquiline equivalent to maternal doses.
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1 | INTRODUCTION

Acquisition of data quantifying the exposure of second-line tuberculo-

sis (TB) drugs in pregnant woman treated for rifampicin-resistant TB

(RR-TB) is a priority. Until recently, pregnant and breastfeeding

women have typically been excluded from clinical trials of new drugs,

including TB treatment.1 The World Health Organization currently

recommends individualised treatment regimens with drugs with a pre-

ferred safety profile for pregnant women with RR-TB,2 although there

are limited human data guiding these recommendations.

Bedaquiline is a group A drug, recommended for inclusion in all

RR-TB treatment regimens, and, although used in pregnant women,

safety data are lacking. The design of pharmacokinetic (PK) studies to

explore the effect of pregnancy on long half-life drugs like bedaquiline

is challenging, as cumulative drug concentrations could mask

pregnancy-related effects on drug exposure. Physiological changes in

pregnancy result in decreased concentrations of many drugs, particu-

larly in the third trimester.3 PK in pregnancy may be complex; 1 of the

reasons for reduced drug concentrations in pregnancy is the reduction

in plasma concentrations of the 2 key drug-binding proteins, albumin

and α1-acid glycoprotein.4 Reduction in these binding protein concen-

trations reduces the total (bound and unbound) concentrations of

drugs, but the unbound fraction typically increases, resulting in

unbound drug concentrations that are similar to nonpregnant women.

As only the unbound drug is pharmacologically active, recommenda-

tions to increase the dose of drugs in pregnancy to approximate total

concentrations in nonpregnant women could therefore increase the

risk of toxicity. However, pregnancy also increases several drug clear-

ance mechanisms, which could reduce unbound drug concentrations.

Although measurement of unbound bedaquiline concentrations is

preferable to rationally optimise dosing in pregnancy (bedaquiline is

>99% protein-bound),5 an understanding of the effect of pregnancy

on total bedaquiline concentrations would provide a much-needed

foundation to understand the effect of pregnancy on the unbound

fraction.

Data on the secretion of key drugs for RR-TB into breast milk are

scarce. The studies describing RR-TB drug exposure in breast milk are

small with few or no infant plasma PK data available—the study

designs are also unclear or unstated. Linezolid,6 levofloxacin7 and

cycloserine8 penetrate poorly into breast milk and exposure to

breastfed infants is therefore likely to be low. Clofazimine, in contrast,

demonstrates effective breast milk penetration with skin discoloration

observed in the infants of breastfeeding mothers treated with

clofazimine for leprosy9,10; clofazimine exposure in breast milk in the

context of mothers treated for TB is unfortunately lacking. Animal

studies have shown that bedaquiline is concentrated in rat milk with

concentrations 6- to 12- fold higher than maternal rat plasma

concentrations,11 but there are currently no human data available.

Information on clinically relevant infant exposure to RR-TB drugs

through breastfeeding with mother–infant pairs has not been done,

and is an important knowledge gap.

An international consensus panel on the inclusion of pregnant

and postpartum women in TB drug trials, convened by the NIH, iden-

tified the safety, tolerability and PK of novel agents and regimens for

treatment of RR-TB as research priorities.12 It is ethically imperative

to study drug dosing and safety in populations where drugs are used—

this has not been done satisfactorily for RR-TB.1 We therefore con-

ducted an observational study of bedaquiline exposure in pregnant

and breastfeeding women with RR-TB, and explored secondary

bedaquiline exposure in their infants.

2 | METHOD

2.1 | Study design

We performed a longitudinal PK study in pregnant women aged

≥18 years treated for RR-TB, and their infants, at King Dinuzulu

What is already known about this subject

• The effect of pregnancy on bedaquiline pharmacokinetics

is unknown.

• There are no human data of bedaquiline exposure in

breast milk, and subsequent exposure to breastfeeding

infants.

• A previous animal study described bedaquiline concentra-

tions in rat milk to be 6–8-fold higher than maternal

plasma concentrations.

What this study adds

• We describe lower antepartum exposures of bedaquiline

compared to nonpregnant patients.

• There was no difference between ante- and postpartum

bedaquiline pharmacokinetics.

• We observed high concentrations of bedaquiline in

breast milk with a milk:plasma ratio of 14:1.

• The 1 infant breastfeeding had plasma bedaquiline con-

centrations similar to maternal plasma.
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Hospital (KDH) in Durban, Kwazulu-Natal—nested within a cohort,

which has been previously described.13 KDH is a specialist provincial

RR-TB hospital where, until recently, all pregnant women with RR-TB

in Kwazulu-Natal province were referred for care. With some individ-

ual regimen variability, all participants were treated with a minimum

of 5 drugs including bedaquiline. Other drugs included: pyrazinamide,

isoniazid, clofazimine, linezolid, moxifloxacin, and, less commonly: eth-

ambutol, terizidone, levofloxacin, ethionamide and para-aminosalicylic

acid. We performed PK sampling predose and at 2, 4 and 6 hours

postdose in the third trimester of pregnancy (≥28 wk), and at the

6-week postpartum visit. Dosing on both sampling days was observed

after a standard breakfast consisting of a cup of tea/coffee and a

peanut-butter sandwich; the tablets were ingested with 250 mL of

water. Considering that bedaquiline is dosed 3 times a week (after the

2-wk loading dose), it was not always logistically possible to schedule

PK sampling on a day when bedaquiline was administered. We there-

fore recorded the last date and time when bedaquiline was dosed to

interpret the exposures with our modelling. The use of concurrent

medications, including antiretroviral therapy, and the start date of all

TB drugs, including bedaquiline, were recorded. If available, breast

milk samples were taken from breastfeeding mothers by manual

expression at the same timepoints that blood was drawn at the post-

partum visit (i.e. predose, and 2, 4 and 6 h postdose); samples were

frozen within 30 minutes of sampling at �80�C. To evaluate infant

drug exposure, a single random plasma sample was taken from infants

at the postpartum visit. If applicable, the time of the most recent

breastfeed prior to the infant blood draw was recorded.

2.2 | Bedaquiline assays

Plasma and breast milk samples were stored at �80�C and trans-

ported to the University of Cape Town, Division of Clinical Phar-

macology laboratory where total plasma and breast milk

bedaquiline and M2 assays were performed using liquid chromatog-

raphy with tandem mass spectrometry. The plasma assay for total

bedaquiline has previously been described.14 Bedaquiline and its

M2 metabolite in breast milk were analysed with an assay devel-

oped at the Division of Clinical Pharmacology laboratory, validated

using Food and Drug Administration and European Medicines

Agency guidelines15,16; the standards and quality checks were per-

formed using blank donated breast milk. The extraction procedure

consisted of protein precipitation and solid phase extraction,

followed by gradient liquid chromatography on an Agilent Poroshell

120 SB-C18 (2.1 mm � 50 mm, 2.7 μm) analytical column with

tandem mass spectrometry detection. An AB Sciex API 3000 mass

spectrometer at unit resolution in the multiple reaction monitoring

mode was used to monitor the transitions of the protonated pre-

cursor ions m/z 555.1, m/z 561.1, m/z 541.1 and m/z 545.1 to

the product ions m/z 58.2, m/z 64.1, m/z 480.3 and m/z 480.4

for bedaquiline, TMC207-d6, M2 and M2-d3C13, respectively.

Electro spray ionisation was used for ion production. The calibra-

tion curves fitted quadratic (weighted by 1/x) regressions based on

peak area ratios over the ranges 0.0780–5.00 μg/mL for

bedaquiline and 0.0312–2.00 μg/mL for M2. The combined accu-

racy (%Nom) and precision (%CV) statistics of the lower limit of

quantification, low-, medium- and high-quality controls of

bedaquiline and M2 during intra- and intervalidations were

between 96.7 and 106.5%, and 3.4 and 7.5%, respectively.

2.3 | PK modelling

Bedaquiline concentrations were interpreted using population PK

modelling in NONMEM version 7.4.5.17 Perl-speaks-NONMEM ver-

sion 5.2.6, Pirana version 3.0, and R with the package xpose4 were

used to facilitate the model development process, data manipulation

and generation of model diagnostics.18 As a starting point, we used

a published population PK model of bedaquiline in nonpregnant

adults with HIV and drug-resistant TB.14 Briefly, the published

model consists of 3 disposition compartments for bedaquiline and

1 disposition compartment for M2. There was a correlation between

bedaquiline and M2 between-subject variability on clearance, and

residual variabilities. The effect of body weight on all disposition

parameters was included using allometric scaling; albumin also

affected the drug disposition parameters. The coadministration of

ritonavir-boosted lopinavir reduced bedaquiline and M2 clearance

by 65 and 42%, respectively. Molar concentrations were used dur-

ing model development to account for mass balance between

bedaquiline and its metabolite M2. Participant albumin information

were not captured in the current study, therefore we imputed a

reported albumin concentration from a previous study in South Afri-

can patients with RR-TB.19

When analysing the data, we first fit the original model as

published, without re-estimating any of the population parameters,

but using the study covariate, doses and dosing regimen informa-

tion. This is similar to using the current data as an external valida-

tion of the model, i.e. assessing how the previous model predicts

the current data based solely on covariate information and assum-

ing no effect of pregnancy (which was not part of the original

model). Afterwards, we attempted to use the data to re-estimate

parameter values, using the general principles of model

development,20 including drops in NONMEM objective function

value for assessment of statistical significance and inspection of

diagnostic plots. Throughout the modelling process, we assumed

100% treatment adherence unless the participant disclosed

otherwise.

2.4 | Calculation of the milk:plasma ratio

The PK of bedaquiline and M2 in breast milk of the mothers with

paired plasma and milk samples was characterised using an effect

compartment.21 The effect compartment model described an accumu-

lation ratio (milk:plasma, M:P), and a time delay in the equilibration

between the breast milk and plasma concentrations.22,23 Further
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information about the effect compartment is provided in the supple-

mentary material.

2.5 | Calculation of infant bedaquiline intake with
breast milk

To estimate how much bedaquiline is ingested per day by a typical

child breastfed by a mother receiving bedaquiline, we assumed an

average infant milk ingestion of 0.15 L/kg/d.24 The following equation

was used to calculate the infant dose25:

Dinfant ¼Cm �Vm

where Vm is the volume of milk ingested by breastfeeding and Cm is

the drug concentration in breast milk. The Cm was calculated using the

formula below:

Cm ¼M :P �Cpavg

where Cpavg is the average maternal plasma concentration, which will

vary depending on the date when participants were initiated on treat-

ment with bedaquiline relative to the date of PK sampling.

2.6 | Ethics

Ethics approval for the study was granted by the South African Medi-

cal Research Council Ethics Committee (EC017–6/2016) and the

University of Cape Town Human Research Ethics Committee (HREC:

666/2018). Informed consent was taken from all participants in a lan-

guage of their choice (either English or isiXhosa).

3 | RESULTS

3.1 | Study population and sampling

Bedaquiline PK samples were available from 13 women in the third

trimester of pregnancy, at 30 (interquartile range: 25–37) weeks ges-

tation, 6 of whom returned for postpartum sampling at 7 (interquartile

range: 6.5–8) weeks after delivery. Seventy-one plasma samples of

bedaquiline parent and metabolite concentration were available for

analysis. Participant characteristics are shown in Table 1. All partici-

pants were living with HIV and treated with antiretroviral therapy

(ART), most commonly with nevirapine-based ART (n = 10, 83.3%);

two women were treated with dolutegravir and 1 woman received

lopinavir/ritonavir-based ART. Additional individual participant char-

acteristics, including time on treatment with bedaquiline are shown in

Table S1. Serial breast milk samples at the same time-points that

plasma was sampled, were available in 2 breastfeeding participants.

A single random plasma bedaquiline concentration was available

from 4 infants on the postpartum PK sampling day, of whom 1 was

breastfed. The range of gestational age at time of delivery of the

4 infants who had PK sampling was 33–38 weeks. The serial post-

dose bedaquiline and M2 concentrations at each sampling time point

are shown in Table 2.

TABLE 1 Characteristics of pregnant women treated for rifampicin-resistant tuberculosis (TB)

Median (range) Antepartum (n = 13) Postpartum (n = 6) Infants (n = 4)

Baseline characteristics

Age (y) 30 (23–48) 30 (23–48) 6.5 (6–8) wk

Height (cm) 160 (140–176) 162 (152–163) 53 (50–55)

HIV status (pos/neg) (13/0) (6/0)

TB type (RR/MDR/pre-XDR/XDR/missing) (6/3/2/1/1) (2/2/0/1/1)

Previous TB (yes/no/missing) (7/5/1) (2/3/1)

CD4 (cells/μL) 311 (44–1008) 545 (253–1008)

ART (NVP/LPV/DTG) 10/1/2 5/0/1

Characteristics on the pharmacokinetic sampling day

Weight (kg) 61 (55–104) 67(52–84) 4.1 (2.6–7.1)

Time since EFV switch (d) 31 (13–375) 175 (85–421)

Gestational age/time after delivery (w) 30 (25–37) 7 (6.5–8)

Inpatients/outpatients 12/1 0/6

Race (black/white) 13/0 6/0

Time since BDQ initiation (d) 27 (13–96) 154 (81–201)

ART, antiretroviral therapy; BDQ, bedaquiline; DTG, dolutegravir; EFV, efavirenz; LPV, lopinavir; MDR, multidrug-resistant; NVP, nevirapine; RR,

rifampicin-resistant; XDR, extremely drug-resistant.
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3.2 | PK modelling

When we used the published model14 to predict the expected expo-

sures in these patients (thus using the original population parameter

estimates and assuming no effect of pregnancy), the model over-

predicted both bedaquiline and M2 concentrations on both

antepartum and postpartum visits, as presented in the visual predic-

tive check in Figure 1. The visual predictive check shows that the PK

terminal elimination phase of the participant not on lopinavir/ritonavir

were approximately 50% lower that the model prediction (for both

the metabolite and parent) as illustrated by the deviation of the 50th

percentiles of the observations (red line) from the median of the

model predicted confidence interval (black line). If the PK parameters

in this study were in line with the previous report, we would have

expected to observe higher bedaquiline concentrations. Only the data

from the participant coadministered lopinavir/ritonavir, who had

higher bedaquiline concentrations due to a drug–drug interaction,

were in line with the model prediction. The final model PK measures

are shown in Table S2. We encountered several challenges when

attempting to fit the original model to the current data by re-

estimating the parameter values. The model structure is complex, with

multiple disposition compartments, and the current data did not reli-

ably support the re-estimation of all parameters—some of the parame-

ter estimates obtained when attempting to re-fit were unstable

and/or implausible. In other words, while the model could be adapted

to fit the study data, this could be achieved in multiple different ways,

e.g. assuming a larger clearance or lower bioavailability (both ante-

and postpartum) and a larger peripheral volume of distribution. We

experienced further complications when trying to estimate a signifi-

cant difference between the 2 PK sampling visits, i.e. possibly due to

pregnancy status. All the scenarios were nearly equivalent in terms of

goodness of fit, and there was no meaningful difference in terms of

statistical significance, thus leaving the choice largely in the domain of

speculation. Choosing a different scenario (on which a difference is

ascribed to) would imply a different interpretation of the results, and

if the different options for the model were to be used to predict con-

centrations and suggest dose adjustments they could come to very

different conclusions. We also attempted to use a frequentist prior

approach26 to try and stabilise the parameter estimates, but the

results became highly dependent on the assumptions on the prior pre-

cision of each parameter, thus not solving the problem. For this rea-

son, we decided to simply use the model as originally published and

acknowledge that the concentrations we observed are lower than

expected, assuming that the PK are the same as nonpregnant

patients.

3.3 | Breast milk and infant exposures

A graphical overview of the infant and breast milk data is provided

in Figures 2 and 3, together with the plasma concentrations in the

respective mothers. The PK profiles for bedaquiline and M2 are

shown: maternal plasma concentrations ante- and postpartum;

breast milk and infant concentrations. The model estimated an M:P

ratio of 13.6 (%relative standard error [RSE]: 10.1) and 4.84 (%RSE:

5.10) for bedaquiline and M2, respectively. The average bedaquiline

concentration in the mothers' postpartum PK samples was

0.4 mg/L; using this value the infant bedaquiline dose would be

0.816 mg/kg/d. Similarly, the average maternal postpartum M2

concentration was 0.1, the infant M2 dose would therefore be

0.07 mg/kg/d. In comparison, a 70-kg individual administered the

standard dose of 200 mg bedaquiline 3 times a week would result

in approximately 1.22 mg/kg/d dose of bedaquiline. Table S3 dis-

plays the breast milk concentrations and their corresponding M:P

ratio. Further details of the breast milk concentration model are

presented in the appendix. Bedaquiline and M2 concentrations in

the infant who was breastfed were similar to maternal plasma con-

centrations, while for the 3 infants who were not breastfed,

bedaquiline and M2 concentrations were detectable but lower than

maternal plasma values (see Figures 2 and 3).

TABLE 2 Median (range) bedaquiline and metabolite (M2) concentrations per time point*

Time point

Bedaquiline (n = 13) Metabolite, M2 (n = 13)

Antepartum Postpartum Antepartum Postpartum

Time No. Concentration (mg/L) No. Concentration (mg/L) No. Concentration (mg/L) No. Concentration (mg/L)

Predose 6 0.419 (0.146–0.997) 2 0.186 (0.135–0.237) 6 0.183 (0.0479–0.297 2 0.0584 (0.0440–0.0728)

2 h 6 0.621 (0.225–1.78) 2 0.237 (0.205–0.2678) 6 0.160 (0.0455–0.283) 2 0.0630 (0.0425–0.0834)

4 h 5 1.05 (0.393–1.95) 1 1.06 5 0.144 (0.0469–0.286) 1 0.0467

6 h 5 1.69 (0.296–2.93) 1 1.14 5 0.181 (0.0454–0.285) 1 0.0547

24 h 7 0.308 (0.265 – 0.505) 4 0.3085 (0.227–0.312) 7 0.168 (0.0799–0.281) 4 0.128 (0.106–0.166)

26 h 7 0.250 (0.226 – 0.461) 4 0.281 (0.242–0.293) 7 0.142 (0.0618–0.254) 4 0.107 (0.0989–0.128)

28 h 7 0.228 (0.188 – 0.419) 4 0.275 (0.263–0.296) 7 0.145 (0.0618–0.227) 4 0.112 (0.107–0.132)

30 h 7 0.205 (0.169–0.347) 3 0.284 (0.234–0.299) 7 0.133 (0.0585–0.224) 3 0.111 (0.0970–0.120)

*Time point: approximation of the time after dose; No.: Number of participants at each timepoint.
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4 | DISCUSSION

To our knowledge, this report is the first description of the exposure

of bedaquiline in pregnant women. We found bedaquiline and M2

exposure in pregnant women to be approximately 50% lower than

expected in nonpregnant patients.14 Although we were underpow-

ered, we found no significant difference between ante- and postpar-

tum exposures.

There are several possible reasons for the low bedaquiline expo-

sures we observed in the third trimester. First, increased metabolism

of bedaquiline is a possible explanation—pregnancy is known to

induce CYP3A4, which is the major route of bedaquiline metabo-

lism.27 The increase in CYP3A4 expression would lead to higher clear-

ance and lower bioavailability of bedaquiline, since it is present in

both entero- and hepatocytes. Second, pregnancy reduces plasma

albumin concentrations, to which bedaquiline is highly bound.28 The

unbound fraction of bedaquiline may therefore increase, subsequently

increasing its clearance and tissue distribution. In such a scenario, the

total (bound + unbound) concentrations of bedaquiline in plasma

would decrease, but this effect could be counter-balanced by the

large unbound fraction, thus maintaining relatively unchanged

unbound levels. However, exploration of unbound bedaquiline expo-

sure is required before a recommendation for a dose adjustment can

be made. Third, changes in body size (and possibly composition) may

have affected bedaquiline disposition, but it is unlikely that the

increased weight in pregnancy affected the exposure of bedaquiline

as we used allometric scaling to account for this in the model, and

changes in body size alone are therefore unlikely to explain the

decreased bedaquiline concentrations we observed.

Similarly, we observed lower-than-expected bedaquiline levels at

the postpartum visit. While it is generally accepted that PK sampling

approximately 6 weeks postpartum is a reasonable time-point to allow

the physiological changes related to pregnancy to subside,29 there are

some limitations in using this timeline as a control when exploring the

effect of pregnancy on drugs with a long half-life such as bedaquiline.

Given that the terminal half-life of bedaquiline is >5 months,5 any

change in PK parameters may only become apparent on drug expo-

sure after a considerable time, possibly months. Thus, even if most of

the pregnancy effects (if any) had reversed in the first weeks after

delivery, there may not have been sufficient time for the exposure of

bedaquiline to reach a new equilibrium before the scheduled postpar-

tum PK visit. An alternative explanation is that adherence could have

decreased in the postpartum period; a systematic review reported

poor postpartum adherence in patients on ART.30 Subtherapeutic

bedaquiline exposures could affect clinical outcomes and increase the

risk of selecting for drug resistance.

F IGURE 1 Visual predictive check of the bedaquiline and M2, the top panels represent the parent and the bottom panels represent the
metabolite bedaquiline concentrations. The first column displays antepartum concentrations, while the last and middle columns show postpartum
concentration and antepartum concentration in the participant coadministered lopinavir/ritonavir, respectively. Due to the small sample size in
each panel, we plotted the 50th percentiles of the observations (red line)—the shaded areas represent the 95% model-predicted confidence
intervals and the black line is the median of the model predicted confidence interval
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We observed concerningly high concentrations of bedaquiline in

the breast milk samples we analysed, markedly higher than the mater-

nal bedaquiline plasma concentrations, in keeping with the findings of

an animal study.11 The breastfeeding infant had a plasma bedaquiline

concentration similar to maternal plasma (Figure 2), which could have

implications for infant safety. In a previous animal study, rat pups that

were breastfed to mothers treated with bedaquiline were reported to

have low body weight.11 In contrast, therapeutic concentrations of

bedaquiline in infants (possible with long half-life drugs, which accu-

mulate slowly, such as bedaquiline) could potentially be protective in

infants exposed to RR-TB, obviating the need for TB preventive ther-

apy. The 3 infants who were not breastfed had subtherapeutic

bedaquiline concentrations, probably from transplacental exposure,

which could select for drug resistance should the infants develop RR-

TB. A preclinical study in rats treated with bedaquiline also demon-

strated placental bedaquiline distribution.31

The gestational age at birth of the neonates who had had PK sam-

pling ranged from 33–38 weeks (Table S1). The CYP3A system in the

liver and intestinal wall of preterm neonates has lower activity com-

pared with adults, but activity increases with increasing age.32 Since

bedaquiline is metabolised largely by CYP3A4, the immaturity of the

infant CYP3A4 metabolic system may have contributed to the high

infant bedaquiline concentrations we observed. Although the World

Health Organization recommends all 3 group A drugs including

bedaquiline for the treatment of children with MDR-TB age

≥3 years,33 there is a lack of safety data of the use of bedaquiline in

children <6 years.34 The consequence of the therapeutic bedaquiline

concentrations we observed in the breastfeeding infant is unknown,

but there are potential implications for infant safety.11

The main factors determining the transfer of a drug into breast

milk are its physicochemical characteristics (such as lipid solubility and

degree of ionisation at different pH conditions) and its plasma PK.35

Fat-soluble drugs like bedaquiline cross lipid-protein cell membranes

easily, hence transferring readily into breast milk.35 The ease with

which drug molecules cross cellular membranes depends on the drug's

degree of ionisation, which may vary in different pH conditions. Weak

bases such as bedaquiline (pKa = 8.9)36 tend to be slightly less ionised

in plasma than in milk. This means that unionised plasma bedaquiline

will transfer into breast milk, where it is more likely to be ionised,

favouring breast milk accumulation of the drug.37 Transfer of drugs

into breast milk may also be greater in drugs with a low affinity for

maternal plasma proteins, but bedaquiline is highly protein-bound

(>99.9%).5 An additional factor is molecular weight, as drugs with low

weight (<200 Da) reach breast milk more easily, but the molecular

weight of bedaquiline is 555.504 Da.38 Drugs that have a long plasma

half-life and therefore accumulate, such as bedaquiline, are prone to

transfer into breast milk compared with molecules which are cleared

rapidly. The high concentration of bedaquiline in breast milk suggests

F IGURE 2 Pharmacokinetics profiles of bedaquiline concentrations, each panel representing a different participant. The red dots and purple
crosses represent maternal plasma concentrations ante- and postpartum, respectively. The green triangles represent breast milk; the blue squares
represent infant plasma concentrations. Bedaquiline was dosed on Monday, Wednesday and Friday, hence the day of the weeks provided in the
plot specify if the participant was dosed on the pharmacokinetic visit day
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that the mammary glands could be a clearing site for bedaquiline.

Excretion could be significant, since, on average, a baby consumes

about 0.15 L/kg/d of breast milk.24 Moreover, bedaquiline metabo-

lism in breast tissue cannot be excluded, as there are contradictory

reports on the expression of CYP3A4 in human breast tissue.39–41

Our study has several limitations. First, we did not measure

unbound bedaquiline concentrations or albumin levels, so we are

unable to conclusively determine if the reasons for the low plasma

concentrations observed are related to protein binding. Second,

there was a high rate of participant loss to follow up, which limited

our sample size, as many participants were unable for logistical rea-

sons, to complete the postpartum PK sampling day. Third, PK sam-

pling was not always performed on a day when bedaquiline was

scheduled to be administered (dosing is 3 times a week). Although

this was accounted for in our modelling, considering we did not

use an adherence measure, the date and time of the last

bedaquiline dose was obtained via participant self-report, which

could be unreliable.

We report low exposures of bedaquiline in this series of pregnant

women treated for RR-TB. Future studies should analyse bound and

unbound bedaquiline concentrations with an adherence measure to

better understand the effect of pregnancy on bedaquiline exposure,

and assess whether a different dosing recommendation for

bedaquiline in pregnancy is indicated. Bedaquiline appeared to

significantly accumulate in breast milk, which could be an exposure

risk for breastfeeding babies, and should therefore be investigated

further.
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APPENDIX A

Pharmacokinetic model of breast milk

The characterisation of bedaquiline and M2 concentrations in breast

milk was obtained by modelling the plasma and breast milk concentra-

tions in the participants with paired plasma and breast milk samples

(the plasma and breast milk bedaquiline and M2 raw concentrations

are shown in Table S3). The modelling procedure comprised 2 steps.

As a first step, we used the published plasma pharmacokinetic

(PK) model (1) to describe the individual plasma concentrations

around the time when breast milk samples were collected. As referred

to in the results section of the main manuscript, the previously publi-

shed model by Brill et al.1 overpredicted the overall concentration of

both bedaquiline and M2 in our cohort of patients, as shown in the

visual predictive check in Figure 1. However, while at the population

level the model was systematically over-predicting the concentrations,

at an individual level, thanks to the between-subject and -occasion

random effects, the model was able to fit the plasma concentrations

reasonably well in the participants with paired plasma and breast milk

concentrations, as shown in Figure S1.

As a second step, we fixed the individual plasma PK parameters

and used the model-predicted plasma concentration profile as an

input (forcing function) for the model fitting the breast milk concen-

trations. This is called a sequential modelling approach, and Zhang

et al.2 showed that it performs as well as the simultaneous modelling

method, which was not feasible in our scenario since the plasma PK

model showed a systematic over-prediction at population level.

To characterise the link between plasma and breast milk concen-

trations, we used an effect compartment approach,3 as shown in the

diagram in Figure S2 depicting the structural model. This paradigm

describes the concentrations of bedaquiline (and M2) in breast milk as

dependent on plasma concentrations, but it assumes no significant

transfer of drug between plasma and breast milk (negligible mass

transfer), so that the movement of drug into the breast milk compart-

ment does not affect the amount in the central compartment.

The equation describing the concentration in breast milk is:

dCmilk

dt
¼Kmilk � Rmilk �Cplasma�Cmilk

� �
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where Cmilk is the concentration in breast milk, Cplasma is the plasma con-

centration, Kmilk is the first-order plasma-to-breast milk equilibration rate

constant, and Rmilk is the accumulation ratio between plasma and breast

milk, previously referred to as pseudo-partition coefficient.4,5 Kmilk

describes the delay in the transfer of drugs from plasma to breast milk. It

can also be parameterised as a half-life (T1/2milk = In(2)/Kmilk), which can

be interpreted as the time required to achieve 50% of the equilibrium tar-

get between breast milk and plasma. Rmilk is the ratio between the con-

centrations in breast milk and plasma at equilibrium. Two separate effect

compartments were fit, 1 for bedaquiline and the other 1 for M2.

The model parameters are presented in Table S2. The final model

did not find any significant difference for Kmilk of BDQ and M2, so a

single parameter was estimated. The model supported between-

subject variability in bedaquiline Rmilk (change in objective function

value = 5.05) and only proportional error for both bedaquiline and

M2. The model-predicted profile and the individual PK profile of the

plasma and milk concentrations are depicted in Figure S2, showing

satisfactory goodness of fit.

The model estimated a bedaquiline milk to plasma accumulation

ratio of 13.6 and M2 milk to plasma ratio of 4.84. A single Kmilk with a

half-life of 8.15 was estimated for both bedaquiline and M2. How-

ever, the large delay in the milk to plasma equilibration might be

driven by a single unexpectedly low plasma concentration in the first

6 hours, and hence should be interpreted with caution.
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