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1 Introduction

It looks, the term ‘Turnpike’ first appeared in [4]:

”... we have found a real normative significance for steady growth ... if we are planning long-run
growth, no matter where we start, and where we desire to end up, it will pay in the intermediate
stages to get into a growth phase of this kind. It is exactly like a turnpike paralleled by a network
of minor roads.”

That book, like many other early works on turnpikes, was about economical models.
In the recent monograph [26], the modern theory of deterministic turnpikes was also developed

in the strict connection with economics. The basic mathematical model, which can give the idea
of turnpikes, looks like

T−1∑
i=0

v(xi, xi+1)→ max over {xi}Ti=0 ∈ Ω,

where xi are elements of some state space and v is a real-valued function. The turnpike trajectory
X̄ := (x̄, x̄, . . . , x̄), which is optimal in the long middle part of the planning horizon 1, 2, . . . , T ,
comes from the maximization of v(x, x). Of course, it is assumed that X̄ ∈ Ω and some other
conditions are satisfied. More about such models in [24, Ch.8].

The continuous-time analogue is the variational problem:

minimize

∫ T

0

f(x(t), x′(t)) dt over

absolutely continuous functions x : [0, T ]→ Rn with x(0) = x, x(T ) = y.
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Under appropriate conditions, the turnpike trajectory is just x(t) ≡ Xf = arg min{f(x, 0)} [24].
Again, this simple function is optimal in the long middle part of the interval [0, T ].

Monograph [25] is devoted to deterministic optimal control problems, with the state and action
spaces Rn and Rm, of the shape∫ T

0

f(t, x, u) dt −→ inf (1)

subject to x′ = G(t, x, u), x(0) = x, x(T ) = y.

Without going in details, under appropriate conditions, Theorem 2.3 of [25] says that there exists
a turnpike Xf : R+ → Rn satisfying the following property. For each ε > 0 there exist δ ∈
(0, ε) and ∆ > 0 such that for all T ≥ 2∆ ‖x(t) − Xf (t)‖ ≤ ε for all t ∈ [∆, T − ∆], for each
trajectory x : [0, T ] → Rn, δ-optimal in problem (1) with arbitrary enough x(0) and x(T ),
and an arbitrary cost rate g close enough to f . Moreover, in the infinite-horizon case T = ∞,
limt→∞ ‖x(t) −Xf (t)‖ = 0 [25, Prop.3.2]. Similar optimal control problems with linear function
G were investigated in [24, Ch.6,7], where stronger turnpike properties were established.

The theory of turnpikes was also developed for piece-wise deterministic processes [7] and for
continuous-time Markov decision processes (MDPs) [22] with applications to manufacturing. The
versions for controlled diffusions and more general random processes with financial applications
can be found in [6]. Thus, the turnpike property is a general phenomenon which holds for large
classes of variational and optimal control problems. Moreover, it was shown in [24, 25] that the
turnpike is not necessarily unique.

The further material of the present article is devoted to discrete-time MDPs. In this framework,
the turnpike property means the following.

If the time horizon is large enough, then the optimal control on the first
several steps is also optimal for the infinite-horizon version of the model.

Such property is well known for MDPs with the total expected discounted rewards [5, 8, 9, 15,
21, 23]. The versions with the exponential utility function were considered in [3]. Instead of
discounting, one can consider the random time horizon [10] or other special cases [11]: see Remark
1. The state and action spaces usually were finite [3, 5, 9, 11, 15, 21, 23].

Note that, differently from the model (1), here the turnpike control is optimal on the initial
interval {1, 2, . . . , T −∆} rather than on {∆,∆ + 1, . . . , T −∆}.This is because here the turnpike
property is formulated for the feedback control rather than for trajectories.

In the present article, we consider the finite model with the total expected (undiscounted)
reward associated with the long-run average reward on the infinite time horizon. The most relevant
references are [8, 14, 17]. Note that the model was not finite in [8, 14], but in the case of finite
MDP the results of the aforementioned articles are similar to those presented below in Sections
3-5: see Remarks 2 and 3.

The novelty of the present article is in the following:

• we consider not only the standard MDP, but more general finite models;

• we show that, for the discounted model with the discount factor close to 1, there may exist
two turnpikes; such phenomenon was not observed before;

• we apply the developed theory to the random walk which is of its own interest.

In Section 2, we remind the known results on the standard turnpikes in discounted MDPs. In
Section 3, we develop the turnpike theory for the undiscounted model. This is the main part of
the article. The proofs of the main results are presented in Sections 4 and 5. In Section 6 we
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return back to the discounted model and show that, if the discount factor is close to 1, then one
can observe two turnpikes. In Section 7 we consider an example of controlled random walk which
exhibits the turnpike property. In the summary, we enlist what has been done and fix important
open problems. The proofs of auxiliary statement are postponed to Appendix.

All over the current paper, the state and action spaces S and A are finite. For the future needs,
it is convenient to accept that S = {0, 1, . . . ,M − 1}, M ≥ 1. Below, the following notations are in
use: e := (1, 1, . . . , 1)T ∈ RM , and I is the identity M×M matrix. We say that a stochastic matrix
P is irreducible or aperiodic, if the corresponding Markov chain is so. Ws is the s-th component
of the vector W ∈ RM , and Ps,· is the s-th row of the square M ×M matrix P . Each function
W : S → R is identified with the vector W ∈ RM , so the both notations W (s) = Ws are in use.
All vectors are columns; all inequalities for vectors and matrices are component-wise. 0 is the zero
vector in RM .

2 Standard Turnpikes in MDP

To introduce the idea of a turnpike for the discrete-time MDP, let us consider the discounted model
〈S,A, P, r〉 with the infinite horizon, the finite state and action spaces S and A, the one-step reward
rs(a), and the transition probability Ps,j(a). This means that every time action a ∈ A is applied
at state s ∈ S, the reward equals rs(a) and the new state of the process is realized according to
the distribution Ps,·(a). The optimality equation looks like

W∞(s) = max
a∈A

rs(a) + β
∑
j∈S

Ps,j(a)W∞(j)

 , s ∈ S, (2)

where β ∈ (0, 1) is the discount factor. It is well known that this equation has a unique bounded
solution which can be constructed by the successive approximations called ‘value iteration’:

W 0 = W term is an arbitrarily fixed real-valued function on S;

W k+1(s) = Uβ ◦W k(s) := max
a∈A

rs(a) + β
∑
j∈S

Ps,j(a)W k(j)

 , s ∈ S, (3)

k = 0, 1, 2, . . . ;

limk→∞maxs∈S |W k(s)−W∞(s)| = 0. We use the notations W 0 and W term for the same function
because, on one hand, it is the starting point for iterations (3), and on the other hand that
function describes the terminal reward in the finite horizon model. (See below.) The operator Uβ

is a contraction in the space of real-valued functions W on S (which are certainly bounded) with
the uniform norm ‖W‖ := maxs∈S |W (s)|. A control strategy is (uniformly) optimal if and only
if, in each state s ∈ S, the decision maker applies action(s) from the set

D∗(s) :=

a ∈ A : rs(a) + β
∑
j∈S

Ps,j(a)W∞(j) = W∞(s)

 6= ∅.
See [18, §1.2.2] or [21, Ch.6]. Usually, one puts W 0(s) ≡ 0, but it is convenient to allow W 0 to be
arbitrary. The function W∞ certainly does not depend on W 0.

Since the spaces S and A are finite, the value

∆ := min
s∈S

min
a∈A\D∗(s)

W∞(s)−

rs(a) + β
∑
j∈S

Ps,j(a)W∞(j)


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is strictly positive. (Here, as usual, mina∈∅G(a) := +∞.)
If ∆ = +∞, then all a ∈ A provide the maximum in (2) and D∗(s) = A for all s ∈ S, and

obviously, for all k ≥ 0,

arg maxa∈A

rs(a) + β
∑
j∈S

Ps,j(a)W k(j)

 ⊂ D∗(s) for all s ∈ S. (4)

Suppose ∆ <∞. Then, for each s ∈ S and each a ∈ A \D∗(s),rs(a) + β
∑
j∈S

Ps,j(a)W∞(j)

 ≤W∞(s)−∆.

Let us choose 0 < ε < ∆
2 and fix K such that

max
j∈S
|W k(j)−W∞(j)| < ε for all k ≥ K. (5)

Now, for each k ≥ K, for each s ∈ S, if a /∈ D∗(s) provides the maximum in (3), then

W k+1(s) = rs(a) + β
∑
j∈S

Ps,j(a)W k(j) ≤ rs(a) + β
∑
j∈S

Ps,j(a)W∞(j) + ε

≤ W∞(s)−∆ + ε < W k+1(s) + ε−∆ + ε < W k+1(s).

The obtained contradiction shows that, for all k ≥ K, we have inclusion (4).
We have established the classical (discounted) Turnpike Theorem:

There exists K such that, for all k ≥ K, the inclusion (4) holds.

The minimal value of such K is called the ‘turnpike integer’ and denoted as K∗.
This theorem appeared in [23]; see also [21, Thm.6.8.1], [5] and [15], where the upper bound of

K∗ was calculated and the dependence of K∗ on β ∈ (0, 1) was discussed.
Consider the discounted MDP with the finite horizon and the fixed terminal reward W term

which is independent of the horizon T :

Wπ
T (ŝ) := Eπŝ

[
T∑
t=1

βt−1rS(t−1)(A(t)) + βTW term(S(T ))

]
→ sup

π
.

Here ŝ ∈ S is the initial state S(0), π is the control strategy (policy), Eπŝ is the mathematical
expectation with respect to the strategical measure Pπŝ on Ω := S× (A× S)n, and S(t), A(t) are
the (random) controlled and action processes, i.e., the projection functions on Ω. The detailed
rigorous constructions can be found in [18, 21].

According to the dynamic programming principle, the Bellman function

WT (s) := sup
π
Wπ
T (s), T = 0, 1, . . .

satisfies equalities (3) and, for fixed T ≥ 1, the optimal values of A(1), A(2), . . . , A(T ) after observ-
ing S(0), S(1), . . . , S(T −1) are those which provide the maximum in (3) at k = T −1, T −2, . . . , 0,
s = S(0), S(1), . . . , S(T − 1) correspondingly. According to the Turnpike Theorem, if T > K∗,
then on the first steps t = 1, 2, . . . , T −K∗, having observed S(t−1), one has to choose the actions
A(t) from the set D∗(S(t− 1)). This observation is useful if D∗(s) is a singleton for all s ∈ S: for

4



large time horizon T , the optimal feedback control on the first steps t = 1, 2, . . . , T − K∗ is the
same, independent of the terminal reward W term and is represented by the mapping D∗. This is
the so called ‘turnpike’. In words, the Turnpike Theorem reads:

If the time horizon is large, on the first steps one has

to control the process as if the horizon is infinite. (6)

Close to the end, on the steps T − K∗ + 1, T − K∗ + 2, . . . , T , the control process A(t) is time-
dependent, changing as time t goes on, because one has to take into account the finite remaining
horizon and the terminal reward W term. In case the set D∗(ŝ) = {a1, a2, . . .} is not a singleton for
some ŝ ∈ S, it can happen that, for each T > K∗, either a1 or a2 is not optimal at the first step
in the finite horizon MDP with the initial state ŝ [23].

Remark 1 It is well known that the discounting can be interpreted as the geometrical random
time horizon: see [18, §1.2.2]. Turnpike theorems for models with other random time horizons
were studied in [10]. In [11], the time horizon consists of (long enough) cycles, and during each
cycle the optimal feedback strategy is of the turnpike shape.

3 Description of the Model and Main Results

In case β = 1, the turnpike theory is more problematic because the operator U1 is not a contraction
in the uniform norm and one cannot in general expect the convergence of the sequence {W k}∞k=0

to a bounded function. Below, we consider the slightly more general iterations than (3). Namely,
let D be the finite space of ‘decisions’, each decision leading to the (column) vector of rewards
R(d) ∈ RM and to the stochastic M × M matrix Q(d). The triplet 〈D,R,Q〉 will be called
‘the model’. Everywhere further we assume that the introduced objects satisfy the following
requirement.

Assumption 1 For every fixed β ∈ [0, 1], for each function W : S → R, there exists d̂ ∈ D
providing the following component-wise maximum:

R(d) + βQ(d)W → max
d∈D

.

The value iterations (3) are generalized to

W 0 = W term is an arbitrarily fixed real-valued function on S;

W k+1 = Uβ ◦W k := max
d∈D

{
R(d) + βQ(d)W k

}
, (7)

k = 0, 1, 2, . . . ,

and the undiscounted case corresponds to β = 1 in which case we omit the β index: U := U1. In
Section 6, the functions as in (7) are denoted W βk if β ∈ (0, 1).

Let us describe special cases, where, like previously, A is a finite action space, for each a ∈ A,
P (a) = [Ps,j(a)](s,j)∈S2 is a stochastic M ×M matrix and r(a) = [rs(a)]s∈S ∈ RM is a column

vector. To put it different, let 〈S,A, P, r〉 be an MDP and accept that D is the set of all mappings
d : S→ A.

(i) Standard model:

R(d) = [rs(d(s))]s∈S;

Q(d) = [Ps,j(d(s))](s,j)∈S2 .
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In this case iterations (7) represent the standard value iteration algorithm for MDP, the same

as (3). Assumption 1 is obviously satisfied: the mapping d̂ ∈ D is built separately for all
s ∈ S.

(ii) More general case:

R0(d) = r0(d(0));

Rl+1(d) = rl+1(d(l + 1)) +

l∑
j=0

Pl+1,j(d(l + 1))Rj(d),

l = 0, 1, . . . ,M − 2;

Q0,j(d) = P0,j(d(0));

Ql+1,j(d) =


l∑
i=0

[Pl+1,i(d(l + 1))Qi,j(d)] for j < l + 1;

l∑
i=0

[Pl+1,i(d(l + 1))Qi,j(d)] + Pl+1,j(d(l + 1)) for j ≥ l + 1.

l = 0, 1, . . . ,M − 2.

In this case, the iterations (7) are similar to the Gauss-Seidel version of the value iteration

algorithm (see [21, §6.3.3]). Assumption 1 is satisfied: the mapping d̂ ∈ D can be built
consecutively for s = 0, 1, . . . ,M − 1. This version of the general model appears in Section 7.

(iii) If the model 〈D,R,Q〉 is fixed, one can construct the two-step model 〈D̄, R̄, Q̄〉 with D̄ :=
D×D, R̄(d̄) := R(d1) +Q(d1)R(d2) and Q̄(d̄) := Q(d1)Q(d2). If Assumption 1 is valid for
the initial model, then it also holds for the two-step model. Similarly, one can introduce the
three-step model and so on.

Lemma 1 In the version (ii) of the general model, the matrix Q(d) is stochastic for all d ∈ D,
provided the original matrix P (a) is stochastic for all a ∈ A.

For the proof see Lemma 2 of [20].

Definition 1

(a) A decision dβ∗ ∈ D is β-discounted optimal for β ∈ (0, 1) if

V β∗ = Uβ ◦ V β∗ = max
d∈D

{
R(d) + βQ(d)V β∗

}
= R(dβ∗) + βQ(dβ∗)V β∗. (8)

Here V β∗ ∈ RM is the unique solution to the (left) equation above.

(b) A decision d∗B ∈ D is Blackwell optimal if it is β-discounted optimal for all β ∈ [β0, 1) for
some β0 ∈ [0, 1).

(c) For each d ∈ D,

Q∗(d) := lim
n→∞

1

n

n−1∑
k=0

Qk(d)

is the ‘limiting’ [21] or ‘stationary’ [12] stochastic matrix;

D(d) := [I −Q(d) +Q∗(d)]−1 −Q∗(d)

is the deviation matrix [12, 21].
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(d) A decision d∗ ∈ D is average optimal if, for all d ∈ D,

Q∗(d)R(d) ≤ Q∗(d∗)R(d∗).

D∗ is the set of all average optimal decisions.

All the introduced objects are well defined according to Proposition 1.
Let the time horizon in the model 〈D,R,Q〉 be infinite and consider the average reward problem

described as follows. On each step t = 1, 2, . . ., the decision d ∈ D leads to the transition matrix
Q(d) and, if the current state is S(t− 1) = s ∈ S, then the reward equals Rs(d). The target is to
maximise the following objective

lim
T→∞

1

T
Eds

[
T∑
t=1

RS(t−1)(d)

]
= lim
T→∞

1

T

T∑
t=1

Qt−1
s,· (d)R(d) = [Q∗(d)R(d)]s (9)

→ max
d∈D

.

Here S(t) is the (random) state at the time moment t = 0, 1, 2, . . . of the time-homogeneous Markov
chain with the transition matrix Q(d) and the initial state s = S(0) ∈ S; Eds is the corresponding
mathematical expectation. The average (uniformly) optimal decision is that which provides the
maximum in (9) simultaneously for all initial states s ∈ S. In case of the standard model, we have
the conventional MDP [12, 21], where only the stationary deterministic control strategies (policies)
are considered; more general strategies (randomized, past-dependent) do not improve the gain. As
will be shown (see Proposition 1(e)), the average optimal decision exists also in the general case.

In what follows, we will also deal with the discounted problem with β ∈ (0, 1):

V βd(s) := lim
T→∞

Eds

[
T∑
t=1

βt−1RS(t−1)(d)

]
→ max

d∈D
=: V β∗(s). (10)

Note that randomized, non-stationary and past-dependent decisions do not improve the objective:
for the standard model see [12, 21], for the general case the proof is similar, based on the dynamic
programming approach. The function V β∗ coincides with that introduced in Definition 1(a): see
Proposition 1(b). All the reasoning from Section 2 remains the same, leading to the following
version of the discounted Turnpike Theorem.

For a fixed initial function W 0 = W term, there exists the turnpike integer
K∗ such that, for all k ≥ K∗, the inclusion

arg maxd∈D{R(d)+βQ(d)W k} ⊂ Dβ
∗ := {d ∈ D : R(d)+βQ(d)V β∗ = V β∗}

holds true.

. (11)

Similarly to Section 2, for the finite horizon discounted problem, if the time horizon T is bigger
than K∗, then on the first steps t = 1, 2, . . . , T −K∗ one has to choose the decisions from Dβ

∗ .
Let the time horizon T ∈ {0, 1, 2, . . .} be finite and consider the undiscounted total reward

problem with the terminal reward W term:

Eπs

[
T∑
t=1

RS(t−1)(d(t)) +W term(S(T ))

]
→ max

d(1),d(2),...,d(T )∈D
=: WT (s).

Different decisions d(1), d(2), . . . , d(T ) are allowed on the time steps t = 1, 2, . . . , T , and π is
the associated control strategy leading to the strategical measure Pπs and to the corresponding
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mathematical expectation Eπs . Now S(·) is the (non-homogeneous) Markov chain. In case of
the standard model, we have the conventional MDP, and it is well known that randomized and
past-dependent decisions do not improve the objective [21, Prop.4.4.3].

Quite formally, one can choose different decisions d(t) after observing the state S(t− 1). This
concerns finite or infinite horizon cases, discounted or undiscounted reward. But according to the
dynamic programming ideas and keeping in mind Assumption 1, one can restrict to the case when
d(t) is the same for all S(t− 1) ∈ S.

The Bellman function WT (s) satisfies equations (7) with β = 1, i.e.,

W 0 = W term and W k+1 = U ◦W k, k = 0, 1, 2, . . . , T − 1.

The optimal decisions d(t) on the steps t = 1, 2, . . . , T are those which provide the maximum in
(7) at k = T − 1, T − 2, . . . , 0.

In what follows, we use the ‘span-seminorm’

sp(W ) := max
s∈S

W (s)−min
s∈S

W (s)

in the space of (bounded) functions W on S. The main result of the current section, Theorem 1,
states that the condition limk→∞ sp(W k+1−W k) = 0 is sufficient for the turnpike property of the
model. Note that in general the sequence sp(W k+1 −W k), k = 0, 1, 2, . . . does not approach zero
[19, §4.2.18], [21, Ex.8.5.1]; see also examples below and in Subsection 7.4.

Theorem 1 (Turnpike) Suppose for W 0 = W term the iterations (7) with β = 1 satisfy the
requirement: limk→∞ sp(W k+1 −W k) = 0. Then there exists K such that, in the described undis-
counted model with the time horizon T > K, on the first steps t = 1, 2, . . . , T − K the optimal
decisions are necessarily average optimal ones (in the sense of Definition 1(d)).

Sufficient conditions for the requirement limk→∞ sp(W k+1 −W k) = 0 are provided in Section
5. If this requirement is not satisfied, the turnpike property may be not valid: see Example below
and Subsection 7.4.

Like in the discounted model, the Turnpike Theorem is useful if D∗, the set of average optimal
decisions, is a singleton. Sufficient conditions for this are given in the following statement.

Theorem 2 Suppose for each d ∈ D the matrix Q(d) is irreducible, the Blackwell optimal strategy
dB is unique, and d∗ is the unique decision providing the maximum in the optimality equation

Ge+ Y = max
d∈D
{R(d) +Q(d)Y } . (12)

(Under the imposed conditions, the vector Y is unique up to the additive constant.) Then d∗ = dB
is the unique average optimal decision.

Example. Here we show that the statement of Theorem 1 may be not valid if sp(W k+1 −W k)
does not approach zero as k →∞.

Let S = {0, 1, 2}; A = {a1, a2, a3};

P0,1(a1) = P1,0(a1) = 1; P0,1(a2) = P1,0(a2) = 1− ε; P0,0(a2) = P1,1(a2) = ε;

P0,2(a3) = P1,2(a3) = P2,2(a1) = P2,2(a2) = P2,2(a3) = 1;

other transition probabilities equal zero. The one-step rewards rs(a) are given in the table:
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a: a1 a2 a3

s:
0 0 -h 1
1 0 -h 0
2 -2 -2 -2

We assume that
ε ∈ (0, 1); 0 < h < ε

and consider the standard model described in Item (i) above. Let W 0 = W term := 0 and put
x1 := 0; xk := (1− ε)xk−1 + ε− h for k ≥ 2.

Lemma 2

(a) xk−1 < xk < 1− h
ε for all k ≥ 2.

(b) If k ≥ 1 is even, then W k+1 = (1, xk+1,−2(k + 1))T and the maximum in (7) is provided by
the decision do : do(0) = a1, do(1) = a2, do(2) = a1;
if k ≥ 1 is odd, then W k+1 = (xk+1, 1,−2(k + 1))T and, for k ≥ 3, the maximum in (7) is
provided by the decision de : de(0) = a2, de(1) = a1, de(2) = a1. The index o(e) corresponds
to the odd (even) value of k + 1.

In fact, the values do(2) and de(2) may be arbitrary because the state 2 is ultimately absorbing with
the same one-step reward -2 for all actions.

Obviously, neither do, nor de is average optimal, but, if the time horizon T ≥ 3 is odd (even),
then the first optimal decision is do (de). One can show that the switching control strategies
(de, do, de, . . .) and (do, de, do, . . .) are both average optimal. If the time horizon T is finite without
the terminal reward, it is desirable to try to reach the state S(T − 1) = 0 and apply the action a3

in order to gain r0(a3) = 1 at the last step. If T is even, then one can consider the two-step model
〈D̄, R̄, Q̄〉 as in Item (iii) below Assumption 1. Now the decision d̄∗ := (de, do) is average optimal,
and it should be applied always up to the last pair of time steps, that is, the turnpike property is
valid.

4 Proposition 1 and Proof of Theorems 1 and 2

Proposition 1

(a) A β-discounted optimal decision exists for each β ∈ (0, 1).

(b) Suppose β ∈ (0, 1) is fixed. For each d ∈ D, the unique solution to the equation

V βd = R(d) + βQ(d)V βd (13)

satisfies the inequality V βd ≤ V β∗.

(c) For each d ∈ D the limiting matrix Q∗(d) exists, is stochastic, and exhibits the following
properties:

Q∗(d) = Q(d)Q∗(d) = Q∗(d)Q(d) = Q∗(d)Q∗(d).

(d) The deviation matrix D(d) is well defined and satisfies equation

D(d) = [I −Q(d) +Q∗(d)]−1](I −Q∗(d)).

9



(e) There exists a Blackwell optimal decision, and every Blackwell optimal decision is also average
optimal. Hence an average optimal decision also exists and D∗ 6= ∅.

Lemma 3 Suppose a decision d̂ ∈ D provides maximum to

R(d) +Q(d)W,

where W ∈ RM . Then

min
s∈S
{U ◦W (s)−W (s)} e ≤ Q∗(d̂)R(d̂) ≤ Q∗(d∗)R(d∗)

≤ max
s∈S
{U ◦W (s)−W (s)} e,

where d∗ is an average optimal decision.

Proof of Theorem 1. Denote D∗ the set of all average optimal decisions in the model 〈D,R,Q〉.
This set is not empty due to Proposition 1(e). Let g∗ := Q∗(d∗)R(d∗) for d∗ ∈ D∗. Clearly, the
vector g∗ does not depend on the choice of d∗ ∈ D∗. Let

ε := min
d∈D\D∗

‖g∗ −Q∗(d)R(d)‖ > 0,

where, as usual, ‖V ‖ := maxs∈S |V (s)| is the uniform norm in RM . Take K such that

sp(W k+1 −W k) = sp(U ◦W k −W k) < ε

for all k ≥ K.
Now, for each k ≥ K, if d̂ ∈ D provides the maximum to R(d) +Q(d)W k then, by Lemma 3,

g∗ −Q∗(d̂)R(d̂) = Q∗(d∗)R(d∗)−Q∗(d̂)R(d̂)

≤ sp(U ◦W k −W k)e < εe =⇒ ‖g∗ −Q∗(d̂)R(d̂)‖ < ε;

hence d̂ ∈ D∗.
Therefore, for each T > K, on the first steps t = 1, 2, . . . , T −K, the optimal decisions, which

provide the maximum to R(d) +Q(d)W k at k = T − 1, T − 2, . . . ,K, belong to D∗. 2

Proof of Theorem 2. If the matrix Q(d) is irreducible, then the stochastic matrix Q∗(d) has
identical strictly positive rows: see Thm.5.1.1 and Thm.5.1.4 of [13]. Therefore, Q∗(d)R(d) =
G(d)e for some G(d) ∈ R and d∗ ∈ D∗ if and only if G(d∗) = maxd∈DG(d) =: G∗. Recall also that
a Blackwell optimal decision exists according to Proposition 1(e).

The optimality equation (12) is solvable, and a pair (G, Y ) ∈ R× RM satisfies it if and only if

G = G∗ and Y = ce+D(dB)R(dB),

where c ∈ R is an arbitrary constant, dB is some Blackwell optimal decision and D(dB) is the
deviation matrix. In the case of the standard model, this is precisely Theorem 6.1 of [12]; all the
steps of its proof remain correct for the general case.

Let us show that a decision d∗ is average optimal if and only if it provides the maximum in
(12). Let (G∗, Y ) be a solution to the equation (12). Then

G(d) := R(d)−G∗e+Q(d)Y − Y ≤ 0 for all d ∈ D, and max
d∈D
G(d) = 0.

Since all the rows of each matrix Q∗(d) are strictly positive,

Q∗(d)G(d) ≤ 0 for all d ∈ D and max
d∈D
Q∗(d)G(d) = 0.

10



Moreover, for a decision d̂ providing the last maximum, we have

Q∗(d̂)G(d̂) = max
d∈D
Q∗(d)G(d) = 0⇐⇒ G(d̂) = max

d∈D
G(d) = 0 (14)

because Q∗(d) > 0 for all d ∈ D. But Q∗(d)G(d) = Q∗(d)R(d)−G∗e for all d ∈ D (see Proposition
1(c)), so that a decision d∗ is average optimal if and only if

0 = Q∗(d∗)G(d∗) = max
d∈D
Q∗(d)G(d)⇐⇒ G(d∗) = max

d∈D
G(d) by (14),

i.e., if and only if d∗ provides the maximum in (12).
Now the statement of Theorem 2 follows. Recall that the decision dB is average optimal by

Proposition 1(e), so that d∗ = dB . 2

5 Sufficient Conditions for Equation limk→∞ sp(W
k+1−W k) =

0 in Case β = 1

For fixed J ≥ 1 take arbitrary sequences d1 = {d1
1, d

1
2, . . . , d

1
J} and d2 = {d2

1, d
2
2, . . . , d

2
J} of decisions

from D and matrices

Q(J,1) := Q(d1
1)Q(d1

2) . . .Q(d1
J);

Q(J,2) := Q(d2
1)Q(d2

2) . . .Q(d2
J).

Denote
η(d1, d2) := min

(s,u)∈S2

∑
l∈S

min
{
Q(J,1)
s,l ,Q(J,2)

u,l

}
and introduce

γJ := 1− min
(d1,d2)

η(d1, d2) ∈ [0, 1]. (15)

Lemma 4 Suppose γJ < 1 for some J ≥ 1. Then the following statements hold.

(a) The operator U := U1 in (7) is a J-step contraction with respect to the span-seminorm:

sp(UJ ◦ V1 − UJ ◦ V2) ≤ γJsp(V1 − V2)

for all V1, V2 ∈ RM .

(b) For every W 0 ∈ RM limk→∞ sp(W k+1 −W k) = 0.

Remark 2 For the standard model, the statement of Theorem 1 under the condition γ1 < 1 was
formulated in [14] without proof: see Condition A and the main theorem therein.

Sufficient conditions for the inequality γJ < 1 at some J ≥ 1 are given in the following lemma.

Lemma 5 Suppose there exist J ≥ 1 and a state l ∈ S such that, for any sequence {d1, d2, . . . , dJ}
of decisions from D, for the matrix

Q(J) := Q(d1)Q(d2) . . .Q(dJ),

the strict inequality Q(J)
s,l > 0 is valid for all s ∈ S.

Then γJ < 1, and hence limk→∞ sp(W k+1 −W k) = 0 for every W 0 ∈ RM .

11



The proof is identical to the proof of Theorem 8.5.3(b) of [21].

Corollary 1 If, for each d ∈ D, the matrix Q(d) is irreducible and aperiodic and Qs,s(d) > 0
for all s ∈ S, then γJ < 1 for some J ≥ 1, and hence limk→∞ sp(W k+1 −W k) = 0 for every
W 0 ∈ RM .

Lemma 6 Suppose for every average optimal decision d∗ ∈ D∗ the matrix Q(d∗) is aperiodic.
Assume also that Q∗(d∗)R(d∗) = G∗e: the maximal value of the objective (9) does no depend on
the initial state s. Then, for every W 0 ∈ RM , limk→∞ sp(W k+1 −W k) = 0.

Remark 3 Suppose the model is standard.

• The turnpike theorem presented in [17] follows from Lemma 6.

• Sufficient conditions for the turnpike property as in [8] are similar to the conditions in Lemma
6 and Theorem 2. (See [8, Thm.4.4].)

6 Discounted Model

Suppose the function W 0 = W term : S→ R is fixed and the statement of Theorem 1 is valid. Let
us fix an arbitrary K1 > K + 1 and let the time horizon satisfy K < T < K1. On the first steps
t = 1, 2, . . . , T − K the optimal undiscounted decisions, i.e., those which provide the maximum
in (7) with β = 1 at k = T − 1, T − 2, . . . ,K, necessarily belong to D∗, that is, are average
optimal. Denote W βk the functions from (7) with β ∈ (0, 1) and with the same initial condition
W β0 = W term. Obviously, for each k = 1, 2, . . . ,K1 − 2 the vector W βk ∈ RM is continuous with
respect to β. (Recall that S = {0, 1, . . . ,M − 1}.) Since the spaces S and A are finite, for all β
close enough to 1 the optimal decisions on the first steps t = 1, 2, . . . , T −K in the β-discounted
model again necessarily belong to D∗. (Recall that T < K1.) One can rephrase this observation
in the following way.

For an arbitrarily fixed K1 > K + 1 there exists β0 ∈ (0, 1) such that for each
fixed β ∈ [β0, 1], in the β-discounted model 〈D,R,Q〉 with the fixed terminal
reward W term and an arbitrarily fixed time horizon T ≥ K1, if the remaining
number of steps is between K and K1, then the optimal decisions necessarily
belong to D∗.

Roughly speaking, for such big values of β one can ignore the discount factor on the steps t =
T −K1 + 2, T −K1 + 3, . . . , T −K. See Fig.1.

On the other hand, for that value of β ∈ [β0, 1), as explained in Section 3, there exists the
turnpike integerK∗: see (11). If the time horizon T > K∗ then on the first steps t = 1, 2, . . . , T−K∗
the optimal decisions necessarily belong to Dβ

∗ , the set of optimal decisions in the (infinite horizon)
discounted model 〈D,R,Q〉. See Fig.1.

To summarize, if the statement of Theorem 1 is valid, then, for β ≈ 1, there can appear two
turnpikes as on Fig.1. When β → 1−, one can take larger and larger K1, i.e., K1 → ∞, and in
the limiting case, when β = 1, we have just the turnpike 1 as in Theorem 1. Note also that, for β
close enough to 1, Dβ

∗ contains only Blackwell optimal decisions, hence Dβ
∗ ⊂ D∗.

12
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Figure 1: Turnpikes for β ≈ 1.

7 Controlled Random Walk

7.1 Description of the Model and Associated Conjecture

The problem under study is a specific Markov Decision Process (MDP) defined as follows.
Suppose

A = {a1, a2, . . . , aN}
is the finite action space and, for each a ∈ A, let Z(a) be the random variable taking values
m = 1, 2, . . . ,M with probabilities pm(a). The state space of the MDP is

X := {−M,−M + 1,−M + 2, . . .}.

All the states −M,−M + 1, . . . ,−1 are absorbing, with zero rewards.
If action a ∈ A is chosen in the state i ≥ 0, then the new state is just j = i − Z(a); another

choice of action a ∈ A leads to the independent random variable Z(a). Thus, the transition
probability is given by

P̃i,j(a) =

{
pm(a), if j = i−m, m = 1, 2, . . . ,M ;
0 otherwise.

See Fig.2.
Finally, the associated (expected) reward in states i ≥ 0 equals Ra and is i-independent. For

example, if RZ(a)(a) is the reward associated with the action a ∈ A and the value Z(a), then

Ra =

M∑
m=1

Rm(a)pm(a).

To summarise, the one-step rewards in the MDP equal

ri(a) :=

{
0, if i < 0;
Ra, if i ≥ 0.

13
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Absorbing states

Figure 2: Random walk.

The initial state i ∈ X is fixed, and we consider MDP 〈X,A, P̃ , r〉 with the total expected reward,
with (random) states and actions

X0 = i, A1, X1, A2, . . . .

The definition of a strategy π (past-dependent, randomized) is conventional [12, 18, 21]; Eπi is
the corresponding mathematical expectation;

V (i) := sup
π

Eπi

[ ∞∑
t=1

rXt−1(At)

]
(16)

is the Bellman function for this MDP; i ∈ X. Since the reward r is bounded and the process Xt

is ultimately absorbed after (maximum) i+ 1 time steps at {−M,−M + 1, . . . ,−1}, the function
V is finite-valued. It is well known (see, e.g., [12, Ch.4] or [13, §9.5]) that the function V is the
unique solution to the optimality (Bellman) equation

V (i) = max
a∈A

{
Ra +

M∑
m=1

V (i−m)pm(a)

}
for i ≥ 0; (17)

V (i) = 0 for i = −M,−M + 1, . . . ,−1,

which can be solved successively for i = 0, 1, . . ..
The described random walk is a version of the adaptive stochastic knapsack problem, see [1, 2].

Indeed, i is the capacity of the knapsack, A is the set of types of items. Each type has infinite
supply of items. Type a ∈ A has value Ra and the random size Z(a). In our setting, the first
item which makes the knapsack broken (i.e., the total size of items in the knapsack exceeds the
capacity) is still counted. One can easily modify the initial values V (i), i = 0, 1, . . . ,M − 1 in such
a way that it is not taken into account:

V (i) = max
a∈A

{
i∑

m=1

pm(a)[Ra + V (i−m)]

}
for i ≤M − 1.

14



I am thankful to Prof.N.Bäuerle for pointing this interpretation of the random walk.

Let us introduce the following notations: La := E[Z(a)] =

M∑
m=1

mpm(a) ≥ 1; c∗ := max
a∈A

Ra

La
,

and

A∗ := {a ∈ A :
Ra

La
= c∗}. (18)

For a fixed a ∈ A, for a large initial state i, the total expected number of time steps up to the
absorption equals ≈ i

La . Thus, the total expected reward is ≈ iR
a

La . To put it slightly different,

the expected reward, coming from passing through one point on the lattice, equals ≈ Ra

La . In the
current section, we show that, under appropriate conditions, the following conjecture is valid

There is such I <∞ that, for all i ≥ I, (19)

the maximum in (17) is only provided by a ∈ A∗ :

see Theorem 3. This conjecture was formulated by Prof.I.Sonin in a private conversation. Example
in Subsection 7.4 shows that this conjecture may be not valid in some situations.

Remark 4 One can notice that equation (17) is a special case of the equation (1) of [16]. In that
article, no conjectures like (19) were investigated. The main results concerned the behaviour of
the function V : for example, under mild conditions, for ∆V (i) := V (i) − V (i − 1), the sequence
max1≤m≤M ∆V (i−m+ 1) converges as i→∞.

7.2 Proof of the Conjecture

We will reformulate the conjecture (19) as the Turnpike Theorem provided in Section 3. The first
step is described in the following lemma.

Lemma 7 The function
W̃ (i) := V (i)− c∗i, i ∈ X (20)

is the (unique) uniformly bounded function satisfying equation

W̃ (i) = −c∗i for i = −M,−M + 1, . . . ,−1;

W̃ (i) = max
a∈A

{
La
(
Ra

La
− c∗

)
+

M∑
m=1

W̃ (i−m)pm(a)

}
for i ≥ 0, (21)

which can be solved successively for i = 0, 1, . . .. Hence V (i) = c∗i+O(1) when i→∞.
Moreover, for each i ∈ X, the maxima in (17) and in (21) are provided by the same values of

a ∈ A.

For the proof see Lemma 1 of [20].
Every value of i ∈ X can be uniquely represented as

i = (k − 1)M + s, where s ∈ S := {0, 1, . . . ,M − 1}, k = 0, 1, 2, . . . .

For each i ∈ X with the corresponding values of k and s, we denote W̃ (i), introduced in (20), as
W k(s). Now equation (21) takes the following form:

W 0(s) = −c∗(−M + s) for s ∈ S;
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W k+1(0) = max
a∈A

{
La

(
Ra

La
− c∗

)
+

M−1∑
j=0

W k(j)pM−j(a)

}
,

W k+1(1) = max
a∈A

{
La

(
Ra

La
− c∗

)
+ W k+1(0)p1(a) +

M−1∑
j=1

W k(j)pM−j+1(a)

}
,

. . .

W k+1(M − 1) = max
a∈A

{
La

(
Ra

La
− c∗

)
+ W k+1(M − 2)p1(a) + W k+1(M − 3)p2(a)

+ . . . + W k+1(0)pM−1(a) + W k(M − 1)pM (a)

}
, k = 0, 1, . . . .

After we introduce the stochastic matrix

P (a) :=


P0,0(a) = pM (a) P0,1(a) = pM−1(a) . . . P0,M−1(a) = p1(a)
P1,0(a) = p1(a) P1,1(a) = pM (a) . . . P1,M−1(a) = p2(a)
. . . . . .
PM−1,0(a) = pM−1(a) PM−1,1(a) = pM−2(a) . . . PM−1,M−1(a) = pM (a)

, (22)

the obtained equations for W k(s) can be rewritten as

W 0(s) = −c∗(−M + s) for s ∈ S; (23)

W k+1(s) = max
a∈A

{
La

(
Ra

La
− c∗

)
+

s−1∑
j=0

W k+1(j)Ps,j(a) +

M−1∑
j=s

W k(j)Ps,j(a)

}
for s ∈ S, k ≥ 0.

Let us put rs(a) := La
(
Ra

La − c∗
)
≤ 0 and consecutively for s = 0, 1, 2, . . . ,M − 1 express

W k+1(s) in terms of W k. As the result, we finish with the equations

W 0(s) = −c∗(−M + s), s ∈ S;

W k+1 = max
d∈D
{R(d) +Q(d)W k}, k = 0, 1, . . . , (24)

where D is the set of all mappings d : S → A, and R(d) ≤ 0 and Q(d) are as in the version (ii)
of the general model 〈D,R,Q〉 described in Section 3.

Definition 2 Decisions d ∈ D satisfying the property d(s) ∈ A∗ for all s ∈ S will be called trivial.
Equivalently, a decision d ∈ D is trivial if and only if R(d) = 0.

The conjecture (19) is now reformulated as follows:

There exists K such that, for all k ≥ K, the maximum in (24) (25)

is only provided by the trivial decisions.

Note that all the vectors W 0,W 1, . . . are uniformly bounded by Lemma 7, and the maxima in
(17),(21) and (23) are provided by the same values of a ∈ A.

Since R(d) ≤ 0 for all d ∈ D and R(d) = 0 for each trivial decision d, it is obvious that D∗, the
set of average optimal decisions in the model 〈D,R,Q〉, contains all trivial decisions: the optimal
gain maxd∈DQ∗(d)R(d) = 0 is attained at any trivial decision.

Suppose the iterations (24) satisfy the requirement limk→∞ sp(W k+1 −W k) = 0. Then, ac-
cording to the Turnpike Theorem 1, there exists K such that for each T > K the maximum in (24)
at k = T −1 is necessarily provided by an average optimal decision d ∈ D∗ in the model 〈D,R,Q〉.
If D∗ contains only the trivial decisions, then the conjecture (25) (and also (19)) is valid. This
observation makes possible to formulate the sufficient conditions for the conjecture (19) in terms
of the matrices Q(d) introduced above and based on the matrix (22).
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Condition 1 For each d∗ ∈ D∗ the matrix Q(d∗) corresponds to the Markov chain without tran-
sient states.

Lemma 8 If Condition 1 is satisfied then D∗ contains only trivial decisions.

Condition 2 Either

• γJ < 1 for some J ≥ 1, where γJ is as defined at the beginning of Section 5,

• or, for each d∗ ∈ D∗, the matrix Q(d∗) is aperiodic.

Theorem 3 If Conditions 1 and 2 are satisfied, then Conjecture (19) is valid.

The proof directly follows from Lemmas 4, 6, Theorem 1 and Lemma 8. See also the explana-
tions above.

In the following corollary, we provide the sufficient conditions for Conjecture (19) to be valid,
in terms of the original random walk.

Corollary 2 Suppose pM (a) > 0 for all a ∈ A and, for any two states i, j ∈ S, there exists a path
i0 = i→ i1 → . . .→ iN = j in S such that, for any a0, a1, . . . , aN−1 ∈ A,

Pi0,i1(a0)Pi1,i2(a1) . . . PiN−1,iN (aN−1) > 0,

where P (a) is given by (22).
Then Conjecture (19) is valid.

The matrix P (a) has a cyclic structure. Thus, the conditions of Corollary 2 are satisfied if there
is m < M having no common divisors with M such that pM (a) > 0 and pm(a) > 0 for all a ∈ A.

In [20], the investigated random walk was studied using another method of attack and leading
to the following statements.

Proposition 2 Suppose there exists J such that, for every sequence d̂1, d̂2, . . . , d̂J of trivial deci-
sions, the matrix Q(d̂1)Q(d̂2) . . .Q(d̂J) contains no zeroes. Then Conjecture (19) is valid.

For the proof see Theorem 1 of [20]. By the way, during the proof of that theorem, it was shown
that there is a finite limit limi→∞ W̃ (i), so that limi→∞[V (i)− V (i− 1)] = c∗. (Cf. Remark 4.)

Corollary 3 Suppose A∗ = {a∗} is a singleton. (Consequently, there is a unique trivial decision
d(s) ≡ a∗.) Let the matrix P (a∗) be irreducible and aperiodic and assume that pM (a∗) > 0. Then
the conjecture (19) is valid.

For the proof see Corollary 1 of [20].

7.3 Discounted Model

In this section, β ∈ (0, 1) is the discount factor, expression (16) is replaced with

V β(i) := sup
π

Eπi

[ ∞∑
t=1

βt−1rXt−1(At)

]
, (26)

and the optimality equation looks like

V β(i) = max
a∈A

{
Ra + β

M∑
m=1

V β(i−m)pm(a)

}
for i ≥ 0; (27)

V β(i) = 0 for i = −M,−M + 1, . . . ,−1.
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Figure 3: Turnpikes for β ≈ 1.

Like previously, it can be solved successively for i = 0, 1, . . .. We put R∗ := maxa∈AR
a and

A∗ := {a ∈ A : Ra = R∗}. (28)

In [20] the following turnpike theorem was proved.

Theorem 4 There is such I < ∞ that, for all i ≥ I, the maximum in (27) is only provided by
a ∈ A∗.

Remark 5 Note that, if we transform this random walk to the model 〈D,R,Q〉 as it was done in
Subsection 7.2, we will not finish with the discounted problem (10) leading to iterations (7): the
discount factor β appears in the calculation of the vectors R(d).

It is interesting to look at what happens if the discount factor β is close to 1, assuming that
Conjecture (19) is valid for β = 1. Denote the corresponding I as I1, and fix an arbitrary I2 > I1.
Obviously, for each i ∈ X, limβ→1− V

β(i) = V (i) with V as in (17). Therefore there exists
β0 ∈ (0, 1) such that, for all i = I1, I1 + 1, . . . , I2, for all β ∈ [β0, 1]

max
a∈A

{
Ra +

M∑
m=1

V β(i−m)pm(a)

}
> max
a∈A\A∗

{
Ra +

M∑
m=1

V β(i−m)pm(a)

}
.

Thus, for a fixed β ∈ [β0, 1], for all i = I1, I1 + 1, . . . , I2, the maximum in (27) is only provided
by a ∈ A∗. Of course, by Theorem 4, there is a finite I3 > I2 such that, for all i ≥ I3, the
maximum in (27) is only provided by a ∈ A∗. Recall that A∗ and A∗ are given by (18) and (28)
correspondingly. One can say that, for β close to 1, there are two turnpikes, where only actions
from A∗ and A∗ are optimal in the model (26): see Fig.3. When β approaches 1, I2 and I3 go to
infinity, and in the limiting case β = 1 we have just the conjecture (19).

The situation is similar to Section 6, but the turnpikes 2 are absolutely different: for any value
of β ∈ (0, 1), here the actions in the second turnpike are usually not Blackwell optimal, and Dβ

∗
contains only Blackwell optimal decisions if β is close enough to 1. (See also Remark 5.)

18



7.4 Example

In this subsection, we show that the conjecture (19) may not be valid if Conditions 1 and 2 or
conditions of Proposition 2 and Corollary 3 are not satisfied. We use the notations from Subsection
7.1. In particular, the function V comes from the iterations (17).

Put
A := {a1, a2}, M := 3, ε ∈ (0, 1), p2(a1) = 1, p2(a2) = 1− ε, p3(a2) = ε,

where ε ∈ (0, 1); other probabilities being zero. Finally, let Ra1 := 2 and Ra2 := h ∈ (2, 2 + ε).
Now

La1 = 2, La2 = 2 + ε,
Ra1

La1
= 1,

Ra2

La2
=

h

2 + ε
< 1, c∗ = 1, A∗ = {a1}.

Since h > 2, obvious calculations lead to the following expressions:
V (0) = V (1) = max{2, h} = h;
V (2) = max{2 + V (0) = 2 + h; h+ (1− ε)V (0) + εV (−1) = h+ (1− ε)h} = 2 + h
because

2

1− ε
= 2[1 + ε+ ε2 + . . .] > 2 + ε > h =⇒ 2 > (1− ε)h.

V (3) = max{2 + V (1) = 2 + h; h + (1 − ε)V (1) + εV (0) = 2h} = 2h. Further properties of the
function V are given in the following lemma.

Lemma 9 For all j ≥ 1, the following statements hold.

(i) For even steps i = 2j,
V (2j) = 2j + h,

and maximum in (17) is provided by a1 only.

(ii) For odd steps i = 2j − 1,

V (2j − 1) <
2ε(j − 1) + (1 + ε)h− 2

ε
.

(iii) For odd steps i = 2j + 1,

V (2j + 1) = (1− ε)V (2j − 1) + (1 + ε)h+ 2ε(j − 1),

and maximum in (17) is provided by a2 only.

For the proof see Lemma 3 of [20].
Therefore, for all odd values of i, the maximum in (17) is provided only by a2 /∈ A∗. The

conjecture (19) is not valid.
Now we look at this example from the viewpoint of the generalized model 〈D,R,Q〉 described

in Subsection 7.2: M = 3 and S = {0, 1, 2}. The only trivial decision is d∗(s) ≡ a1, which is
certainly average optimal, as mentioned below Definition 2.

Lemma 10 The only average optimal decision in the model 〈D,R,Q〉 is the trivial decision d∗.

The functions W k, k ≥ 1, coming from V , have the following form (see Lemma 9):

• If k is odd, then

W k(0) = W̃ (3(k − 1)) = V (3(k − 1))− 3(k − 1) = h;

W k(1) = W̃ ((3(k − 1) + 1) = V (3(k − 1) + 1)− [3(k − 1) + 1]

=: z(2j + 1), where j := 3(k − 1)/2;

W k(2) = W̃ ((3(k − 1) + 2) = V (3(k − 1) + 2)− [3(k − 1) + 2] = h.
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• If k is even, then

W k(0) = W̃ (3(k − 1)) = V (3(k − 1))− 3(k − 1)

=: z(2j + 1), where j := [3(k − 1)− 1]/2;

W k(1) = W̃ ((3(k − 1) + 1) = V (3(k − 1) + 1)− [3(k − 1) + 1] = h

W k(2) = W̃ ((3(k − 1) + 2) = V (3(k − 1) + 2)− [3(k − 1) + 2]

=: z(2j + 1), where j := [3(k − 1) + 1]/2.

The maximum in (24) for k ≥ 1 is provided only by the decisions, with some abuse of notations,
represented as

do := (a2, a1, a2) if k is odd, and (29)

de := (a1, a2, a1) if k is even.

According to Lemma 9(iii),

z(2j + 1) + 2j + 1 = (1− ε)[z(2j − 1) + 2j − 1] + (1 + ε)h+ 2ε(j − 1), j ≥ 1,

i.e.,
z(2j + 1) = (1− ε)z(2(j − 1) + 1)− 2− ε+ (1 + ε)h,

and z(1) = V (1)− 1 = h− 1. It is obvious that the sequence {z(2j + 1)}∞j=0 increases, z(2j + 1) <[
h+ h−2

ε − 1
]
< h for all j ≥ 0 (the rigorous proof is by induction), and limj→∞ z(2j + 1) =

h + h−2
ε − 1. Therefore, the sequence of vectors {W k}∞k=0 in RM is uniformly bounded and

limk→∞ sp(W k+1 −W k) = 2
[
1− h−2

ε

]
> 0 as expected because, if limk→∞ sp(W k+1 −W k) = 0

then, by the Turnpike Theorem 1, the maximum in (24) would have been provided by the average
optimal decision d∗ for large enough k.

Condition 1 is violated because Q(d∗) =

 0 1 0
0 0 1
0 1 0

, and the state 0 is here transient.

Condition 2 is violated because the matrix Q(d∗) is not aperiodic and, for each J ≥ 1, for
d1 = d2 = {d∗, d∗, . . . , d∗}, we have

η(d1, d2) =

2∑
l=0

min{Q(J,1)
1,l ,Q(J,2)

2,l } = 0 =⇒ γJ = 1.

Corollary 2 is not applicable because p3(a1) = 0. Proposition 2 and Corollary 3 are not
applicable either.

The both decision do and de (29) are not average optimal (see Lemma 10). At the same time,
the switching control strategies π1 := (de, d0, de, . . .) and π2 := (do, de, do, . . .) are average optimal
in the sense that

lim
T→∞

1

T
Eπ1,2
s

[
T∑
t=1

RS(t−1)(dt)

]
= 0, s ∈ S. (30)

(Cf (9) and see Lemma 11 below.) Here Eπ1,2
s is the mathematical expectation with respect to

the strategical measure Pπ1,2
s on the trajectories ω = (s0 = s, s1, s2, . . .) in S , which is defined in

the standard for MDP way: S(t, ω) = st is the t-th component of ω (the argument ω is usually
omitted), the process S(t), t = 0, 1, . . . is Markov, and Pπ1,2

s (S(0) = s) = 1;

Pπ1,2
s (S(t) = j|S(t− 1) = i) =


Qi,j(de) for π1, if t is odd

and for π2, if t is even;
Qi,j(do) for π1, if t is even

and for π2, if t is odd.
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Similar rigorous constructions are presented in many monographs on MDP: see, e.g., [18, 21].

Lemma 11 Both for π1 and π2, the equality (30) is valid.

The situation when a combination of two (or more) non-optimal control strategies results in an
optimal one, is called ‘Parrondo’s Paradox’, see [19, §4.2.30].

8 Summary

We developed the turnpike theory for the undiscounted MDPs and showed that, without appropri-
ate conditions, the turnpike property may be not valid. To the best of our knowledge, the existence
of two turnpikes, as in Section 6 and Subsection 7.3, was never mentioned before. The presented
theory is illustrated by an example of random walk, which seems to be important by its own.

It looks important to develop the turnpike theory for non-finite MDPs, discounted and undis-
counted: publications on this topic are very limited [8, 14].

It is also desirable to understand when the turnpike property holds in the two-step (more
generally, n-step) model: see the last paragraph of Section 3.

9 Appendix

Proof of Lemma 2. (a) For k = 2 we obviously have x1 = 0 < ε − h = x2 <
ε−h
ε and, if the

formulated inequalities are valid for some k ≥ 3, then for k + 1 we have

xk+1 = (1− ε)xk + ε− h = xk + ε− h− εxk > xk + ε− h− ε
[
1− h

ε

]
= xk;

xk+1 < (1− ε)
[
1− h

ε

]
+ ε− h = 1− h

ε
.

(b) The reasoning for the absorbing state 2 is trivial.
Clearly, W 1(0) = 1 and W 1(1) = 0 and

W 2(0) = max{0 + 0, − h+ ε = x2, 1− 2} = x2;

W 2(1) = max{0 + 1, − h+ 1− ε, 0− 2} = 1 :

the expression for W k+1 in this lemma is valid at k = 1.
Suppose it is valid for some k − 1 ≥ 1 and consider the case of k.
If k is even, then by induction

W k+1(0) = max{0 + 1, − h+ (1− ε) + εxk, 1− 2k} = 1

because εxk − ε− h < εxk − ε+ h < 0, and the maximum is provided by a1;

W k+1(1) = max{0 + xk, − h+ (1− ε)xk + ε = xk+1, − 2k} = xk+1

because xk+1 > xk, and the maximum is provided by a2.
If k ≥ 3 is odd, then by induction

W k+1(0) = max{0 + xk, − h+ (1− ε)xk + ε = xk+1, 1− 2k} = xk+1;

W k+1(1) = max{0 + 1, − h+ (1− ε) + εxk, − 2k} = 1.
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The details are as those given above. 2

Proof of Proposition 1. All the statements are well known for the standard model [12, 21]. In
the general case, the proofs are word by word identical. We sketch them below.

(a-b) The both operator Uβ with β ∈ (0, 1) and V → R(d) + βQ(d)V are contractions in the
space RM with the uniform norm. The maximum in (8) is provided by some d∗ ∈ D according to
Assumption 1.

The solutions V β∗ and V βd to the equations (8) and (13) can be built by iterations like (7)
with W 0 = 0, leading to the sequences W ∗k and W k correspondingly. On each step W ∗k ≥ W k;
hence

V β∗ = lim
k→∞

W ∗k ≥ lim
k→∞

W k = V βd.

(c) See [12, Thm.5.3] and also [13].
(d) See [21, Thm.A.7].
(e) For the existence of a Blackwell optimal decision, see [12, Thm.4.1] which proof remains

unchanged in the general case. The same concerns the average optimality of each Blackwell optimal
decision: see Thm.5.8(2) and Cor.5.3 of [12]. See also [21, Thm.8.4.5], where the similar statements
were proved under the (unneeded) condition that MDP is unichain. 2

Proof of Lemma 3. The reasoning is similar to the proof of Theorm 8.5.5 of [21]. Below, we
provide the key statements.

According to Proposition 1(c), Q∗(d̂)Q(d̂) = Q∗(d̂). Thus

Q∗(d̂)R(d̂) = Q∗(d̂)
[
R(d̂) +Q(d̂)W −W

]
= Q∗(d̂) [U ◦W −W ]

≥ min
s∈S
{U ◦W (s)−W (s)} e

because Q∗(d̂) is a stochastic matrix.
For any average optimal decision d∗, which exists due to Proposition 1(e), we similarly have

Q∗(d̂)R(d̂) ≤ Q∗(d∗)R(d∗) = Q∗(d∗) [R(d∗) +Q(d∗)W −W ]

≤ Q∗(d∗) [U ◦W −W ] ≤ max
s∈S
{U ◦W (s)−W (s)} e.

2

Proof of Lemma 4. For the standard model Item (a) follows from Theorem 8.5.2 of [21]. For
the general model 〈D,R,Q〉, one can repeat the proof of Theorem 8.5.2 [21] word by word.

(b) Take N1 such that, for all n ≥ N1,

sp(UnJ ◦W 1 − UnJ ◦W 0) = sp(WnJ+1 −WnJ) ≤ ε;

take N2 ≥ N1 such that, for all n ≥ N2,

sp(UnJ ◦W 2 − UnJ ◦W 1) = sp(WnJ+2 −WnJ+1) ≤ ε;

and so on;
take NJ ≥ NJ−1 ≥ . . . ≥ N1 such that, for all n ≥ NJ ,

sp(UnJ ◦W J − UnJ ◦W J−1) = sp(WnJ+J −WnJ+J−1) ≤ ε.

Now, for K = NJ , sp(W k+1 −W k) ≤ ε for all k ≥ K. 2
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Proof of Corollary 1. For any two non-negative M ×M matrices P 1 and P 2 we write P 1 � P 2

if, for each pair (s, l) ∈ S2, P 1
s,l > 0 =⇒ P 2

s,l > 0. Since Qs,s(d) > 0 for all s ∈ S, we have

P 1 � P 1Q(d) and (31)

if P 1 � P 2, then P 1Q(d) � P 2Q(d) (32)

for all d ∈ D and for all non-negative M ×M matrices P 1 and P 2.
For each d ∈ D, there exists Nd such that Qn(d) > 0 for all n ≥ Nd [13, Thm.4.1.2]. Hence,

since the set D is finite, for N := maxd∈DNd < ∞, for all d ∈ D, Qn(d) > 0 for all n ≥ N . Let
J := (N − 1)|D|+ 1, where |D| is the total number of decisions in D.

Fix an arbitrary sequence {d1, d2, . . . , dJ} of decisions from D. Then at least one decision d̂
appears at least N times in this list, say,

dj1 = d̂, dj2 = d̂, . . . , djN = d̂ with 0 < j1 < j2 < . . . < jN ≤ J,

and QN (d̂) > 0.
According to (31),(32),

I � Q(d1) � Q(d1)Q(d2) � . . . � Q(d1)Q(d2) . . .Q(dJ) = Q(J),

where I is the identical M ×M matrix.
According to (32),

Q(d̂) = Q(dj1) � Q(d1)Q(d2) . . . P (dj1)

because I � Q(d1)Q(d2) . . . P (dj1−1). Similarly

Q2(d̂) = Q(d̂)Q(d̂) � Q(d1)Q(d2) . . . P (dj2)

because Q(d̂) � Q(d1)Q(d2) . . . P (dj1) � Q(d1)Q(d2) . . . P (dj2−1).
And so on:

QN (d̂) = QN−1(d̂)Q(d̂) � Q(d1)Q(d2) . . . P (djN )

because QN−1(d̂) � Q(d1)Q(d2) . . . P (djN−1
) � Q(d1)Q(d2) . . . P (djN−1).

Therefore, QN (d̂) � Q(J) meaning that Q(J) > 0, and γJ < 1 by Lemma 5.
2

Proof of Lemma 6. All the reasoning is similar to the proof of Corollary 9.4.6 of [21]. The
milestones are provided below.

(i) For each decision d ∈ D, let

g(d) := Q∗(d)R(d) and h(d) := D(d)R(d)

be the so called gain and bias of the decision d. Then

g(d) = Q(d)g(d) and g(d) + (I −Q(d))h(d) = R(d).

(See [21, Thm.8.2.6].)
(ii) There exists a solution (g, Y ) ∈ RM ×RM to the (so called ‘modified’) optimality equation

g = max
d∈D
{Q(d)g}; g + Y = max

d∈D
{R(d) +Q(d)Y }, (33)

for which necessarily g = g∗ := maxd∈DQ∗(d)R(d) is the maximal gain [12, Cor.5.4], [21, Thm.9.1.2,
Cor.9.1.5]. If a decision d∗ provides the both maxima, then d∗ is average optimal [21, Thm.9.1.7].
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(iii) lim
k→∞

1

k
W k = g∗.

See [21, Thm.9.4.1] and also [12, Lemma 5.5].
(iv) Suppose, for every average optimal decision d∗ ∈ D∗, the matrix Q(d∗) is aperiodic. Then

there exists the limit
lim
k→∞

[W k − kg∗]

[21, Thm.9.4.4].
(v) Therefore,

0 = lim
k→∞

[
[W k+1 − (k + 1)g∗]− [W k − kg∗]

]
= lim
k→∞

[
(W k+1 −W k)− g∗

]
,

where 0 is the zero vector in RM .
(vi) Under the assumptions of Lemma 6,

lim
k→∞

(W k+1 −W k) = G∗e =⇒ lim
k→∞

sp(W k+1 −W k) = 0.

All the statements (i)-(vi) formulated above were proved in [12, 21] for the standard model; all
the steps of the proofs remain valid for the general case. 2

Proof of Lemma 8. Suppose d∗ ∈ D∗, that is,

Q∗(d∗)R(d∗) = max
d∈D
Q∗(d)R(d) = 0.

Matrix Q∗(d∗) in the block representation (‘standard form’) has only the blocks corresponding
to the closed communicating classes, and those blocks are strictly positive [12, §5.3.1]. Thus, if
R(d∗) 6= 0 then the non-positive vector Q∗(d∗)R(d∗) contains negative elements, and d∗ /∈ D∗.
The obtained contradiction completes the proof. 2

Proof of Corollary 2. Let us show that, for each d ∈ D, for any two states i, j ∈ S, Qi,j(d) > 0
provided Pi,j(d(i)) > 0.

If j ≥ i then this statement follows directly from the definition of the matrix Q(d):

Qi,j(d) ≥ Pi,j(d(i)) > 0.

Suppose j < i. Then, again using the definition of he matrix Q(d), we have

Qi,j(d) ≥ Pi,j(d(i))Qj,j(d).

Since Qj,j(d) ≥ Pj,j(d(j)) = pM (d(j)) > 0, we obtain the required inequality Qi,j(d) > 0, if
Pi,j(d(i)) > 0.

Now, for any two states i, j ∈ S, for the path i0 = i→ i1 → . . .→ iN = j in S, we have

Qi0,i1(d)Qi1,i2(d) . . .QiN−1,iN (d) > 0

for each d ∈ D. To put it different, for each d ∈ D, the matrix Q(d) corresponds to the irreducible
Makov chain which is certainly aperiodic because Qi,i(d) ≥ Pi,i(d(i)) > 0 for all i ∈ S.

Since Conditions 1 and 2 are satisfied, the statement of Corollary follows from Theorem 3. 2

Proof of Lemma 10. One should consider all the different decisions d : S → A. Since the
reasoning is similar in all the cases, below we investigate only the decision d(0) = a1, d(1) = a1,
d(2) = a2. Here

R(d) = (0, 0, h− (2 + ε))T ; Q(d) =

 0 1 0
0 0 1
0 1− ε ε

 .
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Recall that the model 〈D,R,Q〉 is as in the version (ii) described in Section 3; rs(a) := La
(
Ra

La − c∗
)

and the matrix P (a) is given by the equation (22). Remember also that h−(2+ε) < 0. Clearly, the
states 1 and 2 form the closed communicating class, the state 0 is transient, and the components
Q∗0,2(d),Q∗1,2(d),Q∗2,2(d) are strictly positive, so that Q∗(d)R(d) < 0, and the decision d is not
average optimal.

For all other non-trivial decisions d, one can similarly show that the vector Q∗(d)R(d) contains
strictly negative components. 2

Proof of Lemma 11. The reasoning is similar for π1 and π2, so we consider only π1 = (de, d0, de,
. . .). Obviously, it is sufficient to show that the sequence of vectors in RM

RT :=

{
Eπ1
s

[
T∑
t=3

RS(t−1)(dt)

]
, s ∈ S

}
, T ≥ 3,

is uniformly bounded.
Suppose an odd value of T ≥ 3 is fixed and consider the sequence of vectors {R̃li, i ∈ S}Tl=2 in

RM defined as follows:

R̃li := Eπ1
s

[
T∑

t=T−l+3

RS(t−1)(dt) +W 2(S(T ))|S(T − l + 2) = i

]
.

These vectors are s-independent due to the Markov property of the process {S(t), t = 0, 1, . . .}.
Since the maximum in (24) is provided by de (do) if k is even (odd),

R̃2 = W 2;

R̃3 = R(de) +Q(de)R̃
2 = W 3;

R̃4 = R(do) +Q(do)R̃
3 = W 4; . . . ,

R̃T =

{
Eπ1
s

[
T∑
t=3

RS(t−1)(dt) +W 2(S(T ))|S(2) = i

]
, i ∈ S

}
= R(de) +Q(de)R̃

T−1 = WT .

The sequence {WT }∞T=0 is uniformly bounded by Lemma 7; so the sequence of vectors

RT =

{
Eπ1
s

[
Eπ1
s

[
T∑
t=3

RS(t−1)(dt) +W 2(S(T ))|S(2)

]]

− Eπ1
s

[
Eπ1
s

[
W 2(S(T ))|S(2)

]]
, s ∈ S

}
=

{
Eπ1
s

[
WT (S(2))

]
− Eπ1

s

[
W 2(S(T ))

]
, s ∈ S

}
, T = 3, 5, 7, . . .

is uniformly bounded.
For even values of T , the sequence

RT :=

{
Eπ1
s

[
T−1∑
t=3

RS(t−1)(dt)

]
+ Eπ1

s

[
RS(T−1)(dT )

]
, s ∈ S

}
, T = 4, 6, 8, . . .

is also uniformly bounded, and the proof is completed. 2
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