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Abstract

A central goal in algorithmic game theory is to analyze the performance of decentralized
multiagent systems, like communication and information networks. In the absence of a central
planner who can enforce how these systems are utilized, the users can strategically interact with
the system, aiming to maximize their own utility, possibly leading to very inefficient outcomes,
and thus a high price of anarchy. To alleviate this issue, the system designer can use decentral-
ized mechanisms that regulate the use of each resource (e.g., using local queuing protocols or
scheduling mechanisms), but with only limited information regarding the state of the system.
These information limitations have a severe impact on what such decentralized mechanisms can
achieve, so most of the success stories in this literature have had to make restrictive assumptions
(e.g., by either restricting the structure of the networks or the types of cost functions).

In this paper, we overcome some of the obstacles that the literature has imposed on decen-
tralized mechanisms, by designing mechanisms that are enhanced with predictions regarding the
missing information. Specifically, inspired by the big success of the literature on “algorithms
with predictions”, we design decentralized mechanisms with predictions and evaluate their price
of anarchy as a function of the prediction error, focusing on two very well-studied classes of
games: scheduling games and multicast network formation games.

1 Introduction

In this paper we revisit two classic decentralized resource allocation problems, scheduling games
and network formation games, aiming to achieve improved price of anarchy bounds by leveraging
predictions. Like many of the important games in algorithmic game theory, these two classes of
games correspond to special cases of a very general model defined using a network with load-
dependent cost functions. Given a graph G = (V,E) and a set of n users N , each user i needs to
use a path in order to connect from a source vertex si ∈ V to a terminal vertex ti ∈ V . For each
edge e ∈ E, if a total load of ` players choose to use it, then this generates a cost ce(`), which is
passed on to the players using it. The players strategically choose their paths, aiming to minimize
their cost, and the performance of the induced game is evaluated using its price of anarchy : the
social cost in the “worst” Nash equilibria of the game, over the optimal social cost.

For example, in the well-studied multicast network formation game (Anshelevich et al., 2008;
Li, 2009; Bilò et al., 2013a; Lee and Ligett, 2013; Freeman et al., 2016), all the users share the same
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source s, and the cost functions are constant (ce(`) = ce for all e ∈ E and ` > 0). The initial work
on this problem assumed that the cost of each edge is divided equally among its users, but this can
give rise to Nash equilibria that are very inefficient, leading to a price of anarchy that grows linearly
with the number of agents. If we knew exactly the set of users in advance (i.e., if we knew the set of
terminals that would need to be connected to the source), then we could more carefully determine
how to share the cost of each edge among its users, leading to a price of anarchy of 2 (Chen et al.,
2010). However, in decentralized systems this information may not be fully known in advance, so
the cost-sharing protocol may need to decide how to share the cost using only limited information.

To better understand the impact of information limitations on the performance of cost-sharing
protocols, prior work has introduced a range of models, depending on the amount of information
available to the designer: i) oblivious protocols, that are independent of the graph structure and
the set of users, ii) resource-aware protocols, that are aware of the graph structure and its cost
functions, but unaware of the set of users, and iii) omniscient protocols, that know everything about
the instance at hand.1 For each of these information models, a long list of papers has aimed to
design cost-sharing protocols that are stable (i.e., guarantee the existence of pure Nash equilibria),
and optimize the price of anarchy. However, even for resource-aware cost-sharing protocols, the
results are often very pessimistic, unless we impose significant restrictions on the class of instances.

Although omniscient protocols require a possibly unrealistic amount of information, the as-
sumption that resource-aware protocols have no information regarding the anticipated demand is
unrealistic as well. Given the vast amounts of historical data that is stored and readily available,
even off-the-shelf machine learning algorithms could provide a reasonable estimate regarding fu-
ture demand. Therefore the severe information limitations that lead to these impossibility results
may be unnecessarily pessimistic: a decentralized protocol could be augmented with some estimate
regarding the future demand, and it could use this estimate as a guide for its cost-sharing decisions.

To overcome analogous pessimistic results due to information limitations, the online algorithms
literature introduced a model for designing and analyzing “algorithms with predictions” (see, e.g.,
(Lykouris and Vassilvitskii, 2018; Purohit et al., 2018; Gollapudi and Panigrahi, 2019; Bhaskara
et al., 2020; Anand et al., 2020; Azar et al., 2022)). The goal is to design algorithms, enhanced
with a prediction, that perform very well when the prediction is accurate, yet still maintain some
worst-case guarantees even if it is not. The learning-augmented framework was very recently also
adapted to multiagent systems involving strategic agents, giving rise to a research agenda focusing
on the design of (centralized) “mechanisms with predictions” (Agrawal et al., 2022). In this paper
we extend this agenda beyond centralized systems and study the extent to which predictions can
enable the design of more practical protocols for distributed multiagent systems, leading to improved
price of anarchy bounds. The main question that we focus on is:

Can decentralized protocols, enhanced with predictions, achieve improved price of
anarchy bounds, and how do these bounds depend on the prediction accuracy?

Two central notions in the literature on “algorithms with predictions” are consistency and ro-
bustness. The consistency of an algorithm (or, in our case, a protocol) is the performance guarantee
that it achieves, assuming that the prediction it was provided with is accurate. Its robustness is
the worst-case performance guarantee that it achieves, irrespective of the quality of the prediction.
In some problems, achieving the optimal consistency needs to come at the cost of robustness, i.e.,
it is impossible to also simultaneously achieve the best known worst-case guarantees. Our main
results in this paper provide decentralized protocols that simultaneously achieve the best-possible
consistency and the best known robustness guarantees, up to small constants.

1Some of the prior work also refers to oblivious protocols as “uniform” and to omniscient ones as “non-uniform.”
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1.1 Our Results

To evaluate the potential impact of predictions on the price of anarchy bounds that we can achieve,
we design learning-augmented cost-sharing protocols that are enhanced with predictions regarding
the demand that they should anticipate. Depending on the setting at hand, these predictions are on
the volume of the demands or the locations of the terminals that they are associated with. Guided
by this information, the protocols carefully adjust the cost share of each user and, even though
they remain oblivious to the actual demand that appears, they achieve bounds that improve as
a function of the prediction quality. In fact, we prove that our protocols simultaneously achieve
the best known worst-case guarantees (robustness) and the best possible guarantees when the
predictions are accurate (consistency), up to small constant factors.

Games with General Cost Functions over Series-Parallel Graphs (Section 3). We first
consider the class of symmetric games (all the agents need to connect the same source to the same
terminal, so they have the same set of strategies) over series-parallel graphs, which generalizes the
classic scheduling games (which can be captured by a simple two-node graph with parallel edges).
For each edge of the graph, we allow its cost function to be an arbitrary non-decreasing function of
the number of agents using it. This is in contrast to most of the prior literature which imposes some
type of structure or parameterization on the allowable cost functions (e.g., concavity, convexity, or
some type of boundedness) (e.g., (von Falkenhausen and Harks, 2013; Christodoulou et al., 2017;
Gkatzelis et al., 2021)). For this class of games, the best known price of anarchy upper bound via
a resource-aware protocol is O(n), and prior work has shown that without information regarding
the number of users, no stable cost-sharing protocol (i.e., a protocol that admits a pure Nash
equilibrium) can achieve a price of anarchy better than O(

√
n) (Christodoulou et al., 2017). In fact

this lower bound holds even for scheduling games with capacitated constant cost functions2. To
overcome this obstacle, we consider the design of cost-sharing protocols that are enhanced with a,
possibly erroneous, prediction regarding the total number of agents that will be using the system.

Our main result in this setting is a cost-sharing protocol that uses the prediction, n̂, on the
number of users to achieve a price of anarchy of 4 when the predictions are correct, i.e., when n = n̂.
More surprisingly, we prove that this protocol maintains a good price of anarchy bound even if the
prediction is inaccurate: if δ = |n− n̂| is the prediction error, we prove a price of anarchy bound of
min{4(δ+1), 4n}. In other words, when the prediction is accurate, this protocol achieves a price of
anarchy of 4, while simultaneously guaranteeing a price of anarchy of O(n), even if the prediction
is arbitrarily inaccurate (which matches the best known worst-case price of anarchy bound, even
for the special case of scheduling games). Furthermore, this bound provides a major improvement
even if the prediction is not perfect, i.e., δ is positive but not too large.

To achieve this result, we first use an online algorithm to determine how many agents should
be using each edge, assuming the prediction is correct. Then, our cost-sharing protocol applies
carefully chosen penalties if the number of agents using it exceeds this “threshold”. If we made
these penalties arbitrarily high, this would guarantee a good outcome when the prediction is correct
(no agent would want to suffer the penalty). However, such penalties could lead to very bad price of
anarchy bounds if the number of agents was underpredicted, i.e., n̂ < n, since some of them would
be forced to suffer these, otherwise unnecessary, penalties. On the other hand, if the penalties
are not high enough, then the agents may end up exceeding the edge usage thresholds anyway,
leading to inefficient outcomes and high price of anarchy, even if the prediction is correct. The
main novelties of our protocol are two-fold: i) First, the way in which it determines the threshold

2Given two constants, c and t, a capacitated constant cost function is equal to c as long as its input is at most t
and infinite otherwise.
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for each edge as a function of the graph structure and the prediction n̂, using an online algorithm
(see Section 3.1 for more details). ii) Second, the way it determines how much to penalize the
agents that exceed this threshold, in order to optimize the aforementioned trade-off.

Multicast Network Formation Games over General Graphs (Section 4). We then
also revisit the well-studied class of multicast network formation games over general graphs. For
this class of games, we know that without any information regarding the set of users, no stable
cost-sharing protocol can achieve a price of anarchy better than O(log(n)) (Christodoulou and
Sgouritsa, 2019). Aiming to overcome this obstacle, we turn to mechanisms that are enhanced with
predictions regarding the users. However, since these are not symmetric games (each agent may
want to connect to a different terminal node in the graph, so their set of strategies can be very
different), knowing the number of agents alone is not sufficient. Therefore we consider the design
of cost-sharing protocols equipped with a prediction on the set of terminals H ⊆ V , corresponding
to the locations in the graph where the agents’ terminals are expected to appear.

In this setting, we design a cost-sharing protocol that uses the predicted terminals H and
achieves a price of anarchy of 4 when the predictions are correct. Crucially, as in the previous
setting, our bounds provide good price of anarchy guarantees even if the predictions are inaccurate.
First, as a warm-up, we assume that the set of agents is known and the predictions are regarding the
location of each agent’s terminal. If the distance of each terminal ti from its predicted location is di
and the overall prediction error is D =

∑
i∈N di, then we achieve a price of anarchy upper bound of

min
{

4 + 6D
OPT
, log n

}
, where OPT is the optimal social cost. What is particularly appealing about

this bound is that it maintains the best possible worst-case price of anarchy of O(log n), even if
the predictions are arbitrarily inaccurate, while simultaneously guaranteeing much stronger bounds
when the prediction error is small. We then move one step further and also consider settings where
even the number of agents that will arrive is unknown. In this case, we define the prediction error by
generalizing a framework recently proposed in the context of online graph algorithms (Azar et al.,
2022). If R is the set of terminals of the agents that actually appear and H is the set of predicted
terminals (where |R| may not be equal to |H|), then we consider any assignment η : R′ → H ′,
where R′ ⊆ R is a subset of agent terminals and H ′ ⊆ H is a subset of predicted locations (not
all terminals need to be assigned to a prediction and multiple terminals could be assigned to the
same prediction). For a given assignment η (and the corresponding subsets R′ and H ′), we let δ
be the number of unassigned terminals and predicted locations (i.e., δ = |H \H ′| + |R \ R′|) and
let D be the total distance with respect to the assignment (i.e., the sum over all the terminals
t ∈ R′ of their distance from their assigned prediction η(t) ∈ H ′). If D is the set of all (D, δ) pairs
that correspond to some assignment η, our main result on multicast network formation games is a
protocol whose price of anarchy is at most min

{
min(D,δ)∈D

{
4 + 6D

OPT
+ log δ

}
, log n

}
. Note that

if |H| = |R|, i.e., the number of agents is predicted correctly, this bound is at least as good as the
bound we achieved when the set of agents is known: we can just use the minimum weight matching
of agents to predictions as the assignment η. However, our new bound can be even stronger, since
we can also keep some agents unassigned, or assigned to the same prediction.

The way that our cost-sharing protocol achieves this bound is very different from the approach
used in the symmetric setting of Section 3 (the fact that they both yield a price of anarchy of 4
for perfect predictions is merely a coincidence). Using the predicted terminals, the protocol first
computes the minimum spanning tree that connects these predicted terminals to the source. Then,
based on the structure of this tree, it determines a priority ordering over the predicted terminals,
and this ordering is extended to all other nodes as well, based on their proximity to the predicted
terminals. Once this global priority ordering of all the vertices has been determined, the cost-
sharing protocol is rather straightforward: the whole cost of each edge is charged to the user whose
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terminal has the highest priority. Therefore, the main novelty of the protocol is the way in which
this global ordering is determined, using the graph structure and the predictions as input.

1.2 Related Work

Our work extends the literature on resource-aware cost-sharing protocols for optimizing equilibria,
specifically the Price of Anarchy (PoA) and Price of Stability (PoS) metrics. The PoA measures the
worst-case inefficiency of the worst equilibrium in the game whereas PoS measures the inefficiency
of the best equilibrium in the game. Christodoulou and Sgouritsa (2019) were the first to study
this family of mechanisms, focusing on the class of network formation games (like Chen et al.
(2010) did, from the perspective of oblivious mechanisms). They showed that, when the graph is
outerplanar, resource-aware mechanisms can outperform oblivious ones, but they also proved that
an analogous separation is not possible for general graphs. In subsequent work, Christodoulou et al.
(2017) designed resource-aware mechanisms for the case of scheduling games (which correspond to
special case of parallel-link graphs), and were able to achieve a constant PoA for instances with
convex and concave cost functions. Subsequently, Christodoulou et al. (2020) extended many of
these results to graphs, beyond parallel links, including directed acyclic or series parallel graphs,
with convex or concave cost functions on the edges.

Resource-aware cost-sharing protocols with additional prior information regarding the users
were also part of the model studied by Christodoulou and Sgouritsa (2019) for the case of network
formation games. Specifically, rather than assuming that the source vertex of each agent is chosen
adversarially, they assumed that it is drawn from a distribution over all vertices. The cost-sharing
mechanism is aware of this stochastic process, so they designed a mechanism that leverages this
information to achieve a constant PoA. Following-up on this work, Christodoulou et al. (2019)
extended the constant PoA to include Bayesian Nash equilibria. Recently, Gkatzelis et al. (2021)
showed that with some information about the users the PoA of resource-aware protocols can be
significantly improved for the class of scheduling games with bounded cost functions. In this work,
two different types of information are considered: knowing two of the participating agents’ IDs in
advance, or knowing the probability with which each of the agents appears in the system.

An important characterization of the stability property for oblivious cost-sharing mechanisms
was given in (Gopalakrishnan et al., 2014). They proved that these mechanisms correspond to
the class of generalized weighted Shapley values. Leveraging this characterization, Gkatzelis et al.
(2016) analyzed this family of cost-sharing protocols and showed that the PoA achieved by the
unweighted Shapley value is optimal for a large family of network cost-sharing games.

Other papers on the design and analysis of cost-sharing protocols include the work of Harks and
von Falkenhausen (2014), who focused on capacitated facility location games, Gairing et al. (2015)
who proved tight bounds for general cost-sharing mechanisms, Marden and Wierman (2013), who
considered a utility maximization model, and Harks et al. (2018), who considered a model that
imposes some constraints over the portions of the cost that can be shared among the agents. Also,
Harks and Miller (2011) studied the performance of several cost-sharing protocols in a setting where
each player can declare a different demand for each resource.

The PoS has received less attention than the PoA in terms of designing mechanisms that seek
to optimize it by leveraging the network’s structure or information about the participating agents.
Instead, the PoS has been studied for specific classes of omniscient cost-sharing mechanisms, such as
fair cost-sharing and weighted Shapley values. Beginning with the directed network formation game,
Anshelevich et al. (2008) proved tight logarithmic bounds for the directed network formation game
with fair cost-sharing. Subsequently, Kollias and Roughgarden (2015) showed tight PoS bounds for
the class of weighted Shapley values. Various works study fair cost-sharing in the more challenging
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undirected model for network formation games. For broadcast games (where all nodes are terminals
for players who originate at the same root) a (large) constant upper bound was given by Bilò et al.
(2013b). For multicast games (where all players have the same root but not all nodes are player
terminals) the best known upper bound is O(log n/ log log n) (Li, 2009), where n is the number of
players. In general networks, the upper bound is O(log n), which follows by (Anshelevich et al.,
2008). The best known lower bounds for the various models are small constants given by Bilò et al.
(2013a). The work of Lee and Ligett (2013) and Freeman et al. (2016) presented evidence that
constant upper bounds are likely in multicast and general games. Going beyond network formation
games, Christodoulou and Gairing (2016) prove asymptotically tight bounds on the PoS in games
with polynomial edge cost functions.

Finally, there are several other models in which cost-sharing has played a central role. For ex-
ample, Moulin and Shenker (2001) focused on participation games, while Moulin (2008) and Mosk-
Aoyama and Roughgarden (2009) studied queueing games. Caragiannis et al. (2017) recently also
pointed out some connections between cost-sharing mechanisms and the literature on coordination
mechanisms, which started with the work of Christodoulou et al. (2009) and led to several papers
focusing on scheduling games from a designer’s perspective (Immorlica et al., 2009; Azar et al.,
2015; Caragiannis, 2013; Abed and Huang, 2012; Kollias, 2013; Cole et al., 2015; Christodoulou
et al., 2014; Bhattacharya et al., 2014). Just like the research on cost-sharing mechanisms, most of
the work on coordination mechanisms studies how the PoA varies with the choice of local scheduling
policies on each machine (i.e., the order in which to process jobs assigned to the same machine).

Our work is also related to the design of learning-augmented algorithms which leverage predic-
tions from machine-learned models. The underlying goal is to design algorithms that gracefully
degrade as the prediction error increases and still achieve non-trivial worst-case guarantees. Several
recent papers study optimization problems in this context. Lykouris and Vassilvitskii (2018) study
such algorithms for the caching problem, Gollapudi and Panigrahi (2019) and Anand et al. (2020)
focus on rent or buy, Purohit et al. (2018) on scheduling, Bhaskara et al. (2020) on online learning,
Medina and Vassilvitskii (2017) on reserve price optimization, and Hsu et al. (2019) on frequency
estimation. More recently Azar et al. (2022) focus on a collection of graph problems and Agrawal
et al. (2022) on the design of strategyproof mechanisms with predictions.

2 Preliminaries

We consider two classes of games played on an undirected graph G = (V,E) by a set of players
N = {1, . . . , n}, corresponding to the set of users. In these games, each player i ∈ N needs to
choose a path in G that connects a designated source s (which is the same for all players) to a
terminal ti (which may be different for each player). Each edge e ∈ E is characterized by a cost
function ce : N → R+, where ce(`) is the cost of the edge e when the load on the edge, i.e., the
number of player using it, is `. The cost function for every edge e satisfies ce(0) = 0, i.e., no cost
is induced on e unless some player uses it. The first class of games that we consider is symmetric
series parallel network games, where every player i ∈ N has the same terminal t and the graph
G is series-parallel (series-parallel graphs are defined recursively using two simple composition
operations; see Section 3 for a formal definition.) In this class of games, we allow the cost function
of each edge to be an arbitrary non-decreasing function. Note that this includes the well-studied
class of scheduling games, which can be captured using a multigraph with just two vertices, s and
t, and multiple parallel links connecting them (where each edge corresponds to a machine). The
second class of games that we consider is multicast network formation games, where the graph can
be arbitrary and each agent can have a different terminal ti, but the cost ce(`) of each edge e ∈ E
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is equal to some edge-specific constant, ce, for any load ` > 1.

Strategy Profile In all games, let Pi be the set of all possible strategies for player i, i.e., the set
of paths between the vertices that player i wants to connect. In the network formation games that
we consider, this set can be different for each player, but the series-parallel class game is symmetric,
meaning that every player has the same strategy set Pi. In the special case of scheduling games,
the strategies are single edges (singleton games) and Pi = E for all i. A pure strategy profile is
given by p = (p1, p2 . . . , pn), where pi ∈ Pi is the path chosen by each player i ∈ N .

Cost-Sharing Protocol Let Se(p) = {i ∈ N : e ∈ pi} be the set of players using edge e under
strategy profile p, and let `e(p) = |Se(p)| be the load on edge e. The cost of e in this allocation is
ce(`e(p)), and this cost needs to be covered by the set Se(p) of players using it. In this paper we
design cost-sharing methods, i.e. protocols that decide how the cost of each edge will be distributed
among its users. Formally, a cost-sharing protocol Ξ defines, at each strategy profile p, a cost share
ξie(p) for each i ∈ N and e ∈ E. For player i with e /∈ pi, we have ξie(p) = 0, so only the players
using an edge are responsible for its cost. We denote the total cost share of player i in p as:

ξi(p) =
∑
e∈E

ξie(p).

A cost-sharing protocol is budget-balanced if for every edge e and profile p we have
∑

i∈N ξie(p) =
ce(`e(p)), i.e., the cost shares that the protocol distributes to the players using an edge adds up to
exactly the cost of the edge.

Ordered Protocol An ordered protocol is a priority-based cost-sharing protocol that is defined
as follows. Given an ordering π of the players and a strategy profile p, the amount that the ordered
protocol charges each player i for each edge e is

ξie(p) = ce(`
<i
e (p) + 1)− ce(`<ie (p)),

where `<ie (p) is the number of players using e that precede player i in order π. In other words, if
we assumed that the players of Se(p) arrive one at a time according to the ordering π, each player
i can be thought of as increasing the cost of edge e by ce(`

<i
e (p) + 1) − ce(`<ie (p)) and is charged

that marginal cost.

Classes of Games We aim to design protocols that yield efficient outcomes in all games
within a class of games. Formally, a class of network games Γ = (N ,G, C,Ξ) comprises a universe
of players N , a universe of graph G, whose cost functions are chosen from the set C, and a cost
sharing protocol Ξ. A game Γ ∈ Γ then consists of a graph G ∈ G with cost functions from C, a
set of players N ∈ N , and the cost sharing protocol Ξ.

Pure Nash Equilibrium (PNE) The goal of every player is to minimize her total cost share.
Therefore, different cost-sharing protocols would lead to different classes of games and possibly very
different outcomes. The efficiency of a game, thus, crucially depends on the choice of the protocol.
To evaluate the performance of a cost-sharing protocol, we measure the quality of the pure Nash
equilibria in the game that it induces. A strategy profile p is a pure Nash equilibrium (PNE) of a
game Γ if for every player i ∈ N who uses path pi in p, and every alternative path p′i ∈ Pi, we have

ξi(p) = ξi(pi,p−i) 6 ξi(p
′
i,p−i),

where p−i denotes the vector of strategies for all players other than i. This expression suggests
that in a PNE no player can decrease her cost share by unilaterally deviating from path pi to p′i
if all other players’ strategies remain fixed. A PNE is a natural prediction regarding the outcome
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of the game, but not all games are guaranteed to possess a PNE. To address this issue, prior work
on cost-sharing (as well as this paper) focuses on the design of stable protocols, i.e., ones that they
induce games with at least one PNE for every possible graph and set of players.

Price of Anarchy (PoA) To evaluate the efficiency of a strategy profile p, we use the total
cost c(p) =

∑
e∈E ce(`e(p)), and we quantify the performance of the cost-sharing protocol using

the price of anarchy measure. Given a cost-sharing protocol Ξ, the price of anarchy (PoA) of the
induced class of games Γ = (N ,G, C,Ξ) is defined to be the worst-case ratio of equilibrium cost to
optimal cost over all games in Γ. Let Eq(Γ) be the set of pure Nash equilibria and F (Γ) be the set
of all pure strategy profiles of the game Γ, then

PoA(Γ) = sup
Γ∈Γ

maxp∈Eq(Γ) c(p)

minp∗∈F (Γ) c(p∗)
.

Overcharging In addition to budget-balanced protocols, we also consider mechanisms that
may use overcharging. In effect, these mechanisms define a modified cost function ĉe(`) > ce(`) for
all e, ` and then apply a budget-balanced protocol on these modified functions. As a result, the
social cost of a given strategy profile p may be increased from c(p) to ĉ(p) =

∑
e∈E ĉe(`e(p)). For

these protocols, we measure the quality of the equilibria using the new costs, but we still compare
their performance to the optimal solution based on the original cost functions:

PoA(Γ) = sup
Γ∈Γ

maxp∈Eq(Γ) ĉ(p)

minp∗∈F (Γ) c(p∗)
.

Informational Assumptions In this paper we focus on the design of resource-aware cost-
sharing protocols with predictions. The prediction is a forecast on the set of players, specifically the
cardinality of N for symmetric series parallel network games and the set of terminals for multicast
network games. The information available to the cost-sharing protocol of each edge is: the set of
players using the edge, the structure of the network, the cost functions, and the prediction. The
protocol does not know the realized set of players not using it or the strategies they have selected.

3 Games with General Cost Functions over Series-Parallel Networks

In this section we study the impact of predictions in a class of symmetric games with general
cost functions over series-parallel graphs. The graph has a designated source s and a designated
terminal t, and all users need to connect from s to t. This is a significant generalization of the class
of scheduling games, which is captured by a multigraph of just two vertices s and t connected by
multiple parallel edges (note that for any such multigraph we can construct an equivalent graph
without parallel edges, where for each edge (s, t) of the original multigraph we introduce a new
vertex w and two edges (s, w) and (w, t)). Even for the special case of scheduling games, prior
work has shown that no budget-balanced cost-sharing mechanism can achieve a PoA better than
O(log n) (Harks and von Falkenhausen, 2014), even with full information (i.e., if it knows the set
of users). Without information regarding the number of users, no cost-sharing mechanism can
achieve a PoA better than O(

√
n), even with overcharging, and the best known PoA upper bound

is O(n) (Christodoulou et al., 2017).
Our main result in this section is a resource-aware mechanism with overcharging that does not

know the number of users, but is enhanced with a prediction n̂ regarding this number. We prove
that the PoA of this mechanism is at most min{4(δ + 1), 4n}, where δ = |n− n̂| is the prediction
error. This implies a PoA of 4 if the prediction is accurate, it maintains the best known PoA of O(n)
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no matter how bad the prediction is, and it also provides a major improvement if the prediction is
inaccurate but the error is not too large. Notably, in contrast to prior work that imposes structural
restrictions on the types of cost functions considered, our results work for general non-decreasing
cost functions.

To define how our mechanism shares the cost generated on each edge of the series-parallel
graph, we first (in Section 3.1) define an online algorithm that determines how a sequence of
requests should be directed through the network, if we did not know what the total number of
requests (we provide more details regarding why the use of an online algorithm is desirable in
that section). This algorithm, combined with a prediction n̂ regarding the number of users, allows
us to define a “threshold” on the number of users that we should expect on each edge of the
network, assuming that the prediction is correct. Then (in Section 3.2), as a warm-up, we start
by focusing on cost-sharing for the special case of parallel-link graphs. We design a cost-sharing
mechanism that applies a penalty if the number of users on an edge exceeds that threshold. Then
(in Section 3.3), we extend this cost-sharing idea to the more demanding class of instances involving
general series-parallel graphs.

Series-Parallel Graphs A series-parallel graph (SPG) is constructed by performing a (not nec-
essarily unique) sequence of series and parallel compositions of smaller SPGs, starting from the
basic SPG, which is a single edge (s, t). We refer to s as the source and t as the sink.

� Given two SPGs C1 and C2 with sources s1, s2, and sinks t1, t2, we form a new SPG C by
merging s1 and s2 into one source s, and merging t1 and t2 into a new sink, t. This is known
as the parallel composition of C1 and C2.

� Given two SPGs C1 and C2 with sources s1, s2, and sinks t1, t2, we form a new SPG C by
merging t1 and s2 and letting s = s1 be the new source and t = t2 be the new sink. This is
known as the series composition of C1 and C2.

3.1 Online Algorithm

In this section we present an online algorithm for sequentially and myopically allocating players to
paths of a series-parallel network, connecting the source to the sink. This algorithm is a crucial
component for the design of our cost-sharing mechanisms both for scheduling games (parallel-
link) and general series-parallel graphs. Specifically, this centralized algorithm is used as a guide
regarding the outcome that our decentralized cost-sharing mechanisms aim to implement as a Nash
equilibrium. We first provide some intuition regarding the benefits of using an online algorithm as
a guide, rather than directly aiming for the optimal solution.

The Benefits of Using an Online Algorithm Note that, if we trust that the prediction n̂
will always be accurate, we can easily enforce an optimal outcome: since the mechanism knows the
graph and the cost functions, it can compute the optimal strategy profile when n̂ players are in the
system, which we denote by OPT(n̂), and this strategy profile would determine how many players
should be using each edge of the graph. If we let `∗e be the predicted optimal load assigned to each
edge e, then the cost-sharing mechanism could penalize any player exceeding the `∗e threshold on
any edge e by charging them an arbitrarily large cost. As a result, if the prediction is correct, the
optimal strategy profile would be the only equilibrium, leading to a PoA of 1.

However, what if the prediction was actually inaccurate and the actual number of players n
is less than the predicted number of players n̂? In that case, the resulting Nash equilibria of the
mechanism described above can be arbitrarily bad. For example, consider the multigraph with
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two vertices s and t and two parallel edges, connecting these two vertices. Given three constants
a1 � a2 � a3, let the cost function of the top edge be c1(`) = a1 if ` 6 n̂−1 and c1(`) = a3 if ` > n̂,
and the cost function of the bottom edge be c2(`) = a2 for any ` > 1. Then, the optimal assignment
OPT(n̂) assuming the total number of players is n̂ would have all players using the bottom edge,
but if the actual number of players n is smaller than that, they should all use the top edge. To
enforce the OPT(n̂) outcome and achieve optimal consistency, the aforementioned protocol would
heavily penalize any players using the top edge. As a result, if n < n̂, the players would either be
restricted to using the bottom edge, or they would be forced to suffer an unnecessary penalty, both
of which would lead to high PoA.

The main difficulty is that the optimal assignment OPT(n), i.e., the way in which the players are
allocated to paths in this assignment, can change a lot even with small changes in n. As a result, a
mechanism that tries to enforce the optimal assignment is bound to be very sensitive to prediction
errors. To overcome this obstacle, we follow the approach of Gkatzelis et al. (2021) and, rather
than aiming to enforce the optimal outcome, we instead aim to enforce the outcome of an online
algorithm which may be suboptimal, but is much more “well-behaved”. Specifically, the outcome
of an online algorithm does not change radically as a function of the number n of arriving users: an
online algorithm decides how to assign each arriving user irrevocably, without knowing how many
other users would arrive in the future. Therefore, if `e(n̂) is the load that the online algorithm
would assign to each edge e if n̂ players arrive, then `e(n) 6 `e(n̂) for all n 6 n̂. This way, if the
actual number of players is less than what was predicted, restricting these users to a load of no
more than `e(n̂) for each edge e would still permit a relatively efficient assignment, namely the
assignment with load `e(n) on each edge.

In the rest of this subsection we define an online algorithm and prove that the assignment A(n)
that the algorithm outputs, when n users arrive, always approximates the optimal solution within
a factor 4 (Theorem 3), i.e., it has competitive ratio maxG,n {c(A(n))/c(OPT(n))} = 4.

Online Algorithm Definition To simplify the description of the online algorithm, without loss
of generality we normalize the cost functions so that the cost of OPT(1) is 1 (this can be achieved
by multiplying all cost functions by the same constant). For each k ∈ N, let nk = max{q ∈ N :
c(OPT(q)) < 2k} be the largest number of players such that the optimal social cost for assigning
these players remains less than 2k; due to the normalization, n0 = max{q ∈ N : c(OPT(q)) = 0}.
Using this definition, let `∗ke denote the number of players using edge e in the optimal allocation
when the total number of players is nk.

When the qth user arrives, our algorithm finds the smallest value k such that for some path p,
for all edges e ∈ p, the load so far is less than `∗ke and assigns one arbitrary of those paths to the
user. The algorithm then increments the loads `e for every edge e on the selected path by one and
moves on to the next player. A formal description is provided as Algorithm 1 below.

Algorithm 1: GoWithTheFlow Online Algorithm

q ← 0 // Initialize counter for the number of players

`e ← 0 for each edge e ∈ G // Initialize all loads to zero

while there exist more unassigned players do
q ← q + 1
kq ← min{k ∈ N | ∃p ∈ P : `e < `∗ke,∀e ∈ p}
pq ← any p ∈ P : `e < `∗kqe

,∀e ∈ p // Choose any path that respects `∗kqe

`e ← `e + 1 for all e ∈ pq // Assign the player to the chosen path

This online algorithm, generalizes an algorithm that Gkatzelis et al. (2021) introduced in the
context of parallel-link graphs. The main difficulty in generalizing this algorithm beyond parallel-
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link graphs is the fact that in series-parallel graphs each path may need to use multiple edges
to connect the source to the sink. Therefore, the feasibility of allocating the paths in an online
fashion becomes significantly more complicated. In fact, as we discuss in Section 5, using the same
approach on a “Braess paradox” graph (which is just slightly more complicated than a series-paralel
graph) can run into trouble. In the rest of this subsection, we first prove Lemma 1, which allows
us to verify the feasibility of the algorithm (Corollary 2), and then we prove that the algorithm’s
competitive ratio is 4 (Theorem 3). Due to space limitations, we defer the proofs of Lemma 1 and
Corollary 2 to Appendix A.

Lemma 1. Given a series-parallel graph and any k and k′ (where k > k′ > 1), let O and A′ be any
two assignments of k and k′ players, respectively, to paths from s to t in the graph. Then, there
always exists an allocation A of k players such that for any edge e,

� `(Ae) > `(A′e) and

� `(Ae) 6 max{`(A′e), `(Oe)} for any edge e,

where `(A′e), `(Oe), and `(Ae) are the number of players routed via e in A′, O and A, respectively,

We give the following corollary of Lemma 1 with respect to GoWithTheFlow. We then use
it to bound the competitive ratio of GoWithTheFlow.

Corollary 2. For any q 6 nk, the kq value computed by GoWithTheFlow is at most k.

Theorem 3. The GoWithTheFlow online algorithm for allocating flows over series parallel
graphs guarantees a competitive ratio of 4.

Proof. Let n be the actual number of players, and let k ∈ N be the minimum value such that
n 6 nk. By Corollary 2, we have that

c(A(n)) 6
k∑
i=1

OPT(ni) < 2k+1,

while the optimal cost is OPT(n) > 2k−1, otherwise k wouldn’t be minimum, leading to a competitive
ratio of less than 2k+1/2k−1 = 4.

3.2 Cost-Sharing Mechanism with Predictions for Games with Parallel-link

We first analyze the class of parallel-link graphs as a warm-up. In a parallel-link graph, there are
two vertices s and t and multiple parallel edges connecting them. Each player needs to pick one
of these edges and a cost-sharing mechanism determines how the cost induced on each edge is to
be shared among the players that use it. In deciding how to share that cost, a resource-aware
mechanism knows the cost function of every edge in the graph, but not the actual number of users
n. In this subsection, we propose a resource-aware mechanism that is enhanced with a prediction
n̂ regarding the total number of users, which allows us to achieve stronger PoA bounds.

Our cost-sharing mechanism uses the prediction n̂, along with the GoWithTheFlow algo-
rithm, to determine the cost that each user is responsible for. It first simulates what the GoWith-
TheFlow algorithm would do if the number of users is, indeed, n̂, which gives rise to the assignment
A(n̂) with a load of ˆ̀

e on each edge e. Then, in any strategy profile where the number of users on
an edge e exceeds ˆ̀

e, the mechanism penalizes these users, so that this strategy profile will not be
an equilibrium when the prediction is correct, i.e., n = n̂. Specifically, if the prediction is correct,
then there must exist another edge e′ whose load in this strategy profile is at most ˆ̀

e′ − 1, which
means that any penalized user can unilaterally deviate to this edge and avoid the penalty.
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Cost-Sharing Mechanism Let ˆ̀
e be the load assigned to edge e in the allocation A(n̂) and let

W = c(A(n̂)) + ε for some arbitrarily small ε > 0. To capture the penalties that the mechanism
imposes, we define the new cost functions ĉ for each edge e as follows:

� If `e 6 ˆ̀
e (no penalties case), then ĉe(`e) = ce(`e).

� If `e > ˆ̀
e (penalties case), then ĉe(`e) = max{ĉe(`e − 1) +W, ce(`e))}.

Then, given this adjusted cost function ĉ and an arbitrary ordering π over the users, we use the
ordered protocol (see Section 2) to share the adjusted cost of each edge among its users.3 Note
that for any edge e, if `e 6 ˆ̀

e, the protocol is budget-balanced. On the other hand, if `e > ˆ̀
e, then

the last `e − ˆ̀
e users of the edge (according to π) suffer a cost at least W (because this is defined

as the minimum marginal increase of ĉ for additional load beyond ˆ̀
e). Due to space limitations,

we omit the proof of the underprediction case, the complete proof is included in Appendix B.

Theorem 4. Our cost-sharing mechanism is stable and, given a prediction with error δ = |n̂−n|, it
guarantees a price of anarchy of at most min{4(δ + 1), 4n}.

Proof. We show that for any PNE p in the game induced by our cost-sharing mechanism:∑
i∈N

ξi(p) 6 4(δ + 1) · c(OPT(n)) and
∑
i∈N

ξi(p) 6 4n · c(OPT(n)) .

First, note that the stability of the mechanism, i.e., the PNE existence guarantee, is directly
implied by the fact that we use an ordered protocol for sharing the modified cost (Gopalakrishnan
et al., 2014). We now proceed to prove the price of anarchy bound by considering two cases,
depending on whether the predicted number of players is higher than the ones that actually arrived
(overprediction) or lower (underprediction). In what follows, `e is the load of edge e under p.

Overprediction case: n̂ > n. We first show that in p, `e 6 ˆ̀
e for any edge e (recall that ˆ̀

e is
the load assigned to edge e in the allocation A(n̂)). Assume for contradiction that for some edge
e, we have `e > ˆ̀

e. This implies that there exists an edge e′ where `e′ < ˆ̀
e′ , since n̂ > n. Then

consider the highest ranked player i on e, her payment is at least W = c(A(n̂)) + ε. However, she
can decrease her cost by moving to edge e′, where her charge is at most

ce(`e + 1) 6 ce(ˆ̀
e) 6 c(A(n̂)) < W.

Since such unilateral deviation exists, the outcome cannot be a PNE, contradicting our assumption.
Now suppose that in p some player i chooses an edge e such that `e > `e(A(n)). Note that

ξi(p) 6 c(A(n)), otherwise she can reduce her cost by moving to another edge e′ such that `e′ <
`e′(A(n)) (there is at least one, since at least one user deviated from A(n)). Now since in any PNE
`e 6 ˆ̀

e, for any edge e, there are at most min{δ, n} deviations from A(n). Therefore the total cost
in p is, ∑

i∈N
ξi(p) 6 c(A(n)) +

∑
i:pi /∈A(n)

ξi(p) 6 (δ + 1) · c(A(n)) 6 4(δ + 1) · c(OPT(n)).

similar arguments give the results of the underprediction case.
3For this we may consider a global ordering π over the universe N of players. For any instance of the game with

a set of players N ∈ N , this global ordering implies an ordering over the players in N that are actually participating.
Note that this ordering π can also be chosen at random, or it can be updated periodically to ensure a fair treatment
of the players ex-ante, or in the long run, respectively.
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3.3 Cost-Sharing Mechanism with Predictions for Series-Parallel Networks

Now, using the intuition developed in the more tractable case of parallel-link graphs, we extend our
results to general series-parallel graphs. In doing so, we need to overcome a few non-trivial obstacles.
For example, unlike the parallel-link case, the strategies of the users are now not singleton, i.e., a
path may contain more than one edges. As a result, if we apply a penalty on all of the edges on
some user’s path, this can accumulate, leading to PoA bounds that are proportional to the length
of the paths. To avoid this issue, we carefully use the structure of the graph and the flows allocated
by the GoWithTheFlow, and ensure that the penalties are distributed across the network.

Cost-Sharing Mechanism Using the GoWithTheFlow algorithm, we derive the allocation
A(n̂) for n̂ players. Let c(AC(n̂)) denote the cost of the allocation A(n̂) restricted to a connected
component C of the graph that forms a series-parallel subgraph. We first define a constant WC

for each component C iteratively by following the decomposition of graph G. To start, we define
WG = c(AG(n̂)) + ε for an arbitrarily small value ε > 0. Suppose now that for some component
C, WC > c(AC(n̂)). If C is constructed by the parallel composition of C1 and C2, then we define
WC1 = WC2 = WC . And if C is constructed by the series composition of C1 and C2, then we define
WCi = WC · c(ACi(n̂))/c(AC(n̂)), for i ∈ {1, 2}. The constant WC for each component C satisfies
the following two properties:

1. WC > c(AC(n̂)).

2. For any path p connecting the endpoints sC , tC of C,
∑

e∈pWe = WC .

We now update the cost functions with WC . Let ˆ̀
C be the number of players using component

C under allocation A(n̂) (i.e., the number of players whose path contains a sub-path connecting
the source of C to the sink of C), where n̂ is the prediction. Each edge e is a component, so this
also defined the edge load ˆ̀

e. We define the new cost functions ĉe for each edge e as follows:

� if `e 6 ˆ̀
e, ĉe(`e) = ce(`e)

� if `e > ˆ̀
e, ĉe(`e) = max(ĉe(`e − 1) +We, ce(`e)).

We then use the simple ordered protocol with the new cost function by considering an arbitrary
global ordering π of players.

For the rest of the section we denote by `C the actual number of players using component C
under some PNE. Note that for any component C, if `C 6 ˆ̀

C , the protocol is budget-balanced,
and if `C > ˆ̀

C , each extra player using C pays at least WC by definition. Due to space limitations,
we omit the proofs of the lemmas and underprediction case, the complete proof is included in
Appendix B.

Theorem 5. Our cost-sharing mechanism for series-parallel networks is stable and, given a prediction
error δ = |n− n̂|, it guarantees a price of anarchy of at most min{4(δ + 1), 4n}.

Proof. We show that for any PNE p in the game induced by our cost-sharing mechanism:∑
i∈N

ξi(p) 6 4(δ + 1) · c(OPT(n)) and
∑
i∈N

ξi(p) 6 4n · c(OPT(n)) .

First, note again that the stability of the mechanism is directly implied by the fact that we use
an ordered protocol for sharing the modified cost. We now proceed to prove the price of anarchy
bound by considering two cases, depending on whether the predicted number of players is higher
than the ones that actually arrived (overprediction) or lower (underprediction).
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Overprediction case: n̂ > n We first show that for all components C, we have `C 6 ˆ̀
C .

Assume for contradiction that this is not the case and, following the decomposition of G, let C1

be the first component such that `C1 >
ˆ̀
C1 . For this to happen, some component C is constructed

by the parallel composition of C1 and some C2, where `C 6 ˆ̀
C and in turn `C2 <

ˆ̀
C2 . We use the

following two lemmas to show that at least one player can decrease her cost by deviating from C1

to C2.

Lemma 6. Consider any two allocations A and A′ with the same number of players, k. If for some
component C we have `(AC) > `(A′C), there exists a path p from the source of C to its sink, such
that `(Ae) > `(A′e) for all e ∈ p.

Lemma 7. For any component C, if `C − ˆ̀
C > 0, then the `C − ˆ̀

C preceding players according to
the ordering π using C are charged We for every edge e that they use in C.

By Lemma 7, there exist a player i using C1 that is charged at least WC1 for using C1 (by
definition of WC1). By Lemma 6, there exists a path p in C2 such that `e < ˆ̀

e for all e ∈ p. By the
definition of WC , we have that WC1 = WC > c(AC(n̂)) > c(AC2(n̂)). Since player i can deviate to
path p and pay less, such allocation is not a PNE which is a contradiction.

Having proved that in any PNE, only paths of A(n̂) are used, we will bound the induced cost by
using the property of the GoWithTheFlow algorithm: that is, if `∗C to be the number of players

using some component C in A(n), ˆ̀
C > `∗C . We define δC = ˆ̀

C − `∗C > 0 to be the additional
number of players in the PNE that are routed via C in A(n̂) comparing to A(n); note that δG = δ.
We further define dC = max{`C − `∗C , 0} to be the excess of the players using C compared to A(n)
(obviously dG = 0), and DC to be the set of the dC lowest ranked players using C (obviously
DG = ∅). The following lemma is a key lemma in order to conclude the proof for this case.

Lemma 8. For the PNE p, let pC be the allocation p restricted to component C. Then, for any
component C,

c(pC) 6 min{δC + 1, `C} · c(AC(n)) +
∑
i∈DC

ξi(pC).

Applying Lemma 8 to the whole graph G, and noticing that DG = ∅, δG = δ and `G = n∑
i∈N

ξi(p) = c(p) 6 min{δ + 1, n} · c(A(n)) 6 4 min{δ + 1, n} · c(OPT(n)),

where the last inequality comes from Theorem 3. similar arguments give the results of the under-
prediction case.

4 Multicast Games: General Networks and Constant Cost Functions

We now move on to study multicast network cost-sharing games which, unlike the games in the
previous section, are not symmetric: each player i has a given terminal vertex ti which determines
the player’s set of strategies, i.e., the paths from the source s to ti. In this regard, a complete
prediction does not only forecast the number of players; it also needs to specify where the players
will appear, i.e., their terminal vertices. Prior work has shown that without any information
regarding the players and terminals, the PoA of any budget-balanced resource-aware mechanism is
Ω(log n) (Christodoulou and Sgouritsa, 2019). In this section, we design cost-sharing mechanisms
that are enhanced with predictions regarding the participating players’ terminal locations. More
specifically, the input to the mechanism is the graph G = (V,E) with edge weights ce,∀e ∈ E, and
a subset of the vertices H ⊆ V that corresponds to the predicted terminals for the players.
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Our mechanisms achieve a constant price of anarchy when the prediction is correct (i.e., con-
stant consistency), while maintaining a worst-case price of anarchy upper bound of O(log n) (which
matches the best possible worst-case price of anarchy of any resource-aware mechanism), irrespec-
tive of how imprecise the prediction may be (i.e., asymptotically optimal robustness). In fact, we
prove a general price of anarchy upper bound as a function of the prediction error, showing that
the mechanism’s performance gracefully transitions from a constant to log n as the error increases.
Our mechanisms process the underlying graph and the prediction and they produce an ordering
over all the vertices in the graph. Then an ordered cost-sharing protocol is used based on this
ordering of the vertices. We remark that any ordered cost-sharing protocol, and therefore ours, is
stable, i.e., it always admits a PNE, (Gopalakrishnan et al., 2014).

First, as a warm-up, we consider the case where the number of players in the system is known
but their terminal locations are not. However, due to space limitations, we deferred this section to
Appendix C. In this case, the mechanism is provided with a predicted terminal location for each
agent and the error is the aggregate metric distance of each true terminal from the predicted one.
In the rest of this section, we focus on the more demanding case where even the number of players
in the system is unknown.

4.1 Cost-Sharing Mechanism for an Unknown Set of Players

Rather than assuming that the predicted terminals’ cardinality is always correct, as we did in the
warm-up discussion of Appendix C, we now consider predictions with estimates on both the number
of players (terminals) and their possible locations, which may or may not be accurate. That is, the
designer is given a set of H corresponding to potential terminals, which may not be the same as
the set of the actual terminals R that appear, in terms of both size (i.e., |R| may not be equal to
|H|) and terminals’ location. We adopt and generalize the framework for measuring the error in
online graph algorithms defined in (Azar et al., 2022), which captures both error types: the number
of terminals that may not predicted correctly and the distance between the predicted location and
the actual terminal. In order to compute the error, we have the option to associate each actual
terminal with a predicted point or to keep it “unmatched”. Each terminal may be associated with
at most one predicted point (the one that is the closest to it4), but we allow each predicted point
to be associated with more than one terminal (note that this model is more general than the one
considered in Azar et al. (2022) where each predicted point may be associated with at most one
terminal). Similarly to actual points, we may keep some predicted points “unmatched”.

Formally, let R′ ⊆ R be the set of terminals that are associated with some predicted point and
H ′ ⊆ H be the set of predicted points that are associated with at least one terminal. We denote
by η(t) the predicted point for terminal t ∈ R′ and R′(u) the set of terminals associated with the
predicted point u ∈ H ′. For a given assignment η (and the corresponding subsets R′ and H ′), the
prediction error is defined as a tuple (D, δ). D is the distance metric error of R′ (defined in the
same way as in the previous section) i.e., D =

∑
ti∈R di, where di = d(ti, η(ti)) and d(·, ·) denotes

the shortest distance on the weighted graph. δ is the number of unmatched points (terminals and
predictions), i.e., δ = |R\R′|+ |H \H ′|, those can be seen as outliers. Note that for any assignment
η we have a different tuple (D, δ); we remark that our results hold for every assignment η and,
therefore, any error pair (D, δ). See Figure 1 below for an illustration of the process.

Note that if |H| = |R|, i.e., the number of players is predicted correctly, this bound is at least
as good as the bound we achieved when the set of players is known (Appendix C): we can just use
the minimum weighted matching of players to predictions as the assignment η. However, our new

4If for some reason we wanted a different association, our result would still follow because the distance from any
other predicted point is bounded by the one to the closest point.
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bound can be even stronger, since we can also keep some players unassigned, or assigned to the
same prediction.
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Figure 1: An assignment (dashed lines) of all vertices to the predicted vertex (black). The solid
lines represent a minimum spanning tree on the predicted terminals. The order of the vertices that
are matched with the same predicted vertex are arbitrarily assigned.

Cost-Sharing Mechanism. Our cost sharing protocol defines an ordering π over all the vertices
in G, and then uses the ordered cost-sharing protocol implied by this ordering. Therefore, the
crucial aspect of this protocol is the way in which the ordering π is defined.

To define the ordering π, let G′ be the metric closure of the initial graph G, and let G′[H ∪{s}]
be the subgraph of G′ induced by the predicted set of terminals H and the source s. Then, let
MST(H) be the minimum spanning tree of G′[H ∪{s}] and let πH be the order in which the vertices
in H are visited by a depth-first-search traversal of MST(H), starting from the source, s. Now, using
the ordering πH over the vertices in H, we define an ordering π over all the vertices in G as follows.
We first assign each vertex v ∈ V to the vertex η(v) ∈ H that is the closest to it (breaking ties
arbitrarily) and we let π be any order over all vertices in V that respects the order of the assigned
predicted points according to πH , i.e., for any two vertices u, u′ ∈ H such that u precedes u′ in πH ,
and any two vertices v, v′ ∈ V such that η(v) = u and η(v′) = u′, we have v preceding v′ in π. The
vertices assigned to the same predicted terminal are arbitrary ordered. The order π then yields an
ordered cost-sharing protocol Ξ, where the cost of each edge is charged in full to one of its users:
the one that precedes all of its other users according to π.

We are now ready to give our main theorem for this setting by considering the above cost-sharing
mechanism. Due to space limitations we defer the proofs of the lemmas to Appendix D.

Theorem 9. If D is the set of all (D, δ) pairs that correspond to some assignment η, our cost-
sharing mechanism for multicast network formation games guarantees price of anarchy at most

min

{
min

(D,δ)∈D

{
4 +

6D

OPT
+ log δ

}
, log n

}
.

Proof. Suppose any assignment η along with the corresponding error pair (D, δ). This gives an
order π of all vertices. The log n term follows directly from (Imase and Waxman, 1991) as in the
proof of Theorem 12.

Let p be any PNE induced by our cost-sharing mechanism. For simplicity we denote the cost-
share of each player i with terminal t as ξt(p) instead of ξi(p) and we denote dt = d(t, η(t)).5 In

5We may assume without loss of generality that there exists at most one player with terminal at each vertex. If
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p, each player i would connect their terminal t to the component formed by the players preceding
her in π via shortest path in order to minimize her cost. If t′ is any terminal preceding t in π,
(t, η(t), η(t′), t′) is a path connecting t with t′ and therefore with the component containing s. We
can bound the cost share of player i as follows

ξt(p) 6 dt + d(η(t), η(t′)) + dt′ . (1)

Note that our distance error measurement D captures the first and last terms in the right hand
side. For the rest of the proof we aim to bound the cost of the second term.

s

Figure 2: The figure shows the construction of GH′ . The red, solid vertices are the set H \H ′ and
the dashed lines are the ones that we remove from the MST(H) in order to get the disconnected
graph GH′ that is formed by the four shown connected component.

Starting from the MST(H), for each prediction outliers v ∈ H \H ′, we remove the edge between
v and its parent in MST(H). By doing so we separated the minimum spanning tree into at most
|H \H ′| connected components disconnected from the source s.See Figure 2 for an illustration of
this process. We denote the discounted graph as GH′ .

We first bound the cost of d(η(t), η(t′)) for those η(t) that are not the first according to πH
inside the connected component that they belong to (Lemma 10). We then would use it to bound
the cost-shares of all players in R′ that are not the first according to the global ordering of the
actual terminals π in all connected components (Claim 11). For the rest |H \H ′| players who are
the first according to π for each of the connected component6, we will again use the competitive
ratio of the Online Steiner tree problem (Imase and Waxman, 1991).

We now focus on η(t) that are not the first terminal according to πH inside their connected
component. Note that the graph GH′ contains all the vertices of H ′. For each connected component
X of GH′ , let H ′(X) ⊆ H ′ be the vertices of X that belongs to H ′. Moreover, let fH′(X) ∈ H ′(X) be
the vertex in X that is first according to πH and for every other vertex v ∈ H ′(X), let pv ∈ H ′(X)
be the vertex that precedes v according to πH truncated to the vertices H ′(X).

Lemma 10.
∑

X∈GH′

∑
v∈H′(X),v 6=fH′(X)

d(v, pv) 6 2c(MST(H ′)) .

We now bound the cost-share of all players in R′ that are not the first according to the global
ordering of the actual terminals π in all connected components. For each connected component
X of GH′ , let R′(X) ⊆ R′ be the set of all terminals associated with some vertex in H ′(X), i.e.,
R′(X) = ∪v∈H′(X)R

′(v) (recall that R′(v) are the terminals associated with v ∈ H ′, i.e., that

more than one players have their terminal on the same vertex, all players but the first one among them according to
π would follow the first one and be charged zero. This means that the outcome would be exactly the same even if
those players weren’t there.

6Note that for the connected component that contains the source, this player is player 0 with terminal on the
source.
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their closest predicted point is v). Moreover, let fR′(X) be the first terminal among R′(X) (or
equivalent among R′(fH′(X))) according to π. For every other terminal t ∈ R′(X), let pt ∈ R′(X)
be the terminal that precedes t according to π truncated to the vertices R′(X). We now bound the
cost-share for all terminals that are not the first according to π in any R′(X).

Lemma 11.
∑

X∈GH′

∑
t∈R′(X),t6=fR′(X)

ξt(p) 6 2c(MST (H ′)) + 2D .

We now bound the cost-shares of the rest of the terminals in R′, by using the competitive ratio
of the online Steiner tree problem (Imase and Waxman, 1991). Note that the optimum solution
for connecting those terminals is upper bounded by OPT, since those are a subset of the total set of
terminals. Given that there are at most δH = |H \H ′| connected components in GH′ ,∑

X∈GH′

ξfR′(X)
(p) = log δH · OPT .

Combining with Lemma 11 we get:∑
t∈R′

ξt(p) 6 log δH · OPT + 2c(MST(H ′)) + 2D . (2)

Note that c(MST(H ′)) 6 2OPT + 2D. To see this, we compare the minimum Steiner tree of H ′,
OPT(H ′), with the Steiner tree of H formed by the union of OPT (the minimum Steiner tree on R)
and the shortest path between t and η(t) for all t ∈ R′, we get:

c(MST(H ′)) 6 2OPT(H ′) 6 2

(
OPT +

∑
t∈R′

d(t, η(t))

)
= 2OPT + 2D,

Therefore (2) can be rewritten as:∑
t∈R′

ξt(p) 6 (log δH + 4)OPT + 6D . (3)

Similarly, we can use the competitive ratio of the online Steiner tree problem (Imase and
Waxman, 1991) to bound the cost-shares of the terminals in R \ R′. For δR = |R \ R′|, we have
that ∑

t∈R\R′
ξt(p) 6 log δR · OPT .

Combining this inequality with (3), implies the theorem.

5 Conclusion and Future Directions

In this work we extend the learning-augmented framework toward the design of decentralized mech-
anisms in strategic settings. This framework has recently received a lot of attention in the algorithm
design literature and was very recently also extended to mechanism design. In our setting, the in-
formation that the designer is missing is due to the decentralized nature of the system, and the
goal of this paper is to evaluate the extent to which predictions could overcome this obstacle. Our
main results show that augmenting decentralized mechanisms with predictions can lead to major
improvement in the price of anarchy bounds achievable in both scheduling games and multicast
network formation games. In the first class of games, we allow general cost functions, but restrict
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the structure of the graph, while in the latter we allow a general graph structure and restrict the
types of cost functions. The most compelling direction for future research is to bridge this gap and
to evaluate the extent to which resource-aware mechanisms with predictions can achieve good PoA
bounds for more general combinations of graph structures and cost functions.

A first natural direction for future research would be to extend our results on series-parallel
graphs to more general graphs. However, even if we just slightly expand this family of graphs
to include the famous “Braess Paradox” graph, the approach of Section 3.1 runs into trouble. To
explain this obstacle, we provide an example of such a graph in Figure 3, where the notation {1, k2}
on edge (s, a) implies that the cost of that edge is 1 if a single player uses it and k2 if two players
use it, where k is some arbitrarily large value (and the costs are defined similarly for all other
edges). If we tried to design an analogous online algorithm with a bounded competitive ration for
this graph, the first player to arrive would need to be assigned to the path s→ a→ b→ t for a cost
of 3. If not, then the cost of any alternative path would be at least k+ 1 and the competitive ratio
of the algorithm for the single player case would be proportional to k (and, hence, unbounded). If
the algorithm commits to this assignment and a second player arrives, the algorithm would need
to suffer a cost of at least k2, no matter what path it chooses (since there will be at least two
players using either edge (s, a) or (b, t)). This, once again, would lead to an unbounded competitive
ratio, since the optimal solution for two players would be to schedule one of them through the path
s→ a→ t and the other one through s→ b→ t, leading to a cost of 2k + 2.

s t

a

b

{ 1,
k
2
}

{k, k}

{1, 1}

{k, k}

{ 1,
k
2
}

Figure 3: An example of the difficulty in extending our results beyond series-parallel networks.

However, the main reason why we used an online algorithm as a guide to begin with is that it
provided a threshold ˆ̀

e for each edge e such that if we enforce this threshold as a capacity constraint
on the number of players that use this edge, we can still achieve a good approximation even if the
true number of agents n is less than the predicted number of agents n̂. The GoWithTheFlow
algorithm goes one step further and commits to a myopic assignment of players to specific paths
which is useful in our analysis (in identifying unilateral deviations in Lemma 6), but may not be
necessary. We could, instead, use the same online algorithm structure to determine these capacities
without myopically committing to an assignment of players to paths. This way we can maintain
the benefits discussed in Section 3.1 without running into the obstacles that we observed for the
Braess Paradox graph, above. Running this algorithm on the graph above for two players would
yield a capacity of 1 on all of its edges, which would be consistent with the optimal assignment.
In fact, this would maintain the competitive ratio of 4 much more broadly, but implementing its
assignment as a Nash equilibrium (as we did in this paper) would require a new argument for the
existence of unilateral deviations, as well as a different way of sharing the edge costs.

An alternative direction for future research would be to extend our results on multicast network
formation games to the multicommodity setting, where each player i may also have a different source
si (apart from a different sink ti). However, we already know from Chen and Roughgarden (2009)
that the PoA of any cost-sharing mechanism in this setting is Ω(log n), even if the mechanism
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is omniscient, i.e., even if it has full information regarding the agents (which is stronger than a
resource-aware mechanism with predictions). This observation points to an interesting distinction
between the cost-sharing setting that we study in this paper and some recent work on graph
algorithms by Azar et al. (2022): at a high level, the multicast setting that we study here bares
some similarities with the online Steiner tree problem, and the multicommodity setting is analogous
to the online Steiner forest problem. However, although the results of Azar et al. (2022) on the online
Steiner tree problem are in line with the guarantees that we achieve in this paper, in their work
they also achieve a constant consistency for the online Steiner forest problem, which is impossible
for a cost-sharing mechanism in the multicommodity problem.
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A Missing Analysis from Section 3.1

Lemma 1. Given a series-parallel graph and any k and k′ (where k > k′ > 1), let O and A′ be any
two assignments of k and k′ players, respectively, to paths from s to t in the graph. Then, there
always exists an allocation A of k players such that for any edge e,

� `(Ae) > `(A′e) and

� `(Ae) 6 max{`(A′e), `(Oe)} for any edge e,

where `(A′e), `(Oe), and `(Ae) are the number of players routed via e in A′, O and A, respectively,

Proof. Consider C be any connected component of the original graph that forms a series-parallel
subgraph, and let `(A′C), `(OC), and `(AC) be the number of players that the allocations of A′, O,
and A, respectively, route through C (i.e., the total number of players whose assigned paths contain
a sub-path connecting the source of C to the sink of C). We will define `(AC) for every component
C (and hence for all edges) iteratively starting from the series parallel graph G and following its
decomposition. For G, we define `(AG) = `(OG) = k > k′ = `(A′G). Suppose now that the lemma’s
statements are true for some component C, i.e., `(AC) > `(A′C) and `(AC) 6 max{`(A′C), `(OC)},
and let C1 and C2 be the two components whose composition led to C.

� If C is constructed by the series composition of C1 and C2, we set `(AC1) = `(AC2) = `(AC).
It is a property of series-parallel graphs that if a path passes through C it should pass through
both C1 and C2. Therefore, `(A′C1

) = `(A′C2
) = `(A′C) and `(OC1) = `(OC2) = `(OC). Hence,

if the two statements were true for C, they should also be true for C1 and C2.

� If C is constructed by the parallel composition of C1 and C2, `(AC1) and `(AC2) are chosen
such that

`(A′C1
) 6 `(AC1) 6 max{`(A′C1

), `(OC1)},

`(A′C2
) 6 `(AC2) 6 max{`(A′C2

), `(OC2)},

`(AC1) + `(AC2) = `(AC).

To verify that such values exist, we first clarify that it is a property of series-parallel graphs
that if a path passes through C it should pass through either C1 or C2. Therefore, `(A′C) =
`(A′C1

) + `(A′C2
) and `(OC) = `(OC1) + `(OC2). Then, note that

`(A′C1
) + `(A′C2

) = `(A′C) 6 `(AC),

by the lemma’s first statement on C. Additionally,

max{`(A′C1
), `(OC1)}+ max{`(A′C2

), `(OC2)} > max{`(A′C1
) + `(A′C2

), `(OC1) + `(OC2)}
= max{`(A′C), `(OC)}
> `(AC) ,

by the lemma’s second statement on C. So, there exist values `(AC1) and `(AC1) that are
between the extreme values `(A′C1

),max{`(A′C1
), `(OC1)} and `(A′C2

),max{`(A′C2
), `(OC2)},

respectively that sum up to `(AC). .

Corollary 2. For any q 6 nk, the kq value computed by GoWithTheFlow is at most k.
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Proof. Let A′ be the allocation of GoWithTheFlow on q− 1 players and and O be the optimum
allocation for nk players. Lemma 1 states there exist an allocation A of nk > q players with
`(Ae′) > `(A′e′) for all edges e′. This means that in A there exist nk − (q − 1) > 1 paths for which
each edge e has load `(Ae) > `(A′e). By Lemma 1 `(Ae) 6 max{`(A′e), `(Oe)} = `(Oe). Note that it
cannot be that max{`(A′e), `(Oe)} = `(A′e) because this would mean that `(Ae) = `(A′e). Overall,
we have that, given allocation A′, there exists at least one path p such that `(A′e) < `(Oe) for all
e ∈ p, resulting in kq 6 k.

B Complete Proofs of Theorem 4 annd Theorem 5

Theorem 4. Our cost-sharing mechanism is stable and, given a prediction with error δ = |n̂−n|, it
guarantees a price of anarchy of at most min{4(δ + 1), 4n}.

Proof. We will show that for any PNE p in the game induced by our cost-sharing mechanism, it
holds that: ∑

i∈N
ξi(p) 6 4(δ + 1) · c(OPT(n)) and

∑
i∈N

ξi(p) 6 4n · c(OPT(n)) .

First, note that the stability of the mechanism, i.e., the PNE existence guarantee, is directly
implied by the fact that we use an ordered protocol for sharing the modified cost (Gopalakrishnan
et al., 2014). We now proceed to prove the price of anarchy bound by considering two cases,
depending on whether the predicted number of players is higher than the ones that actually arrived
(overprediction) or lower (underprediction). In what follows, `e is the load of edge e under p.

Overprediction case: n̂ > n. We first show that in p, `e 6 ˆ̀
e for any edge e (recall that ˆ̀

e is
the load assigned to edge e in the allocation A(n̂)). Assume for contradiction that for some edge
e, we have `e > ˆ̀

e. This implies that there exists an edge e′ where `e′ < ˆ̀
e′ , since n̂ > n. Then

consider the highest ranked player i on e, her payment is at least W = c(A(n̂)) + ε. However, she
can decrease her cost by moving to edge e′, where her charge is at most

ce(`e + 1) 6 ce(ˆ̀
e) 6 c(A(n̂)) < W.

Since such unilateral deviation exists, the outcome can not be a PNE, which contradicts our as-
sumption.

Now suppose that in p some player i chooses an edge e such that `e > `e(A(n)). Note that
ξi(p) 6 c(A(n)), otherwise she can reduce her cost by moving to another edge e′ such that `e′ <
`e′(A(n)) (there is at least one, since at least one user deviated from A(n)). Now since in any PNE
`e 6 ˆ̀

e, for any edge e, there are at most min{δ, n} deviations from A(n). Therefore the total cost
in p is, ∑

i∈N
ξi(p) 6 c(A(n)) +

∑
i:pi /∈A(n)

ξi(p) 6 (δ + 1) · c(A(n)) 6 4(δ + 1) · c(OPT(n)).

Underprediction case: n̂ < n. Analogously, we first show that in p, A(n̂) is fully utilized, i.e.,
`e > ˆ̀

e for all e. Assume for contradiction, that for some edge e, we have `e < ˆ̀
e. This implies that

there is an edge e′ such that `e′ > ˆ̀
e′ , since n > n̂. Then consider the lowest ranked player i on e′,

her current payment is at least W , whereas if she were to move to edge e, her new cost would be

ce(`e + 1) 6 ce(ˆ̀
e) 6 c(A(n̂)) < W.
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Since such unilateral deviation exist, the outcome again cannot be a PNE which is a contradiction.
We now consider the cost of any player i with an edge e such that `e > `e(A(n̂)). Since A(n̂)

is fully used, we know that there are exactly δ such users. Consider any such user i and the edge
they pick e. If `e 6 `e(A(n)), we have ξi(p) 6 max(W, c(A(n))) 6 c(A(n)) + ε. If `e > `e(A(n)),
then there exist another edge e′ such that `e′ < `e′(A(n)), since

∑
e∈E `e(A(n)) = n. Then, we also

have ξi(p) 6 max(W, c(A(n))) 6 c(A(n)) + ε, otherwise player i can deviate to e′ and pay at most
max(W, c(A(n))). Since we can make ε arbitrarily small, for notational simplicity we henceforth
assume that ξi(p) 6 c(A(n)). Therefore the total cost of any PNE is,∑

i∈N
ξi(p) 6 c(A(n̂)) +

∑
i,pi /∈A(n̂)

ξi(p) 6 (δ + 1) · c(A(n)) 6 4(δ + 1) · c(OPT(n)) ,

where the last inequality comes from Theorem 3.
At the same time, since there are only n users and we showed that each user pays less than

c(A(n)) for any strategy she picks, we also have:∑
i∈N

ξi(p) 6 n · c(A(n)) 6 4n · c(OPT(n)).

Theorem 5. Our cost-sharing mechanism for series-parallel networks is stable and, given a prediction
error δ = |n− n̂|, it guarantees a price of anarchy of at most min{4(δ + 1), 4n}.

Proof. We will show that for any PNE p in the game induced by our cost-sharing mechanism, it
holds that: ∑

i∈N
ξi(p) 6 4(δ + 1) · c(OPT(n)) and

∑
i∈N

ξi(p) 6 4n · c(OPT(n)) .

First, note again that the stability of the mechanism is directly implied by the fact that we use
an ordered protocol for sharing the modified cost. We now proceed to prove the price of anarchy
bound by considering two cases, depending on whether the predicted number of players is higher
than the ones that actually arrived (overprediction) or lower (underprediction).

Overprediction case: n̂ > n We first show that, for all components C, we have `C 6 ˆ̀
C .

Assume for contradiction that this is not the case and following the decomposition of G, let C1 be
the first component such that `C1 >

ˆ̀
C1 . For this to happen, some component C is constructed

by the parallel composition of C1 and some C2, where `C 6 ˆ̀
C and in turn `C2 <

ˆ̀
C2 . We use the

following two lemmas to show that there exist at least one player that can decrease her cost by
deviating from C1 to C2.

Lemma 6. Consider any two allocations A and A′ with the same number of players, k. If for some
component C we have `(AC) > `(A′C), there exists a path p from the source of C to its sink, such
that `(Ae) > `(A′e) for all e ∈ p.

Proof. First note that if C is a basic SPG, i.e., if C is an edge, then the statement is trivially
true. Now we use mathematical induction by following the construction of C. Suppose that the
statement holds for SPG C1 and C2, and consider the new SPG C constructed by them:

� If C is constructed by the series composition of C1 and C2, it holds that `(AC1) = `(AC2) =
`(AC) and `(A′C1

) = `(A′C2
) = `(A′C). If `(AC) > `(A′C) it must be that `(AC1) > `(A′C1

) and
`(AC2) > `(A′C2

). By our induction hypothesis, there exist a path from s1 to t1 (the source
and sink, respectively, of C1) and a path from s2 to t2 (the source and sink, respectively, of
C2). Furthermore, since the series composition merges vertex t1 with s2, we therefore have a
path p from s to t such that `(Ae) > `(A′e) for all e ∈ p.
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� If C is constructed by the parallel composition of C1 and C2, it holds that `(AC1) + `(AC2) =
`(AC) and `(A′C1

) + `(A′C2
) = `(A′C). If `(AC) > `(A′C), it cannot be that both `(AC1) 6

`(A′C1
) and `(AC2) 6 `(A′C2

). W.l.o.g. `(AC1) > `(A′C1
), and by our induction hypothesis

there exist path p from s1 to t1 such that `(Ae) > `(A′e) for all e ∈ p, which is also connecting
the source and sink for the new SPG C by parallel construction.

Lemma 7. For any component C, if `C − ˆ̀
C > 0, then the `C − ˆ̀

C preceding players according to
the ordering π using C are charged We for every edge e that they use in C.

Proof. Recall that `C and ˆ̀
C are the number of players using component C in some PNE and under

A(n̂), respectively. First note that if C is a basic SPG, i.e., if C is an edge, then the statement
is trivially true. Now we use mathematical induction by following the construction of C. Suppose
that the statement hold for SPG C1 and C2 and consider the new SPG C constructed by them:

� If C is constructed by the series composition of C1 and C2, then the same set of players are
using both C1 and C2 and `C1 = `C2 = `C . So the induction hypothesis holds for C.

� If C is constructed by the parallel composition of C1 and C2, then each player that is charged
by We for at least one edge in C is charged We for all edges he uses in C. Suppose that a
player i that is not one of the `C − ˆ̀

C lowest priority players using C is charged We for each
edge of his path in C. Then, the number of players that have higher priority than i is strictly
less than ˆ̀

C and therefore, by Lemma 6, there exists a path p in C where for each edge e ∈ p
the number of those players is strictly less than ˆ̀

e. If player i deviates to p he would avoid
any high charge We, which contradicts the fact that `C is the load in some PNE. So, the
induction hypothesis holds for C as well.

By Lemma 7, there exist a player i using C1 that is charged at least WC1 for using C1 (by
definition of WC1). By Lemma 6, there exists a path p in C2 such that `e < ˆ̀

e for all e ∈ p. By the
definition of WC , we have that WC1 = WC > c(AC(n̂)) > c(AC2(n̂)). Since player i can deviate to
path p and pay less, such allocation is not a PNE which is a contradiction.

Having proved that in any PNE, only paths of A(n̂) are used, we will bound the induced cost by
using the property of the GoWithTheFlow algorithm: that is, if `∗C to be the number of players

using some component C in A(n), ˆ̀
C > `∗C . We define δC = ˆ̀

C − `∗C > 0 to be the additional
number of players in the PNE that are routed via C in A(n̂) comparing to A(n); note that δG = δ.
We further define dC = max{`C − `∗C , 0} to be the excess of the players using C compared to A(n)
(obviously dG = 0), and DC to be the set of the dC lowest ranked players using C (obviously
DG = ∅). The following lemma is a key lemma in order to conclude the proof for this case.

Lemma 8. For the PNE p, let pC be the allocation p restricted to component C. Then, for any
component C,

c(pC) 6 min{δC + 1, `C} · c(AC(n)) +
∑
i∈DC

ξi(pC).

Proof. We will show the claim by mathematical induction by composing the graph G. First note
the following two properties:

1. If a component C is constructed by the series composition of C1 and C2, `C = `C1 = `C2 ,
δC = δC1 = δC2 , dC = dC1 = dC2 and DC = DC1 = DC2 .

2. If a component C is constructed by the parallel composition of C1 and C2, `C = `C1 + `C2 ,
δC = δC1 + δC2 .
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The statement of the lemma is true for the base case which is any single edge because for any
edge e, c(pe) = ce(`e) 6 ce(`

∗
e) +

∑de
i=1(ce(`

∗
e + i) − ce(`∗e + (i − 1))) = ce(`

∗
e) +

∑
i∈De

ξi(pe) 6
min{δe + 1, `e} · c(Ae(n)) +

∑
i∈De

ξi(pe). Suppose that the statement holds for two components
C1 and C2.

� If C is constructed by the series composition of C1 and C2, then by using the above properties,

c(pC) = c(pC1) + c(pC2)

6 min{δC + 1, `C} · (c(AC1(n)) + c(AC2(n))) +
∑
i∈DC

(ξi(pC1) + ξi(pC2))

= min{δC + 1, `C} · c(AC(n)) +
∑
i∈DC

ξi(pC).

� If C is constructed by the parallel composition of C1 and C2, suppose that i ∈ DC1 and
i /∈ DC , meaning that player i is not one of the dC lowest ranked players using C. Then,
the number of players that have higher priority than i and use C2 is strictly less than `∗C2

,
otherwise i ∈ DC . Therefore, by Lemma 6, there exists a path p′ in C2 where for each edge
e ∈ p′ the number of those players is strictly less than `∗e. If player i deviated from pC to p′

he would be charged at most c(AC2(n)) for this segment (for notational simplicity we omit ε
here). Since p is a PNE ξi(pC1) 6 c(AC2(n)).

Similarly for every player i with i ∈ DC2 and i /∈ DC , it holds ξi(pC2) 6 c(AC1(n)). Note
that dC1 6 δC1 since `C1 6 ˆ̀

C1 , and dC1 6 `C1 . Similarly dC2 6 δC2 and dC2 6 `C2 . Overall,

c(pC) = c(pC1) + c(pC2)

6 min{δC1 + 1, `C1} · c(AC1(n)) + dC1c(AC2(n)) +
∑

i∈DC1
∩DC

ξi(pC1)

+ min{δC2 + 1, `C2} · c(AC2(n)) + dC2c(AC1(n)) +
∑

i∈DC2
∩DC

ξi(pC2)

6 min{δC1 + δC2 + 1, `C1 + `C2} · c(AC1(n))

+ min{δC2 + δC1 + 1, `C2 + `C1} · c(AC2(n)) +
∑
i∈DC

ξi(pC)

= (min{δC + 1, `C} · c(AC(n)) +
∑
i∈DC

ξi(pC).

This completes the proof.

Applying Lemma 8 to the whole graph G, and noticing that DG = ∅, δG = δ and `G = n∑
i∈N

ξi(p) = c(p) 6 min{δ + 1, n} · c(A(n)) 6 4 min{δ + 1, n} · c(OPT(n)),

where the last inequality comes from Theorem 3.

28



Underprediction case: n̂ < n Analogously, we first show that all paths in A(n̂) are used, i.e.,
for all component C, we have `C > ˆ̀

C . Assume for contradiction that this is not the case and
following the decomposition of G, let C1 be the first component such that `C1 <

ˆ̀
C1 . For this to

happen, some component C is constructed by the parallel composition of C1 and some C2, where
`C > ˆ̀

C and in turns `C2 >
ˆ̀
C2 . By Lemma 7 and Lemma 6, there exists a player i on C2 and

a path p in C1 such that player i can decrease her cost by deviating to path p. Therefore the
allocation is not a PNE which is a contradiction.

Then for any PNE p, by Lemma 7, the δ lowest ranked players, let S be this set of players, are
charged We for every edge e they use, and the n̂ higher ranked players use A(n̂). Considering any
player i ∈ S and any component C that i uses, if `e 6 `∗e for all edges that i uses in C, then i is
charged at most c(AC(n)) for the edges in component C (for notational simplicity we omit ε here).

Let now C1 be any maximal component that i uses such that `C1 > `∗C1
. For this to happen,

some component C is constructed by the parallel composition of C1 and some C2, where `C 6 `∗C
and in turns `C2 < `∗C2

. By Lemma 6, there exists a path p′ in C2 such that `e < `∗e for all e ∈ p′.
If any player deviated from C1 to p′, he would be charged at most c(AC2(n)). Since p is a PNE,
overall, ξi(p) 6 c(A(n)). Summing over all players,∑

i∈N
ξi(p) 6 c(A(n̂)) +

∑
i∈S

ξi(p) 6 (δ + 1) · c(A(n)) 6 4(δ + 1) · c(OPT(n)).

At the same time, since there are only n users and we showed that each user pays less than
c(A(n)) for any strategy she picks, we also have:∑

i∈N
ξi(p) 6 n · c(A(n)) 6 4n · c(OPT(n)).

C Warm-Up: Cost-Sharing Mechanism for a Known Set of Players

We first consider the setting where the designer is aware of the graph, the edge costs, and the player
identities, however, she only has a prediction on the location of the terminal for each player. That
is, for each player i, the designer has a prediction η(ti) ∈ V regarding what player i’s terminal is
(this prediction may be incorrect, i.e., η(ti) could be different than ti). Let H be the set of the
predicted vertices and R be the set of the actual terminals, i.e. H = {η(ti) | ti ∈ R}. To simplify
our presentation, we assume that there will always be one player, player 0, on the source s who is
correctly predicted. Note that this has no impact on the cost of any solution. When the number
of players is correctly predicted, the main source of error is the fact that the predicted location of
each player can be far away from the actual location. One natural way to quantify this error is to
sum up the metric distances between the predicted and the actual location. Let d(·, ·) denotes the
shortest distance on the weighted graph and di = d(ti, η(ti)). We define the distance metric error
D =

∑
ti∈R di. We further let OPT denote the cost of the optimal solution (which is the minimum

Steiner tree on the set of terminals R union the source s).

Cost-sharing Mechanism. Our cost sharing protocol defines an ordering π overall the vertices
in G, and then uses ordered cost-sharing protocol implied by this ordering. Therefore, the crucial
aspect of this protocol is the way in which the ordering π is defined.

To define the ordering π, let G′ be the metric closure of the initial graph G, and let G′[H ∪{s}]
be the subgraph of G′ induced by the predicted set of terminals H and the source s. Then, let
MST(H) be the minimum spanning tree of G′[H ∪{s}] and let πH be the order in which the vertices
in H are visited by a depth-first-search traversal of MST(H), starting from the source, s. This vertex
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order πH can be mapped to an order π of the players, i.e. the first player according to π has a
terminal t such that η(t) is the first vertex according to πH . In turn, the order π defines an ordered
cost-sharing protocol Ξ where each player is responsible for the cost of an edge if and only if she is
the first in π among edge’s users. See Figure 4 below for an illustration of the process.

s

1

2

3

4

5 6

7

8

9 10

11

12

Figure 4: An example of a minimum spanning tree for the set of predicted vertices H, vertices are
indexed in order of πH .

The following theorem gives an upper bound on the price of anarchy of the above cost-sharing
mechanism in this setting.

Theorem 12. Given a prediction with distance error D, our cost-sharing mechanism for the mul-
ticast network formation game guarantees a price of anarchy of at most

min

{
4 +

6D

OPT
, log n

}
.

Proof. First note that the log n term follows directly from the competitive ratio of the greedy
algorithm for the online Steiner tree problem (Imase and Waxman, 1991). The greedy algorithm
takes as input some sequence of terminals and connects them one after the other to the already
formed component via shortest paths. The competitive ratio is the comparison of the outcome of
the greedy mechanism for the worst case order with the minimum Steiner tree. Our cost-sharing
mechanism (in fact any ordered cost-sharing protocol) considers some sequence of the terminals
given by their order. Then, it is always in the players’ best interest to connect to the component
already formed by previous players via shortest paths, as the greedy algorithm does. Therefore,
the competitive ratio of the greedy algorithm for the online Steiner tree problem provides an upper
bound on the price of anarchy of any ordered cost-sharing protocol.

We next show that for any PNE p in the game induced by our cost-sharing mechanism, it holds
that: ∑

i

ξi(p) 6 2D + 2(2D + 2OPT) = 6D + 4OPT.

For the rest of the section we use the convention that t0 = η(t0) = s, and we re-index the players
according to the order π computed via our mechanism.

In any PNE p, each player i would connect ti to the component formed by the players preceding
her in π via the shortest path in order to minimize her cost. Since (ti, η(ti), η(ti−1), ti−1) is a path
connecting ti with ti−1 (and therefore it connects ti with the component containing s), we can
bound the cost share of player i as follows

ξi(p) 6 di + d(η(ti), η(ti−1)) + di−1 .
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Let T (H) be an Eulerian tour after doubling the edges of MST(H), summing over all the players we
get: ∑

i

ξi(p) 6 2
∑
ti∈R

di +
∑
ti∈R

d(η(ti), η(ti−1)) (4)

6 2D + c(T (H)) (5)

6 2D + 2c(MST(H)) , (6)

where the inequalities comes from the fact that the total distance between the predictions are upper
bounded by the cost of the Eulerian tour c(T (H)), which is no more than two times the cost of the
minimum spanning tree c(MST(H)).

We use OPT(H) to denote the optimal network, i.e., the minimum Steiner tree on H. Recall
that OPT is the minimum Steiner tree on R. Consider a Steiner tree connecting H formed by the
union of OPT and the shortest paths between each ti ∈ R and η(ti). Then, we have:

c(MST(H)) 6 2OPT(H) 6 2OPT + 2D , (7)

where the first inequality comes from the fact that any minimum spanning tree is a 2 approximation
to the minimum Steiner tree. After combining (6) with (7) we get that the total cost is∑

i

ξi(p) 6 2D + 2(2D + 2OPT) = 6D + 4OPT.

Note that, if the predictions are accurate, i.e., di = 0 for all i ∈ [n], the price of anarchy
is at most 4. If they are inaccurate, our upper bound grows linearly as a function of the total
prediction error, but it never exceeds log n, even if the predictions are arbitrarily bad. Therefore,
our results achieve asymptotically optimal consistency and robustness guarantees, along with a
smooth transition from one to the other.

D Missing Analysis from Section 4

Lemma 10.
∑

X∈GH′

∑
v∈H′(X),v 6=fH′(X)

d(v, pv) 6 2c(MST(H ′)) .

Proof. First note that each connected component X of GH′ is a tree and more specifically a subtree
of MST(H). Therefore, if we double the edges of X, there is an Eulerian tour T (X) such that the first
appearance of the vertices coincides with the order πη truncated to the vertices H ′(X). Therefore,∑

v∈H′X ,v 6=fH′(X)

d(v, pv) 6 c(T (X)) 6 2c(X).

Summing over all connected components of GH′ we get∑
X∈GH′

∑
v∈H′(X),v 6=fH′(X)

d(v, pv) 6 2
∑

X∈GH′

c(X) = 2c(GH′). (8)

Note that the weight of the disconnected graph GH′ is at most the weight of the minimum spanning
tree for the set H ′ on the metric closure of the graph, MST(H ′). To see this, let E be the set of all
edges connecting each vertex v ∈ H \H ′ with its parent in MST(H). Adding E to MST(H ′) forms a
spanning tree on H. We have:

c(GH′) + c(E) = c(MST(H)) 6 c(MST(H ′)) + c(E),
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c(GH′) 6 c(MST(H ′)). (9)

Combining (8) and (9) the lemma follows.

Lemma 11.
∑

X∈GH′

∑
t∈R′(X),t6=fR′(X)

ξt(p) 6 2c(MST (H ′)) + 2D .

Proof. Consider any connected component X of GH′ , and apply inequality (1) for each terminal
t ∈ R′(X) with t 6= fR′(X) by considering pt as the terminal that appears before t in π. That is,

ξt(p) 6 dt + d(η(t), η(pt)) + dpt . (10)

Note that each predicted point v ∈ H ′(X) may be associated with many terminals, R′(v). For
all those terminals but the first one in π, d(η(t), η(pt)) = 0 because η(t) and η(pt) are both v.
Moreover, if t is the first terminal in R′(v) according to π, then pt is the last terminal in R′(pv)
according to π. Therefore by summing over all terminals in R′(X) but fR′(X), we get:∑

t∈R′(X),t 6=fR′(X)

d(η(t), η(pt)) =
∑

v∈H′(X),v 6=fH′(X)

d(v, pv) .

Since in inequality (10) the distance of each terminal t ∈ R′(X) from η(t) appears at most twice,
we therefore have ∑

t∈R′(X),t6=fR′(X)

ξt(p) 6 2
∑

t∈R′(X)

dt +
∑

v∈H′(X),v 6=fH′(X)

d(v, pv) .

The lemma follows after summing over all connected components of GH′ and using Lemma 10.
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