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Abstract 

The COVID Pandemic since early 2019 has imposed significant effects towards our life. In the 
retail and logistics sector, the large-scale national lockdown has drastically driven e-commerce sales 
because the e-marketplace has become the only sales channel. Whilst the pandemic has accelerated the 
shift towards a more digital world and led to an irreversible dependence on e-commerce retailing, the 
pressure is on retailers and logistics service providers to respond to the growing demand for immediate 
delivery in the e-commerce era. Given the integration of smart lockers into developing a more favorable 
environment which potentially makes immediate delivery more feasible, this paper introduces a novel, 
dynamic delivery strategy, namely Community Logistics Strategy (CLS), for formulating and updating 
the new delivery plan in real-time as new delivery requests to smart lockers arrive. To shed light on the 
effect of dynamic order arrival towards delivery planning, the CLS attempts to update the delivery plan 
taking new requests into account in real-time. Simulation results reveal superiority of the proposed 
strategy in managing e-commerce delivery requests, especially within megacities where consumers are 
highly dense in a compact geographical area. 

 
1. Introduction 

Last-mile delivery in urban logistics has received huge attention from both society and academia 
due to the on-going developments of e-commerce worldwide (Cardenas et al., 2017; Vakulenko et al., 
2018). According to a survey by the United Nations Conference on Trade and Development (UNCTAD), 
the COVID-19 pandemic has forever changed online shopping behaviors (UNCTAD, 2020). Whilst the 
pandemic has accelerated the shift towards a more digital world and led to an irreversible dependence 
on e-commerce retailing, rapid e-commerce growth has resulted in a noticeable increase of parcel 
delivery volumes, which has accentuated the pressure on last-mile delivery actors (Ferrucci & Bock, 
2014) and has created a demand for new solutions (Ducret, 2014). In the last decade, retailers and 
logistics service providers have wider use of technologies to earn a competitive edge under the fierce 
competition in the last-mile delivery sector. Mangiaracina et al. (2019) reviewed the innovative 
solutions dedicated to improving the efficiency of last-mile delivery in B2C e-commerce. Amongst the 
eight major innovative solutions they summarized, including, to name a few, reception boxes, self-pick-
up points, crowdsourced delivery and drones, smart parcel lockers are proven to provide convenience 
to both couriers and customers by means of eliminating the possibility of failed delivery due to customer 
absence (Wang et al., 2018), and allowing the aggregation of orders coming from different customers 
in the same location (Giuffrida et al., 2012). Smart parcel lockers, which can be found under names like 



parcel kiosks, locker boxes, automated lockers, self-service delivery lockers, and intelligent lockers 
(Vakulenko et al., 2018), are one of the most widely integrated self-service technologies into the e-
commerce last-mile delivery context. 

Aside from technological innovations, delivery options are much more dynamic since the past 
decade. Delivery with specific time windows is a popular delivery mode for last-mile e-commerce 
environment (Wang et al., 2014). Nevertheless, the wide adoption of smart lockers and collection-and-
delivery points (CDP), which allow the absence of consumers in picking up items when they arrive, 
gradually shifts the trend of delivery with time windows to instant delivery (Klapp et al., 2018). The 
ever-changing and increasing delivery requirements demanded by end consumers are pushing service 
providers to deliver items as soon as possible. Consumers are now demanding immediate delivery, such 
as delivery within two to three hours upon purchase, in lieu of delivery at the selected time slot (Ulmer 
and Streng, 2019).  

In the light of the integration of smart lockers into developing a more favorable environment which 
potentially makes immediate delivery more feasible, this paper introduces a novel, dynamic delivery 
strategy, namely Community Logistics Strategy (CLS), for formulating and updating a new delivery 
plan in real-time as new requests of delivering orders to smart lockers arrive. There is no specific 
delivery window as couriers strive to perform immediate delivery. The difficulty in formulating a 
delivery plan under this e-commerce delivery context lies in the fact that service providers are unable 
to develop a routing plan in advance as orders are arriving at any time. Any newly arriving order 
requests could be added to the existing delivery plan if its specified delivery location is geographically 
feasible for inclusion. To shed light on the effect of dynamic order arrival towards delivery planning, 
the CLS attempts to update the delivery plan in real-time, taking new order requests into account.  

The distinguishable differences between the proposed CLS and existing delivery solutions in the 
mainstream literature lies in two crucial elements: solution format and dynamic customer location 
clustering. It is worth noting that the investigation of such a dynamic nature under the context of smart 
locker immediate delivery, has been rarely found in the literature. When considering the dynamic 
arrivals of delivery orders, most of the dynamic delivery solutions in the literature assume and identify 
routes of a given fleet of vehicles as the only solution format. In general, these classic solutions attempt 
to update the routes of a vehicle when a new order arrives. Under the context of smart locker immediate 
delivery, however, the volume of orders to be delivered to nearby or even exactly the same delivery 
lockers tends to be large (Xiao et al., 2017). In other words, this implies that a vehicle might only visit 
just a few locations during its delivery trip to deliver all the orders allocated to the trip, which diminishes 
the need of generating a route for experienced drivers. In this regard, our proposed CLS treats the 
vehicle serving region, namely “Delivery Community”, as the solution format, rather than the routing 
of the fleet of vehicles. The similarities and differences of “Delivery Community” with respect to 
“clusters” in any existing cluster-based delivery models are depicted below. 

“Delivery Community” shares similar attributes to customer location clustering in clustered VRPs 
(Clu-VRPs), in which a sequential decision process is taken place by partitioning customer orders into 



clusters according to their spatial proximity, following by generating optimal routes in each cluster. 
Therefore, it is essential to highlight the differences between our “community” and conventional 
clustering. In Clu-VRPs, customer clustering is a static decision process. Orders are partitioned into 
clusters solely based on the spatial attributes, i.e. their delivery locations. In contrast, our CLS takes 
both the spatial and temporal attributes into account by allowing temporal delay of order dispatching 
from depots. The order dispatching delay is realized by postponing the formulation of community. For 
example, at time t, if a depot decides to postpone dispatching of the current orders for Δt, the 
communities formulated at t+Δt would potentially be more compact and economic, due to the arrivals 
of more spatially nearby orders at the depot. In this sense, if a mix of communities was formulated at t, 
the solution mix would be very different from that at t+Δt. In fact, whether to introduce Δt, or in other 
words, the determination of optimal t, has always been a crucial decision in order dispatching. Yet, most 
of the existing CluVRPs consider a fixed delivery interval. In this study, we attempt to treat this 
temporal delay possibility as part of the delivery dispatching decision-making process. 

The focus of this study is to examine: (1) the potentials of integrating this temporal order 
postponement consideration into formulating a better delivery community, and (2) the interactions 
between the temporal and spatial considerations when making a community formulation decision. To 
yield insightful implications, we develop two solution approaches – Temporal Delivery Postponement 
(TDP) approach and Spatial Delivery Postponement (SDP) approach. The former emphasizes the 
temporal consideration of community formulation, that is, delaying the departure of vehicle as a means 
of generating a more compact community. The latter focuses on the spatial consideration of community 
formulation, that is, allowing a flexible size of each community to be generated based on real-time order 
arrivals while disallowing delayed departure. Through assessing the performance of the TDP and SDP 
approach, this paper justifies the suitability of integrating temporal delay into cluster or community 
formulation process. Simulated data sets based on large-scale parcel delivery environment under 
various demand scenarios are used for generating comparative results.  

The real-time formulation of dynamic delivery region serves as the core element and solution 
format of delivery planning denotes the contributions of the proposed CLS in both practical and 
theoretical standpoints. Practically, locations with high consumer density, like London, New York, Paris, 
etc., pop up a large number of order requests dynamically on a daily basis, each with a high degree of 
proximity. A delivery plan which solely governs the delivery region but not the exact route of a vehicle 
is sensible. In terms of computational requirements, generating a community-type solution on an hourly 
or even minute-to-minute basis without the need to optimize routes potentially enables logistics 
practitioners to obtain the solutions in real time more efficiently. Theoretically, the consideration of 
delivery community, not delivery routing, potentially yields an improved delivery solution in terms of 
solution compactness. The advantages of the proposed CLS will further be discussed based on the 
simulation results presented in this paper. Overall, this study delivers a new entry point of model 
development in facilitating last-mile delivery under the era of e-commerce. 

This paper is structured as follows. Section 2 reviews the relevant literature in the e-commerce last-



mile delivery context. Section 3 explicitly defines the CLS to deal with the urban logistics problem with 
immediate delivery to smart lockers. Section 4 provides the problem description and model formulation, 
followed by the solution approaches. The procedures, results, and discussions of the computational 
experiments are demonstrated in Section 5, which quantitatively reveals the merits of CLS is in 
managing immediate e-commerce deliveries. Section 6 and 7 respectively provides the implications of 
the research, and the conclusions of the study and directions for future research.  

 
2. Literature Review 
2.1 Urban logistics in e-commerce era 

• Delivery and pickup requests 
 In the era of e-commerce, urban logistics settings requiring efficient vehicle dispatching planning 
can be categorized into two streams: (i) managing “delivery requests” and (ii) managing “pickup 
requests”. The major differences amongst them are described in Table 1, which include the nature of 
order, point of origin, and point of destination. In general, delivery requests are those received at depots, 
requiring to be loaded onto delivery vehicles for delivery to customer’s requested locations. That said, 
without loading designated parcels onto the vehicles, drivers are unable to fulfill the delivery requests. 
Therefore, a vehicle dispatching plan must be formulated prior to vehicle’s departure to fulfill the set 
of consolidated delivery requests pending at the depot. No further change or update of the vehicle 
routing plan is possible upon the vehicle’s departure, unless the vehicle re-visits the depot to load the 
new parcels. For pickup requests, they are spatially unknown before actual arrival and pop up 
dynamically during the day (Ulmer et al., 2018), requiring third-party logistics service providers (3PLs) 
to timely pick up the parcels from designated pickup locations. Vehicle dispatching in the e-commerce 
pickup setting falls into the board class of Dynamic Vehicle Routing literature. A vehicle’s route can be 
modified and updated in real-time even during the traveling trip to pick up newly arrived requests.  

Savelsbergh and Van Woensel (2016), an invited article discussing the challenges and 
opportunities of urban logistics, suggest that the aspiration of many companies to offer same-day 
delivery leads to interesting new optimization challenges for effectively managing the delivery of 
dynamically arriving orders at distribution hubs. Indeed, online shopping via e-commerce platforms is 
becoming mainstream for businesses of all sizes. We stress that the continual growth of e-commerce 
creates an enormous research opportunity to improve the efficiency of outbound delivery operations 
especially in megacities, which exhibit the features of: (i) High population and consumer density – a 
large number of fragmented customer requests in a small region, which in turn indicates a close 
proximity between delivery requests; and (ii) High customer delivery demand – a sufficiently large 
aggregated volume of parcels for delivery in a small region, which in turn indicates a capacitated vehicle 
could be fully utilized to serve a compact region. 

 
 
 



• Parcel lockers as part of the last-mile delivery system 
The integration of smart parcel lockers into existing last-mile delivery systems is a promising 

trend around the globe (Behnke, 2019). This has attracted researchers in recent years to investigate its 
efficiency (Iwan et al., 2016), usability (Lemke et al., 2016), value to customers (Vakulenko et al., 2018), 
adoption receptiveness (Tsai and Tiwasing, 2021), and etc. Iwan et al. (2016) suggest that parcel locker 
adoption is hopeful to be a major direction that shapes the future of urban delivery systems. Zurel et al. 
(2018) summarize the merits of parcel locker delivery systems from operators, consumers, and 
environmental perspective. From operators perspective, dropping off multiple parcels at the same time 
and location, as well as locker’s 24/7 availability improve operators’ delivery efficiency and save 
operating costs. From consumers perspective, consumers could enjoy cost savings by choosing parcel 
locker delivery option as some operators offer a reduced tariff to encourage customers to opt for it. 
Finally, 24/7 availability of parcel lockers, allowing deliveries and collections at any time, poses 
positive impact on sustainability and environmental pollution due to traffic congestion in urban areas. 
In short, parcel lockers have perceived to be not only viable but a preferred delivery mode to home 
delivery from operators and sustainability standpoints. In operational research perspective, however, 
optimization models or strategies taking parcel locker delivery options into account have been rare. 
Deutsch and Golany (2017) consider the problem of designing a parcel locker network as a solution to 
the last-mile logistics problem by proposing an integer programming model to identify the optimal 
number, locations, and sizes of parcel lockers facilities. More recently, Schwerdfeger and Boysen (2020) 
develop exact solution procedures to optimize the changing locations of lockers, such that customers 
are at some time during the planning horizon within a predefined range of their designated locker. In 
short, we observe a scarcity of operating strategies and models dedicated to solving delivery problems 
related to parcel locker immediate deliveries. 

Table 1. A comparison of existing e-commerce city logistics settings 

Characteristics 
E-commerce city logistics 

First-mile pickup setting Last-mile delivery setting 

Associated 
businesses/services 

Return logistics, 
E-commerce food delivery service, 

Parcel point-to-point delivery service 
(requested by individual corporate entities) 

B2B/B2C/C2C e-commerce order delivery: 
- home delivery 

- delivery to pickup stores 
-delivery to pickup lockers 

Main SOPs (standard 
operating procedures) 

(i) Pick up parcels at the designated 
location 

(ii) Deliver them to the requested location 

(i) Consolidate consumers' purchased goods 
at inbound distribution hub, 

(ii) Deliver packed parcel from the hub to 
the requested location 

Point of origin Anywhere in the city Distribution hub or warehouses 
Point of destination Anywhere in the city Anywhere in the city 

Spatial uncertainties 
Uncertain pickup locations widespread 

within the geographical region 
Uncertain delivery locations widespread 

within the geographical region 

Temporal uncertainties 
Uncertain temporal arrival of pickup 

requests 
Uncertain temporal arrival of delivery 

requests 

Representative models Dynamic VRP models 
Models under the variants of MPVRP, 

VRPTW, VRPTWS 



 
2.2 Static approaches for managing e-commerce delivery requests 

The light shed on the last-mile e-commerce delivery setting is limited (Shao et al., 2019; 
Savelsbergh and Van Woensel, 2016). In the previous literature, the problem is classified into different 
variants of the vehicle routing problems (VRPs). Due to the NP-hard nature of VRPs (Lenstra, and Kan 
1981), a majority of the previous literature proposed the use of heuristics and metaheuristics methods 
to tackle different variants of the VRPs (Braekers, Ramaekers, and Nieuwenhuyse 2016). The most 
relevant VRP variants that take into account the temporal consideration for order delivery are multi-
period vehicle routing problem (MPVRP), vehicle routing problem with time windows (VRPTW), and 
vehicle routing problem with time windows and shifts (VRPTWS).  

MPVRP conceptually lies between periodic VRP and inventory routing problem (Archetti et al. 
2015). However, in MPVRP, there is no periodicity in the service. It considers a planning horizon to 
serve a set of customers (Wen et al. 2010; Archetti et al. 2015). Customer's delivery requests arrive 
dynamically over time and must be satisfied before the specified deadline. In the literature, VRPTW 
further adds more assumptions to reflect the problem nature in real business setting realistically. A 
complete survey on VRPTW was conducted by Bräysy and Gendreau (2005a; 2005b). In short, the 
VRPTW can be described as a known set of delivery nodes that must be visited exactly once, each of 
which can be serviced only within a specified time interval (Kallehauge et al. 2005). As for VRPTWS, 
the problem further considers the availability of several shifts with non-overlapping operating periods. 
Each shift has its loading capacity that limits the loading capacity. Dabia et al. (2019) introduce this 
problem variant with an exact branch-and-bound algorithm to deal with it. Though these problem 
variants take the specific order delivery requirements, especially the timeliness of servicing the 
customers and the allocation of delivery requests to designated working shift, into account, none of 
them studied the possibility of order delivery delay within shifts and several delivery time windows. In 
reality, particularly in e-commerce delivery environment, the nature of B2C e-commerce delivery 
requests being frequently, dynamically arriving at the depot gives practitioners a strong motivation to 
consolidate small lot-sized orders for delivery at the same time, so as to minimize repetitive visits to 
the same or nearby delivery locations. Dynamic approaches for managing frequent arrivals of delivery 
requests therefore come into place. 
 
2.3 Dynamic approaches for managing delivery requests 

Notwithstanding a myriad of algorithms and models developed for a variety of VRP variants, most 
of the studies in VRP family assume a set of static orders is received days before delivery planning, 
which ignore the real-time spatial arrival of delivery requests. An exception is Dynamic Vehicle Routing 
Problems (DVRP), which updates vehicle routing solutions in real time to fulfil newly arrived order 
requests popped up anywhere around the city at any time. Savelsbergh and Van Woensel (2016) point 
out that even though there is a vast literature on dynamic vehicle routing, the “demand” invariably refers 
to “orders to be picked up”, to “orders to be picked up and delivered”, or to “a service performed by the 



driver”. In other words, the origin of the routing is located anywhere around the city, specified by 
customers. When demand refers to “orders to be delivered”, the origin of the routing is the depots, such 
as warehouses, distribution centres, etc. In such a delivery scenario, the structure of a dynamic vehicle 
routing problem changes significantly since there are few opportunities to accommodate additional 
deliveries after a delivery vehicle has left the depot. It makes no sense that the vehicle would have to 
return to the depot to pick up the additional deliveries to comply with the updated DVRP routing 
solutions. Therefore, a majority of the existing dynamic vehicle routing literature has limited 
applicability to scope of e-commerce delivery context (Savelsbergh and Van Woensel, 2016). 

Yet, the literature has attempted to tackle the e-commerce delivery problem using the class of 
DVRP. The most representative variant for solving urban delivery problems is Same-day Delivery 
Problem (SDDP), which is also related to the work on vehicle routing problem with dynamic and 
stochastic pickup requests (VRPDSR), and dynamic pick-up and delivery problem (DPDP). According 
to Voccia et al. (2016), the SDDP for online purchases can characterized by: (i) a fleet of vehicles that 
serve delivery requests in a service day, (ii) the requests are arrived dynamically, (iii) each request is 
associated with a delivery deadline or specified delivery time window, (iv) vehicles are loaded and 
dispatched from the depot to serve the requests. Voccia et al. (2016) use a sample-scenario planning 
approach to determine the route length based on a consensus function. The function is able to identify 
if waiting at the depot is beneficial to route optimization. Similarly, Klapp et al. (2018) present an 
approximate linear programming solution approach to generate dispatching decisions at a fixed interval, 
with all customer requests on a line, and all requests have the same deadline. Ulmer and Streng (2019) 
present a policy function approximation approach to decide where and when to dispatch a vehicle and 
about the corresponding goods to load. Their scope has some similarities to ours, as they consider 
customers dynamically order goods to a preferred pickup station and expect fast service. The major 
difference to our study scope is that the goods to be delivered from the depot to the preferred pickup 
stations are fulfilled by autonomous vehicles. Apart from autonomous vehicles, the use of drones is 
another emerging trend in last-mile delivery. Recently, Chen et al. (2022) considered the integration of 
drones to handle the dynamic same-day last-mile delivery operations. They propose a deep Q-learning 
approach that learns the value of assigning a new customer to either drones or vehicles. 

In our approach, the dynamically arriving customer requests are allocated to delivery communities, 
which are formulated by minimizing intra-traveling distances within the community. Thus, delivery 
requests with high spatial proximity are more likely to be served first, as a community will be formed 
with sufficient requests nearby. Similar to Voccia et al. (2016), our CLS allows delay of vehicle 
departure, so as to maximize the capacity utilization of a vehicle. Instead of integrating new 
transportation means such as autonomous vehicles and drones, we consider the e-commerce parcel 
locker immediate delivery problem on the operational planning level, which involves deciding when 
vehicles are dispatched. When delivery dispatching decisions are concerned, the respective delivery 
models presented in the literature fall into the vehicle dispatching problem variant. van Heeswijk et al. 
(2017) address the dispatching problem faced by an urban consolidation center by defining it as a 



Markov decision model. Wang et al. (2022) consider urban delivery dispatching problem from workload 
balancing perspective. They introduce a multi-period workload balancing problem under stochastic 
demand and dynamic daily dispatching and formulate it as a Markov decision model. Lan et al. (2020) 
develop a two-echelon city dispatching model that comprises distribution centers located in suburbs 
and fixed satellites located in urban areas for distribution. A cluster-based variable neighborhood search 
scheduling algorithm is proposed to determine locations of mobile satellites and dispatching routes of 
trucks and tricycles. In addition to optimization models for solving the complex urban delivery and 
dispatching problems, models contributing to the design of urban delivery systems, such as fleet sizing 
and service region partitioning (Banerjee at al. 2022; Stroh et al. 2021), determine an order cutoff time 
and combine SDD and overnight order delivery operations (Stroh et al. 2021), can be found. 

In summary, evidenced from a vast number of studies in relation to same day delivery and 
dispatching problems in recent years, last-mile urban delivery and dynamic dispatching have developed 
as a research area with growing popularity in the transportation field. Nonetheless, though new 
transportation means, such as autonomous vehicles and drones, have been considered in some studies, 
sophisticated strategies integrating parcel locker collection points as part of the urban delivery network 
is rare. This gap in the literature has motivated us to develop community logistic strategy as a solution 
to the parcel locker-based e-commerce last-mile urban immediate delivery problem. 
 

3. Community Logistics Strategy for solving immediate delivery problems 
E-commerce parcel delivery to automated smart lockers are initiated by end consumers, who 

typically made a purchase online. Upon the receipts of newly arrived orders, they are internally 
processed at depots and packaged as parcels for deliveries. The delivery scheduling problem faced by 
practitioners in e-commerce operating environment is about the allocation of parcels to available 
vehicles. The complexity of this dispatching problem lies in the need to dynamically assign the 
continuously arriving orders to vehicles in a timely and efficient manner for immediate delivery upon 
order arrivals. To deal with such a dynamic delivery scheduling problem, the CLS allocate parcels into 
communities. Each community is to be served by one vehicle. During the formulation of communities, 
two dimensions are considered: (i) time – temporal delivery postponement and (ii) space – Spatial 
community adjustment.  

Temporal delivery postponement – The availability of non-overlapping delivery periods in each 
working day, i.e. shifts, in which each shift has a known fixed number of capacitated vehicles, allows 
pending orders to be allocated to a particular shift and a particular vehicle of that shift. The temporal 
decision in the process of delivery scheduling is to determine the most appropriate shift for each 
customer order, taking the allowable delay and delivery location of each order, as well as the vehicle 
serving community in each shift, into consideration. 

Spatial community adjustment – Given a fixed fleet of vehicles in each delivery shift, the 
geographical distribution and density of the pending orders influence the allocation of shifts and the 
vehicles of each shift to serve the orders. The spatial decision in the delivery scheduling process is the 



adjustment of the size of the geographical area served by each vehicle in every shift. 
The concept of “intended delivery uncertainty postponement” is realized in the CLS by 

considering the possibility of delivery postponement in the temporal and spatial dimension. The CLS 
attempts to determine the degree of temporal and spatial postponement to formulate an appropriate CLS 
strategy on a daily basis according to the real-time dynamic arrival of geographically diversified e-
commerce orders. A complete community logistics solution contains three core elements: (i) Location 
of communities: the region being identified as a community; (ii) Composition of community: Delivery 
requests included in the community; and (iii) Delivery requests left in the pending order pool. 

To strike a balance between temporal and spatial postponement, the CLS involves a solution 
update cycle time, which is regarded as the amount of time the depot is allowed to consolidate newly 
arriving orders before generating a set of communities as the delivery dispatching solution. The 
determination of the fixed cycle time is purely based on the order arrival frequency. If, for example, a 
depot historically receives a significant number of discrete and fragmented e-commerce orders in a 
short period of time, we recommend to set a shorter solution cycle time to generate an updated set of 
communities at a higher frequency. At each solution update cycle, pending delivery requests 
geographically widespread across the city will be added into the existing community mix, should their 
destinations spatially fall into the community. An initial solution consisting of a set of communities is 
formulated based on the existing delivery requests pending in the pool. Given that a community is 
served by only one vehicle, a community is determined to be finalized only if the vehicle is fully 
capacitated or capacitated at a pre-defined utilization rate. The set of spatially compact delivery requests 
assigned to the “finalized” community will then be removed from the pending order pool, as depicted 
in Fig. 1. Any unassigned delivery request will be retained in the pool for further community 
formulation. At the next cycle, same procedure is undergone by continuing the consolidation of newly 
arrived delivery requests with the unassigned delivery requests still pending in the pool. The dynamic 
and continuous arrivals of new requests imply that the solution iteration of CLS is indefinite. 

The value of community formulation lies not only in the dynamic solution iteration, but the 
flexibility of either sacrificing space to buy time or sacrificing time to buy space. The former means 
that the CLS enlarges a community size at the solution update interval to avoid any further delay of a 
vehicle’s departure. In contrast, the latter allows further delay of a vehicle’s departure in return for a 
more compact community size. To fully assess the effect of these inter-related attributes towards 
community formulation, no upper or lower limit of community size and delivery delay duration is 
introduced in the experiments to be presented in Section 5. All in all, flexible and dynamic solution 
formulation under the CLS protocol would empower logistics service providers and retailers to make 
immediate delivery to smart lockers possible. In the next section, a generic transportation problem for 
immediate delivery to smart lockers is defined, followed by solution approaches to the problem. 



 

Fig. 1. Spatial and temporal dimensions under the CLS protocol 
 

4. Problem definitions and solution approaches 
4.1 Problem description 

Considering a depot is responsible for the fulfilment of logistic orders in a square district 𝑆. There 
are |𝐽| identical vehicles with a capacity of 𝑄 in the depot. The depot service time is 𝑇 hours in one 
day. At the beginning of the operational time, there are already a set of orders waiting to be processed 
in the depot, including the orders remained from previous operational time and the orders accumulated 
in the previous night denoted as 𝑉! = {1,2,3, … , 𝑣!}. During the service time, a set of orders 𝑉! =
{𝑣! + 1, 𝑣! + 2, 𝑣! + 3,… , 𝑣! + 𝑣} continually arrive at this depot with a certain arrival rate 𝜆 or a 
time-related rate 𝜆(𝑡). The arrival time and freight weight of an order 𝑖 are denoted as 𝑡" and 𝑤" 
respectively, where 𝑖 ∈ 𝑉! ∪ 𝑉 . The relative delivery coordinates to the depot of the order 𝑖  are 
(𝑥" , 𝑦") whose probability density function is 𝑓(𝑥, 𝑦). The problem that dispatchers need to solve is 
how to assign vehicles to fulfil these logistic orders, i.e., what is the departure time of each vehicle and 
which orders should be delivered by each vehicle, in order to maximize vehicles' usage efficiency and 
minimize the orders' waiting time. The orders considered in this problem are dynamic and uncertain. 
Generally, it is more reasonable to make decisions after depots have collected enough number of orders 
rather than real-time decision because of the limited resources. Therefore, a postponement strategy is 
introduced in this study to transform the dynamic, uncertain problem into a series of static, certain 
problems. By so doing, we predetermine 𝐾 community logistics solution update cycles, denoted as 
𝑑𝑡($) , where 𝑘 = 1,2,3, … , 𝐾  and 𝑑𝑡(&) = 0. During the service time of a business day, the time 
interval between two adjacent cycles is fixed at ∆𝑡. In other words, ∆𝑡 = 	𝑇 𝐾⁄  . At the end of each	∆𝑡, 
there is a set of collected orders waiting to be processed, which is denoted as 𝐼($) Dispatchers need to 
determine 𝐼(̅$)  and 𝑅($) , i.e., the order set for immediate delivery and order set for intended 
postponement, respectively, where 𝐼(̅$) ∪ 𝑅($) = 𝐼($). They also need to decide the delivery task 𝐼!̅

(#) 
of each available vehicle according to available vehicle set 𝐽(#). 

It is noted that for vehicles that are not available at 𝑑𝑡($), they have no delivery task, i.e., 𝐼!̅
(#) =

∅	 if 𝑗 ∉ 𝐽($). As aforementioned, the defined CLS problem can be classified as a new optimization 
category, i.e. postponement first-route optional approach, for managing e-commerce deliveries. In this 



study, we introduce two alternative approaches in dealing with the question of “how intended 
postponement can be achieved in spatial and temporal dimension”, namely temporal delivery 
postponement (TDP) and spatial delivery postponement (SDP) approach. The performance of these 
approaches serves as the ground to justify the feasibility of the proposed CLS in providing quality real-
time delivery scheduling solutions under B2C e-commerce last-mile delivery context. Relevant 
parameters and decision variables are summarized in Table 2. 

An overview of the differences between TDP and SDP is summarized in Table 3. The solution 
generated by TDP and SDP approaches consists of a set of delivery orders to be fulfilled by a vehicle, 
in which the possibility of temporal or spatial postponement has been taken into consideration. 
Therefore, with a static set of orders for delivery, route generation can be performed by conventional 
VRPs. In this section, solution approaches are formally described, followed by route generation through 
the Tabu search algorithm. Key performance measurement indices for systematic evaluations of the 
performance of the proposed approaches are also presented. 

 
Table 2. Notation for parameters and decision variables 

Notation Definition 

𝒕 time 

𝑻 Service time of a business day 

𝑱 Vehicle set 

𝑸 Maximum load of a vehicle 

𝑺 Serving community of a vehicle 

𝑽𝟎 Backlog orders collected from the previous days 

𝑽 Set of orders arriving from t = 0 to t = T 

𝒕𝒊 arrival time of order i 

𝒘𝒊 weight of order i 

(𝒙𝒊, 𝒚𝒊) relative coordinates of the delivery address of order i from depot 

𝒅𝒕(𝒌) kth community solution update cycle (the cycle) 

𝑰(𝒌) Order set waiting to be processed at kth cycle 

𝑰/(𝒌) Order set for immediate delivery at kth cycle 

𝑹(𝒌) Order set for intended postponement at kth cycle 

𝑱(𝒌) Available vehicle set at kth cycle 

𝑰/𝒋
(𝒌) Delivery task for vehicle j at kth cycle 

𝑺𝒎,𝒏 Service area in community (m,n) 

WT Average waiting time of a delivery order 

TD Vehicle average traveling distance 

CPT Average route compactness vehicle empty space distance 

 
 



Table 3. An overview of TDP and SDP approach for community logistics 
 Temporal Delivery Postponement (TDP) Spatial Delivery Postponement (SDP) 

Methodology 

 
Postpone the departure time of vehicle so 

as to utilize the available capacity of 
vehicle space 

 

Adjust the service community of each 
vehicle so as to utilize the available 

capacity of vehicle space 

Fixed parameter Service community of each delivery 
vehicle Departure time of each vehicle 

Decision variable Departure time of each vehicle Serving community of each delivery 
vehicle 

 
4.2 Temporal Delivery Postponement approach 

For the TDP approach, the whole square area 𝑆  is prior divided into 𝑀  by 𝑁  square 
communities 𝑆𝑚,𝑛 , where 𝑚 = 1,2,… ,𝑀, 𝑚 = 1,2,… ,𝑀, 𝑀 = 𝑁. One vehicle is responsible for 

serving the requests in one community only. At the beginning of each solution update cycle 𝑑𝑡($), 
depot managers consolidate the collected orders set 𝐼($) into M x N groups denoted as 𝐼',)

($)  according 
to their coordinates and check the number of orders in all communities and number of available vehicles 
𝐽($). A vehicle 𝑗 , where 𝑗 ∈ 𝐽($), will be assigned to handle the delivery task in 𝑆𝑚,𝑛. The orders set 

𝐼',)
($)  are processed according to the following three rules: 

(1) If the total demand of 𝐼',)
($)  is less than 𝜂 ∙ 𝑄, where 𝜂 ∈ (0,1] is the threshold, all orders in 

𝐼',)
($)  will be postponed. Therefore, the delayed order set 𝑅',)

($)  in 𝑆𝑚,𝑛 is 𝐼',)
($) ; 

(2) If the total demand of 𝐼',)
($)  is between [𝜂 ∙ 𝑄, 𝑄], a vehicle 𝑗 ∈ 𝐽($) is assigned to serve 𝐼',)

($) . 

Therefore, 𝐼*̅
(+) = 𝐼𝑚,𝑛(𝑘)  and 𝑅',)

($) = ∅; 

(3) If the total demand of 𝐼',)
($)  is more than 𝑄, a vehicle 𝑗 ∈ 𝐽($) is assigned to serve a part of  

𝐼',)
($) . The served order set 𝐼*̅

(+) is determined based on first in first serve principle until the 

vehicle capacity is full. Therefore, 𝑅',)
($) = 𝐼𝑚,𝑛

(𝑘) /�̅�𝑗
(𝑘). 

The working logic of the TDP approach and its simulation framework are presented in Figs. 2 and 3 
respectively. In this simulation framework, 𝑃𝑎𝑟𝑎𝑠 contains all parameters needed in the simulation, 
including: business time 𝑇, number of initial order 𝑣!, number of vehicles |𝐽|, vehicle capacity 𝑄, 
order arrival rate 𝜆(𝑡) , length of time element 𝛥𝑡  and probability density functions of 𝑤"  and 
(𝑥" , 𝑦"). 𝑚 and 𝑛 are two variables which influence the performance of TDP approach. 
 



 
Fig. 2. Simulation framework of the TDP approach 

 
Fig. 3. Working logic of the TDP approach 



4.3 Spatial Delivery Postponement approach 

For the SDP approach, the departure time is predetermined at each 𝑑𝑡($). The required number 
of vehicles in kth decision can be calculated by: 

   (1) 

If the available vehicle capacity is sufficient, i.e., 𝐿($) ≤ W𝐽($)W, all orders 𝐼($) collected before 𝑑𝑡($) 

will be delivered, i.e., 𝐼(̅$) = 𝐼($). Otherwise, orders in 𝐼($) will be delivered as first-in-first-serve to 
meet the capacity limitation and remained order set 𝑅($) is postponed to the next solution update cycle 
𝑑𝑡($-&) . After identifying the delivered order set 𝐼(̅$) , a tailored capacitated k-means clustering 
algorithm is proposed to generate the 𝐼!̅

(#) in the community served by vehicle 𝑗 ∈ 𝐽($). The simulation 
framework based on the SDP approach and its working logic are presented in Fig. 4 and 7, respectively. 
In this simulation framework, 𝑃𝑎𝑟𝑎𝑠 contains all parameters needed in the simulation which is same 
as the parameters in the simulation based on TDP approach. 𝛥𝑡 is the variable which impacts the 
performance of the SDP approach.  

The capacitated K-means clustering algorithm, as detailed in Fig. 5, has a similar procedure with 
conventional K-means clustering algorithm, which assigns each observation to the nearest centroid and 
update all centroids subsequently. The difference is that our algorithm contains a component to handle 

the capacity constraint. If a predetermined community 𝑙Y is full when we allocate order 𝑖  to this 
community, our approach to handle the capacity is not simply reallocate 𝑖  to the other nearest 
community where the total demand is less than Q. Instead, our approach will insist on allocating order 

𝑖 to the community 𝑙Y. However, another order 𝑖′ will be transferred to a near cluster to ensure the 
capacity constraint is satisfied. Lines 9-16 in Fig. 5 are introduced to select the order 𝑖′. For ease of 
understanding, we also present Fig. 6 to illustrate our community’s capacity handling process.  
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Fig. 4. Simulation framework of the SDP approach 

 

Fig. 5. Proposed capacitated K-means clustering algorithm in the SDP approach 



 
Fig. 6. An illustration of the community capacity handling process 

 

 
Fig. 7. Working logic of the SDP approach 

 
4.4 Performance measurement for TDP and SDP approach 
To evaluate the effectiveness of the above two approaches and identify appropriate parameter 
combinations, we propose three key performance indicators (KPIs). The first KPI is average 
postponement duration of an order (WT), which is a measure of the amount of time delivery is pending 
in the depot upon actual delivery. It is calculated by: 

! !′! !′!



   (2) 

The second KPI is the average route compactness of a vehicle's trip (CPT). The route compactness is 
an intuitive concept and can be defined unequivocally (Rossit et al. 2019). Generally, the higher 
proximity amongst the destinations of the community, the more compact this route is. In this study, we 
use the definition proposed in Poot et al. (2002) to measure route compactness, which is formulated as: 

   (3) 

where dist(a,b) is a function to calculate the Euclidean distance between point a and point b. 𝑐!
(#)	is the 

geometric center of the location in the order set 𝐼!̅
(#). Smaller value of CPT indicates a more compact 

solution. 
The third KPI is the average traveling distance of a vehicle's trip (TD), which is used to describe vehicles 
travel efficiency and is computed by: 

   (4) 

where 	𝐷(𝐼!̅
(#)) is the minimum distance for the vehicle j to deliver all orders in 𝐼!̅

(#). This figure can 
be obtained by solving the traveling salesman problem (Lawler, 1985) using Tabu search algorithm. In 
this study, we suggest that route optimization is an optional decision. The route is identified solely for 
the purpose of the numerical experiments and analysis detailed in Section 5. 
 
5. Numerical studies 

In this section, we present our numerical experiments to assess the performances of TDP and SDP 
approach in dealing with general e-commerce last-mile delivery scheduling problems. The numerical 
analysis is based on real data sets extracted from a logistics service provider, whose distribution centers 
handling e-commerce logistics orders for last-mile delivery are based in two different geographical 
locations. Section 5.1 describes the data set used in our simulation experiments, followed by a detailed 
explanation in Section 5.2 regarding the parameter setting. We then present the results of each solution 
approach and compare their performance respectively in Section 5.3 and 5.4.  
 
5.1 Data Sets 

The problem discussed in this paper is based on a real-world case in a third-party logistics service 
provider in the mainland China. One of the depots of the 3PL located in Beijing is selected for this case 
study. Each depot serves as the B2C distribution hub for last-mile delivery to local end consumers 
within a 5km by 5km area. Currently, the case company handles outsourced last-mile delivery 
operations of an omni-channel and online shopping platform. There are two delivery options for end 
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consumers: home delivery or in-store pickup. Upon receiving delivery requests from the end consumers, 
the 3PL is required to schedule the daily delivery operations by determining the despatching B2C e-
commerce orders timely to the entire smart lockers network within the region served by the depot, with 
the trade-off between minimizing the number of daily delivery trips and the postponement time of each 
delivery order.  

The uncertainties of the daily last-mile e-commerce delivery scheduling problem lies in the 
dynamic arrival of delivery requests and fluctuating demand of smart lockers within the network. A 
typical operating scenario in scheduling for last-mile e-commerce delivery is the arrival of an enormous 
number of delivery requests in depots during both operating and non-operating hours. At the beginning 
of each working day, each depot receives an aggregated, initial delivery backlog orders. During the 
service time, i.e. from 8:00 to 18:00, new delivery requests are received in real-time. As delivery 
requests are randomly distributed across the 5km*5km area served by the distribution hub, operators of 
each depot are required to justify the serving community of the delivery vehicles and to allocate delivery 
orders to each vehicle accordingly. Currently, in the absence of decision support tools, decisions 
regarding the possibility of spatial postponement of delivery vehicle (i.e. adjusting the serving 
community of a vehicle's trip) and temporal postponement of delivery order (i.e. determining the 
duration of consolidating orders) cannot be made. FIFO strategy is applied to allocate the delivery 
orders to available vehicles for last-mile delivery.  

In the literature, the well-known VRPTW instances by Solomon (1987) comprise 56 instances, 
each of which contains 100 customers located in a 100 by 100 square. The set is divided into six classes 
so as to distinguish the difference in terms of the time window and vehicle capacities. However, the 
Solomon instance lacks generality as it does not demonstrate different demand distributions (Bianchessi 
et al. 2019). Further, in the e-commerce environment, orders exhibit more characteristics other than 
time windows constraints and vehicle capacities. For example, e-commerce orders have varying arrival 
rate at the depot 24/7 during operating and non-operating hours. The same day or next day delivery 
promise makes the time window constraints more or less fixed. To realistically reflect the business 
nature of today's e-commerce delivery sector while taking reference of the standard Solomon 
benchmark, we extract a real data set from the 3PL and obtain the historical real order arrival patterns. 
Based on the real data set, we identify the essential parameters as discussed in the next section.  
 
5.2 Parameter settings 

Adapted from the Solomon benchmark, we consider a 5km*5km square area served by the depot. 
The order distribution within the area tends to be evenly distributed, as delivery requests are widespread 
(the green and yellow region in Fig. 8) across the populated areas. The remaining parameters are 
classified into four categories: vehicle-related, order pattern-related, serving community-related, and 
experiment-related. A one-year delivery order data for the depot concerned in this simulation study are 
collected for determining the first two categories of parameters. In particular, the distributions for order 
arrival rate during operating and non-operating hours, the spatial distribution of the arrived orders, and 



the weight of an order, are calculated based on real data patterns. To examine the feasibility of 
integrating the Temporal delivery postponement and Spatial community adjustment features identified 
in Section 3, experiments of TDP and SDP needs to be conducted in a controlled simulation environment 
where vehicles are assumed to have immediate availability to perform delivery tasks, similar to the case 
of crowdsourced delivery. By so doing, the intended temporal delay of order dispatching will not be 
resulted from vehicle unavailability. To reflect the real operating scenario in the depot, the maximum 
available number of vehicles for daily delivery operations is limited to be 10 and is always sufficient to 
handle the changing delivery demand. Idling vehicles remain at the docking area of the depot waiting 
for order releases for loading and last-mile deliveries. Each truck has an identical capacity of 500 kg 
for loading B2C e-commerce orders. Considering the time required for unloading parcels at each 
delivery point and perform actual delivery, the speed of the truck is fixed at 5 km per hour. A summary 
of all parameters concerned is presented in Table 4. 

 
Fig. 8. Heat map reflecting order distribution and density of the real data set 

 

Table 4. A summary of the parameter settings 
Parameters  Setting 
Vehicle-related parameters 
Number of trucks 10 
Truck capacity 1000 kg 
Truck speed 5 km per hour 
Order pattern-related parameters 
Order arrival rate during operating hours A. Low demand – 0.75 min per order 

B. Normal demand – 0.5 min per order 
C. High demand – 0.35 min per order 
D. Peak demand – 0.25 min per order 

Order arrival rate during non-operating hours A. Low demand – 2.5 min per order 
B. Normal demand – 2 min per order 
C. High demand – 1.7 min per order 
D. Peak demand – 1.5 min per order 

Order distribution within the smart locker network Uniform distribution 
Weight of a delivery order Gamma distribution (20, 1) 
Size of order set 20 kg per order set 
Community-related parameters 
Serving size of a community 5 km * 5 km 



Number of communities 1*1/ 2*2/ 3*3/ 4*4/ 5*5/ 6*6/ 7*7 
Community partitioning method Unit squares 

 
Experiment-related parameters 
Operational time length 10 hours (i.e. 600 minutes) 
Solution update cycle  TDP approach: every 10 minutes 

SDP approach: Equivalent to the pre-defined vehicle 
departure cycle 

Simulation time 10 days 

 
5.3 Results of the solutions generated by TDP, SDP and VRP approach 

Based on the parameter settings as defined in section 5.2, the city logistics problem is simulated 
for 10 days, with the operational time being 10 hours per day, i.e. 600 minutes. Experiments are 
performed through MATLAB 2019 on an x64-PC with an Intel dual Core i7-6700 3.40GHz CPU and 
16GB of RAM. Results using our proposed mechanism, i.e. TDP and SDP approach, and using VRP 
approach, are presented as follows. 

 
5.3.1 CLS solutions generated by TDP approach 

Using the TDP approach, the 5 km by 5 km serving community of the depot is partitioned evenly 
using 𝑀 by 𝑁 squares, where 𝑀 = 𝑁. Fig. 9 depicts four solution examples when 𝑀 = 𝑁 = 3, 
under high demand scenario. A total of nine fixed communities implies that there exist nine individual 
order pools for consolidating delivery orders. Each pool is served by at least one vehicle. For a 

predetermined solution update cycle (𝑑𝑡($)) of 10 minutes, every 10 minutes the TDP approach checks 
if the orders consolidated in each community reach the desired loading capacity of the vehicle. The 
solution examples presented in Fig. 9 indicates that the vehicle departure time in each community differs 
in accordance with the actual order pooling situation in each community. For example, four vehicles 

depart at the 1st cycle (𝑑𝑡(&)), i.e. 8:00 am, followed by another community fulfilling the vehicle loading 
requirement at the 15th cycle (𝑑𝑡(&.)), i.e. 10:30 am, and so on. Under the scenario of “high demand”, 
simulation results reveal that TDP approach performs well in terms of traveling distance and route 
compactness. As for an order fulfillment rate of 98.8%, this figure depicts a very satisfying order 
throughput progress across the 10 simulation days. Only an insignificant number of backlog orders (less 
than 2%) remain undelivered.  
 
(i) Effect of community partitioning towards traveling distance and route compactness 

CLS solutions generated by TDP approach under all demand scenarios (low, normal, high and 
peak) are presented in Appendix I. Solutions with seven community partitioning sizes are developed, 
which demonstrate the sensitivity of community partitioning towards the three KPIs introduced, i.e. 
order postponement duration, traveling distance and route compactness. When M = N = 1, no sub-
community partitioning is applied to the entire serving community. The effect of sub-community 
partitioning towards order postponement duration, traveling distance and route compactness, as shown 



in Fig. 10, shows that solutions without applying sub-community partitioning give the worst results 
under all demand periods. The finding makes sense as vehicles have to travel across many districts for 
delivery, which in no doubt reduces the compactness of route, increases the traveling distance and time, 
thereby delaying the delivery of other pending orders in the depot delivery time given a fixed number 
of available vehicles. When serving community partitioning is applied, the more the number of sub-
community partitioned, the smaller the actual serving community of a vehicle. Hence, it is not difficult 
to comprehend that partitioning serving community would reduce traveling distance and at the same 
time generate a more compact route, which is reflected in Fig. 10. A drastic reduction of average 
traveling distance and route compactness of a trip is found when the number of serving communities is 
partitioned up to 16, i.e. M = N = 4. While these two KPIs continue to improve for M = N = 5 and 
onwards, there is a noticeable decrease in the rate of improvement. 

 
(ii) Relationship between order arrival frequency and community partitioning 

As for the average postponement duration of an order, the figure is substantial under all demand 
scenarios (except for low demand period) when no serving community is applied. Moreover, it is 
revealed that the higher the order arrival rate (i.e. demand), the larger the duration of order delivery 
delay. This finding reflects the crucial need to perform serving community partitioning mainly when 
the depot receives an enormous number of orders. Using the same fleet of vehicles to fulfil such a 
considerable number of delivery requests by allocating each vehicle to overlap their delivery 
destinations with other vehicles does not make sense. Besides, Fig. 10 provides another essential 
indication about serving community partitioning. Under low demand scenario, the average 
postponement duration of an order reaches its minimum when M = N = 1, which indicates the fleet of 
vehicles works well in fulfilling the delivery requests even if no serving community partitioning is 
applied. Under normal and high demand scenario, the average postponement duration of an order 
reaches its minimum when M = N = 2 (i.e. 4 communities). As for peak demand scenario, its minimum 
is reached when M = N = 3 (i.e. 9 communities). There is a gradual shift in the optimal number of 
communities in order to achieve the minimum duration of delivery delay with the increase of order 
arrival rate. Hence, this provides a clear indication that more communities should be introduced to deal 
with greater demand.  
 
(iii) Conversion between the "Cost of Postponement" and the "Value of Postponement" 

When comparing the performance of postponement duration, traveling distance and route 
compactness as a whole, the delay of order delivery serves as a practical trade-off of improving the 
vehicle routing solution in terms of both traveling distance and route compactness. This validates our 
proposed concept of postponement first-route second in facing today's e-commerce last-mile delivery 
problems where delivery requests are arriving at the depot at a high frequency for timely fulfillment. 
Nevertheless, we should be aware of the selection of the degree of community partitioning. As shown 
in Fig. 10, after reaching the minimum duration of order delivery delay, this figure continues to increase 



gradually when a higher degree of community partitioning is imposed. However, such an increase in 
delivery delay does not provide a significant improvement in terms of the traveling distance and route 
compactness, as the rate of reduction of these KPIs is decreasing when more communities are 
introducing. In other words, the value of postponement might not be able to offset the cost of 
postponement. Therefore, while 3PLs could strategically sacrifice a more significant degree of delivery 
delay in exchange for better delivery planning and execution in terms of improved traveling distance 
and visual attractiveness of route, they are recommended to strike a balance between the value and cost 
of postponement by identifying the "optimal" degree of community partitioning based on their depots' 
demand and supply, that are, respectively, the order arrival frequency and delivery vehicle availability.  

 
Fig. 9. Community logistics solution update using TDP approach – a graphical example 

 

Fig. 10. Effect of community partitioning towards (a) delivery postponement duration, (b) traveling 
distance and (c) route compactness using TDP approach 



5.3.2 CLS solutions generated by SDP approach 
Under the SDP approach, vehicles are departed at a pre-determined interval (say 60 minutes) to 

fulfil the pending orders. By restricting the departure time of each vehicle, the SDP approach is able to 
generate a more flexible community in terms of its size, depending on the spatial distribution of the 
pending order set. Fig. 11 depicts four solution examples extracted under high demand scenario with 
vehicle departure cycle is fixed at 60 minutes. At each dt(k), once a set of community logistics solution 
is generated, the formed communities must be fulfilled by the available vehicles. For example, at the 
1st departure cycle, i.e. 8:00 am, a total of 10 communities are formed, which therefore implies that 10 
vehicles are to be departed after loading the corresponding order set. It is noted that any additional 
orders cannot be served at the current dt(k) will be postponed to dt(k+1), if the pending order set exceeds 
the capacity constraint of the available vehicles. With fluctuating arrivals of orders at distribution 
centres, it can be observed in Fig. 11 that each dt(k) has a flexible set of vehicles to depart. For example, 
a total of 6, 3 and 5 communities are formed at dt(18) dt(36) and dt(54) respectively.  

Under the "high demand" scenario, simulation results shown in Figs. 9, 11 and 12 reveal that 
solutions generated from SDP approach with 60-minute vehicle departure cycle perform as good as 
those from TDP approach with nine communities partitioned. However, more investigations are 
required to justify which approach is better under different demand scenarios due to a variety of 
parameter settings regarding vehicle departure cycle and community partitioning. As for the order 
fulfillment rate, only 0.1% of orders remain undelivered. This demonstrates the appropriateness of 
adopting this approach. 
 CLS solutions generated by SDP approach under all demand scenarios (low, normal, high and 
peak) are presented in Appendix II. Solutions with seven variations of vehicle departure cycles are 
developed, which are used for testing the sensitivity of the variations of vehicle departure cycles towards 
the three KPIs introduced, i.e. order postponement duration, traveling distance and route compactness. 
As both SDP and VRP approach have a fixed vehicle departure cycle, the solutions generated by SDP 
approach are presented and compared with those generated by VRP approach in Section 5.4. 



 
Fig. 11. Community logistics solutions update using SDP approach – a graphical example 

 
5.3.3  Vehicle routing solutions generated by VRP approach 
To validate the appropriateness of the proposed TDP and SDP approach in solving city logistics problem, 
the same set of parameters is replicated for use in VRP modelling. The simulation process of using VRP 
approach is similar to the simulation process of using SDP, where the available vehicles are dispatched 
at a set of predetermined departure times. The difference is that VRP approach determines the customers 
served by each vehicle through solving the VRP. The aim of VRP approach is to minimize the total 
vehicle traveling distance. By contrast, SUP approach focus on narrowing the service area of each 
vehicle. In this study, we use an adaptive large neighbourhood search algorithm proposed by 
Hemmelmayr et al. (2012) to solve the VRP at the end of each departure cycle. An example of a set of 
vehicle routing solutions is presented in Fig. 12. Under high demand period, VRP solutions give a 
comparatively poor performance in all the KPIs considered. The reason is that solving the large scale 
VRP within an acceptable time is extremely difficult even using powerful solution algorithms. 
Specifically, when comparing with SDP under the same parameter setting as depicted in Figs. 11 and 
12, i.e. high demand period and 60-minute vehicle departure cycle, the average delay of an order for 
actual delivery is 2,160 minutes (equivalent to 36 hours or 1.5 days), while that of SDP is only 179 mins 
(equivalent to 2.98 hours). The average traveling distance and route compactness of a trip using VRP is 
respectively 31.04 km and 1.66 km, while that of SDP is only 19.18 km and 0.83 km. Vehicle routing 
solutions generated by VRP approach under all demand scenarios (low, normal, high and peak) are 
presented in Appendix III. A more comprehensive discussion and comparison of the results obtained 
from SDP and VRP approaches is provided in Section 5.4. 



 
Fig. 12. Vehicle routing solutions generated by VRP approach – a graphical example 

 
5.4 Comparisons between TDP, SDP and VRP approach 
Based on the above results obtained individually using TDP, SDP and VRP approach, we present some 
major comparisons among their solutions with respect to simulation time, order fulfillment rate and 
vehicle departure cycle.  
 
5.4.1 Simulation time comparison 
According to Appendix I – III, the simulation time for solution generations using TDP, SDP and VRP 
approach is, on average, 40.9, 40.4 and 299.4 seconds, respectively. The reason for requiring almost 
five minutes to generate a single routing solution for a fleet of vehicles by VRP approach is the existing 
of a large set of order nodes for each vehicle routing solution generation. In contrast, the postponement 
first- route second operating strategy adopted in TDP and SDP separates a broad set of order nodes into 
many clusters based on the objective of temporal and spatial postponement. In this sense, the subsequent 
routing generation using Tabu search algorithm is a much smaller set of order nodes. Therefore, the 
TDP and SDP approach under the scope of CLS gives a significant reduction of time for generating a 
solution. In the long run, as solution generation process is performed frequently throughout the 
operating hours, the simulation time reduction using TDP and SDP approaches drastically minimizes a 
decision-maker's waiting time for obtaining a delivery postponement or scheduling solution.  
 
 



5.4.2 Order fulfillment rate comparison 
Order fulfillment rate can be an essential indicator for the selection of solution approach. Such a 
comparison enables practitioners to justify which approach works best under a particular demand period. 
As presented in Fig. 13, the order fulfillment rate using TDP approach achieves over 90% under all 
demand scenarios when serving community partitioning is applied (M = N >1). More importantly, a 
comparison of order fulfillment rate under different demand scenarios reveals that the TDP approach 
gives an even higher order fulfillment rate under high and peak demand period. This suggests that 
partitioning serving community is an effective uncertainty postponement strategy, especially during 
high demand seasons. 
 For the SDP approach, it is worth noting that it works well in peak demand period. The maximum 
order fulfillment rate in peak demand period is about 80% when the vehicle departure time is fixed at 
every 100 minutes. Nevertheless, the approach performs very well and is the best amongst three solution 
approaches in low, normal and high demand scenarios when the vehicle departure cycle is respectively 
fixed at 200, 150 and 100 minutes or below. When considering low and normal demand period, a 
comparison between TDP and SDP reveals that the latter achieves higher order fulfillment rate.  
 For the VRP approach, it is observed that the approach performs well only under low demand 
scenario. When order arrival frequency is getting higher, it is unlikely that the approach can guarantee 
an order fulfillment rate of 80% or above. In other words, more backlog orders will be accumulated at 
the depot due to unsatisfying routing solutions (in terms of both traveling distance and route 
compactness as shown in Appendix III). This finding serves as strong evidence of the need to develop 
a postponement first-route-second solution approach for solving today's city logistics problem where 
there is significant B2C customer demand in a small geographical area within a short duration. 
 

 
Fig. 13. Order fulfillment rate comparison between (a) TDP, (b) SDP and (c) VRP solutions 

 
5.4.3 Effect of vehicle departure cycle for SDP and VRP approach 
As both SDP and VRP approach employs fixed vehicle departure cycle for order delivery, pairwise 
comparison can be conducted for these approaches regarding the effect of the variations of vehicle 



departure cycle towards order delivery delay, traveling distance and route compactness. For order 
delivery delay, Fig. 14 shows that the delivery delay of each order is getting more severe for both 
approaches when the vehicle departure cycle is increasing. However, when the vehicle departure cycle 
is below 150 minutes, the rate of change of delivery delay using SDP approach is insignificant. When 
considering the traveling distance and route compactness of SDP approach, we could also observe a 
significant rate of reduction of these KPIs when vehicle departure cycle is below 150 minutes. This 
suggests that order delivery delay serves as the “Cost of postponement” to generate the “Value of 
postponement” in terms of traveling distance and route compactness. This finding aligns with that of 
TDP approach discussed in section 5.3.1, indicating that both SDP and TDP approaches are managed 
to deliver the value of postponement through the idea of "intended postponement" in the dimension of 
spatial and temporal respectively. 
 As for the VRP approach, though the duration of order delivery delay continues to increase, the 
traveling distance and route compactness have a positive correlation with order delivery delay. Such 
contrasting outcome in comparison with the SDP approach shows that the delay of order delivery from 
VRP approach should be regarded as “unintended postponement”. The order delivery delay in VRP is 
originated from the inefficiencies of the generated solution to deal with city logistics problem where a 
large number of order nodes exist. Again, this provides a sharp indication of the appropriateness of 
introducing postponement first-route second typology in solving today's city logistics problem. Further, 
as TDP and SDP approaches generate a solution with short traveling distance and high route 
compactness, this suggests that the order set served by a vehicle is mostly within a small geographical 
region. That said, an experienced delivery person should have the adequate capability of determining 
the delivery sequence within such a small region. Hence, a relaxation of the assumption of requiring 
"route second" is worth consideration. 

 
Fig. 14. Effect of vehicle departure cycle towards (a) delivery postponement duration, (b) traveling 

distance and (c) route compactness using SDP and VRP approach 
 



6. Implications of this study 
To provide implications for the interests of future scientific research in the area of last-mile 

delivery postponement problems, implications are discussed in two aspects: (i) interaction between the 
CLS and VRP, and (ii) applicability of the CLS in a wider spectrum. 
 
6.1 Interaction between CLS and VRP – "Delivery uncertainty postponement" serving as a mean of 
generating order pooling effect 

In the mainstream literature, we have seen VRP solution approaches that adopt the idea of cluster 
first-route second. Nevertheless, the districting algorithms of these VRPs only attempt to perform 
capacitated clustering based on the geographical delivery locations of orders. The possibility of pooling 
delivery orders based on both the spatial and temporal considerations has not been studied. Under the 
scope of CLS, capacitated districting of delivery orders is performed with an objective of "intended 
delivery postponement", so that the duration of postponement of each order serves as an effective "cost" 
of reducing traveling distance and improving the visual attractiveness of a delivery trip. Simulation 
results based on real data patterns validate the appropriateness of implementing the concept of 
postponement first-route second strategy where a large number of delivery requests are received at a 
high frequency within a compact region. The assumption of requiring the subsequent route generation 
can even be relaxed at a practical standpoint. 
 
6.2 Applicability of CLS in a wider spectrum 
The applicability of the proposed dynamic spatiotemporal-based order pooling mechanism, comprising 
temporal and spatial postponement through TDP and SDP solution approach, is validated through the 
sensitivity analysis with respect to VRPs as presented in the previous section. Nevertheless, the 
applicability of the proposed CLS can be examined further by considering a wider variety of delivery 
scenarios, such as different geographical patterns and nature of orders.   

The simulation experiment performed in this study adopts a real order arrival data set with the 
orders distributed quite evenly across the 5km*5km area as delivery requests are widespread across 
most of the locations with populations. The geographical area considered is a flat land without high 
elevation of land surfaces. For coastal area, mountainous region and large hilly area, the undulation of 
its surface relief might affect the performance of the TDP solution approach as communities are 
partitioned based on a square shape. Similarly, most previous transportation studies taking city logistics 
into account disregard the integrated effects of geographical patterns and order nature towards last-mile 
order dispatching. Therefore, these parameters should be considered to design and determine an 
appropriate community partitioning method.  

In the perspective of order nature, last-mile city logistics problem should be explicitly categorized 
into two streams: order delivery and order collection problem domains. The former considers a set of 
orders with specified delivery locations to be distributed by a delivery person, whereas the latter 
considers a set of orders with specified collection locations to be collected by a delivery person. We 



stress the need to integrate real-time order arrival features into city logistics model development. For 
example, the dynamic spatiotemporal-based order pooling mechanism introduced in this study deals 
with the last-mile order deliveries where orders are continuously arriving and intervenes the 
formulations of dispatching solutions. In addition to dynamic order arrivals, crowdsourced delivery 
options – a large pool of citizen workers to perform the final leg of delivery and collection, should also 
be further investigated in the design of any spatiotemporal-based order pooling mechanisms that attempt 
to jointly or individually tackle the order delivery and order collection problems under the last-mile city 
logistics context. 
 
7. Conclusive remarks 

A dynamic strategy, namely Community Logistics Strategy, is introduced in this study. Numerical 
studies reveal its superiority in managing the dynamic arrivals of e-commerce delivery requests without 
generating route decisions. While this paper applies the CLS into particularly dealing with instant parcel 
delivery to smart lockers located around every corner of the city, it should be highlighted that there is 
potentially a wide range of practical delivery scenarios which is feasible for transformation of their 
existing order fulfilment operations through CLS deployment. To name a few, they include the joint 
pickup-and-delivery environment, e-commerce delivery with tight time windows, etc. This study 
demonstrates the essence of managing the uncertainty of delivery requests through taking both “time” 
and “space” into consideration – On one hand, delaying delivery fulfilment as a means of “buying time” 
for consolidating more delivery requests is one good tactic. Nevertheless, enlarging vehicle serving 
community would, on the other hand, reduce the potential over delayed deliveries. Striking a balance 
between these factors is therefore crucial in real practice.  

From the operational standpoint, relaxing the need for route optimization by shifting the focus 
onto community partitioning based on real time arrivals of orders yields some noticeable benefits. First, 
less reliance on computational requirements can be achieved as the grouping of orders into order sets, 
rather than the visiting sequence of delivery locations, is treated as the solution format under the CLS 
methodology. Second, applying it into city logistics contexts where numerous small orders exist in 
compact regions with high rise commercial and residential buildings decentralizes the visiting sequence 
decision-making to delivery persons. This increases the degree of flexibility for them to perform 
delivery operations especially when traffic issues arise in megacities. Managerially, the delegation of 
routing decision-making also creates rooms for the management to focus on the real-time formulations 
of delivery communities that are operationally easy to execute, thereby indirectly addressed the 
difficulties and inabilities of including the real-time requests in the delivery route of the vehicle in real 
practice. 

The limitation of this study lies in the spatial and temporal considerations being individually 
considered, as represented by the proposed SDP and TDP approach. Future research directions therefore 
include the integration of these attributes in the development of CLS-based dynamic delivery strategy 
in city logistics context. To develop executable real-time delivery dispatching models, future studies 



should also consider the practical issues arising from the delivery system, such as delivery security, 
drivers’ work time, etc. Given the steady growth of last-mile logistics becoming more apparent than 
ever, we call for greater research emphasis on the innovation and development of new methodologies 
to meet the demand under this ever-changing and dynamic delivery environment, especially in the e-
commerce era. 
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Appendices 
Appendix I – CL solutions generated by TDP approach under various demand scenarios 

No. of 
communities 
partitioned 

Average 
postponement 
duration 

Average 
traveling 
distance 

Average 
route 
compactness 

Total no. 
of 
processed 
orders 

Total 
no. of 
backlog 
orders 

Order 
fulfillment 
rate 

Average 
simulation 
time 

 
(mins per 
order) 

(km per trip) (in 10 days)  (seconds) 

Low demand scenario 
1 143.5 37.33 1.97 11257 80 99% 23.9 
4 212.9 17.93 0.92 11210 206 98% 24.9 
9 334.2 13.34 0.62 11197 169 99% 25.2 
16 488.7 10.89 0.47 10711 417 96% 24.5 
25 735.1 9.55 0.37 10708 695 94% 24.2 
36 949.7 8.58 0.31 10386 868 92% 24.1 
49 1223.9 7.91 0.27 10385 1024 91% 24.6 
        
Normal demand scenario 
1 589.8 38.26 1.96 14743 1146 93% 30.6 
4 174.0 18.43 0.92 16121 113 99% 34.4 
9 265.3 13.42 0.62 15543 195 99% 34.9 
16 377.0 10.95 0.47 15561 374 98% 34.0 
25 517.0 9.56 0.37 15218 793 95% 34.4 
36 733.6 8.63 0.31 15224 779 95% 33.7 
49 913.3 7.90 0.27 15199 871 95% 35.1 
        
High demand scenario 
1 2325.9 38.07 1.95 14811 7266 67% 35.5 
4 144.0 18.54 0.92 21591 235 99% 46.5 
9 203.9 13.46 0.62 21527 270 99% 50.4 
16 295.6 10.97 0.47 21421 488 98% 50.3 
25 399.8 9.52 0.37 21056 782 96% 46.7 
36 539.4 8.57 0.31 21175 879 96% 49.5 
49 696.2 7.93 0.27 20703 1051 95% 47.2 
        
Peak demand scenario 
1 3561.2 38.21 1.96 14769 14646 50% 41.0 
4 878.2 19.51 0.92 25839 3800 87% 55.2 
9 165.9 13.84 0.61 29261 289 99% 61.3 
16 236.1 11.03 0.47 28624 569 98% 61.6 
25 318.1 9.60 0.37 28452 957 97% 62.1 
36 399.4 8.60 0.31 28809 909 97% 64.1 
49 523.1 7.94 0.27 28541 1050 96% 63.6 
      Average: 40.9 

  
 
 



Appendix II – CL solutions generated by SDP approach under various demand scenarios 
Vehicle 
fixed 
departure 
cycle 

Average 
postponement 
duration 

Average 
traveling 
distance  

Average 
route 
compactness 

Total no. 
of 
processed 
orders 

Total 
no. of 
backlog 
orders 

Order 
fulfillment 
rate 

Average 
simulation 
time 

(mins) (mins per order) (km per trip) (in 10 days)  (seconds) 
Low demand scenario 
30 132.7 26.48 1.56 11,273 0 100% 27.7 
60 155.1 20.76 1.18 11,270 0 100% 25.9 
100 179.2 18.97 0.94 11,233 0 100% 24.5 
120 187.7 18.00 0.83 11,411 0 100% 25.0 
150 212.1 17.50 0.77 11,323 0 100% 25.7 
200 255.4 16.42 0.69 11,368 0 100% 24.8 
300 1159.9 16.37 0.63 10,058 1,257 89% 22.7 
        
Normal demand scenario 
30 122.2 21.16 1.28 16,344 0 100% 40.1 
60 141.7 18.85 0.96 16,175 0 100% 36.9 
100 170.0 18.52 0.81 16,106 0 100% 37.0 
120 183.9 17.45 0.75 15,913 0 100% 35.0 
150 209.2 16.50 0.68 15,991 0 100% 35.9 
200 641.8 16.49 0.64 15,050 1,003 94% 33.6 
300 3018.1 16.37 0.63 10,078 6,213 62% 25.9 
        
High demand scenario 
30 186.0 23.49 1.10 21,672 158 99% 46.1 
60 178.8 19.18 0.83 21,905 31 100% 49.0 
100 190.2 18.10 0.76 21,565 103 100% 46.8 
120 203.9 16.74 0.67 21,479 162 99% 48.4 
150 848.5 16.39 0.64 19,782 2,037 91% 45.6 
200 2374.5 16.42 0.63 14,999 6,667 69% 38.3 
300 4090.7 16.20 0.63 9,994 11,919 46% 29.0 
        
Peak demand scenario 
30 2084.2 24.00 1.09 21,339 8,163 72% 53.4 
60 1786.6 19.97 0.85 22,014 7,412 75% 55.9 
100 1516.8 18.41 0.78 23,354 5,966 80% 68.3 
120 1723.3 16.76 0.66 22,744 6,587 78% 74.2 
150 2423.7 16.61 0.64 19,948 9,267 68% 64.4 
200 3597.1 16.57 0.64 15,069 14,234 51% 50.8 
300 4884.0 16.61 0.64 10,026 19,194 34% 39.5 
      Average: 40.4 

 
 
 
 
 



Appendix III – Vehicle routing solutions generated by VRP approach under various demand 
scenarios 

Vehicle 
fixed 
departure 
cycle 

Average 
postponement 
duration 

Average 
traveling 
distance 

Average 
route 
compactness 

Total no. 
of 
processed 
orders 

Total 
no. of 
backlog 
orders 

Order 
fulfillment 
rate 

Average 
simulation 
time 

(mins) (mins per order) (km per trip) (in 10 days)  (seconds) 
Low demand scenario 
30 137.8 23.32 1.66 11,266 0 100% 534.8 
60 152.3 21.97 1.45 11,311 0 100% 346.4 
100 192.3 23.58 1.40 11,089 0 100% 277.8 
120 200.3 23.82 1.36 11,240 0 100% 255.7 
150 610.0 33.26 1.64 10,391 813 93% 212.1 
200 363.7 34.12 1.70 11,398 0 100% 236.0 
300 1184.6 35.95 1.73 9,983 1,419 88% 196.2 
        
Normal demand scenario 
30 135.1 23.04 1.53 16,049 0 100% 516.0 
60 435.3 29.97 1.64 15,388 647 96% 362.7 
100 1124.8 31.37 1.67 13,663 2,461 85% 305.4 
120 1430.0 33.29 1.69 13,496 2,637 84% 283.2 
150 2790.4 35.93 1.75 10,017 6,090 62% 199.5 
200 2353.8 34.76 1.72 11,620 4,534 72% 237.0 
300 2921.3 36.52 1.76 9,955 5,958 63% 193.7 
        
High demand scenario 
30 1296.0 29.16 1.66 18,013 3,940 82% 479.0 
60 2160.9 31.04 1.66 15,436 6,347 71% 372.9 
100 2738.3 31.09 1.66 14,066 7,812 64% 312.9 
120 2844.8 33.18 1.68 13,444 8,349 62% 282.8 
150 3924.2 36.93 1.74 10,138 11,774 46% 195.7 
200 3714.3 34.31 1.72 11,183 10,636 51% 235.9 
300 4044.4 36.41 1.74 10,042 11,665 46% 198.4 
        
Peak demand scenario 
30 2757.7 28.51 1.66 18,140 11,052 62% 510.5 
60 3414.6 31.07 1.69 15,560 13,879 53% 366.4 
100 3734.4 30.33 1.63 14,158 15,111 48% 321.0 
120 3868.7 33.80 1.70 13,998 15,556 47% 293.7 
150 4712.8 36.11 1.74 10,175 19,327 34% 214.0 
200 4461.9 34.43 1.71 11,611 17,606 40% 242.8 
300 4895.7 36.51 1.76 10,015 19,416 34% 201.4 
      Average: 299.4 

 


