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Abstract

The use of reliability methods in the framework of Bayesian model updating of structural dy-

namic models using measured responses is explored for high-dimensional model parameter spaces.

This formulation relies on a recently established analogy between Bayesian updating problems

and reliability problems. Under this framework, samples following the posterior distribution of

the Bayesian model updating problem can be obtained as failure samples in an especially devised

reliability problem. An approach that requires only minimal modifications to the standard subset

simulation algorithm is proposed and implemented. The scheme uses an adaptive strategy to

select the threshold value that determines the last subset level. Due to the basis of the formu-

lation, the approach does not make use of any problem-specific information and, therefore, any

type of structural model can be considered. Furthermore, no prior knowledge on the maximum

likelihood function value is required by the proposed scheme. The approach is combined with an

efficient parametric model reduction technique for an effective numerical implementation. The

performance of the proposed implementation is assessed numerically for a linear building model

and a nonlinear three-dimensional bridge structural model. The results indicate that the proposed

implementation represents an effective numerical technique to address high-dimensional Bayesian

model updating problems involving complex structural dynamic models.

Keywords: Bayesian analysis, Identification, Markov chain Monte Carlo, Model updating,



Reliability analysis, Structural dynamics, Subset simulation.

1. Introduction1

Model updating of structural dynamic models using measured responses has a significant num-2

ber of applications in robust structural response prediction, reliability and sensitivity analyses,3

structural control, structural health monitoring, etc. Moreover, the appropriate evaluation of the4

state of structures over their lifetime based on measurements is an important and challenging task5

in structural engineering applications [1, 2, 3, 4, 5, 6]. For a proper assessment of updated models6

all uncertainties involved in the problem need to be considered. In this regard, a fully probabilistic7

Bayesian model updating approach provides a robust and rigorous framework for model updating8

due to its ability to characterize uncertainties associated with the underlying structural dynamic9

system and update the corresponding distribution based on available data about the structural10

behavior [7, 8, 9].11

For problems of practical interest, the Bayesian approach requires the evaluation of multi-12

dimensional integrals which cannot be done analytically. One way to address this difficulty is13

to use a Gaussian approximation to the posterior probability density function by means of the14

Laplace method of asymptotic approximation [10]. This type of methods requires to identify15

the point in the uncertain parameter space which yields the maximum likelihood value and to16

evaluate the corresponding Hessian matrix of the likelihood function [11, 12]. Such approach has17

been used in the past and it is usually valid when there is a large amount of data and the model18

is globally identifiable. However, the application of this approximation faces some problems in19

practical cases when the amount of data is not sufficient or when the problem is unidentifiable20

based on the available information [13]. A more general approach is to use stochastic simulation21

methods in which samples consistent with the posterior probability density function are gener-22

ated. Some potential difficulties related to this approach are associated with the evaluation of the23

so-called evidence, which requires a high-dimensional integration over the uncertain parameter24

space. Moreover, the high probability content of the posterior probability density function fre-25

quently occupies a very small volume compared with that of the prior probability density function.26

Therefore, the required samples cannot be generated efficiently by sampling from the prior prob-27

ability density function using direct Monte Carlo simulation. To tackle the previous difficulties,28

Markov chain Monte Carlo (MCMC) methods have been proposed to solve Bayesian model up-29
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dating problems more efficiently [14, 15]. In this framework, the most well-known MCMC method30

is the Metropolis-Hastings (MH) algorithm [16, 17]. The method creates samples from a Markov31

chain whose stationary state is a specified target probability density function, which corresponds32

to the posterior distribution. Though this algorithm is quite general, its direct implementation is33

usually inefficient since the high probability content tends to concentrate in a small volume of the34

parameter space, as indicated before. To improve the effectiveness of the method, an approach35

based on the MH algorithm and simulated annealing concepts was proposed in [18]. The main36

idea is to simulate from a sequence of target probability density functions which converges to37

the posterior distribution. For each level, a kernel sampling density based on results from the38

previous level is used as global proposal distribution to simulate samples efficiently. However,39

this strategy requires a prohibitively large number of samples for higher dimensions. An effective40

method that adopts the idea as in [18] of using a sequence of intermediate distributions, called41

the transitional Markov chain Monte Carlo (TMCMC) method, was proposed in [19]. Instead of42

using kernel sampling densities, the method relies on a combination of reweighting, resampling43

and random walk strategies to obtain samples during each level. The approach is more efficient44

and, in addition, it allows the estimation of the evidence as a byproduct of the simulation process.45

However, the TMCMC method has potential problems in higher dimensions since, in such cases,46

the convergence to the target probability density function can be very slow and the corresponding47

statistical estimates can be biased [20].48

To handle high-dimensional Bayesian model updating problems of structural dynamic mod-49

els using measured responses, sampling schemes based on fictitious dynamic systems have been50

implemented [20, 21]. These methods rely on the introduction of an auxiliary dynamic system51

whose potential energy function is defined in terms of the posterior distribution of the model52

parameters, which allows to exploit the structure of the identification problem. The implemen-53

tation of this class of algorithms involves the calibration of a number of parameters associated54

with the characterization and numerical solution of the fictitious dynamic system [20, 21, 22] and,55

in addition, they unavoidably require taking derivatives of the likelihood function with respect56

to the identification parameters. Additional methods that have been suggested for this type of57

identification problems include subspace identification techniques [23] and Kalman-filtering-based58

approaches [24, 25]. Finally, another approach that in principle can handle problems involving a59

large number of uncertain parameters is based on structural reliability methods [26]. In this case,60
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the idea is to build an analogy between Bayesian updating problems and reliability problems. In61

this context, samples following the posterior distribution in the Bayesian updating problem can62

be obtained as failure samples in an equivalent reliability problem. This approach, referred to as63

BUS (Bayesian updating with structural reliability methods), has been considered in [26] where64

the posterior samples are obtained as the conditional samples in subset simulation [27, 28] at the65

highest simulation level. One of the difficulties of this approach is the proper choice of the so-called66

likelihood multiplier connected with the rejection principle [29] involved in its formulation. In this67

regard, several approaches have been suggested to address this issue. They include an approach68

based on a postprocessing step to correct the distribution of failure samples [30], an inner-outer69

subset simulation approach [31], and an approach that adaptively modifies the limit-state function70

during subset simulation [32].71

The previous procedures, which are well established, have been applied to a variety of prob-72

lems, including analytical problems with high-dimensional parameter spaces, nonlinear static sys-73

tems, reliability-based monitoring sensitivity analysis for reinforced slopes, and structural dynamic74

models with relatively few parameters [33, 34, 35]. However, studies on the effectiveness of BUS75

approaches to handle structural dynamic systems have been limited to academic-type of problems.76

Furthermore, high-dimensional Bayesian model updating of complex structural dynamic systems77

remains a significantly important challenge in the assessment and life-cycle management of existing78

structures. Thus, there is a necessity for developing not only sound theoretical algorithms to ad-79

dress this class of problems, but also the appropriate techniques for implementing such procedures80

in engineering practice. Given that dimension sustainability is efficiently handled by advanced81

simulation techniques, it is the objective of this work to propose an effective implementation of82

structural reliability methods in the context of Bayesian model updating of complex structural83

dynamic models involving measured response data and multiple uncertain parameters.84

As previously pointed out, this type of problems has not been addressed by previous contri-85

butions in the framework of BUS. Subset simulation, a well established sampling technique, is86

implemented in this work by combining some of the ideas introduced in [31, 32]. The resulting87

algorithm uses an adaptive strategy to select the threshold value that determines the last sub-88

set level, where samples beyond such threshold follow the posterior distribution of the original89

Bayesian updating problem. In this setting, only minimal modifications to the standard subset90

simulation algorithm are required. At the same time, the approach effectively avoids the neces-91
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sity of prior knowledge on the maximum value of the likelihood function, the need to redefine92

the limit-state function during each level of subset simulation, and the iterative solution of an93

inner reliability problem during the sampling process. Overall, the proposed method represents94

an effective numerical technique for the treatment of Bayesian identification problems involving95

complex, realistic and practical structural models and multiple uncertain parameters.96

The structure of the paper is as follows. In Section 2, the use of structural reliability methods97

in the framework of Bayesian model updating is reviewed. The solution of the corresponding98

reliability problem is discussed in Section 3. Implementation aspects of the proposed scheme99

are addressed in Section 4. In Section 5, example problems involving structural dynamic models100

with multiple uncertain parameters are presented to demonstrate the applicability of the proposed101

implementation. Conclusions are presented in Section 6.102

2. Background103

2.1. Bayesian Model Updating Problem104

Let θ ∈ Θ ⊂ Rnθ be the set of parameters of a model class M . The objective of model updating105

is to compute the posterior probability density function of the model parameters p(θ|M,D) using106

available data D [7, 10]. According to Bayes’ Theorem, the posterior probability density function107

of θ is given by108

p(θ|M,D) =
L(D|M,θ) p(θ|M)

P (D|M)
(1)

where L(D|M,θ) is the likelihood function, p(θ|M) is the prior probability density function of θ,109

and P (D|M) is the evidence of model class M . The likelihood function expresses the plausibility110

of observing the data D given a certain value of θ, while the prior probability density function111

represents the prior or initial belief about the distribution of θ. Moreover, the evidence of the112

model class is written as113

P (D|M) =

∫
Θ

L(D|M,θ) p(θ|M)dθ (2)

which can be used for Bayesian model class selection [36] and model averaging [37]. To simplify114

the notation, Eq. (1) is rewritten as115

p(θ|D) = P (D)−1L(θ) p(θ) (3)
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where p(θ|D) denotes the posterior probability density function, L(θ) denotes the likelihood116

function, p(θ) denotes the prior probability density function, and P (D) denotes the evidence.117

It is noted that the posterior distribution cannot be derived analytically for general cases and,118

therefore, posterior samples are usually generated by means of stochastic simulation techniques.119

Finally, in the context of the present work it is assumed that D contains input dynamic data and120

output responses from measurements on the structural system.121

2.2. Mechanical Modeling122

The class of structural systems under consideration is characterized by a multi-degree of free-123

dom model satisfying the equation of motion124

Mẍ(t) + Cẋ(t) + Kx(t) + fNL(x(t), ẋ(t), τ (t)) = f(t) (4)

where x(t) denotes the displacement vector of dimension nx, fNL(x(t), ẋ(t), τ (t)) the vector of125

nonlinear restoring forces, τ (t) the set of variables which describe the state of the nonlinear126

components, and f(t) the external force vector. The matrices M, C, and K describe the mass,127

damping, and stiffness, respectively. The evolution of the set of variables τ (t) is described by128

an appropriate nonlinear model which depends on the nature of the nonlinearity. Note that the129

previous equation of motion constitutes a dynamic system with localized nonlinearities, which can130

also be extended to other cases such as the consideration of nonlinear models for the structure.131

2.3. Likelihood Function132

Let rn(tj,θ) denote the response of interest at time tj at the nth observed degree of freedom133

predicted by the structural model corresponding to the parameters θ, and r∗n(tj) denotes the cor-134

responding measured output. The prediction and measurement errors en(tj,θ) = r∗n(tj)−rn(tj,θ)135

for n = 1, . . . , no, and j = 1, . . . , nt, where no denotes the number of observed degrees of freedom136

and nt denotes the length of the discrete time history data, are modeled as independent and identi-137

cally distributed Gaussian variables with zero mean and variance σ2 [36]. This assumption implies138

stochastic independence of the errors for different channels of measurements and for different time139

instants. In this regard, it is noted that alternative prediction error model classes can be used140

as well [38]. Using the above probability model for the prediction and measurement errors, the141

likelihood function L(θ) can be expressed as [10, 13, 36]142
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L(θ) =
1

(2πσ2)nont/2
exp

[
− 1

2σ2
J(θ)

]
(5)

where143

J(θ) =
no∑
n=1

nt∑
j=1

(r∗n(tj)− rn(tj,θ))2 (6)

is a measure-of-fit function between the measured response and the model prediction at the mea-144

sured degrees of freedom. In the context of the previous equation it is noted that different types145

of response quantities can be used to define the measure-of-fit function.146

2.4. Equivalent Reliability Problem147

As previously pointed out, simulation-based Bayesian model updating techniques such as148

Markov chain Monte Carlo methods provide a powerful computational tool for generating poste-149

rior samples. In particular, the TMCMC method has proved to be efficient in generating sam-150

ples asymptotically distributed as the posterior probability density function for low/intermediate-151

dimensional Bayesian model updating problems [19, 39, 40]. However, MCMC methods may152

encounter difficulties in connection with their efficiency and stability as the dimension of the153

problem increases. To handle these potential difficulties, a framework that converts the genera-154

tion of posterior samples into the task of obtaining failure samples associated with an equivalent155

reliability problem has been suggested and explored in [26, 30, 31, 32].156

The basic idea of Bayesian updating with structural reliability methods, as suggested in [26],157

is to transform the identification problem into a reliability problem. To this end, define a failure158

event F in the form159

F = {u < cL(θ)} = {cL(θ)− u > 0} (7)

where u is an auxiliary random variable uniformly distributed on [0, 1] with probability density160

function I[0,1](u), and θ is the set of uncertain model parameters with probability density function161

p(θ). Note that the distribution of the model parameters associated with the failure event stated162

in Eq. (7) is actually the prior distribution of the Bayesian model updating problem defined in163

Eq. (1), i.e., p(θ). The constant c > 0 corresponds to the so-called likelihood multiplier, which164

must satisfy the inequality [29]165
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cL(θ) ≤ 1 or c−1 ≥ L(θ), for all θ ∈ Θ (8)

If failure samples distributed as p(θ)I[0,1](u), conditional on the failure event F can be generated166

by means of any simulation technique, then such samples follow the posterior distribution p(θ|D).167

In addition, the evidence of the model class, P (D), can be also computed in this framework as168

P (D) = c−1PF (9)

where PF is the probability of failure event F and c−1 satisfies Eq. (8). More details on the169

derivation of the previous results can be found, e.g., in [26, 31].170

2.5. Likelihood Multiplier171

From Eq. (8) it is clear that the smallest admissible value of c−1, i.e., c−1
adm, is given by172

c−1
adm = max

θ∈Θ
L(θ) (10)

Generally, this value is not known in advance and it is numerically challenging to choose a173

likelihood multiplier that guarantees the inequality cL(θ) ≤ 1 for all θ. On the one hand, using174

a value larger than c−1
adm will give the correct posterior distribution at the expense of decreasing175

the efficiency of the sample generation process. On the other hand, using a value smaller than176

c−1
adm will lead to bias in the distribution of the samples. Thus, an appropriate choice of this177

parameter is crucial as it affects the definition of the failure event F in Eq. (7). In this regard,178

several approaches have been suggested for addressing the proper selection of the multiplier.179

They include an approach based on a postprocessing step to correct the sampling results [30], an180

inner-outer subset simulation approach [31], and an approach that adaptively modifies the limit-181

state function during subset simulation [32]. An additional discussion about these approaches182

is provided in Section 3.6. Finally, it is noted that in some cases it is possible to study the183

structure of L(θ) and derive a value of the likelihood multiplier that guarantees cL(θ) ≤ 1 [26],184

although it is not necessarily the optimal value. Clearly, the use of these approximations can185

be computationally advantageous in such particular situations. Nonetheless, the optimal value186

of the likelihood multiplier, which is associated with the maximum likelihood value, is difficult187

to determine for general cases of practical interest, as already pointed out. In this regard, an188
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alternative approach that effectively avoids the a priori definition of this quantity is described in189

the next section.190

3. Solution of Equivalent Reliability Problem191

As indicated in the previous section, any structural reliability method can be used to solve192

the equivalent reliability problem. In particular, subset simulation is of special interest since it is193

efficient and effective for handling problems involving small failure probabilities. In addition, its194

performance does not depend on the number of uncertain parameters involved in the problem, it195

is not restricted to specific types of structural systems, and its robustness and efficiency have been196

demonstrated in a wide variety of applications. This advanced simulation technique generates197

samples conditional on a sequence of intermediate failure events. Such samples are generated198

by MCMC and they gradually populate the target failure region, while the intermediate failure199

events are adaptively defined during the sampling process. In this contribution, subset simulation200

is implemented to generate failure samples associated with the equivalent reliability problem. The201

proposed technique effectively avoids a priori definitions of the likelihood multiplier, the need to202

redefine the driving variable during each simulation level, and the solution of inner reliability203

problems during the sampling process. Finally, the reader is referred to [27, 28] for a detailed204

description, from the theoretical and implementation viewpoints, of subset simulation for reliability205

analysis.206

3.1. Preliminary Observations207

As previously pointed out, subset simulation is adopted to obtain samples following the pos-208

terior distribution p(θ|D). To this end, and following some of the ideas presented in [31, 32], the209

failure event defined in Eq. (7) is first rewritten as210

F = {v(θ, u) > vth} (11)

with211

v(θ, u) = ln

(
L(θ)

u

)
, vth = ln(c−1) (12)

where ln(·) denotes natural logarithm. Note that in the previous formulation, the driving variable212

v does not depend on the value of the multiplier c. Moreover, the multiplier only affects the213
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threshold level vth and, therefore, subset simulation can be performed without the necessity of214

specifying the value of the multiplier beforehand. In principle, as long as the multiplier satisfies the215

inequality in Eq. (8), the marginal distribution of θ conditional on the failure event F = {v > vth}216

is equal to the posterior distribution p(θ|D) [26, 31, 32]. Thus, the minimum value of vth beyond217

which the samples theoretically follow the posterior probability density function is218

vthmin = ln

(
max
θ∈Θ

L(θ)

)
(13)

This value, which is generally unknown, does not affect the subset simulation procedure. In219

fact, subset simulation can be performed until the intermediate threshold of the highest level220

has passed vthmin. This is possible since the intermediate failure events in subset simulation are221

defined in terms of the driving variable values obtained during the sampling process, that is,222

their definition does not require information on the target threshold level vth. An approach that223

adaptively estimates vthmin based on the samples obtained during the different levels of subset224

simulation is described in what follows.225

3.2. Synopsis of Proposed Scheme226

Following the ideas of subset simulation, the first step (level 0) consists in drawing N sam-227

ples {θ0
i , u

0
i }, i = 1, . . . , N from the joint distribution p(θ)I[0,1](u). The likelihood function L(·)228

is evaluated at each sample and the initial threshold level of the reliability problem in Eq. (11)229

is selected as the logarithm of the maximum likelihood value, i.e., vth = ln(maxi=1,...,N L(θ0
i )).230

Thereafter, each step is performed in accordance with the standard formulation of subset sim-231

ulation with only a minor modification. At the end of each simulation level, say level k, the232

threshold level is updated based on the samples {θki , uki }, i = 1, . . . , N , obtained during such a233

level as vth ← max{vth, ln(maxi=1,...,N L(θki ))}. Based on this updating scheme, it is clear that the234

threshold vth can only increase after each iteration, providing better estimates of the optimum235

threshold level as the simulation continues. The iteration over the subset levels is performed until236

the standard stopping criterion of subset simulation is verified, that is, until the threshold associ-237

ated with the current intermediate failure event surpasses the current threshold value. It is noted238

that a similar strategy is adopted in [32], but at the limit-state function level. In such approach,239

all limit-state function values are updated at the end of each subset level.240

In the previous framework it is noted that the final value of c−1 = exp(vth), which is a stochas-241

tic quantity, corresponds to the largest likelihood value observed during the entire simulation. For242
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large N , the value of c−1 asymptotically approaches to c−1
adm, but for finite N , this parameter is243

very likely smaller than c−1
adm. However, this fact does not impede the proposed scheme to produce244

samples that follow the posterior distribution from a practical viewpoint. In this regard, the num-245

ber of samples employed in each level of subset simulation must be selected large enough to allow246

an effective exploration of the entire failure domain. Note that these samples will not necessarily247

identify the uncertain parameter values that maximize the likelihood function. Therefore, it is248

likely that the final value of c−1, which corresponds to the maximum likelihood value observed249

during the entire sampling process, is such that c−1 ≤ c−1
adm, as previously pointed out. How-250

ever, the important region of the likelihood function can be effectively explored by the proposed251

approach, as illustrated in the numerical examples presented in this contribution (see Section 5).252

3.3. Underlying Normal Space253

Regarding the numerical implementation of the proposed scheme, the reliability problem is first254

set in terms of an underlying normal space Z ⊂ Rnθ+1 of independent standard normal variables255

following the standard formulation of subset simulation [27]. The mapping between the spaces256

Z and Θ × [0, 1] can be obtained by means of several techniques [41, 42]. In fact, without loss257

of generality, the transformation between the first nθ components of z, denoted by (z)1:nθ , and θ258

can be written in terms of a transformation as θ = θ((z)1:nθ). On the other hand, the uniformly259

distributed random variable u can be written in terms of the last component of z, i.e., (z)nθ+1,260

as u = Φ((z)nθ+1), where Φ(·) is the cumulative distribution function of the standard normal261

distribution. Note that, however, an implementation of the reliability problem directly in the262

original space Θ× [0, 1] is also possible.263

3.4. Basic Procedure264

In the following, a procedure that illustrates the basic implementation of subset simulation, in265

the context of the present formulation, is provided.266

1. Define the conditional probability of the intermediate failure events p0 and the number of267

samples N . These parameters are chosen such that p0N is an integer number.268

2. Generate N samples {(z0,i), i = 1, . . . , N} by direct Monte Carlo according to the standard269

multivariate normal distribution (the subscript 0 denotes that the samples correspond to270

the unconditional level, i.e., level 0).271

3. Set k = 1 and vth = maxi=1,...,N ln(L(θ0,i)), where θ0,i = θ((z0,i)1:nθ).272
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4. Evaluate the driving variable v to obtain {v(zk−1,i), i = 1, . . . , N}. Arrange these values in273

ascending order, where v(zk−1,i) = ln(L(θk−1,i)/uk−1,i), θk−1,i = θ((zk−1,i)1:nθ), and uk−1,i =274

Φ((zk−1,i)nθ+1).275

5. Identify the [(1 − p0)N ]th largest value of the set {v(zk−1,i), i = 1, . . . , N}. In case this276

value is equal or larger than vth, set m = k, vm = vth and go to step 9. Otherwise, set the277

intermediate threshold value vk equal to the aforementioned [(1 − p0)N ]th largest value of278

the set {v(zk−1,i), i = 1, . . . , N}.279

6. The kth intermediate failure domain is defined as Fk = {z ∈ Z|v(z) > vk}. The estimate280

for P (Fk) (if k = 1) or P (Fk/Fk−1) (if k > 1) is equal to p0 by construction.281

7. By construction there are p0N samples among {(zk−1,i), i = 1, . . . , N} whose driving variable282

values are larger than vk. Starting from each of these conditional samples, the modified283

Metropolis-Hastings algorithm [27] is used to generate additional (1 − p0)N conditional284

samples that lie in Fk making a total of N conditional samples {(zk,i), i = 1, . . . , N} at level285

k.286

8. Set vaux = maxi=1,...,N ln(L(θk,i)), where θk,i = θ((zk,i)1:nθ). Update the threshold level as287

vth ← max{vth, vaux}. Return to step 4 with k ← k + 1.288

9. The failure probability is estimated as289

PF ≈ pm−1
0

1

N

N∑
i=1

IFm(zm−1,i) (14)

where {zm−1,i, i = 1, . . . , N} is the set of samples generated at the last stage of subset290

simulation (conditional level m − 1), and IFm(zm−1,i) is the indicator function of Fm, with291

IFm(zm−1,i) = 1 if zm−1,i ∈ Fm and IFm(zm−1,i) = 0 otherwise. The samples that lie in the292

target failure domain Fm follow the posterior distribution p(θ|D).293

10. The evidence is estimated as294

P (D) ≈ exp(vm)PF (15)

As indicated in step 7 of the above procedure, the modified Metropolis-Hastings algorithm [27]295

is implemented to generate conditional samples during each simulation level. In this regard, each296

component of the candidate sample is generated independently. A uniform distribution centered297

at the lead value is selected as the proposal distribution for each component. This choice, which298
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is commonly adopted in the implementation of subset simulation for reliability assessment of299

structural dynamic systems, has proven effective to handle the numerical examples presented in300

this contribution. Based on the above procedure, it is clear that the proposed approach requires301

only minimal modifications to the standard formulation of subset simulation.302

3.5. Potential Enhancements303

Several additional enhancements can be implemented to improve the performance and com-304

putational efficiency of the proposed method. For example, the acceptance rate of the sampling305

process, in the framework of the modified Metropolis-Hastings algorithm, can be controlled by306

using adaptive proposal distributions [43]. Similarly, to decrease the dependency of the gen-307

erated samples and, consequently, increase the overall performance of the scheme, resampling308

strategies for the auxiliary variable associated with the rejection sampling scheme can be consid-309

ered [32]. Actually, the previous techniques have been implemented in the present formulation.310

Additionally, alternative definitions of the proposal distribution, in the context of the modified311

Metropolis-Hastings algorithm, can improve the performance of the sampling procedure for cer-312

tain applications. Finally, variants of the basic formulation of subset simulation have also been313

proposed to improve its efficiency, e.g., [28, 44]. Certainly, such variants can also be considered in314

the framework of the present contribution.315

3.6. Remarks on Proposed and Alternative BUS Implementations316

Several approaches in the framework of BUS have been proposed. A direct implementation317

[26] and a postprocessing step to correct the final results [30] have been previously reported. Both318

methods require an initial choice of the likelihood multiplier, c, which can significantly affect their319

performance [30]. Alternatively, the approach presented in [31] iteratively updates the value of320

c in terms of the intermediate thresholds of subset simulation. The sampling process continues321

until the probability of the likelihood function exceeding the current value of c−1 is smaller than a322

user-defined tolerance. In practice, then, this approach indirectly defines the likelihood multiplier323

in terms of a certain quantile of the likelihood function. Besides, its formulation requires to solve324

an inner reliability problem in each stage of subset simulation. Finally, the approach presented325

in [32] iteratively updates the driving variable function, in the context of subset simulation, using326

the maximum observed likelihood value. The process continues until sufficient failure samples327

are obtained. Hence, the final value of c is defined using the effective support of the likelihood328

function instead of specifying it beforehand.329
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To avoid an a priori characterization of the likelihood multiplier, this work follows the strat-330

egy presented in [32]. That is, the final value of c−1 is equal to the maximum likelihood value331

observed throughout all subset simulation stages. However, to circumvent the iterative definition332

of the driving variable, the failure event is explicitly defined as in [31]. As previously pointed out,333

only minimal modifications to the standard subset simulation algorithm are needed and the iter-334

ative solution of inner reliability problems is avoided. Overall, the resulting method represents an335

alternative BUS approach which provides an effective treatment of the likelihood multiplier while336

maintaining simplicity in its formulation and implementation. This feature is particularly attrac-337

tive from a practical viewpoint, especially in the context of Bayesian model updating problems338

involving structural dynamic systems with multiple uncertain parameters.339

4. Implementation Aspects340

4.1. Initial Remarks341

The solution of the equivalent reliability problem involves a large number of model evalua-342

tions associated with the repeated evaluation of the likelihood function. In fact, this process is343

computationally very demanding due to the large number of dynamic analyses (in the order of344

thousands) required for populating the failure region. This is especially important when the com-345

putational time for performing a single dynamic analysis is significant. To cope with this difficulty,346

a number of strategies based on meta-modeling techniques have been considered [45, 46]. In the347

context of Bayesian updating using structural reliability methods, strategies based on surrogate348

models [47, 48] have been proposed at the limit state function level. It is noted that the pre-349

vious approaches have been demonstrated in applications involving structural dynamic systems350

with relatively few model parameters. In general, the effective integration of surrogate models351

for higher-dimensional parameter spaces remains one of the main challenges in Bayesian model352

updating applications.353

4.2. Parametric Model Reduction Technique354

Considering that the focus of this work is on Bayesian model updating of structural dynamic355

models with multiple uncertain parameters and measured responses, an effective numerical im-356

plementation of the proposed method is essential. In the present formulation, a very efficient357

parametric model reduction technique is considered. In particular, a model reduction technique358

based on substructure coupling for dynamic analysis is adopted [49, 50]. The method involves359
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dividing the structure into a number of linear and nonlinear substructures, obtaining reduced-360

order models of the linear substructures and then assembling a reduced-order model of the entire361

structure. The dynamic behavior of the linear substructures is described by a set of dominant362

fixed-interface normal modes along with a set of interface constraint modes that account for the363

coupling at each interface where the substructures are connected [49]. Based on these modes, the364

corresponding reduced-order matrices can be derived.365

While the use of reduced-order models alleviates part of the computational effort, their repet-366

itive generation during the solution of the reliability problem can be computationally expensive367

due to the substantial computational overhead that arises at the substructure level. In this regard,368

an efficient model parametrization scheme is implemented. To this end, the division of the original369

model is guided by a parametrization scheme which assumes that the substructure matrices for370

each of the introduced linear substructures depend on only one of the model parameters. Based371

on this assumption, a direct parametrization of the reduced-order matrices associated with the372

linear substructures is obtained and, consequently, a drastic reduction in computational effort is373

achieved [50, 51]. In other words, the different quantities involved in the reduced-order model374

can be directly updated for different values of the model parameters θ. Thus, the potentially375

time-consuming step of computing the reduced-order matrices for different values of the model376

parameters is completely avoided. Moreover, the above formulation guarantees that the reduced-377

order model is based on the exact substructure modes for all values of the model parameters θ.378

The equation of motion of the reduced-order model together with the equation for the evolution of379

the set of variables τ (t) can be integrated efficiently by any appropriate step-by-step integration380

scheme. A detailed derivation and formulation of the parametric model reduction technique can381

be found in [50].382

Finally, it is noted that the use of parametric reduced-order models has also important impli-383

cations from a practical viewpoint. In fact, the use of this technique opens the door to applications384

involving real structural dynamic systems and, therefore, the proposed implementation can con-385

tribute to the enhancement of the safety and reliability of practical engineering systems. Moreover,386

the consideration of surrogate models at the likelihood function level [40, 52] combined with the387

previous parametric model reduction technique can also be implemented to improve further the388

efficiency of the proposed scheme for solving the reliability problem. Such approach is currently389

under development and it will be reported in a future contribution (see Conclusions).390
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5. Examples391

It is noted that validation calculations have shown that the different available BUS tech-392

niques and the proposed approach provide very similar results for the academic-type of problems393

presented in previous contributions. In this work, two examples comprising involved structural394

dynamic systems are presented. The first example comprises a benchmark system introduced in395

[20], which involves a linear ten-story shear building model subject to ground excitation. In this396

regard, this example allows to demonstrate the effectiveness of the proposed approach in predicting397

different types of responses as well as in identifying the spectral properties of the structural model.398

Additionally, a statistical performance analysis of alternative BUS approaches is provided for this399

example. On the other hand, the second example considers a realistic finite element model of a400

nonlinear three-dimensional bridge structure to demonstrate the applicability of the identification401

method in a complex structural system. In both examples, a large number of model parameters402

are considered. Additionally, it is assumed that noisy simulated acceleration data are available403

for updating purposes.404

5.1. Example 1: Illustrative Problem405

5.1.1. Identification Problem406

The ten-story linear shear-building model shown in Figure 1, which has been borrowed from407

[20], is considered in this first example problem. The corresponding model class is characterized408

by the mass mi, damping coefficient ci, and stiffness parameter ki for each story i = 1, . . . , 10. The409

identification process is based on simulated acceleration data. In particular, the input ground ac-410

celeration history to generate the measurements, shown in Figure 2, corresponds to the El Centro411

ground-motion record. The input acceleration values have been scaled so that the peak ground412

acceleration is equal to 0.6 m/s2. The measured response is simulated by first calculating the ab-413

solute acceleration response of the actual structure at the first and tenth floors. Thus, the number414

of observed degrees of freedom is no = 2. Then, a Gaussian discrete white noise sequence with415

standard deviation σ equal to 10% of the root-mean-square value of the corresponding acceleration416

time histories is added. Ten seconds of data with sampling interval ∆t = 0.01 s are used, giving417

a total of nt = 1000 time steps. The corresponding measurements are shown in Figure 2. The418

nominal model used to generate the measured data is defined in Table 1. This system may be419

interpreted as the actual or target structural system in a Bayesian model updating framework.420
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Figure 1: Ten-story linear shear building model.

Table 1: Target values of the model parameters. Example 1.

Parameter Value Parameter Value Parameter Value

m1n 1.92× 104 kg c1n 7.70× 104 Ns/m k1n 2.16× 107 N/m

m2n 1.97× 104 kg c2n 7.78× 104 Ns/m k2n 1.74× 107 N/m

m3n 1.95× 104 kg c3n 7.86× 104 Ns/m k3n 2.04× 107 N/m

m4n 2.06× 104 kg c4n 7.28× 104 Ns/m k4n 1.99× 107 N/m

m5n 2.05× 104 kg c5n 7.19× 104 Ns/m k5n 1.74× 107 N/m

m6n 1.98× 104 kg c6n 7.37× 104 Ns/m k6n 1.68× 107 N/m

m7n 1.94× 104 kg c7n 7.10× 104 Ns/m k7n 1.87× 107 N/m

m8n 2.06× 104 kg c8n 7.11× 104 Ns/m k8n 1.77× 107 N/m

m9n 1.90× 104 kg c9n 6.90× 104 Ns/m k9n 1.84× 107 N/m

m10n 2.01× 104 kg c10n 7.57× 104 Ns/m k10n 1.72× 107 N/m

σn 3.74× 10−2 m/s2

For identification purposes, 31 model parameters are selected. They correspond to the masses421

mi, i = 1, . . . , 10, damping coefficients ci, i = 1, . . . , 10, stiffness parameters ki, i = 1, . . . , 10, and422

the standard deviation of the prediction and measurement errors σ. It is noted that this problem423

can be regarded as high-dimensional from a Bayesian model updating point of view. Moreover, the424

mass, damping, and stiffness parameters can be uniformly scaled without changing the acceleration425

response of the structural model. For reference and comparison purposes, the properties of the426

actual structural system as well as the prior distribution of the uncertain parameters are defined427

as in [20]. The prior probability density functions of the model parameters mi, ci, and ki, i =428
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Figure 2: Input ground motion and measurement data. Example 1.

1, . . . , 10, correspond to Gaussian distributions with means equal to m̄ = 2× 104 kg, c̄ = 6× 104
429

Ns/m, k̄ = 2× 107 N/m, and coefficients of variation of 10%, 30%, and 30%, respectively. On the430

other hand, σ follows a lognormal distribution with median equal to 0.1 m/s2 and a logarithmic431

standard deviation of 0.3, which leads to a coefficient of variation of approximately 30%. It is432

seen that the mean values of the uncertain parameters do not match the corresponding target or433

nominal values (exact values) of the model parameters (see Table 1).434

For illustration purposes, the following user-defined parameters are considered for the numer-435

ical implementation of the proposed approach: number of samples per stage N = 10000, and436

conditional probability p0 = 0.1. Note that a relatively large sample size is considered in order to437

focus on the effectiveness of the proposed scheme in a high-dimensional case and not on the effect438

of the number of samples per stage. In any case, additional validation calculations show that the439

number of samples per stage can be significantly reduced without affecting the performance of440

the identification process. Actually, around 2000 samples per stage are sufficient for the problem441

under consideration. Finally, due to the simplicity of the structural system, a reduced-order model442

is not considered in this example problem. Therefore, all analyses are performed using the original443

unreduced model.444

5.1.2. Results445

Figures 3, 4, 5 and 6 show the posterior marginal histograms associated with the mass, damp-446

ing, stiffness and standard deviation parameters, respectively. For presentation purposes, the447
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model parameters have been normalized with respect to their target values (see Table 1) as448

θ̂i = mi/min, i = 1, ..., 10, θ̂i = ci−10/c(i−10)n, i = 11, ..., 20, θ̂i = ki−20/k(i−20)n, i = 21, ..., 30,449

and θ̂31 = σ/σn. It is seen that the posterior samples tend to be concentrated relatively close to450

the target values, i.e., θ̂i = 1, i = 1, . . . , 31. Compared with the prior uncertainty in the structural451

model parameters, the posterior uncertainty is significantly reduced since the data provide relevant452

information about these parameters. The same result is obtained for the parameter associated453

with the standard deviation of the prediction and measurement errors, σ, as shown in Figure 6.454

Figure 3: Posterior marginal histograms corresponding to the normalized mass parameters.

Figure 4: Posterior marginal histograms corresponding to the normalized damping parameters.
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Figure 5: Posterior marginal histograms corresponding to the normalized stiffness parameters.

Figure 6: Posterior marginal histogram corresponding to the normalized standard deviation of the prediction and

measurement errors.

The posterior mean values of the normalized variables are shown in Table 2. It is observed455

that there are larger deviations between the target and posterior mean values of the damping456

parameters than of the mass and stiffness parameters. In fact, this is expected from a structural457

viewpoint since the modal contributions to the response are more sensitive to the mass and458

stiffness than to the damping. The corresponding estimation error is less than 10% for the mass459

and stiffness parameters and less than 20% for the damping parameters. These deviations from460

the target values are reasonably small and, as shown in what follows, they marginally affect the461

quality of the identification results in terms of the updated spectral properties of the structural462

system and of the updated response prediction.463

Based on the information from the posterior samples of the model parameters, the correspond-464

ing spectral properties of the structural model can be computed and compared with the exact465

values. In Table 3, the sample mean (with sample c.o.v. inside the parenthesis) of the natural466
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Table 2: Posterior mean values of the normalized parameters. Example 1.

Parameter Value Parameter Value Parameter Value

θ̂1 0.958 θ̂11 0.940 θ̂21 0.968

θ̂2 1.014 θ̂12 1.192 θ̂22 0.955

θ̂3 0.956 θ̂13 1.076 θ̂23 1.045

θ̂4 1.008 θ̂14 1.038 θ̂24 1.041

θ̂5 0.906 θ̂15 0.900 θ̂25 1.098

θ̂6 1.072 θ̂16 0.862 θ̂26 1.052

θ̂7 1.088 θ̂17 0.953 θ̂27 0.914

θ̂8 0.938 θ̂18 0.868 θ̂28 1.022

θ̂9 0.965 θ̂19 0.951 θ̂29 1.081

θ̂10 1.073 θ̂20 1.046 θ̂30 0.939

θ̂31 1.022

frequency and damping ratio for each mode along with the target values of the natural frequency467

and damping ratio are shown. Note that the model has nonclassical damping and, therefore, it468

has complex modes. It is observed that the relative errors are quite small. Actually, the maximum469

relative error is around 3%, which is observed for the higher-order modes. Moreover, the estimates470

of the first modes are much better than those of the higher-order modes. In fact, the maximum471

relative error for the five first modes is below 0.5%. This is because only the first complex modes472

of the model are excited significantly by the ground acceleration, so it is this information from473

the first modes that is utilized in estimating the model parameters.474

To illustrate the predictive power of the previous identification scheme, the exact time histories475

of the displacement, drift response, and total acceleration of some unobserved floors are compared476

with the corresponding posterior predictions in Figures 7, 8, and 9, respectively. The solid-black477

line shows the exact values of the response and the dashed-red line shows the corresponding478

posterior mean prediction. In addition, the posterior 95%-confidence interval, denoted by dotted-479

blue lines, is also presented in the figures. The curves for the exact and the mean responses are480

indistinguishable. Likewise, the 95%-confidence interval is almost indistinguishable from the other481

two curves. Thus, the Bayesian analysis is able to provide a high-quality updated prediction of482

the response even at unobserved degrees of freedom.483
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Table 3: Natural frequencies and damping ratios associated with the target parameter values and with the posterior

distribution of the model parameters.

Target model Bayesian updating

Complex Natural frequency Damping ratio Natural frequency Damping ratio

mode (Hz) (%) (Hz) (%)

1 0.7343 0.92 0.7345 (0.04%) 0.94 (0.21%)

2 2.1568 2.71 2.1562 (0.01%) 2.67 (0.32%)

3 3.5585 4.45 3.5603 (0.05%) 4.20 (0.33%)

4 4.8896 6.03 4.9027 (0.09%) 6.05 (0.44%)

5 6.0470 7.65 6.0526 (0.11%) 7.43 (0.42%)

6 7.1032 9.11 7.2022 (0.11%) 9.06 (0.22%)

7 8.0466 10.14 7.9530 (0.07%) 10.52 (0.28%)

8 8.6097 11.12 8.8519 (0.08%) 11.05 (0.22%)

9 9.2989 11.58 9.3704 (0.15%) 10.77 (0.55%)

10 9.6355 11.92 9.8938 (0.10%) 12.11 (0.31%)

Figure 7: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-confidence interval

(dotted-blue) of the displacement (in m) at floors 2, 4, 6 and 8.
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Figure 8: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-confidence interval

(dotted-blue) of the drift response (in mm) at floors 2, 4, 6 and 8.

Figure 9: Exact value (solid-black), posterior mean prediction (dashed-red), and posterior 95%-confidence interval

(dotted-blue) of the total acceleration (in m/s2) at floors 2, 4, 6 and 8.
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5.1.3. Performance of Proposed and Alternative BUS Approaches484

To study the performance of available BUS approaches, a statistical analysis of the log-evidence485

estimates is carried out. This quantity is selected since its computation involves the likelihood486

multiplier and the failure event of the equivalent reliability problem, two key aspects of BUS formu-487

lations. Along with the proposed approach, the following methods have been considered: adaptive488

driving variable-based BUS (A-BUS) [32], inner reliability problem-based BUS (I-BUS) [31], stan-489

dard BUS with a priori definition of the likelihood multiplier (S-BUS) [26], and postprocessing-490

based BUS (P-BUS) [30]. Rejection sampling has been implemented in P-BUS with a target491

number of failure samples equal to 1000. The rest of the methods consider subset simulation492

with N = 10000 samples per stage and conditional probability p0 = 0.1. For each method, 30493

independent runs are performed. Two cases for the tolerance value associated with the stopping494

criterion of I-BUS are implemented, i.e., Ptol = 10−8 and Ptol = 10−3. For comparison and ref-495

erence purposes, the maximum values for ln(c−1) obtained in these two cases are considered in496

S-BUS. Additionally, P-BUS considers the maximum value of ln(c−1) obtained for I-BUS with497

Ptol = 10−3 in order to illustrate the effect of the postprocessing step on the quality of the results.498

Table 4: Statistical performance across 30 independent runs of different BUS methods. Example 1.

Method User-defined Number of Average Maximum

parameter function calls log-evidence ln(c−1)

This work − 4.2× 105 3.58× 103 3.78× 103

A-BUS [32] − 4.4× 105 3.59× 103 3.78× 103

I-BUS [31] Ptol = 10−8 5.1× 105 3.22× 103 3.38× 103

I-BUS [31] Ptol = 10−3 1.5× 105 2.34× 103 2.38× 103

S-BUS [26] ln(c−1) = 3.38× 103 1.1× 105 3.36× 103 −

S-BUS [26] ln(c−1) = 2.38× 103 4.0× 104 2.37× 103 −

P-BUS [30] ln(c−1) = 2.38× 103 1.2× 106 3.03× 103 −

Table 4 presents the average number of function calls, average log-evidence and maximum499

values for ln(c−1) obtained by the different methods across 30 independent runs. Note that the500

maximum values for ln(c−1) are not given for S-BUS and P-BUS, since the likelihood multiplier is501

defined a priori in these methods. In addition, the user-defined parameters required by the different502

methods are also presented in the table. Several observations can be made from these results. First,503
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the evidence tends to be more underestimated for smaller values of ln(c−1). Such a behavior is504

consistent with the relationship between the evidence estimate and the likelihood multiplier, as505

discussed in previous contributions [30, 31]. Further, it illustrates the significant effect that this506

parameter can have on the performance of BUS formulations. Second, the maximum values for507

ln(c−1) obtained by I-BUS are smaller than those computed by A-BUS and the proposed approach.508

Third, the evidence estimates obtained by S-BUS (ln(c−1) = 2.38× 103) and I-BUS (Ptol = 10−3)509

are similar, as expected. Analogous results are observed in the cases of S-BUS (ln(c−1) = 3.38×103)510

and I-BUS (Ptol = 10−8). At the same time, the computational efforts are higher in I-BUS due to511

the iterative solution of the inner reliability problem. Fourth, the average log-evidence estimates512

of P-BUS are higher than of S-BUS for ln(c−1) = 2.38 × 103. Thus, the postprocessing strategy513

proposed in [30] appears to be effective in improving the quality of the evidence estimates for this514

example. Fifth, the computational efforts of P-BUS, which involves the use of rejection sampling,515

are around two orders of magnitude higher than of S-BUS for ln(c−1) = 2.38 × 103. This shows516

an additional strength of adopting subset simulation as reliability analysis technique, since it can517

efficiently handle small failure probabilities. In this regard, the adaptation and evaluation of518

alternative structural reliability methods for Bayesian model updating represents an interesting519

research venue. Finally, the performances of the proposed approach and A-BUS are very similar,520

which is reasonable since both methods select the final likelihood multiplier based on the maximum521

observed likelihood value. Nonetheless, as already pointed out, the formulation presented in this522

work is simpler since there is no need to redefine the driving variable function at each iteration.523

As a result, only minimal modifications to the standard subset simulation algorithm are required524

by the proposed approach. Overall, the proposed updating technique can be regarded as a viable525

alternative BUS approach which is attractive for practical applications due to the simplicity of526

both its formulation and implementation.527

5.2. Example 2: Application Problem528

The objective of this application is to evaluate the performance of the proposed approach in529

an identification problem involving a realistic nonlinear structural model with multiple uncertain530

parameters and noisy seismic response data.531
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5.2.1. Description of Structural Model532

A three-dimensional bridge finite element model with more than 10000 degrees of freedom is533

considered as application problem. The bridge model, which has been taken from [53], is shown534

in Figure 10. It is curved in plan and has a total length of 119.0 m with five spans of lengths535

equal to 24.0 m, 20.0 m, 23.0 m, 25.0 m, and 27.0 m. Four piers of 8.0 m height support the536

girder monolithically, where each pier is founded on an array of four piles of 35.0 m height. The537

piers and piles are modeled as column elements of circular cross-section with diameters of 1.6 m538

and 0.6 m, respectively. In addition, the deck cross section is a box girder modeled by beam and539

shell elements. The deck girder rests on each abutment through two sliding bearings which are540

composed of an upper steel plate with a housing cap for the slider, a bottom plate with a concave541

semi-spherical stainless steel surface, and a steel slider.542

Figure 10: Isometric view of the finite element model of the bridge structure with friction-based devices at the

abutments.

An experimentally validated model that takes into account the main sources of performance543

degradation that friction-based devices experience during seismic events is implemented in the544

structural model [54]. The major effects related to the frictional performance of these devices545

include: the load effect related to the reduction of the friction coefficient as the vertical load546

increases, the velocity effect that takes into account the variation of the friction coefficient with547

the velocity of motion, and the cycling effect which is responsible for the degradation of friction548

characteristics due to temperature rise. The reader is referred to [54, 55, 56] for a detailed de-549

scription and implementation of the experimentally validated model. For illustration purposes, a550

typical displacement-restoring force curve of these devices is shown in Figure 11.551

The interaction between the piles and the soil is modeled by a series of translational springs552
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Figure 11: Typical displacement-restoring force curve of the sliding bearing. Left: x direction. Right: y direction.

along the height of the piles with a nominal linear stiffness profile varying from 11200 T/m553

at the bottom of the piles to 560 T/m at the surface. The net effect of these springs is to554

increase the translational stiffness in the x and y direction of the column elements that model the555

piles. Nominal material properties of the structural model have been assumed as follows: Young’s556

modulus E = 2.0 × 1010 N/m2; Poisson ratio ν = 0.2, and mass density ρ = 2500 kg/m3. A 3%557

of critical damping is added to the model. It is assumed that the structural components such as558

the piers, piles and the deck girder remain linear during the analysis while the nonlinearities are559

localized in the sliding bearings response.560

5.2.2. Parametric Reduced-Order Model561

In order to improve the numerical efficiency of the updating procedure, a parametric reduced-562

order model of the bridge structure is implemented. In particular, the structural model is sub-563

divided into sixteen linear substructures and two nonlinear substructures as shown in Figure564

12. Substructures Si, i = 1, . . . , 5 are related to the five spans of the bridge deck, substructures565

Si, i = 6, . . . , 9 are associated with the four piers, while substructures Si, i = 10, . . . , 13 comprise566

the four arrays of piles and the corresponding pile footings. In addition, the translational springs567

that model the interaction between the piles and the soil are included in three substructures,568

i.e, Si, i = 14, . . . , 16 as shown in the figure. Finally, the sliding bearings at each abutment are569

considered in substructures Si, i = 17, 18. Thus, substructures Si, i = 1, . . . , 16 are linear while570

S17 and S18 are nonlinear.571

The reduced-order model is characterized in terms of interface constraint modes and a set of572

dominant fixed-interface normal modes (see Section 4.2). In this regard, 400 interface degrees573
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Figure 12: Linear and nonlinear substructures of the finite element model.

of freedom are present at the interfaces of the finite element model. Additionally, five fixed-574

interface normal modes are kept for each substructure Si, i = 1, . . . , 5, three for each substructure575

Si, i = 6, . . . , 9, and three for each substructure Si, i = 10, . . . , 13. Note that substructures576

Si, i = 14, 15, 16 compress interface degrees of freedom only. As a result, the number of general-577

ized coordinates is equal to 449, which corresponds to a reduction of more than 95% with respect578

to the total number of degrees of freedom. Thus, the reduced-order model provides a signifi-579

cant dimension reduction with respect to the original unreduced finite element model. Validation580

calculations show that the selected reduced-order model is able to capture the dynamics of the581

unreduced model with great accuracy. In this regard, Figure 13 shows a 3-D representation of the582

matrix of modal assurance criterion (MAC) values [57] between the 10 first modal vectors com-583

puted from the full finite element model and the reduced-order model. For comparison purposes,584

only the linear components of the undamped structural model are considered in the computation585

of mode shapes and natural frequencies. It is seen that the off-diagonal terms are almost zero and,586

hence, both models are consistent in terms of their mode shapes. Moreover, additional computa-587

tions show that the errors for the ten lowest natural frequencies fall bellow 0.5%. The comparison588

in terms of the ten lowest-order modes seems reasonable since the contribution of higher-order589

modes in the dynamic response of the model is negligible in this case. From the practical point590

of view it is important to note that the selection of the fixed-interface modes per substructure,591

necessary to achieve a prescribed accuracy, is done offline, before the updating process takes place592

[50].593

Eighteen parameters associated with structural properties of different sections of the structure594

are considered to characterize the finite element model, which are denoted as ζi, i = 1, . . . , 18.595
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Figure 13: Modal assurance criterion (MAC) values between the mode shapes associated with the full and reduced-

order models.

They are related to the modulus of elasticity of each span of the bridge deck (ζi, i = 1, . . . , 5), the596

modulus of elasticity of each pier (ζi, i = 6, . . . , 9), the modulus of elasticity of each pile (ζi, i =597

10, . . . , 13), the stiffness constants of the springs along the height of the piles (ζi, i = 14, 15, 16),598

and the friction coefficients of the sliding bearings at the abutments (ζi, i = 17, 18). Thus, based599

on the subdivision of the finite element model, it is seen that each substructure is associated600

with a single parameter. Furthermore, the parameters are defined such that ζi = 1, i = 1, . . . , 18,601

corresponds to the nominal or reference values for the different structural properties. Using this602

information, the reduced-order matrices associated with the linear substructures can be efficiently603

parametrized as indicated in Section 4.2.604

Numerical validations indicate that the implementation of the parametric reduced-order model605

allows to obtain a speedup factor of more than 10 for the computation of the structural response606

in this case. In this context, the speedup factor corresponds to the ratio between the execution607

time by considering the full finite element model and the proposed parametric reduced-order608

model. Since most of the computational efforts involved in the updating procedure are associated609

with the solution of the equation of motion for different values of the uncertain parameters, the610

parametrization scheme under consideration provides significant computational savings for the611

overall identification process.612

5.2.3. Simulated Data613

Synthetically generated measurements are considered for identification purposes. The corre-614

sponding ground excitation is the El Centro ground-motion record, which is applied at 50◦ with615
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respect to the x axis (see Figure 10) and has been scaled to a peak ground acceleration of 5 m/s2.616

Acceleration responses along the x and y directions at the midpoints of the five spans of the deck617

are considered for identification purposes. In addition, 20 s of response with a sampling interval618

of ∆t = 0.01 s are considered. Thus, the identification data comprise no = 10 observed degrees of619

freedom and nt = 2000 time steps. As in the previous example, the measurements are generated620

by contaminating the actual acceleration responses with a Gaussian discrete white noise sequence621

whose standard deviation is equal to 10% of the root-mean-square value of the responses. Table622

5 shows the actual values of the parameters that are used to generate the measured data, where623

ζin, i = 1, . . . , 18 are the actual parameter values associated with the different substructures and624

σn is the actual standard deviation (in m/s2) of the prediction and measurement errors. For il-625

lustration purposes, the input ground motion as well as the measurements at the midpoint of the626

bridge’s deck along the x and y directions are presented in Figure 14.627

Table 5: Actual values of the model parameters. Example 2.

Parameter Value Parameter Value Parameter Value

ζ1n 0.87 ζ7n 0.98 ζ13n 1.06

ζ2n 1.07 ζ8n 1.14 ζ14n 1.05

ζ3n 0.93 ζ9n 0.94 ζ15n 0.90

ζ4n 0.98 ζ10n 1.06 ζ16n 0.89

ζ5n 1.01 ζ11n 0.95 ζ17n 1.12

ζ6n 1.13 ζ12n 1.04 ζ18n 0.90

σn 8.01× 10−2

5.2.4. Results628

For identification purposes, all structural parameters are considered as uncertain, i.e., θi =629

ζi, i = 1, . . . , 18 (see Section 5.2.2). In addition, the standard deviation of the prediction and630

measurement errors is also considered in the set of uncertain parameters as θ19 = σ. Thus,631

the Bayesian model updating problem comprises a total of nθ = 19 parameters to be identified.632

Note that this is a high-dimensional problem from the identification point of view. The prior633

probability density function of each structural parameter θi, i = 1, . . . , 18, is taken as uniform over634

the interval [0.5, 1.5], while the prior distribution of θ19 is lognormal with median equal to 0.1635
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Figure 14: Input ground motion and acceleration measurements (in m/s2) at the midpoint of the deck’s central

span. Example 2.

m/s2 and a logarithmic standard deviation of 0.3. According to this definition, the prior means636

of the uncertain parameters differ from their corresponding target values.637

In the context of the proposed identification scheme, a sample size equal to N = 2000 and a638

conditional probability of p0 = 0.1 are considered. Table 6 shows the posterior mean values of the639

uncertain parameters obtained at the end of the sampling process. For presentation purposes, the640

parameters haven been normalized by their target values (see Table 5) as θ̂i = θi/ζin, i = 1, . . . , 18641

and θ̂19 = θ19/σn. Relatively small differences with respect to the target values are obtained for642

the parameters associated with the deck (θi, i = 1, . . . , 5), bearings (θ17 and θ18), and standard643

deviation of the prediction errors (θ19). Validation calculations suggest that these parameters644

have a significant effect on the system response. On the other hand, deviations with respect to645

the target values are observed for the parameters associated with the piers (θi, i = 6, . . . , 9) and646

piles (θi, i = 10, . . . , 13). This can be attributed to the interaction between these parameters. In647

terms of the substructures associated with the soil springs, it is seen that the posterior mean of648

the parameter associated with the superficial soil layer (θ14) matches its target value, whereas649

the posterior mean estimates corresponding to the lower soil layers (θ15 and θ16) present larger650

deviations with respect to their target values. This is reasonable from the engineering viewpoint651

and can be presumably attributed to a higher sensitivity of the deck acceleration response with652

respect to the stiffness of the superficial soil layer (θ14), as it affects the horizontal stiffness of the653
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entire foundation system to a greater extent. It is noted that similar results are obtained when654

considering different runs of the proposed approach.655

Table 6: Posterior mean values of the normalized model parameters. Example 2.

Parameter Value Parameter Value

θ̂1 0.956 θ̂11 1.247

θ̂2 1.011 θ̂12 0.751

θ̂3 0.982 θ̂13 1.192

θ̂4 1.029 θ̂14 1.003

θ̂5 1.043 θ̂15 1.322

θ̂6 1.146 θ̂16 0.894

θ̂7 1.149 θ̂17 1.003

θ̂8 0.811 θ̂18 0.996

θ̂9 0.843 θ̂19 1.008

θ̂10 0.891

The predictive capabilities of the proposed method in terms of the system response are shown656

in Figure 15. This figure presents the target responses (solid-black line) of the horizontal displace-657

ments at the abutments, as well as the mean predictions (dotted-red line) and the 95%-confidence658

intervals (grey area) associated with the prior (left plots) and posterior (right plots) distributions.659

Note that the prior mean predictions present some deviations with respect to the target responses660

and, in addition, the uncertainty in such predictions is considerable. However, the incorporation of661

available measurement data allows to improve the predictive capabilities of the model class. Recall662

that, according to Eq. (5), the likelihood function is defined in terms of a measure-of-fit function663

between the measured responses and the model prediction. Hence, the objective and goal of the664

proposed method is to find a set of parameters that provides high-quality updated predictions of665

the response. In this regard, the different lines in the right plots, which are associated with the666

posterior distribution, are indistinguishable between each other. That is, the target and expected667

responses agree very well and, moreover, the uncertainty in the response prediction is significantly668

reduced. Thus, the results indicate that the proposed approach is able to update the information669

on the system response in an effective manner for this case.670

Figure 16 shows the evolution of the threshold level, vth, during the different stages of subset671
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Figure 15: Target response (solid-black line), mean predictions (dotted-red line), and 95%-confidence intervals (grey

area) of the horizontal displacements at the abutments. Left: Prior distribution. Right: Posterior distribution.

Example 2.

simulation. Recall that this variable corresponds to the maximum log-likelihood value observed672

until the current stage. The results show that the method requires 20 stages to meet the stopping673

criterion. Nonetheless, the threshold level is stabilized roughly after 15 stages and it marginally674

increases during the final simulation levels. In this regard, the simulation process can be potentially675

stopped during an intermediate stage to retrieve samples that follow a truncated version of the676

posterior distribution [30]. However, the validity of such approach is problem-dependent and,677

therefore, the accuracy of the corresponding results must be assessed for each application. Finally,678

Table 7 shows the log-evidence estimates obtained across ten independent runs of the proposed679

simulation scheme. Rather stable estimates are observed in this case. Thus, the method is able680

to provide robust evidence estimates for this high-dimensional model updating problem involving681
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a complex structural model equipped with nonlinear devices.682

Figure 16: Evolution of threshold level. Example 2.

Table 7: Log-evidence estimates obtained in ten independent runs of the proposed scheme. Example 2.

Run No. Log-evidence Run No. Log-evidence

1 2.19× 104 6 2.19× 104

2 2.18× 104 7 2.19× 104

3 2.19× 104 8 2.20× 104

4 2.18× 104 9 2.19× 104

5 2.19× 104 10 2.19× 104

6. Conclusions683

An effective numerical implementation for Bayesian model updating of structural dynamic684

systems involving multiple uncertain parameters and measured responses has been presented in685

this contribution. The proposed scheme is based on the use of structural reliability methods,686

where samples following the posterior distribution are obtained as failure samples corresponding687

to an equivalent reliability problem. In this framework, an estimate of the evidence is obtained688

as a byproduct of the sampling process. Subset simulation, a well known and widely applied689

stochastic simulation technique, is adopted to generate the required failure samples. A strategy690

that adaptively determines the threshold level beyond which the corresponding failure samples691

follow the posterior distribution is implemented. Furthermore, only minimum modifications to692
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the standard subset simulation algorithm are needed and no prior knowledge about the maximum693

likelihood value is required. These features are beneficial from a practical viewpoint. For an694

efficient numerical implementation of the proposed approach, an effective parametric reduced-695

order model formulation based on substructure coupling for dynamic analysis is considered. The696

resulting approach represents an alternative Bayesian identification technique based on structural697

reliability methods which provides an effective treatment of the maximum likelihood value while698

maintaining simplicity in its formulation and implementation.699

Two examples have been studied to demonstrate the effectiveness and robustness of the pro-700

posed implementation, including a realistic model of a bridge structure equipped with nonlinear701

devices. Noisy acceleration measurements are synthetically generated for identification purposes.702

The important modal properties and the system response prediction are properly updated in703

both cases. In general, relatively few stages in the framework of subset simulation are required704

to stabilize the threshold level. This indicates the validity of the proposed method, since it is705

able to explore effectively the important region of the likelihood function. Similarly, the evidence706

estimates obtained across independent runs of the approach are rather stable for the problems ana-707

lyzed in this contribution. Finally, the parametric reduced-order model strategy allows substantial708

computational savings without compromising the quality of the identification results. Overall, the709

results suggest that the proposed implementation is an effective and direct tool to address Bayesian710

model updating problems involving complex structural dynamic models, measured response data711

and high-dimensional parameter spaces. Furthermore, these developments open the door to ap-712

plications involving real structural dynamic systems, which can in turn contribute to enhance the713

safety, reliability and life-cycle management of existing structures.714

Future research efforts involve the integration of surrogate models at the likelihood function715

level, which can allow additional computational savings by reducing the number of calls to the716

parametric reduced-order model. Another research direction corresponds to the assessment of717

alternative techniques for generating the conditional samples at each simulation level, such as the718

implementation of different proposal distributions or methods based on auxiliary dynamic systems.719

Further, a thorough comparison between alternative BUS formulations as well as between differ-720

ent structural reliability methods, in the framework of complex structural dynamic systems, is an721

interesting and important topic for future work. Also, the characterization of complex posterior722

distributions associated with the identification of involved structural dynamic systems with mul-723
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tiple uncertain parameters as well as the consideration of measured response data, i.e., field data,724

are additional aspects of practical relevance. Finally, the assessment of the proposed scheme for725

Bayesian model class selection and model averaging problems, i.e., updated prediction of response726

quantities based on different model classes, in the context of high-dimensional parameter spaces is727

an additional subject for future research. Some of these topics are currently under consideration.728
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