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Abstract

We use Pixton’s relations to prove a reconstruction theorem for genus 2
Gromov-Witten invariants in the style of Kontsevich-Manin (genus 0)
and Getzler (genus 1). We also calculate genus 2 (descendant) Gromov-
Witten invariants of P2 blown up in a finite number of points in general
position.
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1 Introduction

The field of enumerative geometry is about counting geometric object sub-
ject to some specified constraints. For example, we can ask how many lines
pass through 2 points in the plane. Euclid’s first axiom states that there is
1 such line (assuming the two points are generic, i.e. distinct).

A less trivial question would be to ask how many lines meet 4 given lines in
general position in 3-dimensional projective space. The modern approach to
these kind of questions is to construct a (moduli) space that parametrizes the
geometrical objects and consider the loci corresponding to the constraints.
For the question we were considering there is a 4-dimensional moduli space of
lines in 3-dimensional space. The constraint of meeting a line corresponds to
a codimension 1 constraint in the moduli space. The fact that the 4 lines are
in general position means that intersecting the 4 loci lowers the dimension
by 4, and we obtain a finite number of points as the answer, which turns
out to be 2. In general an enumerative question is well posed when the sum
of the codimensions of the constraints equals the dimension of the moduli
space.

This thesis is about Gromov-Witten theory. Gromov-Witten theory is a
curve counting theory originating from theoretical physics and symplectic-
differential geometry. In this theory the answers to certain enumerative
questions on a complex smooth projective variety X become Gromov-Witten
invariants of X. We will now give an overview of some of the important
results in Gromov-Witten theory.

1.1 Gromov-Witten theory

The axioms of Gromov-Witten theory in algebraic geometry were set out
in the nineties in the foundational paper paper [39] by Kontsevich-Manin.
In loc.cit. the author explain how to construct a compact moduli space of
stable maps to some target variety X and how to define Gromov-Witten
invariants as intersection numbers on this moduli space. The problem with
this approach is that the moduli space of stable maps is generally not smooth
nor equidimensional or irreducible. So to do intersection theory one needs
to construct a virtual fundamental class to replace the usual fundamental
class. Such a construction was given in algebraic geometry by Behrend
and Fantechi [8] and in [7] Behrend proved that Gromov-Witten invariants
defined using this virtual fundamental class satisfy the axioms of Kontsevich
and Manin.

Just before Kontsevich and Manin published their foundational paper,
Ruan and Tian [57] established a mathematical foundation for the quan-
tum cohomology ring of a semi-positive symplectic manifold. The quantum
cohomology ring is constructed out of genus 0 Gromov-Witten invariants
and it is the local picture of a Frobenius manifold enriching the cohomology
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of the target space. A suitable virtual class for the symmetric approach
was constructed by Li and Tian [44] for symplectic manifolds, at the same
time as Behrend-Fantechi. In [43] they proved that for a smooth projective
variety the symplectic and algebraic invariants are equivalent.

Besides the quantum cohomology, the genus 0 case has a special place
in the theory because for many target varieties the moduli space of stable
maps of genus 0 is unobstructed : this in particular means that the virtual
fundamental class is just the regular fundamental class. Smooth projective
varieties whose genus 0 Gromov-Witten theory is unobstructed are called
convex. For example any homogeneous variety is convex, e.g. projective
space, Grassmannians, and flag varieties.

Besides intersecting loci of maps whose image meets a certain subvariety
of X, it is natural to also consider intersections with ψ-classes on the moduli
space of stable maps. Gromov-Witten invariants without ψ-classes are called
primitive invariants while invariants with ψ-classes are called descendant
invariants. In [28] an enumerative interpretation is given for genus 1 and 2
descendant invariants of the projective plane. This is done by relating the
ψ-classes to tangency conditions. However, for most descendant invariants
we do not have an enumerative interpretation.

Because of their abstract construction, even a primitive Gromov-Witten
invariant of X is not necessarily an answer to the corresponding enumera-
tive question about counting curves in X. This is caused by many issues,
including

1. Gromov-Witten invariants count maps to X that have a curve as im-
age: we are not just counting embedded curves in X but also covers
of curves in X.

2. Somewhat related, the theory arises by calculating integrals on a mod-
uli space where points may have nontrivial automorphisms, which
could produce rational numbers as outputs.

3. Two constraints in the moduli space might fail to intersect properly
and/or transversally, in which case excess intersections may arise, and
the numbers can be negative.

Despite these and other issues, there are still many varieties for which the
Gromov-Witten invariants are enumerative, i.e. they are equal to some cor-
responding enumerative count although sometimes in a nontrivial manner:
Just as for descendant invariants, in some specific cases where the primitive
invariants are not enumerative, one can prove that they are the answer to a
more subtle enumerative question.

A more refined version of Gromov-Witten theory counts reduced Gromov-
Witten invariants (which in first approximation we can think of as being
“more geometric”). These invariants are defined using a modular desin-
gularization of the main component of moduli space of stable maps. This
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is highly nontrivial for genus higher than 0. Reduced Gromov-Witten in-
variants have been defined for general target varieties for genus 1 by Vakil
and Zinger in [61] and [66]. Their approach was extended to genus 2 by
Battistella and Carocci in [4]. K3 surfaces are an interesting example for
the theory: The Gromov-Witten theory of a K3 surface is trivial, yet its
reduced Gromov-Witten theory is very interesting. The Yau-Zaslow conjec-
ture [65] describes the genus 0 reduced Gromov-Witten potential of a K3
surface in terms of quasimodular forms. A proof of the conjecture was given
by Beauville in [6].

In the special case where the target variety X is a point, all maps are
trivial and the Gromov-Witten invariants are just intersections of ψ-classes
on the moduli space of stable curves. Witten’s conjecture from [64] provides
an algorithm to compute all such intersection numbers. The conjecture
was later proven by Kontsevich [40] and many others, including Okounkov-
Pandharipande [51], Kazarian-Lando [38], and Mirzakhani [50].

Due to the origins of the theory in physics, it is customary to com-
bine all the Gromov-Witten invariants in a generating function called the
Gromov-Witten potential. In this language, Witten’s conjecture computes
the Gromov-Witten potential of a point. A very important generalization
of Witten’s conjecture is the Virasoro conjecture. Eguchi, Hori, Xiong ([18])
and Katz formulated a series of differential operators that they conjectured
should annihilate the Gromov-Witten potential of any target space. The
name “Virasoro conjecture” comes from the fact that this collection of op-
erators forms a Lie subalgebra of the Virasoro algebra. A proof of the
annihilation of the genus 0 part of the potential was given by Liu and Tian
[47].

As we mentioned before, the quantum cohomology of a projective mani-
fold forms a Frobenius algebra. The Gromov-Witten theory of the manifold
is much better understood under the additional hypothesis that this algebra
is semisimple. There are quite a few spaces that have semisimple quan-
tum cohomology, for example projective spaces and Grassmannians. Bayer
[5] proved that if the (p, p)-quantum cohomology of a projective variety is
semisimple, then the same is true of its blowup at any number of points.
Hertling, Manin, and Teleman [33] proved that the cohomology of a projec-
tive variety with semisimple quantum cohomology is of Hodge-Tate type (i.e.
all of (p, p) type). This simplifies the Virasoro conjecture because the defini-
tion of the differential operators involves the Hodge decomposition. Proofs
of the Virasoro conjecture for targets with semisimple quantum cohomology
were given for genus 1 by Dubrovin and Zhang [17] and for genus 2 around
the same time by Lee [42] and by Liu [46].

The (genus 0) quantum cohomology of a projective manifold X extends
to a cohomological field theory, a structure that encapsulates the Gromov-
Witten theory of all genera. While Gromov-Witten theory is the motivat-
ing example, there are many other cohomological field theories that do not
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come from Gromov-Witten theory. Givental developed a group action that
turns one cohomological field theory into another. Using this group action
Teleman [59] gave a full classification of cohomological field theories with
unit with the property that the genus 0 part is semisimple. This proved
two important conjectural results by Givental: One is a proof of the Vi-
rasoro conjecture (for all genera) for symplectic manifolds with semisimple
quantum cohomology (see [24]). The other is an algorithm to obtain all
Gromov-Witten invariants of a projective manifold with semisimple quan-
tum cohomology from those of genus 0 (see [25]).

For most spaces with semisimple quantum cohomology we still do not
know the Gromov-Witten theory very explicitly, because the calculations
involved in applying Givental’s method or the Virasoro conjecture are highly
nontrivial.

Another approach to reconstruct Gromov-Witten invariants from genus 0
invariants is given by Costello’s work. In [15] Costello proves that one can
reconstructs all Gromov-Witten invariants of any projective variety X from
the genus 0 Gromov-Witten invariants of the symmetric powers of X.

The Virasoro conjecture for target curves was proven by Okounkov and
Pandharipande [53]. Together with their work in [52] this completely deter-
mines the Gromov-Witten theory of target curves. Because we are counting
maps from a curve to a curve, this can be related to Hurwitz theory. To make
this connection to Hurwitz theory we want to count curves with a specified
ramification profile. This can be done using relative Gromov-Witten theory,
which is a variation of the theory that counts curves with tangency con-
ditions along a specified subvariety. In fact Okounkov and Pandharipande
determined the full relative Gromov-Witten theory of target curves.

An important motivation behind the mathematical formulation of Gromov-
Witten theory was the use of mirror symmetry by the physicists in [11] to
predict the genus 0 Gromov-Witten invariants of the Calabi-Yau quintic
threefold (the degree 5 hypersurface in P4). This prediction was extended
to genus 1 and 2 in [11] and all the way up to genus 51 in [34]. Mathematical
proofs have been given for genus 0 in [45], for genus 1 in [67], and for genus 2
in [30]. For higher genus there is currently no mathematical proof.

Another very important result is the virtual localization formula by Graber
and Pandharipande [29] for the virtual fundamental class of the moduli
space of stable maps to a variety with a C∗-action. When the moduli space
of stable maps is unobstructed this reduces to the classical Atiyah-Bott
localization formula.

In the recent ground-breaking paper [3] by Argüz, Bousseau, Pandhari-
pande, and Zvonkine an algorithm is provided to compute the Gromov-
Witten invariants of any smooth complete intersection in projective space.

The approach to Gromov-Witten theory that we follow in this thesis is the
use of tautological relations: relations in the tautological ring of the moduli
space of stable curves. The tautological ring is a subalgebra of the Chow

8



ring of the moduli space of stable curves that contains most classes arising
from geometric constructions. (One can also consider the tautological ring
in cohomology, as the image of the Chow tautological ring under the cycle
map.) The reason it is convenient to work with this subalgebra is that the
full Chow (or cohomology) ring is too complicated to be handled explicitly.
Given a tautological relation, we obtain a relation in the Chow ring of the
moduli space of stable maps by pulling it back along the forgetful map that
remembers and stabilizes the source curve only. The splitting lemma in
Gromov-Witten theory then expresses these pulled back relations in terms
of Gromov-Witten invariants.

1.2 Reconstructing Gromov-Witten invariants

One of the early and most famous results in Gromov-Witten theory is Kont-
sevich’s recursive formula for the number of rational curves of degree d in P2

through 3d−1 points in general position. Before this result the number was
only known for d ≤ 6. The way Kontsevich obtained this formula was by
pulling back a tautological relation in genus 0 to the moduli space of stable
maps.

In their foundational paper [39] Kontsevich and Manin generalize this ap-
proach to prove their first reconstruction theorem. It states that for any
target varieties X whose cohomology is generated by H2(X), the genus 0
Gromov-Witten invariants can be computed using recursive formulas from
the 3-pointed invariants as initial values. (The number of points of a Gromov-
Witten invariant is the number of constraints, i.e. the number of subvarieties
in the target X that the image of the map has to meet.) In [22] Getzler dis-
covered a new tautological relation in genus 1 and used it to proof a similar
reconstruction theorem. For target varieties X whose primitive cohomology
is in H≤2(X), all genus 1 invariants can be computed from the 1-pointed
genus 1 invariants and all genus 0 invariants. Later Belorousski and Pand-
haripande [9] found a new tautological relation in genus 2. They tried to use
this relation to prove a general reconstruction theorem for genus 2 invariants
but were not able to do so. They were able to use it for the specific target
space P2, for which they calculated the genus 2 Gromov-Witten invariants.

In [46] Liu expresses all genus 2 Gromov-Witten invariants of projective
varieties with semisimple quantum cohomology in terms of genus 0 and 1
invariants. However there are many varieties that are not semisimple yet
satisfy Getzler’s hypothesis.

The main result of this thesis is a reconstruction theorem for genus 2
invariants:

Theorem 11.1. If P i(X) = 0 for i > 2, then all (including descendant)
genus two Gromov-Witten invariants can be reconstructed recursively from
genus two invariants with at most two points and invariants of lower genus.
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The reason why we are able to prove the theorem now while Belorousski
and Pandharipande could not, is that enormous progress has been made in
the study of tautological relations in recent years.

In [56] Pixton gave a conjectural description of a large family of tau-
tological relations. The relations were proven to hold in cohomology by
Pandharipande, Pixton, and Zvonkine [54] and shortly after were proven to
also hold in Chow by Janda [36]. The conjecture that the Pixton’s relations
are in fact all tautological relations remains open.

Pixton’s relations are described by explicit formulas that are quite compli-
cated. Pixton wrote a computer program to compute these relations, which
was then expanded upon by Schmitt and others in [16]. We use this program
to obtain our relations, and have expanded upon it.

Our approach is similar to the approach of Getzler. In [22] Getzler defines
the symbol of a tautological relation by first pulling back along the forgetful
map to obtain a relation between Gromov-Witten invariants, and then set-
ting most terms to zero. There is a total order on Gromov-Witten invariants
such that the symbol consists exactly of those terms that are of maximal or-
der. So when one solves a system of equations obtained from taking symbols,
one can then express the solved invariants in terms of lower order invariants.
This is what Getzler uses to prove his reconstruction theorem for genus 1,
where he manages to reduce to the case of 1-pointed invariants.

In genus 0 and 1, there is a generating basis for the tautological ring
that does not include ψ-classes. This means that any descendant Gromov-
Witten invariant can easily be expressed in terms of primitive invariants. So
the proofs of the reconstruction theorems by Kontsevich-Manin and Getzler
only needed to consider primitive invariants. In genus 2 one can not avoid
ψ-classes and thus when one obtains a relation between Gromov-Witten
invariants from a tautological relation, some of those invariants will be de-
scendant invariants. To deal with this we extend Getzler’s notion of symbol
to the case where there are ψ-classes.

The program [16] by Pixton, Schmitt, and others can calculate the tau-
tological relations for a given genus, number of points, and codimension.
Our extension of the program can convert these tautological relations into
symbols and do linear algebra calculations with these symbols. We used this
to find the three relations that we use to prove our reconstruction theorem.

In [56] Pixton gives a formal definition of a new relation as one that can not
be obtained from other relations by natural operations such as multiplying
with a cocycle class or pulling back along the forgetful map that forgets
a point. The relation found by Belorousski and Pandharipande in [9] is
a new relation in the tautological ring of the moduli space of 3-pointed
genus 2 curves. There is also a new genus 2 relation in the moduli space
of 6-pointed curves that they did not have access to. Our proof uses this
6-pointed new relation plus two old relations with 4 and 5 points. It is
an interesting phenomenon that old tautological relations can give rise to
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”new” information about Gromov-Witten invariants. This is due to the fact
that multiplication with a cocycle class does not respect our ordering on
Gromov-Witten invariants.

Since Pixton’s relations are defined for any genus, one might ask if it is
possible to obtain a reconstruction theorem for general genus. However, this
is for now out of reach for us. Giving a reconstruction theorem for genus 3
using our methods might be possible, but it is a lot harder than in genus 2.
Besides the problem becoming computationally more difficult, in genus 2 the
computer program is not able to do calculations of all the tautological rings
we need, because it runs out of memory. We have improved the part of the
program which calculates relations that are symmetric in the numbering of
the points. This allows us to compute the new 8-pointed relation in genus 3.
However even with access to this new relation we have only been able to
obtain some partial results for genus 3, analogous to partial results in our
proof of the genus 2 construction.

We have tried to apply our theorem to a simple yet nontrivial example
but the requirement to know all 2-pointed genus 2 Gromov-Witten invariants
turns out to be quite demanding. We have tried to look at spaces for which
all but a finite number of 2-pointed genus 2 invariants are zero by a dimension
argument. For some of these spaces the Gromov-Witten theory is either
quite well known such as for P1 × P1 and for P2 blown up in a point. For
these two spaces we have written a program that calculates the genus 2
Gromov-Witten invariants using the algorithm prescribed by the theorem.
One of the next spaces that are natural to consider is P3 blown up in a point,
but although it has only finitely many nonzero 2-pointed Gromov-Witten
invariants, we do not know how to compute them.

When we blow up P2 in more than 1 point, there are infinitely many
nonzero 2-pointed invariants and a direct application of the theorem seems
impractical. If we use instead the tautological relations that the theorem
prescribes as ingredients, we find a new algorithm specific to Xr, the blowup
of P2 at r points in general position.

Theorem 13.1. We can reconstruct all genus 0,1, and 2 Gromov-Witten
invariants of Xr from the finitely many initial cases in Lemma 13.4 and
< pt2 >Xr0,H= 1.

The genus 0 case has already been done by Göttsche and Pandharipande
in [26]. We have added calculations for genus 1 and 2. Our approach is an
extension of theirs and of the computation of the genus 2 invariants of P2

by Belorousski and Pandharipande in [9].
The projective plane blown up in finitely many points has semisimple

quantum cohomology so in theory one could apply the Virasoro conjecture
or Givental’s group action. But the computational difficulty of applying
these methods is very high. However it would be quite reasonable to apply
Liu’s result from [46] expressing genus 2 Gromov-Witten invariants in terms
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of lower genus invariants for projective varieties with semisimple quantum
cohomology.

When r ≤ 3, Xr is a del Pezzo surface. The primitive Gromov-Witten
invariants of del Pezzo surfaces are enumerative and algorithms to compute
them in any genus are found in [60], [58], and [10]. In the unpublished paper
[55] Parker describes a method to calculate primitive Gromov-Witten invari-
ants of Xr in any genus. Our algorithm seems to be the only existing one
that computes the full theory, including descendant invariants, in genus 2.
We have written a computer program that implements the algorithm and
the results agree with those stated in the literature for del Pezzo surfaces.

It would be interesting to see if our reconstruction theorem can be applied
to more complicated examples. In particular examples for which the quan-
tum cohomology is not semisimple because for the semisimple case Liu’s [46]
Theorem 0.1 is more powerful. Even when we cannot apply the theorem di-
rectly, we can still use it as a suggestion of what relations to use (like in the
case of our computation of the Gromov-Witten invariants of Xr). An inter-
esting target would be the Enriques surfaces, though first the genus 1 theory
would have to be completed. Maulik and Pandharipande [49] gave a conjec-
tural formula of the genus 1 invariants of an Enriques surface which has not
yet been proven. The newer paper [13] by Ciliberto-Dedieu-Galati-Knutsen
might provide us with the tools we need.

2 Conventions

We will work over the field of complex numbers C. When we say genus
we always mean the arithmetic genus (unless otherwise specified). Unless
otherwise specified all our Chow and cohomology rings will be with rational
coefficients. Throughout X will be a smooth complex projective variety.
When we talk about cohomology classes on X we implicitly take them to
be homogeneous.

We let T0, . . . Tr be a homogeneous basis of H∗(X). By our convention
T0 = 1 is the fundamental class. The intersection numbers gef :=

∫
X Te∪Tf

form a matrix (gef ). We write (gef ) for the inverse matrix.
We will make use of intersection theory as described in the book of Fulton

[20]. Much of this theory is extended to the Chow rings of Deligne-Mumford
stacks in [62]. In particular for a proper Deligne-Mumford stack X we have
Chow groups with rational coefficients A∗(X ) and A∗(X ). Let f : X → Y
be a morphism of Deligne-Mumford stacks f : X → Y. When f is proper
we have a pushforward map f∗ : A∗(X )→ A∗(Y). When f is flat we have a
pullback map f∗ : A∗(Y)→ A∗(X ). When f is a regular embedding we have
a Gysin pullback map which we will write in the same way f∗ : A∗(Y) →
A∗(X ). For these maps see Definition 3.6 and 3.11 in [62]. See Section 5
in [62] for the equivalent maps on A∗ rather than A∗. Given a cartesian
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diagram

X ×Z Y Y

X Z,

f ′

g′ g

f

we have f ′∗ ◦ g′∗ = g∗ ◦ f∗. We have the usual cap product

∩ : A∗(X )×A∗(X )→ A∗(X ),

and cup product
∪ : A∗(X )×A∗(X )→ A∗(X ).

These obey the projection formula: Let f : X → Y be a proper flat
morphism of Deligne-Mumford stacks, let α ∈ A∗(X ), β ∈ A∗(Y), and
γ ∈ A∗(X ), then

f∗(f
∗β ∩ α) = β ∩ f∗α, f∗(f

∗β ∪ γ) = β ∪ f∗γ.

In Section 2.2 of [1] the (co)homology of a proper Deligne-Mumford stack
is defined as the (co)homology of its coarse moduli space. There are defini-
tions for pullbacks and pushforwards and we have a cap product and a cup
product. The cap product satisfies the product rule. We also have a cycle
map A∗(X )→ H∗(X ).

We will work on the level of Chow whenever possible and implicitly use
the cycle map when we combine Chow classes with (co)homology classes.

3 The moduli space of stable curves

We give a brief introduction to the moduli space of stable curves. A full
introduciton can be found in [31] and [2].

Definition 3.1. A curve is a proper 1-dimensional scheme over C. A curve
C is called nodal if every closed point p ∈ C is either nonsingular or has
complete local ring ÔC,p ∼= C[x, y]/(xy).

Definition 3.2. A family of n-pointed nodal curves of genus g over a base
scheme B is a flat proper morphism f : C → B together with disjoint
smooth sections σi : B → C for 1 ≤ i ≤ n, such that for every geometric
point b ∈ B, the fiber f−1(b) is a nodal curve of arithmetic genus g. The
sections σi and their images in the fibers are called the marked points.

Definition 3.3. An irreducible component of arithmetic genus g′ of a nodal
curve is called stable if it contains at least 3 − 2g′ points that are either a
marked point or in the intersection with another component. A family of n-
pointed nodal curves of genus g is called stable if every irreducible component
in every fiber is stable.
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A nodal curve can be stabilized by contracting its unstable components.
Consider the contravariant functor from schemes to sets

B →
{

families (C/B, σ1, . . . , σn) of n-pointed
stable curves of genus g over B

}
/ ∼, (1)

where two families of curves

(C/B, σ1, . . . , σn), (C′/B, σ′1, . . . , σ
′
n),

are isomorpic if there is an isomorphism of B-schemes τ : C
∼−→ C′ such that

τ ◦ σi = σ′i for 1 ≤ i ≤ n.

Theorem 3.4. There is a smooth proper Deligne-Mumford stack Mg,n rep-
resenting the functor (1).

Proof. For an overview of the construction see Chapters XII and for the
properness see Chapter XIV in [2].

It has dimension
dim(Mg,n) = 3g − 3 + n.

The moduli space of curves comes with the following natural maps: There
are gluing maps

q :Mg1,n1+1×Mg2,n2+1 →Mg1+g2,n1+n2 ,

δ :Mg,n+2 →Mg+1,n,

where q glues the last marked point of each of the two curves together and
δ glues the last two markings of the same curve together. There is also a
forgetful map

πi :Mg,n+1 →Mg,n,

that forgets the i-th marked point followed by stabilization. See Section XII.10
of [2] for a discussion of these maps and the universal family: The stackMg,n

has a universal family and it is isomorphic to the forgetful map

Mg,n+1

Mg,n .

πn+1σ1...σn

Let ωπn+1 be the relative dualizing sheaf of the universal family. We define
the ψ-classes ψi for 1 ≤ i ≤ n as

ψi := c1(σ∗i ωπn+1) ∈ A1(Mg,n),

where c1 is the first Chern class.
By forgetting the point corresponding to the ψ-class we obtain a κ-class

κi := πj ∗(ψ
i+1
j ) ∈ Ai(Mg,n),

for i ≥ 0. (Note that this definition does not depend on j.)
There is an action of the symmetric group Sn onMg,n that permutes the

markings σ1, . . . , σn.
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4 The moduli space of stable maps

Similar to the moduli space of stable curves we now introduce the moduli
space of stable maps. A Gromov-Witten invariant will then be an inter-
section number on the moduli space of stable maps. For a more detailed
construction of the moduli space of stable maps see for example Chapter V
in [48].

Definition 4.1. Let X be a non-singular projective variety. A family of
n-pointed stable maps of genus g over a base scheme B with target variety
X consists of a commutative diagram

C X

B,

f

g

together with sections σi : B → C for 1 ≤ i ≤ n such that the map
g together with the sections σi form a family of n-pointed nodal curves.
Furthermore for every geometric point b ∈ B we require that if f is constant
on an irreducible component of g−1(b), then that component is stable.

Let β ∈ H2(X,Z) and consider the contravariant functor from schemes to
sets

B →
{

families ((C
f−→ X)/B, σ1, . . . , σn) of n-pointed stable maps of genus g

over B, such that f∗[g−1(b)] = β for every geometric point b ∈ B

}
/ ∼, (2)

where two families of stable maps

((C
f−→ X)/B, σ1, . . . , σn), ((C′

f ′−→ X)/B, σ′1, . . . , σ
′
n),

are isomorpic if there is an isomorphism of B-schemes τ : C
∼−→ C′ such that

τ ◦ σi = σ′i for 1 ≤ i ≤ n and f ′ ◦ τ = f .

Theorem 4.2. There is a proper Deligne-Mumford stack Mg,n(X,β) rep-
resenting the functor (2).

Proof. This is proven in 5.2, 5.7, and 5.8 of Chapter V of [48].

Remark 4.3. We have Mg,n(X, 0) ∼=Mg,n×X. In particular taking X to
be a point recovers the moduli space of stable curves.

Just as with the moduli space of stable curves we have forgetful maps

πi :Mg,n+1(X,β)→Mg,n(X,β),

forgetting the i-th point followed by stabilization (see V.4.6 in [48]).
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For every 1 ≤ i ≤ n we also have an evaluation morphism

evi :Mg,n(X,β)→ X,

sending a map f : (C; p1, . . . , pn)→ X to f(pi) (see V.4.2.2 in [48]). These
morphisms combine into a single evaluation morphism

ev :Mg,n(X,β)→ Xn.

Now over Mg,n(X,β) there is a universal family (V.4.5 in [48])

Mg,n+1(X,β) X

Mg,n(X,β)

evn+1

πn+1σ1...σn

where the fiber over an n-pointed map is the map itself. For each 0 ≤ i ≤ n
we have a section σi that sends an n-map curve to its i-th marked point.

As for stable curves, we let ωπn+1 be the relative dualizing sheaf of the

universal family. We define the ψ̃-class

ψ̃i := c1(σ∗i ωπn+1) ∈ A1(Mg,n(X,β)),

where c1 is the first Chern class.
There is also a forgetful map

F :Mg,n(X,β)→Mg,n,

that only remembers and stabilizes the source curve (V.4.9 in [48]).
The moduli space of stable maps is not as well behaved as the moduli

space of stable curves. It is compact but in general it is not smooth or
equidimensional.

Example 4.4. ConsiderM1,0(P2, 3). The space of smooth maps M1,0(P2, 3)
is the space of smooth degree 3 plane cubics and is of the expected dimension
9. There is a component with maps having a genus 1 component mapping
to a point and a rational tail mapping with degree 3. This has dimension

dim M0,1(P2, 3) + dim M1,1 = 9 + 1 = 10.

To work around this problem we replace the fundamental class of the
moduli space of stable maps by an equidimensional virtual fundamental class

[Mg,n(X,β)]vir ∈ Ak(Mg,n(X,β)),

where

k =

∫
β
c1(TX) + (dim(X)− 3)(1− g) + n

is the expected dimension or virtual dimension of Mg,n(X,β). For an
overview of the construction of the virtual fundamental class and its prop-
erties, see [7].
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Definition 4.5. Let β ∈ H2(X) and γ1, . . . , γn ∈ H∗(X). We define a
Gromov-Witten invariant of X to be

< τa1(γ1) · · · τan(γn) >Xg,β :=

∫
[Mg,n(X,β)]vir

ψ̃a1
1 ∪· · ·∪ψ̃

an
n ∪ev∗(γ1⊗· · ·⊗γn).

If ai is zero then we may simply write γi in place of τ0(γi). Usually we
also leave out the X in the notation. Invariants without ψ-classes are called
primary invariants while invariants with ψ-classes are called descendant in-
variants.

Note that while we define Gromov-Witten invariants for all β ∈ H2(X),
for a Gromov-Witten invariant to be nonzero, β needs to be effective.

Just as on Mg,n, we have an action of the symmetric group Sn on
Mg,n(X,β) that permutes the marked points. This extends to an action
on H∗(Mg,n(X,β)). Permuting the points in a Gromov-Witten invariant
means we have to permute the cohomology classes on X and so Gromov-
Witten invariants inherit the supercommutativity of the cohomology of X,
i.e.〈
· · · τki(γi)τki+1

(γi+1) · · ·
〉X
g,β

= (−1)|γi||γi+1|
〈
· · · τki+1

(γi+1)τki(γi) · · ·
〉X
g,β
.

A naive interpretation of the primitive Gromov-Witten invariant 〈γ1 · · · γn〉Xg,β
is the enumerative count of curves of class β that pass through subvarieties
of classes γ1, . . . , γn in general position in X. In some cases this naive
interpretation is actually the thruth and the enumerative count is equal
to the Gromov-Witten invariant. In these cases we say that the primi-
tive Gromov-Witten invariants are enumerative. For example the primitive
Gromov-Witten invariants of P2 are enumerative and < pt5 >P2

0,2H= 1 is the
well known fact that there is one rational curve of degree 2 through 5 points
in general position in P2.

5 The tautological ring

The Chow and cohomology rings of the moduli space of stable curves are
in general very complicated. Therefore it is convenient to restrict to the
tautological ring, which is a subring that contains most classes arising from
geometric constructions. The tautological ring is generated by decorated
strata classes which are cohomology classes consisting of all curves of a
specified topological type together with a polynomial in ψ- and κ-classes.

An equivalent definition is the following.

Definition 5.1. The system of tautological rings of the moduli space of sta-
ble curves is the minimal system of Q-subalgebrasR∗(Mg,n) ⊂ {A∗(Mg,n,Q)}
that is closed under pushforward along all the natural gluing and forgetful
maps.
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Remark 5.2. The tautological rings can also be defined as a family of sub-
algebras of H2∗(Mg,n,Q). Taking the image of the Chow tautological ring
along the cycle map then gives the cohomological tautological ring. Every-
thing we say about the tautological ring holds in both Chow and cohomology.

Definition 5.3. An n-pointed stable graph Γ consists of data

Γ := (V,H,E,L, g : V → Z>0, η : H → V, i : H → H),

with properties:

(i) V is a set of vertices and g is the geometric genus function.

(ii) H is a set half edges with a vertex assignment η.

(iii) i is an involution.

(iv) The set of edges E consists of the size 2 orbits of i.

(v) The set of legs L consists of the fixed points of i. There is a bijective
labeling L↔ {1 . . . n}.

(vi) The graph consisting of the data V,E, η|E is a finite connected graph.

(vii) For every vertex v ∈ V the stability condition holds:

2g(v)− 2 + n(v) > 0,

where n(v) := |η−1(v)| is the valence at v.

From a stable curve we obtain its dual stable graph or dual graph by
taking the irreducible components as vertices and nodes as edges. The two
half edges that make up an edge correspond to the inverse images of a
node under the normalization map of the curve. Legs correspond to marked
points. The genus of a vertex is the geometric genus of the corresponding
irreducible component.

To an n-pointed stable graph Γ we associate the product of moduli spaces

MΓ :=
∏
v∈V
Mg(v),n(v) . (3)

There is a canonical gluing map

ξΓ :MΓ →Mg,n,

where g = h1(Γ) +
∑

v∈V g(v) is called the genus of Γ. (The first Betti
number h1 of a graph is the number of independent loops.) The map ξΓ

corresponds to gluing the curves together in the manner prescribed by the
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involution i. This can be interpreted as a repeated application of the gluing
maps q and δ from Section 3.

Because of this we obtain from the definition that ξΓ ∗[MΓ] is an element
of the tautological ring. The image of ξΓ is the closure of the set of curves
with dual graph Γ. It factors through the action of Aut(Γ), where an au-
tomorphism of Γ is a graph automorphism that respects the legs and genus
assignments.

For every vertex v ∈ V we have monomials in ψ- and κ-classes, i.e. ex-
pressions of the form

θv =
n∏
i=1

ψaii
∏
i

κbii ∈ A
∗(Mg(v),n(v)),

where the ai and bi are any natural numbers. these combine into a monomial
in ψ- and κ-classes in A∗(MΓ)

�
v∈V

θv.

Definition 5.4. A decorated stable graph Γθ is a stable graph Γ together
with a monomial θ in κ- and ψ-classes in A∗(MΓ). Now

[Γθ] :=
1

|Aut(Γ)|
ξΓ∗(θ) ∈ A∗(Mg,n)

is the decorated stratum class corresponding to the decorated graph. We
write [Γ] := [Γ1] for a decorated stratum class with trivial decoration. We
define the degree of a decorated stratum class to be

deg([Γθ]) := degC(θ) + #EΓ.

When we draw a decorated graph we write the ψ-classes at the corre-
sponding half-edges and the κ-classes at corresponding vertices.

If we draw a decorated graph without specifying a numbering of the legs,
it corresponds to the Sn-invariant sum over all possible ways to number the
legs, divided by the size of the Sn-orbit. For example when n = 3 and the
graph is trivial, we have[

g

ψ
]

=
1

3

[
g

2

1ψ

3

]
+

1

3

[
g

1

2ψ

3

]
+

1

3

[
g

1

3ψ

2

]
.

We can also leave out n′ < n points in the notation, which corresponds to
the Sn′-invariant sum divided by the size of the Sn′ orbit. For example 40

1

 =
1

2

 4 20

1

3

+
1

2

 4 30

1

2

 .
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Theorem 5.5 (Proposition 11 in [27]). The tautological ring R∗(Mg,n) is
generated additively by the decorated strata class [Γθ] for all n-pointed genus
g stable graphs Γ and all monomials θ in κ- and ψ-classes in A∗(MΓ).

Note that this includes all ψ- and κ-classes since if Γ is the trivial graph
with one vertex and no edges, then ξΓ is the identity map and [Γθ] = θ.

By imposing restrictions on the dual graph of a curve we obtain the fol-
lowing open subsstacks of the moduli space of stable curves

Mg,n ⊂Mrt
g,n ⊂Mct

g,n ⊂Mg,n .

� The moduli space of (smooth) curves Mg,n consists of curves whose
dual graph consists of one vertex and no edges.

� The moduli space of curves with rational tail Mrt
g,n consists of curves

that have a vertex whose genus is equal to the genus of the whole
graph.

� The moduli space of curves of compact type Mct
g,n consists of curves

whose dual graph has no loops.

For each of these subspaces we obtain a corresponding tautological ring by
restriction.

We have the following description for the pullback of a decorated stratum
class along the forgetful map.

Lemma 5.6 (Lemma 17.4.28 in [2]). i) π∗j (κi) = κi − ψij,

ii)

π∗j (ψi) = ψi −
[

0
j

i

g

..
.

]
,

iii) π∗j ([Γ]) =
∑

v∈Γ[Γv], where [Γv] is the graph obtained by adding the
j-th leg to the vertex v.

A conjecture by Faber that was later proven by Ionel gives us a bound on
the number of κ-classes that are needed to generate the tautological ring.

Theorem 5.7 (Theorem 1.5 in [35]). The tautological ring R∗(Mg) is gen-
erated by the classes κ1, . . . , κbg/3c.

Using Lemma 5.6 and the the long exact sequence of cohomology on an
open subspace we obtain the following corollary.

Corollary 5.8. Any class κi ∈ R∗(Mg,n) with i > bg/3c can be expressed
in terms of decorated strata classes whose decoration only contains ψ-classes
and kj for all j ≤ bg/3c.
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We also have a bound on the ψ-classes required to generate the tautological
ring.

Theorem 5.9 (Proposition 2.5 in [21]). Any monomial of ψ-classes of degree
at least max(g, 1) in R∗(Mg,n) can be expressed in terms of the boundary
strata classes that involve no κ-classes, that is, in terms of the dual graphs
with at least one edge, decorated only by ψ-classes.

6 Tautological relations

We already obtain some relations on the tautological ring from Corollary 5.8
and Theorem 5.9.

There is a large family of relations called Pixton’s relations. The descrip-
tion of these relations is quite involved and it is impractical to calculate the
relations manually. In later chapters we will use a computer program by
Pixton to calculate the relations we need (see Appendix B).

Definition 6.1. Define the strata algebra Sg,n to be the free Q-algebra
generated by the n-pointed genus g decorated strata classes [Γθ], for which

deg([Γθ]) ≤ dimC(Mg,n) = 3g − 3 + n.

The multiplication on Sg,n is the one inherited from the intersection theory
of Mg,n, as described by Equation (11) in [27].

We define Rg,n, the Q-algebra of tautological relations, by the short exact
sequence

0→ Rg,n → Sg,n → R∗(Mg,n)→ 0.

As expected we denote the restriction to a degree r by

0→ Rrg,n → Srg,n → Rr(Mg,n)→ 0.

We similarly define tautological relations on Mct
g,n,Mrt

g,n, and Mg,n.

Remark 6.2. Corollolary 5.8 and Theorem 5.9 state the existence of certain
tautological relations.

In [56] Pixton gave a conjectural description for the tautological relations
of R∗(Mg,n). This was an extension of the conjectural relations of R∗(Mg)
by Faber and Zagier. In [54] it was proven that Pixton’s conjectural relations
are actually relations in cohomology. Shortly afterwards Janda [36] gave a
proof in Chow. We will write Pg,n ⊆ Rg,n for the subalgebra of Pixton’s
relations. The conjecture that Pg,n = Rg,n is still open.

The definition of Pixton’s relations can also be applied to Mct
g,n,Mrt

g,n,
and Mg,n. The relations obtained this way are the restriction of Pixton’s
relations on Mg,n. Therefore we have
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Lemma 6.3. Let R be a Pixton relation on Mct
g,n,Mrt

g,n, or Mg,n, then R

extends to a tautological relation on Mg,n.

The analogue of this is not known for elements of Rg,n in general. Even
though every tautological relation onMct

g,n,Mrt
g,n, orMg,n has an extension

to A∗(Mg,n), we do not know if this extension lives in R∗(Mg,n).

Definition 6.4. Let Rold consist of S>0
g,n · Rg′,n′ , q∗(Rg,n ⊗ Rg′,n′), and

π∗(Rg,n) for all natural gluing and forgetful maps q and π and any g, n, g′, n′ ∈
Z≥0. We define Rnew

g,n := Rg,n/(Rg,n ∩Rold) to be the new relations.

From Proposition 2 in [56] we obtain the following.

Lemma 6.5. Let g > 0 and let [R] ∈ Pg,n ∩ Rnew
g,n , then [R] has a repre-

sentative R′ ∈ Pg,n that is symmetric, i.e. R′ is fixed by the action of Sn

permuting the points.

7 Pulling back tautological relations

We obtain a relation on the moduli space of stable maps by pulling back a
tautological relation along the forgetful map that remembers and stabilizes
the source curve. There is a splitting lemma that allows us to express the
restriction of a Gromov-Witten invariant to the pullback of a decorated
stratum class [Γθ] in terms of Gromov-Witten invariants with smaller genus
and number of points, corresponding to the vertices of Γ. This way the
restriction of a Gromov-Witten invariant to the pullback of a tautological
relation gives us a relation between Gromov-Witten invariants.

Definition 7.1. Let Snk
g,n be the linear subspace of Sg,n generated by deco-

rated strata classes that do not have any κ-classes in their decoration. For
every β ∈ H2(X) we define a map

Tβ : Snk
g,n ⊗ (H∗(X))⊗n → Q,

by taking

Tβ(S, γ1, . . . , γn) :=

∫
[Mg,n(X,β)]vir

F ∗(p(S)) ∪ ev∗(γ1 ⊗ · · · ⊗ γn), (4)

where p is the map Sg,n � R∗(Mg,n) and F : Mg,n(X,β) → Mg,n is the
forgetful map that only remembers and stabilizes the source curve.

We will now show how to describe the right-hand side of (4) as a polyno-
mial in Gromov-Witten invariants.
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Let χΓ be the pullback of ξΓ along the forgetful map F that only remem-
bers and stabilizes the source curve. We have the fiber square

F ∗(MΓ) Mg,n(X,β)

MΓ Mg,n,

χΓ

FΓ F

ξΓ

where
F ∗Γ(MΓ) =

⊕
∑
v β(v)=β

∏
v∈V
Mg(v),n(v)(X,β(v))

is a direct sum over all the ways to divide the degree β among the vertices.
Since flat pullback commutes with proper pushforward on fiber squares we
have

F ∗[Γθ] =
1

|Aut(Γ)|
χΓ∗F

∗
Γ(θ).

The projection formula now allows us to rewrite the terms of Tβ(S, γ1, . . . , γn):∫
[Mg,n(X,β)]vir

χΓ∗F
∗
Γ(θ) ∪ ev∗(γ1 ⊗ · · · ⊗ γn) =∫
F ∗Γ(θ) ∪ χ∗Γ

(
ev∗(γ1 ⊗ · · · ⊗ γn) ∩ [Mg,n(X,β)]vir

)
. (5)

We can then calculate F ∗Γ(θ) using

Lemma 7.2 (See VI.3.6 in [48]). Let Di ∈ A1(Mg,n(X,β)) be defined by
taking the closure of the locus of maps whose source curve has two irreducible
components such that one of these components is rational, has only the i-th
marked point, and the restriction of the map to this component is constant.
Then

F ∗(ψi) = ψ̃i −Di.

The splitting lemma 7.3 gives us a way to express the remaining part of
(5),

χ∗Γ
(
ev∗(γ1 ⊗ · · · ⊗ γn) ∩ [Mg,n(X,β)]vir

)
,

as a sum of products of Gromov-Witten invariants in F ∗(MΓ). The mor-
phism χΓ is the morphism that glues moduli spaces of stable maps. Similar
to the situation for stable curves, these gluing morphisms can be constructed
from the base cases

q̃ :Mg1,n1+1(X,β1)×XMg2,n2+1(X,β2)→Mg1+g2,n1+n2(X,β1 + β2),

δ̃ :M δ
g,n+2(X,β)→Mg+1,n(X,β).

(6)
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We can only glue maps when the points being glued map to the same point
in X, i.e. recalling that evi is the evaluation at the i-th point, we have fiber
squares

Mg1,n1+1(X,β1)×XMg2,n2+1(X,β2) Mg1,n1+1(X,β1)×Mg2,n2+1(X,β2)

∆ X ×X,

evn1+1× evn1+2

and

M δ
g,n+2(X,β) Mg,n+2(X,β)

∆ X ×X.

evn+1× evn+2

We can now pull back the formula for the decomposition of the diago-
nal to obtain an expression for the pullback along q̃ and δ̃. Coupled with
Theorem 13 in [23] this gives the Splitting Lemma:

Lemma 7.3 (Splitting lemma). Let q̃ be the gluing map (6) for some given
β1 + β2 = β ∈ H2(X), we have

q̃∗
(
ev∗(γ1 ⊗ · · · ⊗ γn1+n2) ∩ [Mg1+g2,n1+n2(X,β)]vir

)
=∑

e,f

gef
(
ev∗(γ1 ⊗ · · · ⊗ γn1 ⊗ Te) ∩ [Mg1,n1+1(X,β1)]vir

)
⊗

(
ev∗(Tf ⊗ γn1+1 ⊗ · · · γn1+n2) ∩ [Mg2,n2+1(X,β2)]vir

)
,

and for the self-gluing δ̃, we have

δ̃∗
(
ev∗(γ1 ⊗ · · · ⊗ γn) ∩ [Mg+1,n(X,β)]vir

)
=∑

e,f

gef ev∗(γ1 ⊗ · · · ⊗ γn ⊗ Te ⊗ Tf ) ∩ [Mg,n+2(X,β)]vir.

Example 7.4. When we apply the splitting lemma to

Tβ(

[
2

3

2ψ

11

]
, γ1, γ2, γ3)

we obtain ∑
β1+β2=β

∑
e,f

< γ1Te >1,β1 g
ef < Tfτ1(γ2)γ3 >2,β2 .

The following example illustrates how to deal with more complicated
graphs.
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Example 7.5. We want to apply the splitting lemma to

Tβ(

[
0

3

1

32

ψ

]
, γ1, γ2, γ3).

But the ordering of the points is different from the one prescribed by the
splitting lemma. To fix this we reorder the points which introduces a sign

(−1)|γ2||γ3|Tβ(

[
0

3

2

31

ψ

]
, γ2, γ1, γ3).

Now we contract the edges one at a time to obtain

(−1)|γ2||γ3|
∑

β1+β2=β

∑
e,f

∑
e′,f ′

< γ1γ3Te′Te >0,β1 g
efge

′f ′ < Tfτ1(Tf ′)γ2 >3,β2 .

Note that the result does not depend on the choice of reordering or the
choice of which edge to contract first. This can be seen from the following
two facts: First the total degree of a nonzero Gromov-Witten is equal to the
virtual dimension of the corresponding moduli space, hence even. Second
for gef to be nonzero |Te|+ |Tf | has to be even.

Definition 7.6. Let L ∈ Sg,n be a linear combination of decorated strata
classes that can have single κi classes in the decoration. We construct
L′ ∈ Snk

g,n from L by replacing every κi by a new marked point at the
corresponding vertex with a ψi+1 decoration. We define

Tβ(L,ψ1, . . . , ψn) := Tβ(L′, ψ1, . . . , ψn, 1).

The idea behind this definition is∫
F ∗(ψi+1

n+1) ∩
[
Mg,n+1(X,β)

]vir
=

∫
πn+1 ∗

(
F ∗(ψi+1

n+1) ∩
[
Mg,n+1(X,β)

]vir
)

=

∫
F ∗πn+1 ∗(ψ

i+1
n+1) ∩

[
Mg,n(X,β)

]vir

=

∫
F ∗(κi) ∩

[
Mg,n(X,β)

]vir
.

Remark 7.7. When there is a polynomial in κ-classes rather than a single
κi, replacing it requires a few more steps. The interested reader is referred
to Section 2.1 in [19]. We will only consider genus at most 3. When g ≤ 2
then by Corollary 5.8 we can express all tautological relations in terms of
decorated strata classes that have no κ-classes. And it turns out that when
the genus is 3, we only need a single κ1-class.

By construction we have the following Proposition.
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Proposition 7.8. Let L ∈ Rg,n and γ1, . . . , γn ∈ H∗(X), then Tβ(L, γ1, . . . , γn)
gives a relation among Gromov-Witten invariants, i.e.

Tβ(L, γ1, . . . , γn) = 0.

Giving the full formal proof in the case where there are κ-classes is similar
to proving the dilaton equation, which is the special case that follows from
the fact that κ0 = 2g − 2 + n.

Lemma 7.9 (Dilaton Equation, VI.5.3 in [48]). For Gromov-Witten invari-
ants that have a single ψ-class we have

〈τa1(γ1) · · · τan(γn)τ1(T0)〉g,β = (2g − 2 + n) 〈τa1(γ1) · · · τan(γn)〉g,β ,

except when β = 0, g = 1 and n = 2, in which case we have

〈τ1(γ)〉X1,0 = − 1

24

∫
X
cdim(X)(X) ∪ γ.

8 The symbol of a relation

In this section we develop the notion of a symbol of a tautological relation
L ∈ Rg,n. This is done by taking Tβ(L, γ1, . . . , γn) and forgetting those
terms that can be considered of a lower order in some specific sense. This
will later allow us to prove reconstruction theorems by using induction on
this order. In order to make this ordering precise we will now describe our
framework. It relies on the simple description of Gromov-Witten invariants
on M0,3(X, 0), which is included as a special case in the following lemma.

Lemma 8.1 (Proposition 12 in [23]). Let a ∈ H∗(X) with |a| ≤ 2 then

〈τk1(γ1) · · · τkn(γn) a〉g,β =

∫
β
a · 〈τk1(γ1) · · · τkn(γn)〉g,β

+

n∑
i=1

〈τk1(γ1) · · · τki−1(γi ∪ a) · · · τkn(γn)〉g,β .

(Here it is understood that the terms of the sum where ki−1 would become negative

are zero.) except when β = 0 and (g, n) ∈ {(0, 2), (1, 0)}, in which case the
only (possibly) nonzero invariants are

〈γ1γ2γ3〉X0,0 =

∫
X
γ1 ∪ γ2 ∪ γ3,

〈γ〉X1,0 = − 1

24

∫
X
cdim(X)−1(X) ∪ γ.
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If α ∈ H∗(X) is a cohomology class we can write it in terms of the gener-
ating basis T0 . . . Tn, i.e. α =

∑
αiTi. We can rewrite further as

α =
∑
i,f

αi · δifTf =
∑
i,e,f

αi · gie · gefTf =
∑
e,f

(∫
X
α ∪ Te

)
gefTf .

Using this and the special case of Lemma 8.1 we obtain∑
e,f

〈γ1γ2Te〉0,0 g
ef 〈τa0(Tf )τa3(γ3) · · · τan(γn)〉g,β =

〈τa0(γ1 ∪ γ2)τa3(γ3) · · · τan(γn)〉g,β . (7)

Definition 8.2. An n-pointed formal Gromov-Witten invariant of X,

〈τk1(γ1) · · · τkn(γn)〉Xg,β ,

consists of the data k1, . . . , kn, g ∈ Z≥0, β ∈ H2(X), and γ1, . . . , γn ∈ H∗(X).
Here the data

γ1, . . . , λγi, . . . , γj , . . . , γn

is equivalent to
γ1, . . . , γi, . . . , λγj , . . . , γn

for any λ ∈ Q \ {0} and any 1 ≤ i, j ≤ n. Furthermore the data γ1, . . . , γn
and any permutation of it are equivalent up to a sign. This sign is deter-
mined by supercommutativity, i.e. swapping γi and γi+1 introduces a factor
(−1)|γi||γi+1|.

Definition 8.3. We define Q[GW (X)] to be the Q-algebra of polynomials
generated by the n-pointed formal Gromov-Witten invariants of X where
n ranges over all nonnegative numbers. Let GXg,β ⊂ Q[GW (X)] be the
Q-vector space of linear combinations of formal degree β genus g Gromov-
Witten invariants of X.

We now define a new grading on GX
g,β where the degree of an invariant

〈τk1(γ1) · · · τkn(γn)〉Xg,β is given by n−
∑

i ki.
We have a realization map

η : Q[GW (X)]→ Q

that send a formal Gromov-Witten invariant to the value of its corresponding
Gromov-Witten invariant.

Note that this new grading is different from the usual cohomological grad-
ing

∑
i |γi|+ ki.
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Definition 8.4. For S ∈ Srg,n, we define Sprim, the primitive part of S,
by restricting it to those terms that are strata classes with rational tail for
which we have

n(v)− |θ| = n− r,

where v is a vertex of genus g and θ is the decoration at v.

Remark 8.5. The primitive part of S consists exactly of those terms that
are decorated strata classes with rational tail where every vertex besides a
single genus g vertex has exactly 3 special points and no decoration.

The map Tβ from Section 7 factors through a map T form
β

Sr
g,n ⊗ (H∗(X))⊗n Q[GW (X)] Q.

Tβ

T form
β η

Definition 8.6. We fix the degree β ∈ H2(X) and we define a map

Σ : Srg,n ⊗ (H∗(X))⊗n → GXg,β

by taking Σ(S)(γ1, . . . , γn), the symbol of S ∈ Srg,n, to be the restriction of

T form
β (Sprim, γ1, . . . , γn) to those terms for which the degree β is concentrated

in one genus g Gromov-Witten invariant.

Since we have restricted to Sprim, we can apply (7) to express every term
of T form

β (Sprim, γ1, . . . , γn) as a single Gromov-Witten invariant. So the map

to GXg,β is well defined as the symbol is indeed a linear combination of genus
g invariants. The image of Srg,n is homogeneous of degree n− r.

Remark 8.7. Our definition of a symbol is a generalization of the definition
of symbol for genus 1 in [22].

Notation 8.8. To save space we will not write the cup products for Gromov-
Witten invariants in GXg,β (e.g. < γ1γ2 >=< γ1 ∪ γ2 >). To prevent the

resulting ambiguity we also change the notation for invariants in GXg,β from

< τa1(γ1) · · · τan(γn) >g,β

to
< ψa1γ1, . . . , ψ

anγn >.

Since the genus g and degree β are fixed we can leave them out.

Example 8.9. Consider the linear combination of decorated strata classes
in S2

2,3

+3

[
0

1

3

22
ψ

]
+

[
0

1

2

3

2
ψ

]
−


0

2

3

0

1

2

− 2


1

1

3

0

2

1
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The primitive part consists of the first and third term. The symbol is

(−1)|γ2||γ3| · 3 〈ψγ1γ3, γ2〉 − 〈γ1γ2γ3〉 .

Definition 8.10. We introduce an equivalence relation on GXg,β as follows.

Let x ∈ GXg,β be homogeneous of degree d. We say x∼0 if there is a P ∈
Q[GW (X)] such that η(x−P ) = 0 and P is a polynomial in formal Gromov-
Witten invariants

< τa1(γ1) · · · τam(γm) >g′,β′

for which g′ ≤ g, β′ ≤ β, or m−
∑

i ai ≤ d, and at least one of these three
inequalities is not an equality.

(For β, β′ ∈ H2(X) we say that β′ < β if there exists a β′′ ∈ H2(X) such
that β′′ is the image under the cycle map of a nonzero effective 1-cycle and
β′ + β′′ = β.)

By construction, if R ∈ Rrg,n, then Σ(R)(γ1, . . . , γn) ∼ 0.

Remark 8.11. Lemma 8.1 is known as the string equation when |a| = 0 and
the divisor equation when |a| = 2. They are usually considered separately
as it feels a bit artificial to write the integral when |a| = 0, 1. However this
concern disappears when we work with the ∼ equivalence relation:

Corollary 8.12. Let a ∈ H∗(X) with |a| ≤ 2 then

〈τk1(γ1) · · · τkn(γn) a〉g,β ∼
n∑
i=1

〈τk1(γ1) · · · τki−1(γi ∪ a) · · · τkn(γn)〉g,β ,

except when β = 0 and (g, n) ∈ {(0, 2), (1, 0)}.

Definition 8.13. Let S ∈ Srg,n, by abuse of notation we define the pullback
of Σ(S)(γ1, . . . , γn) with cohomology class γn+1 to be

Σ(π∗(S))(γ1, . . . , γn, γn+1).

By the string equation (here we need the analogue for the moduli space of
stable curves, rather than the string equation for Gromov-Witten invariants,
see 2.59 in [31]), the pullback of 〈ψa1γ1, . . . , ψ

anγn〉 with class ψn+1 is

〈ψa1γ1, . . . , ψ
anγn, γn+1〉 −

n∑
i=1

〈
ψa1γ1, . . . , ψ

ai−1γiγn+1, . . . , ψ
anγn

〉
.

Remark 8.14. One could ask the question if there is a concept of a new
symbol that corresponds to the concept of a new relation. New relations
are defined using pullback along forgetful maps, pushforward along gluing
maps, and multiplication by a decorated stratum class.

We have a corresponding notion of pullback in Definition 8.13.
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Pushing a relation forward along gluing maps usually results in a relation
that has a vanishing symbol. The only cases where the symbol does not van-
ish corresponds to substitution of the variables γi by multiple of themselves.
The simplest example of this substitution occurs when we glue a relation
R ∈ Rrg,n to a class

[Γ] =

[
0

1

2

3

]
.

We have

Σ(q∗(R, [Γ])(γ1, . . . , γn, γn+1) = Σ(R)(γ1, . . . , γnγn+1).

However, multiplication by a general decorated stratum class does not
correspond to anything on the symbol side. To illustrate why this is the
case we consider the class

[Γ] =

[
0

1

2

3

2

]
.

When we multiply by ψ1 we obtain

[Γ] · ψ1 =


0

2

3

0

1

2

 , [Γ] · ψ2
1 = 0,

and so

Σ([Γ])(γ1, γ2, γ3) = 0,

Σ([Γ] · ψ1)(γ1, γ2, γ3) = 〈γ1γ2γ3〉 ,
Σ([Γ] · ψ2

1)(γ1, γ2, γ3) = 0.

So we can only define a new symbol as a symbol that is not obtained
from doing a pullback or substitution of a variable by a multiple of itself.
With such a definition there will be old relations that give new symbols.
This is consistent with our experience since we will use the symbols of 3
different relations in genus 2, but only one of them is a new relation (see
Remark 11.7).

Remark 8.15. Pushing forward along the forgetful map also has a simple
corresponding operation on the symbol side, namely

Σ(πn ∗(R))(γ1, . . . , γn−1) = Σ(R)(γ1, . . . , γn−1, 1).
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9 Reconstruction for genus 0

We will write down the proof of the first reconstruction theorem in [39] using
the language of symbols. This serves as an example for the more complicated
cases of genus 1 and 2. Unlike the original statement we will also allow for
odd cohomology.

We say a Gromov-Witten invariant can be reconstructed from a set of
Gromov-Witten invariants S if it can be calculated recursively by taking
the set S as initial values and applying the following relations:

� Relations obtained from Tβ(R, γ1, . . . , γn) for any R ∈ Rg,n and any
γ1, . . . , γn ∈ H∗(X),

� Lemma 7.9 (the dilaton equation and its special case),

� Lemma 8.1 (string and divisor equations and the special case).

If g ∼ 0 for every Gromov-Witten invariant g that is not in S, then we have
such a reconstruction.

Theorem 9.1. If H∗(X) is generated as a ring by H≤2(X) then all genus
zero Gromov-Witten invariants can be reconstructed recursively from prim-
itive invariants with at most 2 points.

Proof. Because we are in genus zero, by Theorem 5.9, we only need to con-
sider primitive invariants. Let us have a 3 pointed Gromov-Witten invariant
< a, b, c >, a, b, c ∈ H∗(X). We claim that

0 ∼< a, b, c > . (8)

We construct symbols from relations and by using Lemmas 7.9 and 8.12.
The equations in these Lemmas still hold when pulled back, so we can pull
back (8) and insert cohomology classes γ4, . . . , γn to obtain

0 ∼< a, b, c, γ4, . . . , γn > .

So if the claim holds then any primitive genus zero Gromov-Witten invariant
with more than 2 points can be reconstructed from those with lower degree
or lower number of points, which proves the theorem.

To prove the claim we use induction on |c|. If |c| ≤ 2 then we apply
Corollary 8.12. If |c| > 2, then using the hypothesis on X, we can write
c = c′d with 0 < |d| ≤ 2. We now take the tautological relation S in
R1(M0,4) known as the WDVV relation:[

0
4

3

0
2

1

]
−

[
0

4

2

0
3

1

]
= 0
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We take its symbol Σ(S)(a, b, c′, d) to obtain

0 ∼< a, b, c′d > + < ab, c′, d > −(−1)|b||c
′|(< a, c′, bd > + < ac′, b, d > .

Using Corollary 8.12 this becomes

0 ∼< a, b, c′d > −(−1)|b||c
′| < a, c′, bd > .

Since |c′| < |c| this ends our induction step.

10 Reconstruction for genus 1

In [22] Getzler found a new tautological relation in R2(M1,4) and used it
to prove the following reconstruction theorem for genus 1. There is a step
missing in the proof, namely in Corollary 3.3 of [22] the initial conditions
for the difference equation are missing. So in this section I will give my own
proof of the theorem. This proof uses the same type of methods as are used
by Getzler.

As in genus 0, in genus 1 it is sufficient to consider only primitive invariants
by Theorem 5.9.

We fix an ample divisor ω ∈ H2(X) and define the primitive cohomology
of X to be

P i(X) := coker(H i−2(X,C)
·∪ω−−→ H i(X,C)).

Theorem 10.1. If P i(X) = 0 for i > 2, then all genus one Gromov-Witten
invariants can be reconstructed recursively from primitive genus 1 invariants
with at most 1 point and all genus zero invariants.

Remark 10.2. Note that the hypothesis on X is more demanding than in
Theorem 9.1. Rather than requiring that any cohomology class a ∈ H∗(X)
can be written as a linear combination of products of cohomology classes
of degree at most 2, we now require that a = a′ωk for some k ∈ Z≥0 and
a′ ∈ H≤2(X).

We will use the following very basic result about difference equations.

Definition 10.3. Let V is some vector space over a field K. Let I be the
set {0, 1, . . . , N} where N is either a positive integer or infinity. A linear
difference equation consists of data a0, . . . , ak ∈ K, h ∈ V . If h = 0 we
say the difference equation is homogeneous. A solution to the difference
equation is a map f : I → V satisfying the equation

akf(i+ k) + . . .+ a1f(i+ 1) + a0f(i) + h = 0, (9)

for all 0 ≤ i ≤ N − k. When f is a solution of the diffence equation, we will
also refer to the equation (9) as the difference equation.
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Lemma 10.4. Let f, h be as in Definition 10.3 and let

f(i+ 2)− 2f(i+ 1) + f(i)− h = 0

be a difference equation. Let l ∈ I, then f satisfies the formula

lf(i) = if(l) + (l − i)f(0)− li(l − i)
2

h.

Proof. By subtracting a shifted version of the difference equation we obtain
the homogeneous difference equation

f(i+ 3)− 3f(i+ 2) + 3f(i+ 1)− f(i) = 0.

This has a solution of the form

f(i) = c0 + c1i+ c2i
2.

We substitute i = 0, 1, 2 and compare the results with the original difference
equation for i = 0. From this we obtain

f(i) = if(1)− (i− 1)f(0) +

(
i

2

)
h.

In particular

lf(1) = f(l) + (l − 1)f(0)−
(
l

2

)
h,

so

lf(i) =i(f(l) + (l − 1)f(0)−
(
l

2

)
h)− l(i− 1)f(0) + l

(
i

2

)
h

=if(l) + (l − i)f(0)− li(l − i)
2

h.

Now we can proof the reconstruction theorem:

Proof of Theorem 10.1. The primitive part of Getzler’s relation L1,4 inR2(M1,4)
is

3

[
010

]
− 4

[
100

]
.

Let a, b ∈ H≤2(X). Fix an integer l ≥ 2, we define

f(i) :=
〈
aωi, bωl−i

〉
,

and
h :=

〈
abωl−2, ω2

〉
.
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Applying Corollary 8.12 to the symbol of L1,4 gives

Σ(L1,4)(aωk, bωl−2−k, ω, ω) ∼ f(k + 2)− 2f(k + 1) + f(k)− h,

for every 0 ≤ k ≤ l − 2. Again by Corollary 8.12 f(0) ∼ f(l) ∼ 0 so
Lemma 10.4 becomes

< aωi, bωj >∼ ij

2
< abωi+j−2, ω2 > . (10)

We substitute b→ ω, j → 1 or b→ 1, j → 2 to obtain

< aωi, ω2 >∼ i

2
< aωi, ω2 >∼ i < aωi, ω2 >,

so
< aωi, ω2 >∼ 0. (11)

Using our hypothesis on X we can write abωi+j−2 = cωk for some k ∈ Z≥0

and c ∈ H≤2(X). So we can apply (11) to the right-hand side of (10) to
obtain

< aωi, bωj >∼ 0.

11 Reconstruction for genus 2

In this section we will prove a reconstruction theorem for genus 2 Gromov-
Witten invariants. In the 90s Belorousski and Pandharipande had attempted
to prove such a reconstruction theorem for genus 2 using a new relation in
R2

2,3 that they found in [9]. In that paper they computed the invariants

of P2 using their new relation, but they were not able to prove a general
reconstruction theorem. This is probably due to the fact that they did not
have the new relation in R3(M2,6) to work with. (See remark 11.7 about
new relations in genus 2.)

By Corollary 5.8 and Theorem 5.9, in genus 2 the tautological ring is
generated by decorated strata classes that have no decorations and decorated
strata classes that have a single ψ-class at one half-edge on a genus 2 vertex.

In this section we will often apply Corollary 8.12 without explicitly men-
tioning it every time.

Theorem 11.1. If P i(X) = 0 for i > 2, then all (including descendant)
genus two Gromov-Witten invariants can be reconstructed recursively from
genus two invariants with at most two points and invariants of lower genus.

Proof. Let a, b, c ∈ H∗(X) such that |a|, |b|, |c| ≤ 2 and let i, j, k ≥ 0, then〈
aωi, bωj , cωk

〉
∼ 0,
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and〈
ψaωi, bωj , cωk

〉
∼ a linear combination of 2 pointed primitive invariants.

This is proven in Lemmas 11.6 and 11.5.
By pulling back the two relations above we can always express an invariant

with 3 or more points as a linear combination of invariants with lower degree,
genus or number of points.

We will now prove the Lemmas required for Theorem 11.1. This requires
some buildup where for simplicity we work with Gromov-Witten invariants
that have only one or two points. We then do a pullback of these invariants to
help us obtain the results we want for 3 pointed invariants. The tautological
relations we use are all obtained using the computer program in Appendix
B.

Our first aim is to express descendant invariants in terms of primitive
invariants.

Lemma 11.2. Let a, b ∈ H≤2(X), the following holds for all i, j ≥ 0

(i+ j)
〈
ψaωi, bωj

〉
∼i
〈
abωi+j

〉
+ j

〈
ψa, bωi+j

〉
− ij(i+ j)

2

( 〈
ψω2, abωi+j−2

〉
− 2

〈
ψω, abωi+j−1

〉
+ 3

〈
abωi+j

〉 )
.

Proof. Let us fix the number l := i + j. For i = 0 or j = 0 the statement
follows from Corollary 8.12 so we can assume l ≥ 2. Using our computer
program, we find a relation L2,4 in R3

2,4 with primitive part 0

0

2

2

ψ

+ 3

 0

02

2

ψ

− 3

 0

02

2 ψ

− 3

 0

0

0

2 2

 .
We define

f(i) :=
〈
ψaωi, bωl−i

〉
,

and
h :=

〈
ψω2, abωl−2

〉
− 2

〈
ψω, abωl−1

〉
+ 3

〈
abωl

〉
,

in order to obtain

Σ(L2,4)(aωk, bωl−2−k, ω, ω) ∼ f(k + 2)− 2f(k + 1) + f(k)− h,

for every 0 ≤ k ≤ l−2. Applying Lemma 10.4 gives the desired formula.
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In order to get rid of the term with ψω2 in Lemma 11.2, we do the fol-
lowing:

Corollary 11.3. Let b ∈ H≤2(X), the following holds for all j ≥ 0

(j + 1)(j + 2)
〈
ψω2, bωj

〉
∼ 2j(j + 2)

〈
ψω, bωj+1

〉
− (3j2 + 3j − 2)

〈
bωi+2

〉
.

Proof. Substitute a→ ω and i→ 1 in Lemma 11.2.

Now we want to get rid of the term in Lemma 11.2 with ψω in it. How-
ever, in order to get rid of terms with a ψω we need to consider 3-pointed
invariants.

Lemma 11.4. Let a, b ∈ H≤2(X), the following holds for all i, j ≥ 0

(i+ j)
〈
ψω, aωi, bωj

〉
∼2(i+ j)

〈
aωi+1, bωj

〉
+ 2(i+ j)

〈
aωi, bωj+1

〉
− i
〈
aωi+j , bω

〉
− j

〈
aω, bωi+j

〉
− ij(i+ j)

6

(
3
〈
abωi+j−1, ω2

〉
−
〈
abωi+j−2, ω3

〉 )
.

Proof. Let us write l := i + j. For i = 0 or j = 0 it is trivial so we can
assume l ≥ 2. Using our computer program, we find a relation L2,5 in R3

2,5

with primitive part

2(

 0
1

02

2 ψ

−
 0

1

02

2

ψ

)− 2(

 0

0

1

2

2 ψ

−
 0

0

1

2

2

ψ

)

−(

 0

02

2
1

ψ

−
 0

02

2

ψ

1

)− (

 0

01

2
2

ψ

−
 0

01

2

ψ

2

)

−(

 0

01

2

2

ψ

−
 0

01

2

2ψ

)−

 0

0

0

2 2

1

−
 0

0

0

1

2 2



+
1

3

 0

0

0

1

2 2

−
 0

0
1

0

2 2

+ 2

 0

0
2

0

1 2

− 3

 0

0
1

2

0

2

 .
We define

f(i) :=
〈
ψω, aωi, bωl−i

〉
− 2

〈
aωi+1, bωl−i

〉
− 2

〈
aωi, bωl−i+1

〉
,
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h :=
〈
abωl−1, ω2

〉
− 1

3

〈
abωl−2, ω3

〉
,

in order to obtain

Σ(L2,5)(aωk, bωl−2−k, ω, ω, ω) ∼ f(k + 2)− 2f(k + 1) + f(k)− h,

for 0 ≤ k ≤ l. Applying Lemma 10.4 gives the desired formula

We now have all the ingredients we need to express descendant invariants
in terms of primitive invariants.

Lemma 11.5. Let a, b, c ∈ H≤2(X), the following holds for all i, j, k ≥ 0〈
ψaωi, bωj , cωk

〉
∼ a linear combination of 2 pointed primitive invariants.

Proof. Let us define the equivalence relation ∼∼ by saying that a linear
combination of Gromov-Witten invariants is equivalent to zero if it is equiv-
alent to zero for the ∼ equivalence relation or if it is a linear combination
of 2-pointed primitive invariants.

By Lemma 11.4 we have 〈
ψω, aωi, bωj

〉
∼∼ 0.

Now pulling back Corollary 11.3 and inserting γ gives〈
ψω2, bωj , γ

〉
∼∼ 0.

By the hypothesis on X we can rewrite abωi+j−2 as a′ωk
′

for some a′ ∈
H≤2(X), k′ ∈ Z≥0. So we can apply the above formulas to the pullback of
Lemma 11.2 (where we insert γ) to obtain

(i+ j)
〈
ψaωi, bωj , γ

〉
∼∼ j

〈
ψa, bωi+j , γ

〉
.

Repeatedly applying this formula gives〈
ψaωi, bωj , cωk

〉
∼∼ jk

〈
ψaωi+j+k−2, bω, cω

〉
. (12)

So it is sufficient to proof that〈
ψaωi, bω, cω

〉
∼∼ 0

We apply (12) to L2,5, the relation from the proof of Lemma 11.4, to obtain

(−1)|a|(|b|+|c|)Σ(L2,5)(bωi, c, a, ω, ω) ∼∼
〈
ψa, bωi, cω2

〉
− 2

〈
ψa, bωi+1, cω

〉
∼∼(2i− 2(i+ 1))

〈
ψaωi, bω, cω

〉
.
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What is left is to find an expression for primitive invariants. Using our
computer program we find a symmetric relation L2,6 in R3

2,6 that has the
following primitive part: 0

0

0

2

− 2

 0

0

0

2

+

 0

0

0

2

 .
We write Φk(γ1, γ2, γ3) for the system of equations{

Σ(L2,6)(γ1ω
k1 , γ2ω

k2 , γ3ω
k3 , ωk4+1, ωk5+1, ωk6+1) ∼ 0

}
k1+k2+k3+k4+k5+k6=k

.

(13)
Since the degree k will be split over 3 points rather than 2, we can no longer
use a simple difference equation to find a general expression. We have an
infinite series of matrices Φk(a, b, c) for a, b, c ∈ H≤2(X). However, we can
reduce to the case where all of the degree is concentrated in the first point,
i.e. invariants of the form 〈

aωi, bω, cω
〉

for i ≥ 0. This means we will only need to consider Φk(aω
j , b, c) where j ≥ 0

is an unspecified variable and k is small.
We take Equation (11.3) and divide it by (j + 1)(j + 2). We also pull it

back and insert the cohomology class bωk. Finally we apply Lemma 11.4 to
obtain a sum of primitive invariants on the right-hand side.〈

ψω2, aωj , bωk
〉
∼
〈
aωj , bωk+2

〉
− 3j2 + 3j − 2

(j + 1)(j + 2)

〈
aωj+2, bωk

〉
+

2j

j + 1

〈
ψω, aωj+1, bωk

〉
− 2j

j + 1

〈
aωj+1, bωk+1

〉
∼
〈
aωj , bωk+2

〉
+

j2 + 5j + 2

(j + 1)(j + 2)

〈
aωj+2, bωk

〉
+

2j

j + 1

〈
aωj+1, bωk+1

〉
− 2j

j + k + 1

〈
aωj+k+1, bω

〉
− 2jk

(j + 1)(j + k + 1)

〈
aω, bωj+k+1

〉
− jk

3

(
3
〈
abωj+k, ω2

〉
−
〈
abωj+k−1, ω3

〉)
.

We swap the 2nd and 3rd point (i.e. we swap aωi and bωj) and subtract
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the resulting formula.

0 ∼− 2k

(k + 1)(k + 2)

〈
aωj , bωk+2

〉
+

2j

(j + 1)(j + 2)

〈
aωj+2, bωk

〉
+

2(j − k)

(j + 1)(k + 1)

〈
aωj+1, bωk+1

〉
− 2j

(k + 1)(j + k + 1)

〈
aωj+k+1, bω

〉
+

2k

(j + 1)(j + k + 1)

〈
aω, bωj+k+1

〉
.

(14)

Let Ψj,k(a, b) denote the right-hand side of (14). We define

Θj,k(a, b) := (j + 2)(k + 1)
(

(j + 1)Ψj,k(a, b)−
k(j + 2)

(k − 1)
Ψj+1,k−1(a, b)

)
.

We have

Θj,k(a, b) =− 2k(j + 1)(j + 2)

k + 2

〈
aωj , bωk+2

〉
+

2(jk − k2 + k + 2)(j + 2)

k − 1

〈
aωj+1, bωk+1

〉
− 2(j2 − 2jk + 3j − 2k)(k + 1)

k − 1

〈
aωj+2, bωk

〉
− 2k(j + 1)(j + 2)(k + 1)

(k − 1)(j + 3)

〈
aωj+3, bωk−1

〉
+

4(j + 1)(j + 2)

k − 1

〈
aωj+k+2, bω

〉
.

Lemma 11.6. Let a, b, c ∈ H≤2(X), the following holds for all i, j, k ≥ 0〈
aωi, bωj , cωk

〉
∼ 0

Proof. Using Θ we can always reduce to the case j, k ≤ 2.
We write Θj,k(a, b) 〈γ〉 to denote the pullback of Θj,k(a, b) where we insert

the cohomology class γ.
The rest of the proof consists of proving that certain systems of equations

are full rank. We only describe the equations here. The full matrices and
their determinants are listed in Appendix A

The relations

Φ1(aωi, ω, ω), Θ1,2(1, ω)
〈
aωi
〉
, Θi,2(a, 1)

〈
ω2
〉
.

make up a full rank system of 4 unique equations in 4 variables, which proves
that 〈

aωi+2, ω2, ω2
〉
∼
〈
aωi+1, ω3, ω2

〉
∼
〈
aωi, ω3, ω3

〉
∼ 0,
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for i ≥ 0. Coupled with the one relation in Φ0(a, ω, ω),

Σ(L2,6)(a, ω, ω, ω, ω, ω) ∼ 60
〈
aω, ω2, ω2

〉
∼ 0,

this proves that
〈
γ, ωi, ωj

〉
∼ 0 for all γ ∈ H∗(X), i, j ≥ 0. For the remain-

der of this proof we will set all invariants of this form to zero.
Consider the equations

Φ0(a, b, ω), Φ1(a, b, ω), Φ2(aωi, b, ω),

(−1)|a||b|Θ1,2(ω, b)
〈
aωi
〉
, Θi+1,2(a, 1) 〈bω〉 , Θi,2(a, 1)

〈
bω2
〉
.

Together these equations imply
〈
aωi, bωj , ωk

〉
∼ 0, for i ≥ 0, 0 ≤ j ≤ 2, and

0 ≤ k ≤ 3. this proves that
〈
γ1, γ2, ω

i
〉
∼ 0 for all γ1, γ2 ∈ H∗(X), i ≥ 0.

For the remainder of this proof we will set all invariants of this form to zero.
Consider the equations

Φ0(a, b, c), Φ1(a, b, c), Φ2(aωi, b, c),

Θi,2(a, b) 〈cω〉 , (−1)|b||c|Θi,2(a, c) 〈bω〉 .
Together these equations imply

〈
aωi, bωj , cωk

〉
∼ 0, for i ≥ 0, 0 ≤ j ≤ 2,

and 0 ≤ k ≤ 2.

Remark 11.7. There are new relations in genus two that express κ-classes
and degree two monomials ψ-classes in terms of decorated strata classes with
at most one ψ-class. Besides these relations the only known new relations are
in R2

2,3 and R3
2,6. The new relation in R2

2,3 was first discovered by Belorousski
and Pandharipande in [9]. It is uniquely represented by a single relation that
we will denote by LBP.

We use the 3 relations L2,i for 4 ≤ i ≤ 6 in our proof of 11.1. We have

LBP = π2∗L2,4,

and the relation L2,6 represents the new relation in R3
2,6. The relations L2,4

and L2,5 are old and we can recover them from LBP.
For any 0 ≤ i ≤ 4, the relation π∗1(LBP) · ψi has terms with genus 2

components that have a degree 2 monomial in ψ-classes. By 5.9 we can
express these terms using decorated strata classes that have at most one ψ-
class. A formula for how to do this is given by Getzler in [23]. Modulo these
simplifications we have for the primitive part, and also modulo pullbacks
along gluing morphisms of the new relation in R1(M0,4) we have

2L2,4 = π∗1(LBP)(−ψ1 + 3ψ2 + ψ3 + ψ4).

Similarly, for L2,5 we have

6L2,5 = π∗1,2(LBP)(3ψ1−4ψ2−9ψ4)+π∗1,4(LBP) ·(−7ψ1 +28ψ2 +4ψ4−16ψ5)

+π∗2,4(LBP) · (−3ψ4 + 12ψ5) + 3π∗4,5(LBP) · ψ4.

Note that these two formulas give specific representatives in equivalence
classes of relations that have the same symbol. Taking a different represen-
tative does not change the validity of the proof of Theorem 11.1.
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12 Reconstruction in higher genus

We have tried to copy the methods of Section 11 to find a similar recon-
struction theorem in genus 3. Sadly this has not been succesful. In this
section we will describe a few partial results we obtained.

Part of the problem is that the program we use to calculate relations
runs out of memory when the number of points and the codimension grow
too large. In genus 2 we are still able to calculate all of the relations we
need without running out of memory. But in genus 3 the relations we are
able to directly calculate are insufficient to obtain a reconstruction theorem
using the methods that we used in genus 2. To combat this issue we have
rewritten part of the program so that the calculation of symmetrical relations
is more efficient (see Appendix B.1). This enabled us to calculate 12 linearly
independent representatives of a new relation in R4

3,8. But we have not been
able to apply this new relation to obtain a reconstruction result. Just like
for the new relation in R3

2,6, there is a representation whose primite part has
no ψ-classes. It is given by

−2

 0

00

0
2

+ 5

 0

00

0
2

+ 2

 0

00

0
2



−8

 0

00

0
2

+ 3

 0

00

0
2

 .
By Corollary 5.8 and Theorem 5.9, in genus 3 the tautological ring re-

stricted to rational tail is generated by decorated strata classes that have
no decorations outside of the genus 3 vertex. The decoration on the genus 3
vertex can be reduced to a monomial in ψ-classes of degree at most two,
times a power of κ1.

As in Section 11, the following relations are all obtained using the com-
puter program in Appendix B.

In R2(Mrt
3,1) we have the relation

κ2
1 = 10ψ2

1.

In R2(Mrt
3,2) there are relations

κ1ψ1 = 5ψ2
1,

and

6ψ1ψ2 = 5ψ2
1 + 5ψ2

2 − 5

[
0

1

2

3
ψ

]
+ 25

[
0

1

2

3
κ1

]
.

41



So we can further restrict to the case where the decoration at the genus 3
vertex is either κ1 or ψ2

i for any point i.
By Definition 7.6, the class κ1 will result in a Gromov-Witten invariant

of the form < ψ2, . . . >. We can express invariants of this form in terms of
invariants that have at most a single ψ class:

Lemma 12.1. For genus 3, let a, b ∈ H≤2(X), the following holds for all
i, j ≥ 0. If |a|+ |b| > 2, then

2(i+ j)
〈
ψ2, aωi, bωj

〉
∼5(i+ j)

〈
ψaωi, bωj

〉
+ 5(i+ j)

〈
ψbωj , aωi

〉
− 3i

〈
ψb, aωi+j

〉
− 3j

〈
ψa, bωi+j

〉
− 3ij(i+ j + 1)

2

〈
ψω, abωi+j−1

〉
+

3ij

i+ j + 1

〈
ψab, ωi+j

〉
+

10ij(i+ j)

i+ j + 1

〈
abωi+j

〉
.

If |a|+ |b| ≤ 2, then

2(i+ j)
〈
ψ2, aωi, bωj

〉
∼5(i+ j)

〈
ψaωi, bωj

〉
+ 5(i+ j)

〈
ψbωj , aωi

〉
− 3i

〈
ψb, aωi+j

〉
− 3j

〈
ψa, bωi+j

〉
− 3ij(i+ j)2

2(i+ j − 1)

〈
ψω, abωi+j−1

〉
+

3ij

i+ j − 1

〈
ψab, ωi+j

〉
+ 10ij

〈
abωi+j

〉
.

Proof. Let us fix the number l := i + j. When i = 0 or j = 0 the formulas
hold by Corollary 8.12 so we can assume l ≥ 2. We define

f(i) := 2
〈
ψ2, aωi, bωl−i

〉
− 5

〈
ψaωi, bωl−i

〉
− 5

〈
ψbωl−i, aωi

〉
,

and

h := 2
〈
ψ2, abωl−2, ω2

〉
− 5

〈
ψabωl−2, ω2

〉
− 5

〈
ψω2, abωl−2

〉
+ 6

〈
ψω, abωl−1

〉
− 10

〈
abωl

〉
.

Using the computer program we find a relation R in R3
3,4 with primitive part

−15

 0

0

3 ψ

+3

 0

0

3 κ1

−4

 0

0

3 κ1

+10

 0

0

3 ψ



+10

 0

0

3ψ

− 10

 0

0

0

3

 .

42



Its symbol is given by

Σ(R)(aωk, bωl−2−k, ω, ω) ∼ f(k + 2)− 2f(k + 1) + f(k)− h,

for every 0 ≤ k ≤ l − 2. We apply Lemma 10.4 to obtain

2(i+ j)
〈
ψ2, aωi, bωj

〉
∼5(i+ j)

〈
ψaωi, bωj

〉
+ 5(i+ j)

〈
ψbωj , aωi

〉
− 3i

〈
ψb, aωi+j

〉
− 3j

〈
ψa, bωi+j

〉
− ij(i+ j)

2

(
2
〈
ψ2, abωi+j−2, ω2

〉
− 5

〈
ψabωi+j−2, ω2

〉
− 5

〈
ψω2, abωi+j−2

〉
+ 6

〈
ψω, abωi+j−1

〉
− 10

〈
abωi+j

〉
.
)
.

(15)

We substitute b→ ω and j → 1 to obtain

2(i+ 1)
〈
ψ2, aωi, ω2

〉
∼5(i+ 1)

〈
ψaωi, ω2

〉
+ 5(i+ 1)

〈
ψω2, aωi

〉
− 3i

〈
ψω, aωi+1

〉
− 3

〈
ψa, ωi+2

〉
− i(i+ 1)

2

(
2
〈
ψ2, aωi, ω2

〉
− 5

〈
ψaωi, ω2

〉
− 5

〈
ψω2, aωi

〉
+ 6

〈
ψω, aωi+1

〉
− 10

〈
aωi+2

〉
.
)
,

which multiplied by two becomes

(i+ 1)(i+ 2)
(

2
〈
ψ2, aωi, ω2

〉
− 5

〈
ψaωi, ω2

〉
− 5

〈
ψω2, aωi

〉)
∼

− 3i(i+ 2)
〈
ψω, aωi+1

〉
− 6

〈
ψa, ωi+2

〉
+ 10i(i+ 1)

〈
aωi+2

〉
.

(16)

If |a|+|b| > 2 then ab = cω for some c ∈ H≤2(X). We substitute i→ i+j−1
and a→ c in (16) and then apply the result to (15).

For the case where |a| + |b| <= 2 we have ab = c for some c ∈ H≤2(X).
Similarly we now substitute i→ i+ j − 2 and a→ c in (16) and then apply
the result to (15). This way we obtain the desired formulas.

The relation L2,4 extends to genus 3 in the following sense: The primitive
part of L2,4 is 0

0

2

2

ψ

+ 3

 0

02

2

ψ

− 3

 0

02

2 ψ

− 3

 0

0

0

2 2

 ,
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which is equivalent to 0

0

2

2

ψ

+ 3

 0

02

2

ψ

− 3

 0

02

2 ψ

−
 0

0

0

2 2
κ0

 .
The computer tells us there is a relation in R4

3,4 that has primitive part 0

0

3

2

ψ
2

+ 3

 0

02

3

ψ2

− 3

 0

02

3 ψ
2

−
 0

0

0

2 3
κ1

 .
We checked using the computer that L2,4 extends in the same manner to
genus up to 8. Therefore we can also extend Lemma 11.2.

Lemma 12.2. Let 2 ≤ g ≤ 8 where g is the genus and let a, b ∈ H≤2(X),
the following holds for all i, j ≥ 0

(i+ j)
〈
ψg−1aωi, bωj

〉
∼i
〈
ψg−2abωi+j

〉
+ j

〈
ψg−1a, bωi+j

〉
− ij(i+ j)

2

( 〈
ψg−1ω2, abωi+j−2

〉
− 2

〈
ψg−1ω, abωi+j−1

〉
+
〈
ψg−1, abωi+j

〉 )
.

Of course the corresponding Corollary 11.3 also extends to genus 3.

Corollary 12.3. Let 2 ≤ g ≤ 8 where g is the genus and let b ∈ H≤2(X),
the following holds for all j ≥ 0

(j + 1)(j + 2)
〈
ψg−1ω2, bωj

〉
∼ 2j(j + 2)

〈
ψg−1ω, bωj+1

〉
+ 2

〈
ψg−2bωi+2

〉
− j(j + 1)

〈
ψg−1, bωi+2

〉
.

Remark 12.4. This leads one to wonder if the relation L2,4 extends this way
for all genera. We can obtain expressions for general genus using formulas
such as the formula for the DR cycle (see [37]) or the half-spin formula in
[41]. But these expressions will contain degree d monomials of ψ-classes.
We know that we can express these monomials in terms of lower invariants
using 5.9, but there is no formula that lets us do this for every genus. So
obtaining a reconstruction theorem for general genus from methods is far
out of reach.

Following our method for genus 2, next we would like to express invariants
of the form

〈
ψ2ω, . . .

〉
in terms of invariants with at most a single ψ-class.
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Lemma 12.5. For genus 3, let a, b ∈ H≤2(X), the following holds for all
i, j ≥ 0. Invariants of the form

〈
ψ2ω, aωi, bωj

〉
are equivalent (∼) to a linear

combination of invariants with a single ψ-class and primitive invariants.

Proof. Let us fix the number l := i + j. When i = 0 or j = 0 the formulas
hold by Corollary 8.12 so we can assume l ≥ 2. We define

f(i) := 6
〈
ψ2ω, aωi, bωl−i

〉
− 8

〈
ψaωi, bωl−i+1

〉
− 7

〈
ψaωi+1, bωl−i

〉
− 8

〈
ψbωl−i, aωi+1

〉
− 7

〈
ψbωl−i+1, aωi

〉
,

and

h := 6
〈
ψ2ω, abωl−2, ω2

〉
− 5

〈
ψabωl−2, ω3

〉
+ 2

〈
ψω3, abωl−2

〉
− 21

〈
ψω2, abωl−1

〉
+ 24

〈
ψω, abωl

〉
− 50

〈
ψω, abωl

〉
.

The computer lets us obtain a relation R in R4
3,5 with primitive part

12

 0
1

02

3 ψ
2

−12

 0
1

02

3

ψ2

−6(

 0

0

1

3
2

ψ
2

+6

 0

0

1

3

ψ2

2



−6

 0

0

2

3

ψ2

1

+ 6

 0

0

2

3

1 ψ2

+ 5

 0

0

0

1

2 3
ψ

− 2

 0

0

0

1

2 3 ψ



+9

 0

0
1

0

2 3
ψ

−6

 0

0
1

0

2 3 ψ

+15

 0

0
2

0

1 3
ψ

+6

 0

0
2

0

1 3 ψ



+21

 0

0
1

2

0

3
ψ

−6

 0

0
1

2

0

3 κ 1

+12

 0

0

0

1

2 3 κ 1

−15

 0

0

0

1

2 3 ψ



−36

 0

0

0

1

2 3

ψ

− 7

 0

0

0

2 3

1

ψ

− 8

 0

0

0

2 3

1 ψ

−
 0

0

0

1

3

2

ψ
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−8

 0

0

0

1

3

2 ψ

+ 65

 0
1

2

00

0
3

 .
Its symbol is given by

Σ(R)(aωk, bωl−2−k, ω, ω, ω) ∼ f(k + 2)− 2f(k + 1) + f(k)− h,

for every 0 ≤ k ≤ l− 2. Now we obtain the desired result by doing the same
kind of calculation as in the proof of Lemma 12.1.

13 Genus 2 Gromov-Witten invariants of blowups
of the projective plane

We calculate descendant Gromov-Witten invariants of Xr, P2 blown up at
points p1, . . . , pr in general position.

Theorem 13.1. We can reconstruct all genus 0,1, and 2 Gromov-Witten
invariants of Xr from the finitely many initial cases in Lemma 13.4 and
< pt2 >Xr0,H= 1.

We have an explicit algorithm described in Sections 13.4, 13.5, and 13.6
that calculates these invariants. We also have written a computer program
that applies the algorithm (see Appendix B.2).

We can not simply apply Theorem 11.1 to the spaces Xr unless r = 0
or r = 1. This is because the condition of knowing all invariants with at
most 2 points is quite demanding. However even for target spaces where we
cannot use the theorem directly, we can still use the relations prescribed by
the theorem towards obtaining a reconstruction. We just need some extra
ingredient, likely one obtained from the geometry of the target space in
question.

13.1 Applying Theorem 11.1 to some example variety

We would like to apply Theorem 11.1 to some simple but nontrivial example.
By the hard Lefschetz theorem (see II.6 in [63]) all Kähler surfaces have no
primitive cohomology after degree two. Most of these spaces have infinitely
many invariants with at most 2 points. So the required base cases cannot be
calculated on a case by case basis and some additional strategy is needed.
But finding a strategy that calculates invariants with at most 2 points might
not be much easier than finding a strategy that calculates all points.

For example let us consider the case of a ruled surface X with invariant
e. (Ruled surfaces are discussed in Chapter V.2 of [32].) Effective classes on
ruled surfaces can be expressed in the form β = aS+ bF with either β = F ,

46



β = S, or a > 0 and b ≥ e if e ≥ 0 and b ≥ 1
2ae if e < 0. We have S2 = −e,

F 2 = 0, and SF = 1 and the canonical divisor can be expressed as

KX = −2S + (2gX − 2− e)F,

where gX is the genus of the ruled surface. So the virtual dimension of
M2,n(X, aS + bF ) is∫

aS+bF
−KX + (dim(X)− 3)(1− 2) + n = 2b+ (2− 2gX − e)a+ 1 + n.

To get a nonzero Gromov-Witten invariant with possibly one ψ-class we
need

2n ≤ 2b+ (2− 2gX − e)a+ 1 + n ≤ 2n+ 1,

so to be in the range of 0, 1, or 2 points we have

− 1 ≤ 2b+ (2− 2gX − e)a ≤ 2. (17)

If e < 0 then −g ≤ e ≤ 2g − 2. So the only cases where there are a finite
number of effective divisors satisfying (17) are g = e = 0 or g = 0, e = 1.
Which respectively correspond to P1 × P1 and P2 blown up at a point. We
have written a computer program that uses Theorem 11.1 to calculate the
invariants of these two spaces. See Appendix B.3 for the program.

Both of these spaces are del Pezzo surfaces and their primitive Gromov-
Witten invariants are already known. However I was not able to find a
calculation of their descendant invariants in the literature.

13.2 Known results about Gromov-Witten invariants of Xr

In the range r ≤ 8, the space Xr is Fano so it is a del Pezzo surface. In
[26], Göttsche and Pandharipande find formulas for all r for genus 0, we will
extend their approach to genus 1 and 2. In the range r ≤ 8, the space Xr

is Fano and we call it a del Pezzo surface. It turns out that the Gromov-
Witten invariants of Fano surfaces are enumerative (see 4.3 in [60]). Various
authors have computed the enumerative invariants of del Pezzo surfaces: In
[12], Caporaso and Harris consider counts of curves that have a prescribed
intersection with a given line in P2. From this they derive a recursive formula
that counts curves in P2 for any genus. This approach has been extended
by Vakil in [60] to Xr with r ≤ 6. Using a tropical counting method, in
[58] Shoval and Shustin further extended this to r ≤ 7. And finally it was
extended to r ≤ 8 by Brugallé in [10] using floor diagrams. There is also an
unpublished paper [55] by Parker in which a method is described to calculate
the primitive Gromov-Witten invariants for all r ≥ 0.

We have checked our numbers against the ones listed in the papers men-
tioned above and they agree.
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13.3 Setting up the reconstruction for Xr.

A cohomology basis for Xr is given by 1, pt,H,E1, . . . , Er, where H is the
hyperplane class and Ei is the class of the exceptional divisor at the i-th
blown up point. We have

H ·H = 1, H · Ei = 0, Ei · Ej = δi,j ,

for any 1 ≤ i, j ≤ r.

Lemma 13.2. Let C be an effective curve on Xr of class β. Then either
β is a multiple of Ei for some 1 ≤ i ≤ r, or β = dH −

∑r
i=1 αiEi with

0 ≤ αi ≤ d. In the second case the coefficient ai is equal to the multiplicity
of π(C) at pi, where π : Xr → P2 is the blow-up map.

Proof. This is a special case of Lemma 2.3 in [14].

The anticanonical divisor of Xr is given by −KXr = 3d−
∑r

i=1Ei so the
virtual dimension of Mg,n(Xr, β) is∫
dH−

∑r
i=1 αiEi

−KXr + (dim(X)− 3)(1− g) + n = 3d−
r∑
i=1

αi + g − 1 + n.

Remark 13.3. Genus 2 invariants with at most two points will need to
satisfy

−1 ≤ 3d−
r∑
i=1

αi ≤ 2,

which has infinitely many solutions corresponding to effective clases when
r > 1. So we see that we can not simply apply Theorem 11.1. Because Xr

is only of dimension 2 and has relatively simple cohomology, we only need
one of the three tautological relations used to prove Theorem 11.1: We will
use the relations L2,4 and LBP = π2∗L2,4 to obtain recursive formulas to
calculate all the Gromov-Witten invariants up to genus 2. It might even be
possible to calculate the genus 2 invariants using only the relation LBP. But
this would require some (possibly straightforward but tedious) additional
trick.

Looking at the virtual dimension, we see that all nonzero invariants where
d 6= 0 are of the form

N
(g)
d,α :=

〈
pt3d−

∑
αi+g−1

〉
g,dH−

∑
αiEi

,

H
(2)
d,α :=

〈
τ1(H) · pt3d−

∑
αi
〉

2,dH−
∑
αiEi

,

P
(2)
d,α :=

〈
τ1(pt) · pt3d−

∑
αi−1

〉
2,dH−

∑
αiEi

,

K
(2)
d,α :=

〈
τ1(E1) · pt3d−

∑
αi
〉

2,dH−
∑
αiEi

.
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The cases with a τ1(Ei) for i > 1 are covered by the fact that

K
(2)
d,α =

〈
τ1(Eσ(1)) · pt3d−

∑
αi
〉

2,dH−
∑
ασ(i)Eσ(i)

,

σ By the local nature of blowing-up we have

N
(g)
d,(α1,...,αr−1,0) = N

(g)
d,(α1,...,αr−1).

The same thing holds for H
(2)
d,α and P

(2)
d,α. It holds for K

(2)
d,α only when r > 1.

Lemma 13.4. For genus up to 2, the only nontrivial invariants with d = 0
are

N
(0)
0,Ei

= 1, 〈H〉1,0 = −1

8
, 〈Ei〉1,0 = − 1

24
,

H
(2)
0,0 = − 1

960
, K

(2)
0,0 = − 1

2880
.

Proof. By looking at the virtual dimension it follows that (up to linear com-
binations) these are the only possible nonzero invariants. The exceptional
divisor Ei is itself a rigid curve of genus 0. The genus 1 cases follow from
Lemma 8.1.

For genus 2 we have M2,1(Xr, 0) =M2,1×Xr and by VI.6.3 in [48][
M2,1×Xr

]vir
= c4(E∨ � TXr), (18)

where E is the Hodge bundle and TXr is the tangent bundle of Xr.
The spaceM2,1 is four-dimensional and we have the one-dimensional class

ψ1 times the projection of c4(E∨ � TXr) to M2,1. So to obtain something
nonzero the contribution of c4(E∨ � TXr) to M2,1 must be of degree 3. In
particular the contributions of any ci(E∨ � TXr) is zero for i < 3. Since

ch4(E) =
c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E)− 4c4(E)

24
,

we can replace the right-hand side of Equation (18) by

−6ch4(E∨ � TXr).

To calculate the Chern character of a product we apply the product rule

ch(E∨ � TXr) = ch(E∨)ch(TXr).

Since the contribution to M2,1 must be of degree 3, the only term that
contributes to ch4(E∨ � TXr) is ch3(E∨)ch1(TXr). Using definition λi :=
ci(E) we obtain∫

[M2,1×Xr]
vir
ψ �D,=

∫
M2,1

ψ(λ3
1 − 3λ1λ2)

∫
Xr

−KXrD

which equals − 1
960 when D = H and − 1

2880 when D = Ei.
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So our recursive strategy will rely on computing invariants modulo invari-
ants with lower d.

Let L ∈ R2,n be a relation, we define for given degree β

L(γ1, . . . , γn) := Tβ(π∗{n+1,...,n+m}(L), γ1, . . . , γn, pt, pt, . . . , pt),

where for m, which is the number of points to add, we take the unique choice
such that the resulting invariants are not all zero for dimensional reasons.

We write α+ [j] for the tuple α′ where α′i = αi for i 6= j and α′j = αj + 1.

Example 13.5. The decorated stratum class[
02ψ

]
occurs in LBP. We will describe its contribution to LBP(E1, E1, E1). Fixing
d and α, to obtain a relation between nonzero Gromov-Witten invariants we
need to add 3d −

∑
αi − 1 points. By applying Lemmas 8.1 and 13.4, we

can write the result as

−N (2)
d,α+[1]−K

(2)
d,α+α1K

(2)
d,α+[1]+

∑
d′+d′′=d
d′,d′′>0
α′+α′′=α

α′′1
2
N

(0)
d′′,α′′

(
α′1

(
3d− α− 1

3d′ − α′ + 1

)
N

(2)
d′,α′

+ α′′1

(
3d− α− 1

3d′ − α′

)
N

(2)
d′,α′ + (d′d′′ −

∑
i

α′iα
′′
i )

(
3d− α− 1

3d′ − α′

)
K

(2)
d′,α′

)
,

for 3d −
∑
αi + 1 ≥ 2. We decribe how to obtain the first term inside the

sum: Recall that in the splitting lemma we sum over all pairs of choices of
cohomology classes from the chosen basis. These then get assigned to the
pair of half edges that makes up the edge. Consider the following case:[

0
E1

E1

2ψE1
pt1

]
We apply Lemma 8.1 to the 1, which makes the ψ disappear, then we apply
it to each E1 which gives a coefficient of α′1α

′′
1

2. Finally the only case where

we obtain the nonzero product of invariants N
(0)
d′′,α′′N

(2)
d′,α′ is when out of the

3d− α− 1 added points, 3d′ − α′ + 1 are on the genus 2 component.

Definition 13.6. We define an equivalence relation ≈, where a linear com-
bination of Gromov-Witten invariants is equivalent to zero if it can be ex-
pressed in terms of invariants with lower d or lower genus.

Remark 13.7. Note that the equivalence relation ≈ is not the same as our
equivalence relation ∼ from the section about general reconstructions since

N
(2)
d,α and N

(2)
d,α+[1] have the same genus and d, but a different β and number

of points.
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13.4 Reconstructing genus 0 Gromov-Witten invariants

For the genus 0 invariants we use the method described in [26]. They use the
relation L0,4 in R1(M0,4) to get two recursive formulas: For d−

∑
αi−1 ≥ 3,

L0,4(H,H, pt, pt) gives

N
(0)
d,α ≈ 0,

and when d−
∑
αi − 1 ≥ 1, from L0,4(H,H,E1, E1) we obtain

α1d
2N

(0)
d,α+[1] + (α2

1 − d2)N
(0)
d,α ≈ 0,

When d−
∑
αi−1 = 1 the invariant N

(0)
d,α+[1] has zero points. So from these

two formulas and the base case N
(0)
1,0 = 1 we can recursively calculate all

genus 0 invariants.

13.5 Reconstructing genus 1 Gromov-Witten invariants

For genus 1 we use Getzler’s relation L1,4 from [22]. For 3d −
∑
αi ≥ 2,

L1,4(H,H,H,H) gives

N
(1)
d,α ≈ 0,

and when 3d−
∑
αi ≥ 0, from L1,4(E1, E1, E1, E1) we obtain

(α1 + 2)(α1 + 3)

3
N

(1)
d,α+2[1] +

2α1

3
N

(1)
d,α+[1] −N

(1)
d,α ≈ 0.

Together with the genus 0 invariants this is sufficient to recursively calculate
all genus 1 invariants.

13.6 Reconstructing genus 2 Gromov-Witten invariants

In [9] the genus 2 Gromov-Witten invariants of P2 are calculated using the
relation LBP. So we can assume that r > 0 and we always have an exeptional
divisor E1.

We calculate the invariants of type H using L2,4(H,E1, E1, E1), which
gives

−(α1 + 2)H
(2)
d,α+[2] +H

(2)
d,α+[1] ≈ 0.

for 3d−
∑
αi + 1 ≥ 3.

For type P we use LBP(H,H,H) to obtain

dP
(2)
d,α −H

(2)
d,α ≈ 0.

for 3d−
∑
αi + 1 ≥ 2.

For type N we use the linear combination

3d

2
LBP(E1, H,H)− LBP(E1, E1, H) +

d

2
LBP(H,H,H),
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which gives the formula

−(α1 + 2)dN
(2)
d,α+2[1] + dN

(2)
d,α+[1] − dP

(2)
d,α +H

(2)
d,α − (α1 + 1)H

(2)
d,α+[1] ≈ 0,

for 3d−
∑
αi + 1 ≥ 2.

Finally for type K we take LBP(E1, E1, E1), which gives

−2(α1+2)N
(2)
d,α+2[1]+

2− 3(α1 + 1)

2
N

(2)
d,α+[1]+

3α1

2
P

(2)
d,α−

3

2
K

(2)
d,α−K

(2)
d,α+[1] ≈ 0.

for 3d −
∑
αi + 1 ≥ 2. And when we take LBP(E1, E1, E1) with α1 = −1,

we obtain
K

(2)
d,(0,α2,...,αr)

= −N (2)
d,(0,α2,...,αr)

.

13.7 Optimization and some results

To speed up the calculations we use the following result from [26].

Lemma 13.8. When 3d−
∑r−1

i=1 αi + 1 ≥ 0, we have

N
(0)
d,(α1,...,αr−1,1) = N

(0)
d,(α1,...,αr−1).

Proof. We use induction on d. By taking L0,4(H,H, pt, pt) for d, (α1, . . . , αr−1, 1)

we obtain an expression of N
(0)
d,(α1,...,αr−1,1) in terms of invariants with lower

d. In the coefficients of this expression, αr only appears as part of the multi-
nomials, or in the form

∑
α′iα

′′
i . Because αr = 1 there is zero contribution

to the latter case, and for multinomials we have the basic identity(
n

k1, . . . , km

)
=

(
n− 1

k1 − 1, . . . , km

)
+ . . .+

(
n− 1

k1, . . . , km − 1

)
.

So using our induction hypothesis, we see that this expression is the same as
the one we obtain when we take L0,4(H,H, pt, pt) for d, (α1, . . . , αr−1).

Remark 13.9. The proof of Lemma 13.8 does not work in higher genus.
This is because of the appearance of graphs with self-edges, graphs with
genus 0 vertices without legs, and because of the existence of nonzero Gromov-
Witten invariants 〈Ei〉1,0 and 〈τ1(Ei)〉2,0.

Lemma 13.10. When 3d−
∑r−1

i=1 αi + 1 ≥ 0 and r ≤ 8, we have

N
(g)
d,(α1,...,αr−1,1) = N

(g)
d,(α1,...,αr−1).

Proof. When r ≤ 8, Xr is a del Pezzo surface and the primitive invariants

are enumerative. Let β = dH −
∑r−1

i=1 αiEi. The number N
(g)
d,(α1,...,αr−1,1)

is the enumerative count of curves in Xr of class β − Er through 3d −∑r−1
i=1 αi + g − 2 points in general position. By Lemma 13.2, after blowing
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down the r-th point, these are exactly the curves in Xr−1 of class β through
3d −

∑r−1
i=1 αi + g − 2 points in general position that also pass through the

point pr. So it is the count of curves through 3d−
∑r−1

i=1 αi+g−1 in general

position, which is N
(g)
d,(α1,...,αr−1).

For the numbers we calculated,

N
(g)
d,(α1,...,αr−1,1) = N

(g)
d,(α1,...,αr−1),

holds even when r > 8. The same also holds for H
(2)
d,α and P

(2)
d,α. It holds for

K
(2)
d,α only when r > 1.
As described in Section 5.1 of [26], we can use the Cremona transformation

that sends the class dH −
∑

i α
r
i=1Ei to

(2d−α1−α2−α3)H−(d−α2−α3)E1−(d−α1−α3)E2−(d−α1−α2)E3−
r∑
i=4

αiEi,

which we write as d′, α′. Using this transformation we have

N
(g)
d,α = N

(g)
d′,α′ ,

P
(2)
d,α = P

(2)
d′,α′ ,

H
(2)
d,α = 2H

(2)
d′,α′ −K

(2)
d′,α′ −K

(2)
d′,σ12(α′) −K

(2)
d′,σ13(α′),

K
(2)
d,α = K

(2)
d′,α′ −K

(2)
d′,σ12(α′) −K

(2)
d′,σ13(α′).

We use this to speed up our computation when α1 + α2 + α3 > d.
We will list some results. To keep the notation short we use the exponen-

tial notation for partitions, i.e. N
(2)
6,22 = N

(2)
6,2,2.

P
(2)
4,2 = −2

3
, K

(2)
3,1 = − 1

12
, H

(2)
4,2 = −5

3
,

H
(2)
4,22 = −1

3
, H

(2)
5,3 = 72, H

(2)
6,24 = 157689,

N
(2)
6,29 = 0, N

(2)
7,28 = 190172, N

(2)
7,29 = 25992,

N
(2)
7,210 = 3113, N

(2)
7,211 = 313, N

(2)
8,29 = 685599264,

N
(2)
8,210 = 135998195, N

(2)
8,211 = 25721212, N

(2)
8,212 = 4604976.
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A Matrices

In the proof of Theorem 11.1 we use the fact that certain systems of equa-
tions are of full rank. In this appendix we write down the corresponding
matrices and show that their determinants are nonzero. The computer pro-
gram in Appendix B does the calculations involved. For example the matrix
below is constructed using the function construct_matrix_a(). See the
description of the program in the readme file for the other matrices.

We have

Θj,2(a, b) =− (j + 1)(j + 2)
〈
aωj , bω4

〉
+ 4j(j + 2)

〈
aωj+1, bω3

〉
− 6(j2 − j − 4)

〈
aωj+2, bω2

〉
+

4j(j + 1)(j + 2)

(j + 3)

〈
aωj+3, bω

〉
.

We present the matrices from the proof of 11.6 and their determinants. For
the first matrix the rows correspond to the relations

Φ1(aωi, ω, ω), Θ1,2(1, ω)
〈
aωi
〉
, Θi,2(a, 1)

〈
ω2
〉
.

Remember from (13) that Φk is not a single relation but a system of relations
parametrized by distributions of the integer k. The rows for Φ1(aωi, ω, ω)
in order are given by the distrubtions [1, 0, 0, 0, 0, 0] and [0, 1, 0, 0, 0, 0]. The
columns correspond to〈

aωi+2, ω2, ω2
〉
,
〈
aωi+1, ω3, ω2

〉
,
〈
aωi, ω4, ω2

〉
,
〈
aωi, ω3, ω3

〉
.

−30 10 0 0

0 −20 4 4

0 0 0 24

6(i2 − i− 4) 4i(i+ 2) −(i+ 1)(i+ 2) 0


This matrix has determinant −2880(i2−9i−18), which has no integer roots.

For the next matrix the rows correspond to the relations

Φ2(aωi, b, ω), (−1)|a||b|Θ1,2(ω, b)
〈
aωi
〉
, Θi+1,2(a, 1) 〈bω〉 , Θi,2(a, 1)

〈
bω2
〉
.

Here the ordering of the rows for Φ2 is given by the folliwing distributions
of 2.

[2, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0], [0, 2, 0, 0, 0, 0],

[0, 1, 1, 0, 0, 0], [0, 0, 2, 0, 0, 0], [0, 0, 1, 1, 0, 0].

The columns correspond to
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〈
aωi+3, bω, ω2

〉
,
〈
aωi+2, bω2, ω2

〉
,
〈
aωi+2, bω, ω3

〉
,
〈
aωi+1, bω3, ω2

〉
,
〈
aωi+1, bω2, ω3

〉
〈
aωi+1, bω, ω4

〉
,
〈
aωi, bω4, ω2

〉
,
〈
aωi, bω3, ω3

〉
,
〈
aωi, bω2, ω4

〉
,
〈
aωi, bω, ω5

〉
.



−24 6 4 0 0 0 0 0 0 0

6 −24 4 6 4 −2 0 0 0 0

−3 −3 −12 1 4 3 0 0 0 0

0 6 0 −24 4 0 6 4 −2 0

1 −3 4 −3 −12 3 1 4 3 −2

−6 0 3 −6 3 −12 3 −1 3 3

4 0 −8 4 −8 −4 −3 4 3 2

0 0 0 0 0 0 −6 12 12 6

6(i2 + i− 4) 0 4(i+ 1)(i+ 3) 0 0 −(i+ 2)(i+ 3) 0 0 0 0

0 6(i2 − i− 4) 0 0 4i(i+ 2) 0 0 0 −(i+ 1)(i+ 2) 0


This matrix has determinant 60825600(i4 + 22i3 + 56i2 − 33i− 121), which
does not have any integer roots.

We have
Φ0(a, b, ω) ∼ −30

〈
aω, bω, ω2

〉
.

The system of relations Φ1(a, b, ω) is given by the following matrix where
the rows correspond to

[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0]

and the columns correspond to〈
aω2, bω, ω2

〉
,
〈
aω, bω2, ω2

〉
,
〈
aω, bω, ω3

〉

−24 6 4

6 −24 4

−3 −3 −12

 ,

which has nonzero determinant.
Consider the equations

Φ0(a, b, c), Φ1(a, b, c), Φ2(aωi, b, c),

Θi,2(a, b) 〈cω〉 , (−1)|b||c|Θi,2(a, c) 〈bω〉 .
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Together these equations imply
〈
aωi, bωj , cωk

〉
∼ 0, for i ≥ 0, 0 ≤ j ≤ 2,

and 0 ≤ k ≤ 2. The system of 11 relations Ψ2(a, b, c) has rank 8. So we only
take 8 relations corresponding to the distributions

[2, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0], [1, 0, 0, 1, 0, 0],

[0, 2, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 2, 0, 0, 0].

These form our rows together with

Θi,2(a, b) 〈cω〉 , (−1)|b||c|Θi,2(a, c) 〈bω〉 .

The columns correspond to

〈
aωi+3, bω, cω

〉
,
〈
aωi+2, bω2, cω

〉
,
〈
aωi+2, bω, cω2

〉
,
〈
aωi+1, bω3, cω

〉
,
〈
aωi+1, bω2, cω2

〉〈
aωi+1, bω, cω3

〉
,
〈
aωi, bω4, cω

〉
,
〈
aωi, bω3, cω2

〉
,
〈
aωi, bω2, cω3

〉
,
〈
aωi, bω, cω4

〉
.



−12 3 3 0 0 0 0 0 0 0

3 −12 3 3 3 −2 0 0 0 0

3 3 −12 −2 3 3 0 0 0 0

−4 −4 −4 2 2 2 0 0 0 0

0 3 0 −12 3 0 3 3 −2 0

−2 3 3 3 −12 3 −2 3 3 −2

2 −4 2 −4 −4 2 2 2 2 −2

0 0 3 0 3 −12 0 −2 3 3

4i(i+1)(i+2)
i+3 6(i2 − i− 4) 0 4i(i+ 2) 0 0 −(i+ 1)(i+ 2) 0 0 0

4i(i+1)(i+2)
i+3 0 6(i2 − i− 4) 0 0 4i(i+ 2) 0 0 0 −(i+ 1)(i+ 2)


This matrix has determinant 19008000 (i2−3)(i3+3i2−2i−7)

(i+3) , which does not
have any nonnegative integer zeros or poles.

We have
Φ0(a, b, c) ∼ −12 〈aω, bω, cω〉 .

The system of relations Φ1(a, b, c) is given by the following matrix where the
rows correspond to

[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0]

and the columns correspond to〈
aω2, bω, cω

〉 〈
aω, bω2, cω

〉 〈
aω, bω, cω2

〉
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−12 3 3

3 −12 3

3 3 −12

−4 −4 −4

 ,

which has rank 3.

B Computer program

Our work relies heavily on computer calculations. These calculations are
done by a program we have written in SageMath. It can be downloaded from
https://github.com/Wennink/reconstructinggromovwitteninvariants

together with installation instructions.
We build upon the SageMath program admcycles by Delacroix, Pixton,

Schmitt, Zachhuber, and van Zelm. It can be found at
https://gitlab.com/jo314schmitt/admcycles and is documented in [16].
We display tautological strata classes in the same way as it is done in adm-
cycles, which is explained in Section 3.1 of [16].

Our program contains functions that calculate specific ingredients we use
in our proofs such as for example getL25() from Lemma 11.4 or the following
from Appendix A:

sage: calculate_discriminant_a()

(-2880) * (i^2 - 9*i - 18)

For a full list of these functions see the readme file of the program.

B.1 Computing tautological relations

Memory usage is the main bottleneck when it comes to computing tauto-
logical relations. But when working with symmetric relations, the program
only needs to store a single element representing an orbit of the Sn-action.
Because of this symmetric relations can be computed in a larger range of
g, n, r than computations of all (unsymmetric) relations. However we were
still not able to compute the symmetric relations in P 4

3,8 on our computer.
We have written a new version of the code that computes symmetric rela-

tions using improvements where we use S ′n-actions for n′ < n. For example
one of the steps the old version takes in the process of calculating the sym-
metric relations of P rg,n is to calculate a generating basis of (nonsymmetric)
relations in P r−1

g,n and then multiply by ψi for 1 ≤ i ≤ n. It would be more
efficient to calculate relations that are fixed by the Sn−1-action on the first
n− 1 points, and then multiply by ψn.

57

https://github.com/Wennink/reconstructinggromovwitteninvariants
https://gitlab.com/jo314schmitt/admcycles


We can compare the old and new versions of computing symmetric rela-
tions.

The old version:

sage: m = get_memory_usage()

sage: %time a=derived_rels(3,4,6,1)

CPU times: user 2min 3s, sys: 628 ms, total: 2min 4s

Wall time: 2min 4s

sage: get_memory_usage()-m

1368.984375

The new version:

sage: m = get_memory_usage()

sage: %time a=derived_rels_SS(3,4,6,1)

CPU times: user 1min 40s, sys: 416 ms, total: 1min 41s

Wall time: 1min 41s

sage: get_memory_usage()-m

940.66796875

The new verion is faster but most importantly it uses less memory. The
higher the number of points n, the bigger these differences become:

The old version:

sage: m = get_memory_usage()

sage: %time a=derived_rels(3,4,7,1)

CPU times: user 14min 15s, sys: 4.06 s, total: 14min 19s

Wall time: 14min 20s

sage: get_memory_usage()-m

9712.96484375

The new version:

sage: m = get_memory_usage()

sage: %time a=derived_rels_SS(3,4,7,1)

CPU times: user 7min 30s, sys: 2.19 s, total: 7min 32s

Wall time: 7min 32s

sage: get_memory_usage()-m

4823.75390625

This difference in memory usage is what allows us to calculate the new
relation in P 4

3,8.
We have now got a method to calculate partially symmetric relations. In

particular we can use this to calculate nonsymmetric relations. Below we
list some comparison results between our method pre_processed_fzm and
the method DR.FZ_matrix (denoted by pre and dr respectively). All results
are for stable curves.
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P 2
3,7 P 2

2,7 P 3
2,5 P 4

2,4

dr time 2m12s 2m19s 7m23s out of memory

pre time 17m50s 10m19s 1m57s 2m50s

dr memory usage 1242 1078 4906 more than 14500

pre memory usage 3109 2734 1379 1674

It seems that DR.FZ_matrix performs better at low codimension and high
genus or high number of points, while pre_processed_fzm is more efficient
for higher codimension.

B.2 Computing Gromov-Witten invariants of P2 blown up in
finitely many points

The part of the computer program that calculates these Gromov-Witten in-
variants is built around two functions we have written. The first is compute_gw_formula,
which computes the expression Tβ(L, γ1, . . . , γn) for any L ∈ Sg,n for g ≤ 2
and any choice of classes from the generating basis {pt,H,E1, . . . , Er}. The
second function is apply_form which evaluates this obtained formula.

To make the program calculate a Gromov-Witten invariant of degree β =
dH−

∑
i αi, we write gw_inv(g,psiprofile,[d,alpha_1,alpha_2,...]),

where the psiprofile is

� [] to calculate N
(g)
d,α,

� [(1,-1)] to calculate P
(g)
d,α,

� [(1,0)] to calculate H
(g)
d,α, and

� [(1,1)] to calculate K
(g)
d,α.

For example we can calcuate N
(0)
4 and H

(2)
4,2 as follows:

sage: gw_inv(0,[],[4])
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sage: gw_inv(2,[(1,0)],[4,2])

-5/3

B.3 Computing Gromov-Witten invariants of X1 and P1×P1

Because the core of the code for Xr is independent of a choice of relation,
one can easily use different tautological relations to obtain a different recon-
struction. In this way we have constructed a function gw_X1 that calculates
the invariants of X1 using the algorithm prescribed by Theorem 11.1.
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sage: gw_X1(2,[(1,0)],[4,2])

-5/3

We cannot use the same program to calculate invariants of P1 × P1 but we
can use a slightly different version of it specifically written for P1 × P1.

sage: gw_P1xP1(2,[(1,0)],[4,2])

68

B.4 Symbols of tautological relations

We describe some of most important functions in the program related to
symbols.

For g ≤ 3, the function get_primitive_part_fzm(g,n,r,nonsym) gives
a matrix of (symmetric) relations in P rg,n modulo restriction to the primitive
part. This matrix comes together with a legend that represents the columns
as decorated strata classes.

sage: prim = get_primitive_part_fzm(2,3,2,false)

sage: prim[0]

[ 1 -1 -2/3]

sage: list_tg(prim[1])

[0] : Graph : [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]

Polynomial : 1*psi_1^1

[1] : Graph : [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]

Polynomial : 1*psi_6^1

[2] : Graph : [0, 0, 2] [[2, 3, 6], [1, 7, 8], [9]] [(6, 7), (8, 9)]

Polynomial : 1*

We can obtain a tautological class (”tautclass” in the program) from a
row in this matrix.

sage: tcbp = partial_to_tautclass(vec=prim[0][0],taut_gens=prim[1])

sage: tcbp

Graph : [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]

Polynomial : 1*psi_1^1

Graph : [0, 2] [[2, 3, 5], [1, 6]] [(5, 6)]

Polynomial : (-1)*psi_6^1

Graph : [0, 0, 2] [[2, 3, 6], [1, 7, 8], [9]] [(6, 7), (8, 9)]

Polynomial : (-2/3)*

Since we set nonsym to false we are working with symmetric relations and
the program only stores one element in each Sn-orbit. To obtain the full
expression for the tautological relation we ”unsymmetrize” it.
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sage: unsymtc = smarter_unsym_tc(tc=tcbp,n=3)

We now obtain the symbol which the program displays as follows.

sage: sbp = symbol_from_tautclass(g=2,tc=unsymtc)

sage: sbp

-1/3 [PP*aa*bb, cc]

-1/3 [PP*aa*cc, bb]

1/3 [PP*aa, bb*cc]

-1/3 [PP*bb*cc, aa]

1/3 [PP*bb, aa*cc]

1/3 [PP*cc, aa*bb]

-2/3 [aa*bb*cc]

We can do substitutions of classes in symbols and do vector space operations
on symbols such as multiplying by a scalar. There are also methods to apply
the string, dilaton, or divisor equations from Lemmas 7.9 and 8.12.

sage: 3*sbp.subs([aa,W,W])

-2 [PP*aa*W, W]

1 [PP*aa, W^2]

-1 [PP*W^2, aa]

2 [PP*W, aa*W]

-2 [aa*W^2]

sage: 3*sbp.subs([aa,W,W]).applydivisor()

1 [PP*aa, W^2]

2 [PP*W, aa*W]

-5 [aa*W^2]

The above is the program’s way of displaying the symbol

< ψa, ω2 > +2 < ψω, aω > −5 < aω2 > .

Glossary of notations

< ψa1γ1, . . . , ψ
anγn > Gromov-Witten invariant using symbol notation. 28

< τa1(γ1) · · · τan(γn) >Xg,β Gromov-Witten invariant. 17
GXg,β linear combinations of formal Gromov-Witten invariants. 27

N
(g)
d,α,H

(g)
d,α,P

(g)
d,α,K

(g)
d,α Gromov-Witten invariants of Xr. 48

Pg,n algebra of Pixton’s relations. 21
R∗(Mg,n) tautological ring of the moduli space of curves. 17, 20
Rg,n algebra of relations. 21
Rnew
g,n new relations. 22

Sprim the primitive part of a relation S. 27
Sg,n the strata algebra. 21
T0, . . . Tr homogeneous basis of H∗(X). 12
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X the target variety. 12
Xr the blowup of P2 in r points. 45
[Mg,n(X,β)]vir virtual fundamental class. 16
Γ stable graph. 18
Γθ decorated stable graph. 19
MΓ product of Moduli spaces associated to Γ. 18
Mg,n moduli space of stable curves. 14
Mg,n(X,β) moduli space of stable maps. 15
Φk(γ1, γ2, γ3) system of equations in GXg,β . 37
Σ(S)(γ1, . . . , γn) the symbol map. 27
Θj,k(a, b) an element of GXg,β . 38
δ gluing map that glues a curve to itself. 14
evi evaluation map at the i-th point of a stable map. 16
κ a tautological class. 14
Q[GW (X)] polynomial ring in formal Gromov-Witten invariants. 27
Mct

g,n moduli space of curves of compact type. 20
Mrt

g,n moduli space of curves with rational tail. 20
Mg,n moduli space of smooth curves. 20
Tβ map to polynomials in Gromov-Witten invariants. 22, 25
πi forgetful map forgetting the i-th point. 14, 15
ψ a tautological class. 14
∼ equivalence relation on GXg,β . 28

ψ̃ cocycle on the moduli space of stable maps. 16
ξΓ glueing map associated to Γ. 18
gef inverse of intersection product. 12
q gluing map that glues two curves together. 14
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