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Abstract
Gossip protocols are programs that can be used by
a group of agents to synchronize what information
they have. Namely, assuming each agent holds a
secret, the goal of a protocol is to reach a situation
in which all agents know all secrets. Distributed
epistemic gossip protocols use epistemic formulas
in the component programs for the agents. In this
paper, we study the simplest classes of such gossip
protocols: propositional gossip protocols, in which
whether an agent wants to initiate a call depends
only on the set of secrets that the agent currently
knows. It was recently shown that such a proto-
col can be correct, i.e., always terminates in a state
where all agents know all secrets, only when its com-
munication graph is complete. We show here that
this characterization dramatically changes when the
usual fairness constraints are imposed on the call
scheduler used. Finally, we establish that checking
the correctness of a given propositional protocol
under a fair scheduler is a coNP-complete problem.

1 Introduction
1.1 Background and Motivation
Gossip protocols have the goal of spreading information
through a network via point-to-point communications (which
we refer to as calls). Each agent holds initially a secret and
the aim is to arrive at a situation in which all agents know
each other’s secret. During each call the caller and callee ex-
change all secrets that they know at that point. Such protocols
were successfully used in a number of domains, for instance
communication networks [Hedetniemi et al., 1988], computa-
tion of aggregate information [Kempe et al., 2003], and data
replication [Ladin et al., 1992]. For a more recent account
see [Hromkovič et al., 2005] and [Kermarrec and van Steen,
2007].

One of the early results established by a number of authors
in the 1970s, e.g., [Tijdeman, 1971], is that for n agents 2n−4
calls are necessary and sufficient when every agent can com-
municate with any other agent. When such a communication
graph is not complete, 2n− 3 calls may be needed [Bumby,
1981] and are sufficient for any connected communication

graph [Harary and Schwenk, 1974]. However, the protocols
considered in these papers were centralized, i.e., a central
planner was telling each agent who and when to call.

In [Attamah et al., 2014] a dynamic epistemic logic was
introduced in which gossip protocols could be expressed as
formulas. These protocols rely on agents’ knowledge and are
distributed, so they are distributed epistemic gossip protocols.
This also means that they can be seen as special cases of
knowledge-based programs introduced in [Fagin et al., 1997].

In [Apt et al., 2016] a simpler modal logic was introduced
that is sufficient to define these protocols and to reason about
their correctness. This logic is interesting in its own right and
was subsequently studied in a number of papers. In this paper,
we are going to focus on its simplest propositional fragment.

Propositional gossip protocols are a particular type of epis-
temic gossip protocols in which all guards are propositional.
This means that calls being made by each agent are dependent
only on the secrets that the agent has had access to. Such pro-
tocols have many potential applications. They are particularly
simple and quick to execute (as evaluation of a guard can be
done in linear time), so they are well-suited even for small
devices with limited memory and computational capabilities.
They can, e.g., be used for synchronization of information in
sensor networks or swarms of robots. They can also be viewed
as a special tractable case of multi-agent planning.

During the execution of a protocol, a state can be reached
where multiple calls are possible at the same time. Then a
call scheduler would decide which call takes priority. The
scheduler can be assumed to be demonic, meaning it picks
the order of calls in a way such that the protocol fails or to
maximize the number of calls made before termination. In
distributed and concurrent systems, it is common to impose
fairness constraints on schedulers without which even the
classic Peterson’s algorithm for mutual exclusion would not
work. In the context of gossip protocols this may require, e.g.,
that an agent makes a call eventually if he wants to call (which
we will call agent-fairness) or that a call is eventually made if
it can be (rule-fairness).

In [Apt and Wojtczak, 2019], many challenging open prob-
lems about general as well as propositional gossip protocols
were proposed. The open problems listed there regarding
propositional gossip protocols were addressed in [Livesey
and Wojtczak, 2021b] and [Livesey and Wojtczak, 2021a]. In
the former it was shown that the communication graph (i.e.,
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who can call who) of a correct propositional protocol has to
be complete (when ignoring the edges’ directions), addressing
Problem 5 of [Apt and Wojtczak, 2019]. We revisit here this an-
swer by looking at the communication graph classes of correct
propositional protocols under fair schedulers. We show that in
this new setting this characterization completely changes: for
any undirected connected graph, as well as directed strongly
connected graph, there exists a correct propositional protocol
under both agent-fair and rule-fair schedulers. Finally, we es-
tablish that checking the correctness of a given protocol under
such fair schedulers is a coNP-complete problem.

1.2 Related Work
Much work has been done on general epistemic gossip proto-
cols. The various types of calls used in [Attamah et al., 2014]
and [Apt et al., 2016] were presented in a uniform framework
in [Apt et al., 2018], where in total 18 types of communi-
cation were considered and compared w.r.t. their epistemic
strength. In this paper we study the asynchronous communi-
cation setting where agents are not aware of the calls they
do not participate in nor can they synchronize their actions
precisely as there is no global clock. This is the most appro-
priate model to study in the context of distributed systems. In
[Apt and Wojtczak, 2018], the decidability of the semantics
of the gossiping logic and truth in this model was established
for the limited fragment of the logic (namely, without nesting
of modalities). The precise computational complexity of this
fragment was further studied in [Apt et al., 2017] and checking
termination, partial correctness and correctness in this case
was shown to be in coNPNP. In [Apt and Wojtczak, 2017] it
was shown that checking agent-fair and rule-fair termination
and correctness for such protocols are decidable. Building on
these results, [van Ditmarsch et al., 2020] showed decidability
of the full logic for various variants of the gossiping model.

Centralized gossip protocols were studied in [Herzig and
Maffre, 2017; Cooper et al., 2016]. These had the goal to
achieve higher-order shared knowledge. Such problems were
further studied in [Cooper et al., 2018] with temporal con-
straints where each call is assigned a time interval when this
call can only be made.

In [van Ditmarsch et al., 2017a; van Ditmarsch and Kokki-
nis, 2017] the expected time of termination of several gossip
protocols for complete graphs was studied.

Dynamic distributed gossip protocols were studied in [van
Ditmarsch et al., 2017b], in which the calls allow the agents
to transmit the links as well as share secrets. Similar to this
paper, it characterized different distributed epistemic protocols
in terms of the (largest) class of graphs where each protocol is
correct, i.e., where the protocol necessarily ends up with all
agents knowing all secrets.

1.3 Plan of the Paper
We first go through the logic, originally defined in [Apt et
al., 2016], in Section 2, where we also define the notions of
agent-fair and rule-fair schedulers. We then investigate the
structure of feasible communication graphs for agent-fair and
rule-fair correct propositional gossip protocols in Section 3.
Finally, we study the computational complexity of agent-fair
and rule-fair termination and correctness in Section 4.

2 Gossiping Logic
We recall here the framework of [Apt et al., 2016], which we
restrict to the propositional setting. We assume a fixed set G
of n ≥ 3 agents and stipulate that each agent holds exactly
one secret, and that there exists a bijection between the set of
agents and the set of secrets. We use it implicitly by denoting
the secret of agent a by A, of agent b by B, etc. We denote by
Sec the set of all secrets.

The propositional language Lp is defined by the following
grammar:

ϕ ::= FaS | ¬ϕ | ϕ ∧ ϕ,
where S ∈ Sec and a ∈ G. We will distinguish the following
sublanguage La

p, where a ∈ G is a fixed agent, which disallows
all Fb operators for b ̸= a.

So FaS is an atomic formula, which we read as ‘agent a
is familiar with the secret S’. Note that in [Apt et al., 2016],
a compound formula Kaϕ, i.e., ‘agent a knows the formula
ϕ is true’, was used. Dropping Kaϕ from the logic simplifies
greatly its semantics and the execution of a gossip protocol,
while still being capable of defining a rich class of protocols.
Below we shall freely use other Boolean connectives that can
be defined using ¬ and ∧ in a standard way. We shall use the
following formula

Expi ≡
∧

S∈Sec

FiS,

that denotes the fact that agent i is an expert, i.e., he is familiar
with all the secrets.

Each call, written as ab or sometimes a ◦ b, concerns two
different agents, the caller, a, and the callee, b. After a call,
the caller and the callee learn each other’s secrets. Calls are
denoted by c, d, etc.

In what follows we focus on call sequences. Unless explic-
itly stated each call sequence is assumed to be finite. The
empty sequence is denoted by ϵ. We use c to denote a call
sequence and C to denote the set of all finite call sequences.
Given call sequences c and d and a call c we denote by c.c
the outcome of adding c at the end of the sequence c and by
c.d the outcome of appending the sequences c and d. We say
that c′ is an extension of a call sequence c if for some call
sequence d we have c′ = c.d.

To describe what secrets the agents are familiar with, we use
the concept of a gossip situation. It is a sequence s = (Qa)a∈G,
where {A} ⊆ Qa ⊆ Sec for each agent a. Intuitively, Qa is the
set of secrets a is familiar with in the gossip situation s. The
initial gossip situation is the one in which each Qa equals
{A} and is denoted by root. It reflects the fact that initially
each agent is familiar only with his own secret. Note that an
agent a is an expert in a gossip situation s iff Qa = Sec.

Each call transforms the current gossip situation by modify-
ing the sets of secrets the agents involved in the call are familiar
with as follows. Consider a gossip situation s := (Qd)d∈G and
a call ab. Then

ab(s) := (Q′
d)d∈G,

where Q′
a = Q′

b = Qa ∪ Qb, and for c ̸∈ {a, b}, Q′
c = Qc.

So the effect of a call is that the caller and the callee share
the secrets they are familiar with.



The result of applying a call sequence to a gossip situation
s is defined inductively as follows:

ϵ(s) := s, (c.c)(s) := c(c(s)).

Example 1. We will use the following concise notation for
gossip situations. Sets of secrets will be written down as
lists. e.g., the set {A,B,C} will be written as ABC. Gos-
sip situations will be written down as lists of lists of se-
crets separated by a comma. e.g., if there are three agents,
a, b and c, then root = A,B,C and the gossip situation
({A,B}, {A,B}, {C}) will be written as AB,AB,C.

Let G = {a, b, c}. Consider the call sequence ac.bc.ac. It
generates the following successive gossip situations starting
from root:

A,B,C
ac−→AC,B,AC

bc−→
AC,ABC,ABC

ac−→ ABC,ABC,ABC. 2

Definition 1. Consider a call sequence c ∈ C. We define the
satisfaction relation |= inductively as follows:

c |= FaS iff S ∈ c(root)a,

c |= ¬ϕ iff c ̸|= ϕ,

c |= ϕ1 ∧ ϕ2 iff c |= ϕ1 and c |= ϕ2.

So a formula FaS is true after the call sequence c whenever
secret S belongs to the set of secrets agent a is familiar with
in the situation generated by the call sequence c applied to the
initial situation root. Hence c |= Expa iff agent a is an expert
in c(root).

By a propositional component program, in short a pro-
gram, for an agent a ∈ G we mean a statement of the form

∗[[]ma
j=1 ψj → cj ],

where each ψj → cj (which we will call a rule), is such that
• agent a is the caller in the call cj ,
• ψj ∈ La

p (which we will call a guard of this rule),
and ma ≥ 0 is the number of rules agent a has. If the guard
of a rule is true then the corresponding agent, call and the rule
is said to be active.

Intuitively, ∗ denotes a repeated execution of the rules, one
at a time, where each time non-deterministically an active rule
is selected.

Consider a propositional gossip protocol, P , that is a par-
allel composition of the propositional component programs
∗[[]ma

j=1 ψ
a
j → caj ], one for each agent a ∈ G.

The computation tree of P is a directed tree defined induc-
tively as follows. Its nodes are call sequences and its root is the
empty call sequence ϵ. Further, if c is a node and for some rule
ψa
j → caj we have c |= ψa

j , then c.caj is a node that is a direct
descendant of c. Intuitively, the arc from c to c.caj records the
effect of the execution of the rule ψa

j → caj performed after
the call sequence c took place.

By a computation of a gossip protocol P we mean a max-
imal rooted path in its computation tree. In what follows we
identify each computation with the unique call sequence it
generates. We say that the gossip protocol P is partially cor-
rect if for all leaves c of the computation tree of P , and all

agents a, we have c |= Expa, i.e., if each agent is an expert
in the gossip situation c(root). We say furthermore that P
terminates if all its computations are finite and say that P is
correct if it is partially correct and terminates.

In [Attamah et al., 2014] the following correct propositional
gossip protocol, called Learn New Secrets (LNS in short), for
complete digraphs was proposed.
Example 2 (LNS protocol). The following program is used
by agent i:

∗[[]j∈G¬FiJ → ij].

Informally, agent i calls agent j if agent i is not familiar with
j’s secret.

We also consider two variants of fair termination, but we
first have to recall the notion of fairness. An infinite computa-
tion is rule-fair (resp. agent-fair) if all rules (resp. agents) that
are active after infinitely many prefixes of this computation
are selected infinitely often. By default a finite computation
is rule-fair and agent-fair. We say that a gossip protocol P
rule-fairly terminates (resp. agent-fairly terminates) if all
its rule-fair (resp. agent-fair) computations are finite. We do
not define agent-fair nor rule-fair partial correctness, because
they are equivalent to partial correctness. This is simply be-
cause partial correctness is a condition on finite computations
only and every finite computation is agent-fair and rule-fair.
A protocol which rule-fairly (agent-fairly) terminates and is
partially correct is said to be rule-fair (agent-fair) correct.

The agents and possible calls of a given protocol can be
thought of as nodes (agents) and edges (calls) of its (directed)
communication graph. In the next section, we are going to
study for which classes of communication graphs an agent-fair
or rule-fair correct propositional gossip protocol exists.

3 Fair and Correct Communication Graphs
We begin by showing that the scheduler’s type has a huge
impact on whether a gossip protocol works correctly. In par-
ticular we show that rule-fairness and agent-fairness are not
equivalent.
Proposition 1. There exists an agent-fair correct proposi-
tional gossip protocol which is not a correct propositional
gossip protocol.

Proof. Let us have three agents, a, b and c. The protocol only
consists of a rule ¬FaC → ab for agent a, andFbA∧¬FbC →
bc for agent b. Clearly this is not a correct propositional gos-
sip protocol as it may never terminate, e.g., ab call can be
repeated indefinitely. However, this is an agent-fair correct
propositional gossip protocol. Note that the first call has to
be ab. After that call, both ab and bc calls are active. Due to
the agent-fairness of the scheduler used, eventually the bc call
must take place, ensuring that both b and c become experts.
After that, the only active call is ab, and once this occurs no
calls are active and so the protocol terminates. Moreover, all
agents are experts at that point.

Note that, straight from the definition, any agent-fair correct
protocol is also rule-fair correct, because rule-fairness can only
narrow down further the set of permitted computations. We
now show that the opposite does not hold.



Proposition 2. There exists a rule-fair correct propositional
gossip protocol which is not an agent-fair correct proposi-
tional gossip protocol.

Proof. Let us have three agents, a, b and c. The protocol
only consists of a rule ¬FaC → ab for agent a, and rules
FbA ∧ ¬FbC → bc, FbA ∧ ¬FbC → ba for agent b. This is
not an agent-fair correct propositional gossip protocol. Its com-
putation has to start with ab, at which point calls ab, ba and bc
are active. Note that a computation repeatedly alternating be-
tween making calls ab and ba after that is agent-fair, because
a call of each active agent (a and b only) is picked infinitely
many times. The protocol will not terminate in this case, so
it is not agent-fair correct. However, this is a rule-fair correct
propositional gossip protocol, because under a rule-fair sched-
uler the active call bc has to be picked eventually. Once bc is
made both b and c will become experts. This leaves ab as the
only active call, and once this occurs, the protocol terminates
in a gossip situation where all agents are experts.

With this knowledge that the type of the scheduler used can
change if a given protocol is correct, we revisit the Problem 5
of [Apt and Wojtczak, 2019] to determine what the underlying
communication graph should be for agent-fair or rule-fair cor-
rect propositional gossip protocols. We start with the simplest
case of a path (linear) graph where the n agents are labeled
x1, . . . , xn and, for any i < n, agent xi can only call xi+1. We
then proceed with increasingly broader graph classes, which
on the downside require increasingly more complex protocols
to be agent-fair or rule-fair correct.

Theorem 1. For any path graph, there exists an agent-fair
correct propositional gossip protocol.

Proof. The protocol will only consist of rules ¬Expx1 →
x1x2 for agent x1, Fx2X1 ∧ ¬Expx2 → x2x3 for agent x2,
. . . , Fxn−1

Xn−2 ∧ ¬Expxn−1
→ xn−1xn for agent xn−1. In

other words, an agents wants to call the next agent if he is
familiar with the secret of the previous agent and he is not yet
an expert.

Note that initially only agent x1 is active and he will call x2,
after which both of these agents become active. Due to agent-
fairness, agent x2 will eventually make his call after which
agent x3 becomes active and so on. Note that, for every i < n,
when the call xi−1xi becomes active, xi−1 already knows all
secrets X1, . . . , Xi−1. This means that when eventually the
call xn−1xn takes place, both of the agents involved become
the first two experts. Then eventually, the call xn−2xn−1 will
take place due to agent-fairness, and xn−2 will become the
third expert and so on until x1 becomes an expert when the
protocol terminates.

As pointed out earlier, Theorem 1 implies that the same
result holds for rule-fairness. We can also get that every graph
with a Hamiltonian path can be a communication graph of a
agent-fair / rule-fair correct protocol by simply ignoring the
rest of the edges and constructing the protocol as in Theorem 1.
But instead we are going to generalize this construction to
show this result for any tree, which is any connected acyclic
undirected graph. The gossip protocol will be set up in a way
to ensure there is a unique directed path from every agent

to a special agent x̄, who is guaranteed to be the first agent
to become an expert. Then all the secrets collected in x̄ will
slowly filter back up the directed paths to all the other agents.
Theorem 2. For any tree T , there exists an agent-fair correct
propositional gossip protocol.

Proof. Let us pick any agent x̄ in this tree T . We now turn
this undirected tree into a directed one by setting the direction
of all edges in this tree towards x̄. First, the distance of an
agent x from x̄ is the length of the shortest path from x to
x̄ traversing just edges of T . Now, formally, the direction of
an edge connecting two agents is from the agent at a larger
distance from x̄ towards the agent at a smaller distance to
x̄. This is well-defined, because we now show that no two
neighboring agents in T can have the same distance to x̄. If
they had then these two paths of equal length, from each of
them to x̄, cannot completely overlap. So these paths would
intersect at x̄ or another agent. The two parts of these paths
until the intersection together with the edge connecting these
two agents would form a cycle, which is not possible as T was
supposed to be acyclic. Similarly, we can argue that each node
apart from x̄ in such formed tree has a unique outgoing edge
(x̄ has none). This is because if an agent x has two successors
in such a directed tree then there would be a path from each
of them to x̄ that intersect at some point. These paths to the
intersection point together with the edges from x would form
a cycle; a contradiction.

Let pred(x) denote the set of all agents who have an out-
going edge to x in such a defined directed tree and succ(x)
denote the unique agent who has an incoming edge from x.

Now, the protocol will only consist of a single rule for
each agent x ∈ G \ {x̄}: ¬Expx ∧

∧
y∈pred(x) FxY → x ◦

succ(x). In other words, an agent wants to call its unique
direct successor agent if he is familiar with all the secrets of
his direct predecessors and he is not yet an expert. Agent x̄
has no rules.

The rest of the proof proceeds similarly to Theorem 1. First,
note that when the call x ◦ succ(x) becomes active then x
has to already be familiar with all secrets of all his (indirect)
predecessors in this directed tree. This is because it can only
become active after all direct predecessors of x call him and
by inductive assumption all of them have to know all secrets
of their (indirect) predecessors at that point. Second, due to
agent-fairness, every call that is active will eventually be made,
because there is only at most one such call per agent. Initially,
only agents that do not have predecessors are active and all
of them will make their calls. A call does not stop being
active until the agent making it becomes an expert. Due to the
protocol setup this cannot happen before x̄ becomes an expert,
but that only takes place once all the calls that can be made
were made (otherwise some secrets would not reach x̄).

Note that once x̄ becomes an expert (and the agent calling
him), the number of active agents is n− 2. Now, only when
a new agent becomes an expert (by calling an agent who is
already an expert), he stops being active and will never become
active again. This shows that the protocol is partially correct.
Moreover, as long as there is at least one active call, one of
them will have an expert as its callee. This guarantees the
protocol to agent-fairly terminate, because eventually such



a call is made and the number of active agents decreases.
Together this shows the protocol to be agent-fair correct.

We are now ready to prove the result for undirected graphs
in its full generality. This result is essentially an almost imme-
diate corollary of Theorem 2.

Corollary 1. For any undirected connected graph G, there
exists an agent-fair and rule-fair correct propositional gossip
protocol.

Proof. Any such graph G has a spanning tree T , which we
pick arbitrarily. We use the same protocol as defined in The-
orem 2 when applied to T . As such a protocol is agent-fair
correct, it is also rule-fair correct.

It is trivial to see that for any undirected graph which is not
connected there cannot be a correct protocol, because no agent
can ever become an expert as secrets cannot be shared across
different components. This together with Corollary 1 resolves
the case of undirected communication graphs, but naturally
leads on to the question of what happens in the directed case.

Theorem 3. For any strongly connected digraphD, a rule-fair
correct propositional gossip protocol exists.

Proof. The protocol that we are going to use is simply:
¬Expx → xy for all agents x and agents y which are di-
rect successors of x in D. In other words, an agent keeps on
calling every agent he can until he is an expert. Clearly, this
protocol can only terminate once every agent is an expert, so
it is partially correct.

Now suppose this protocol does not rule-fairly terminate
and so there exists a rule-fair computation such that agent a
does not learn secretB. As the scheduler is rule-fair, every call
which is active will eventually be made. As a is not an expert,
and there is a path from a to b, a must be trying to make a call
to an agent whose distance to b in D is smaller than that of a.
If this agent, say c, already knows B then a would get to know
B eventually due to rule-fairness. If c does not yet know B,
then c must be trying to make a call to an agent who is closer
to b, and so on. As the number of calls in this path that ends at
b or at another agent already knowing B is finite, and all these
calls are active, eventually all agents along this path will learn
B; a contradiction.

Now, we are going to generalize even further the result of
Corollary 1 by showing a construction of an agent-fair correct
protocol for an arbitrary strongly connected digraph (note that
any undirected connected graph can be viewed as a strongly
connected digraph).

Theorem 4. For any strongly connected digraph D, an agent-
fair correct propositional gossip protocol exists.

Proof. Let us number all the agents x1, . . . , xn. Intuitively,
the constructed protocol will proceed in stages, but agents
can progress through stages at a different pace. At stage i
an agent tries to learn the secret Xi. Once he achieves that
he moves on to stage i+ 1 until eventually he reaches stage
n + 1 when he becomes an expert and stops being active.
Note that an agent can skip a stage if he already knows the
desired secret. It is clear the guard of the rule for an agent

a at stage i can be written down as a propositional formula:∧
j<i FaXj ∧ ¬FaXi.
At the beginning of the protocol, all agents start at stage

1, apart from agent x1 which can already move on to stage 2.
Every agent at stage i tries to make just one call: to any of
his direct successors in D whose distance to xi is the shortest
possible in D (breaking ties arbitrarily). Note that this is well-
defined, because D is strongly connected.

We now show that at any point of the computation an agent,
a, who is at the smallest stage number, i, can reach an agent
that knows Xi by following a path created by the calls active
at that time. The proof is by induction on the distance of a
to xi. If this distance is 1 then it is obviously true because he
can call xi directly. Otherwise, a either wants to call an agent
still at stage i, which by the inductive assumption can reach
an agent knowing Xi, or an agent at a higher stage, in which
case that agent already knows Xi.

As the scheduler is agent-fair and each agent just tries to
make a single call, along the just proven finite path to Xi,
all agents will eventually succeed to learn Xi and move to
stage i+ 1. And this process will continue until all agents are
experts.

Note, however, it is not necessary for the communication
graph to be strongly connected. Consider three agents a, b and
c, and a directed graph with edges ab and cb only; it is not
strongly connected, as there is no directed path between a and
c. And yet, an agent-fair correct propositional protocol exists
with rules: ¬Expa → ab for agent a and ¬Expc → cb for
agent c. This protocol simply repeats these two calls until the
agent making them is an expert. On the other hand, we cannot
even broaden the class of digraphs to weakly connected ones
(i.e., connected when the edges’ directions are ignored).
Proposition 3. Not every weakly connected digraph has a
rule-fair or agent-fair correct propositional gossip protocol.

Proof. We prove this with a simple counterexample. Consider
three agents a, b and c, and a weakly connected directed graph
with edges ba and bc only. W.l.o.g., the computation starts
with the call ba followed by bc at a later point. But at that
point, both b and c are experts, and hence cannot initiate a
call, because otherwise such a call could be repeated forever
and the protocol would not terminate. But this means that no
further calls may be made, and yet a is still not an expert.

4 Complexity of Checking Fair Correctness
We now look at the computational complexity of checking
if a given propositional gossip protocol terminates and if it
is correct under agent-fair or rule-fair schedulers. With no
fairness restrictions on the scheduler used, these problems
were shown to be coNP-complete in [Livesey and Wojtczak,
2021b]. We show exactly the same computational complexity
but with modified proofs to account for the fairness constraints.
Theorem 5. Checking if a given propositional gossip protocol
agent-fairly or rule-fairly terminates is coNP-complete.

Proof. Due to monotonicity of the gossip situations along any
computation (as agents never forget secrets), the gossip situa-
tion can change at most n2 − n times along any computation.



This is because each of the n agents can know at most n dif-
ferent secrets, and with each change at least one more secret
is learned. As the protocol is propositional, for any compu-
tation, skipping a call that does not change the current at the
time gossip situation will give us another valid computation.
This is because the truth value of all propositional formulas
used as guards stays the same when that is done and the call
sequence can simply proceed with the next call instead. The
protocol does not agent-fairly (rule-fairly) terminate iff there
is an infinite agent-fair (resp. rule-fair) computation. In such a
computation the gossip situation stabilizes after at most n2−n
changes. Then under agent-fairness, each active agent can then
make at least one call that does not change the gossip situation
and under rule-fairness all active calls are like that (with at
least one agent being active). It is easy to see that we can now
guess this polynomial-sized prefix of an infinite computation
and which calls should be repeated forever, and verify this
guess in polynomial time. This shows that non-termination is
in NP and so termination is in coNP.

To show the problem is coNP-hard we will create a poly-
nomial time reduction from the 3-SAT problem, such that ter-
mination’s NO instances match with 3-SAT’s YES instances.
The basic idea of this is to have an agent which will learn a cer-
tain set of secrets iff the original problem is satisfiable. Only
when this agent learns all these secrets, he will be allowed
to make a call that can be repeated indefinitely resulting in
non-termination of the protocol.

We will call this special agent: the final agent and denote
him by f . For each Boolean variable, x, used in the 3-SAT
formula, we will create three agents: variable agent (x), true
agent (x⊤), and false agent (x⊥). For every i ≤ m, where m
is the number of clauses in the 3-SAT formula, we have agent
ci that corresponds to the i-th clause.

Now we define the rules of the protocol for each of the
agents. For each variable agent, x, while this agent only knows
its own secret X , x wants to call agent x⊤ or agent x⊥ and
the scheduler will decide which of these calls takes place.
This essentially sets the value of the x variable in the 3-SAT
formula to true or false, respectively.

Now any true agent, x⊤, and false agent, x⊥, that was called
by his corresponding variable agent can make a call to any
clause agent, c, whose corresponding clause in the 3-SAT
formula uses the literal x or ¬x, respectively. This is done
with the guard: X ∧¬C, to ensure this call cannot be repeated.

Once a clause agent receives a call, this means that the cor-
responding clause is satisfied by the current truth assignment.
Once this happens, the clause agent can call f , with a guard:
X ∧ ¬F , to make a call to f that cannot be repeated.

Now, f will learn the secrets of all clause agents only if all
clauses have been satisfied. Agent f can only make a call to
some other agent (picked arbitrarily) if he learns all of these
clause secrets, with a guard: C1 ∧ ... ∧ Cm, and so he can
repeat this call indefinitely.

The only agent that can repeat a call, and therefore lead
to the protocol not terminating is f , and this may only hap-
pen if all clauses are satisfied at the same time. Hence, this
corresponds directly to YES instances of 3-SAT. If we had a
NO instance, it would be impossible for f to learn all clause
secrets, and therefore the protocol would terminate as each

call is made at most once then. It is easy to see that this whole
construction can be done in polynomial time and space.

Theorem 6. Checking if a given propositional gossip protocol
is agent-fair or rule-fair correct is a coNP-complete problem.

Proof. We show this problem to be in coNP similarly as in
Theorem 5 by guessing either a polynomial-sized (i) prefix of
an infinite computation or (ii) finite computation after which
not all agents end up as experts. It suffices to make a single
guess and check whether (i) or (ii) holds in polynomial time.

As for coNP-hardness, the basic set-up is as in Theorem 5
with the following changes. There are three additional agents
y, z and l. If an agent a ∈ G \ {y, z} does not know L then
a can call l. If an agent a ∈ G \ {y, z} at any point learns L
then a starts to follow the LNS protocol (see Example 2) for
the set of agents G \ {y, z}. If an agent a ∈ G \ {y, z} knows
all secrets apart from Y and Z, he can call y, and if a knows
all secrets apart from Z then he can call z.

If y knows all clause secrets as well as F , but not Z, y
can call z, and once y also knows Z, he can call f until he
becomes an expert. Additionally, if f knows all clause secrets
but not L, Y nor Z, he can call y. It is clear that this whole
construction can be done in polynomial time and space and all
such defined guards are propositional formulas.

Assume that the 3-SAT formula is not satisfiable. Then f
cannot learn all clause secrets without learning L, and hence
will eventually call (or be called by) an agent which knows L,
and hence revert to LNS that excludes y and z. Therefore, y
can only be called by an agent which knows all secrets apart
from Y and Z. At this stage, agents may begin to call z if
they know all secrets apart from Z, thus making both agents
experts. Every agent which knows Z is an expert, and so any
agent which calls such an agent will also be an expert. We can
see that at termination every agent will be an expert.

Assume that the formula is satisfiable. Thus it is possible
to be in a situation where f knows all clause secrets but not
L, Y nor Z, so can call y. After this call, y may call z, and
then repeatedly call f , until y becomes an expert (which he is
not yet as he does not know L). Now, after the first instance of
the yf call, every agent which knows Y also knows Z. This
means that an agent either knows both Y and Z, or neither Y
nor Z. As z can never make a call, this means z must be called
by an agent which knows L in order to learn this secret. Yet,
for an agent to call z, he must first learn Y . Now, every agent
which knows Y also knows Z, and so no agent that knows L
will ever call z, hence z will never become an expert.

5 Conclusions
In this paper we have revisited the solution to Problem 5 of
[Apt and Wojtczak, 2019] given in [Livesey and Wojtczak,
2021b]. We showed that the type of the scheduler used makes
a huge difference to the answer to this problem: while un-
restricted schedulers force the communication graph to be
complete, any strongly connected digraph admits an agent-fair
and rule-fair correct propositional gossip protocols. Pinning
down precisely for which class of digraphs this property holds
is still open. We also showed agent-fair and rule-fair termina-
tion and correctness of such protocols to be coNP-complete.
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