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Designing an aircraft and analysing its performance requires uncertainty-aware and robust
aerodynamic data. The three principal ways of acquiring such aerodynamic data are flight
testing, wind tunnel testing and numerical analysis. They all can be expensive and are subject
to multiple sources of uncertainty. A multifidelity data fusion framework applied to surface
pressure data of a large aircraft wing model obtained from experiment and simulation is
presented herein with the ambition to enhance its intended use in optimising wind tunnel
campaigns and eventually in high-value design. Static pressure tapping and dynamic pressure-
sensitive paint are exploited to obtain experimental data sets of different quality and quantity.
These are complemented by numerical data ranging from a linear potential panel method to
non-linear Reynolds-averaged Navier–Stokes simulations. The data fusion approach introduced
by Lam, Allaire and Willcox (2015) and revisited here is non-hierarchical, meaning there is not
an absolute hierarchy in terms of accuracy between the information sources. The confidence
in an information source over the parameter space is defined through a fidelity function. The
approach uses Gaussian processes to enable the fusion of experimental and numerical data
into a single multifidelity surrogate model. The generated (and required) volume of data to
study the surface flow and distributed aerodynamic loads on an aircraft wing leads to scalability
issues. A suitable extension of Gaussian process regression based on stochastic variational
inference has been adopted alongside the use of GPU architecture to enable the application of
the data fusion framework on large data sets. The approach provides a surrogate model with a
quantified uncertainty from uncertainty-aware disparate data sources. We explore (and adapt)
the framework for a high-dimensional practical data set generated through industrial wind
tunnel testing and numerical flow analysis.

Nomenclature

𝐶𝑝 = pressure coefficient
D = input space
𝑑 = dimension of the input space
𝑓 = scalar quantity of interest
f = vector of observation values
f∗ = prediction vector
𝐼 = number of information sources
𝑘 (x, x) = covariance function
𝑙𝑘 = lengthscale
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𝑚(x) = mean function
m = variational distribution mean
𝑀 = Mach number
𝑁ind = number of inducing points
𝑁 = number of training points
𝑝 = probability distribution
𝑞 = variational probability distribution
S = variational distribution standard deviation
u = vector of observation at inducing point locations
x = input vector
𝑋,𝑌 = Cartesian coordinates
X = matrix of training points
𝑦 = noisy observation scalar function
y = noisy observation vector
Z = matrix of inducing points
𝛼 = angle of attack
Y = Gaussian noise random variable
[ = dimensionless spanwise coordinate
`𝐺𝑃 = Gaussian process mean
` = multifidelity mean estimate
𝜎 = output variance
𝜎𝐺𝑃 = Gaussian process standard deviation
𝜎 𝑓 = fidelity function
𝜎𝑡 = total standard deviation
𝜎 = multifidelity of the total variance
𝜏 = Gaussian noise variance
𝜽 = hyperparameters vector

I. Introduction
The study of aerodynamics is crucial for estimating aircraft performance characteristics during the various design

phases. Aerodynamic analysis and design rely heavily on three main sources of information; flight testing, wind tunnel
testing and computational fluid dynamics (CFD). Flight testing is carried out once high confidence in the final design
is established due to its extremely high cost. In wind tunnel experiments, a scaled model is manufactured to collect
data about the air flow around the model through measurements. Those measurements can, for example, be acquired
by pressure taps, force balance or by more advanced optical methods such as pressure sensitive paint and particle
image velocimetry. Aerodynamic data can also be computed with deterministic numerical simulations such as using an
incarnation of the Navier–Stokes equations. With the ever-increasing computing power, such numerical simulations
have become a must in aerodynamics. However, when dealing with complex configurations and phenomena, particularly
near the edge of the flight envelope, numerical simulations tend to lack the required accuracy and come with a significant
cost burden, particularly when choosing an eddy-resolving approach. It remains essential for aerodynamic analysis and
design to carry out physical wind tunnel experiments. Wind tunnel testing can be expensive and, just like numerical
analysis, is subject to multiple sources of uncertainty. It may be debated within the aeronautics community that the
digital revolution, especially through the introduction of CFD, has not had the expected impact on wind tunnel usage for
flight vehicle development programmes [1]. For instance, the dependency on wind tunnel testing for developing military
aircraft has not diminished [2]. In practice, CFD has been integrated into the industrial testing routine to complement
the theoretical, numerical and experimental methods already in use.
Nevertheless, digital engineering can be considered as an opportunity to rethink current practices and processes. For

instance, current practice evaluates the aerodynamic data accuracy by comparison to other available data sets which are
all subject to uncertainties of varying nature. It is argued in [2] that this practice lacks relevance in the way of defining
and using uncertainties within future design paradigms. Machine learning offers practical and efficient methods for
merging the information from different data sets and for incorporating real world variability and probabilistic behaviour
into engineering analysis. There is a significant challenge to leverage information from the different aerodynamic data
sources while controlling the definition and propagation of uncertainty towards the decision-making level. Uncertainty
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quantification takes place when making high-consequence decisions within the risk management step of the design cycle.
Thus, our ambition is to advance aerodynamic design of future aircraft through the application of machine learning
algorithms that enable experimental and numerical data to be combined while accounting for uncertainty.
Methodologies based on multiple sources of varying fidelity first involved techniques called trust region and variable-

complexity modelling. A first-order approximation and model management optimisation based on the trust region
approach was developed in [3] where the method was demonstrated on a three-dimensional wing optimisation problem
using Euler analysis on meshes of varying refinement to establish a set of variable-fidelity models. Variable-complexity
modelling, also called variable-fidelity modelling, uses an additive and/or multiplicative correction factor built with the
low- and high-fidelity data to approximate an objective function. Variable-complexity strategy was applied to optimise
the wing and fuselage shape and nacelle placement of high-speed civil transport vehicles [4]. A crew transfer vehicle
flight envelope was studied in [5] by applying a variable-complexity modelling approach coupled with an increment
function to merge solutions of varying fidelity into a single database. The main disadvantages of this method are that it
assumes a hierarchy in the levels of accuracy and that the corrections made are linear. This last point is overcome by
using a method called kriging, also known as Gaussian process regression [6]. The popularity of Gaussian processes for
surrogate modelling is rising in the machine learning community as they are able to model complex, multidimensional
surfaces by accounting for the correlation of the data in the design space while providing a measure of confidence in
their prediction [7]. For instance, kriging interpolation applied within the Schur complement eigenvalue framework
is used in [8] to study transonic aeroelastic instability, while looking into aerodynamic models of varying fidelity.
The most common variation when applying Gaussian processes in a data-fusion context is hierarchical kriging, often
called co-kriging. Hierarchical kriging is applied in [9] investigating an aerofoil and an industrial transport aircraft
configuration. Co-kriging is a hierarchical multifidelity methodology that combines data from two or more models to
train a single Gaussian process surrogate model [10–12]. A kriging-based function is used in [13] to correct low-fidelity
models with sparse high-fidelity data from an experimental design to study wing optimisation. A radial basis function
was used to approximate low-fidelity data and kriging was used as a correction model in order to construct a hybrid
variable-fidelity global approximation model in [14]. In [15], Bayesian hierarchical Gaussian process models perform
location and scale adjustments to predict high-fidelity output at untried points from a low-fidelity model. Gaussian
process models can also be associated with a Bayesian optimisation application, for instance, to evaluate the next design
point using the expected improvement criterion [16]. Gaussian processes are a very popular approach for inference on
functions. However, its associated cubic complexity and quadratic storage requirements limit its application to relatively
small data sets such as information on forces or discrete pressure data over the design space.
Other studies have used the dimensionality reduction technique called proper orthogonal decomposition (POD) for

multifidelity surrogate modelling of velocity or pressure fields. It has been used with additional constraints in [17] to
improve the overall prediction of the pressure distribution over two aerofoils exposed to noise, bias and incompleteness,
in addition to a method based on a Bayesian framework to study the transonic pressure distributions on an aerofoil and
the NASA Common Research Model wing. Similar work has been reported in [18] with application in reconstruction of
particle image velocimetry data. An extension, called Gappy POD, was explored for data fusion. The principle is to
combine the POD basis vectors through the solution of a least-squares problem calibrated with reference data at discrete
locations. Variations of this method were used to reconstruct unsteady flow [19, 20] or to fuse CFD with experimental
pressure data [21, 22]. In [23], Gaussian process regression was applied to solve the least-squares problem, needed for
data reconstruction from the POD modal basis. Therefore, it provides an estimate of the prediction confidence to the
regression problem involved in the data reconstruction. The limitations of these techniques stem from the restriction
to the data fusion of two information sources, with the experimental data typically taken as ‘ground truth’ making it
difficult to consider its own associated uncertainties. Also, as mentioned earlier, the use of standard Gaussian processes
is severely limited by its scalability and therefore restricts its use to discrete data points.
This paper revisits a non-hierarchical multifidelity approach previously presented in [24, 25] where each information

source is modelled through a Gaussian process regression and fused in a fidelity-weighted combination. This approach
is composed of three main ingredients; the intermediate surrogate model obtained from Gaussian process regression
on each information source, the definition of fidelity functions over the input space for each information source and
the fidelity-weighted combination of all intermediate models. It is necessary to adapt the regression step to ‘big
data’ applications in order to be able to implement this framework on fine-grained aerodynamic data sets, such as
surface pressure distributions from CFD simulations or advanced optical measurement techniques. A method based on
stochastic variational inference developed in [26] has been adopted alongside the use of graphics processing unit (GPU)
architecture to enable the application of the data fusion framework on large data sets. Each intermediate surrogate
model is built independently of the others and in terms of fidelity the model hierarchy varies in the input space. It allows
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the associated framework to be flexible on the number of information sources and to benefit from each model’s strengths.
Our contribution lies in the assessment of the multifidelity data fusion method on higher dimensional problems by
applying this approach to the pressure distribution over a wing. Specifically, the information sources considered here
provide pressure data from static pressure taps, time-averaged dynamic pressure-sensitive paint, Reynolds-averaged
Navier–Stokes simulations and a potential-flow panel method. We also analyse the formulation of the Gaussian process
in the construction of the intermediate surrogate models, particularly in terms of scalability.
The different ingredients of the multifidelity approach are described in Section II. The test case and the data used

herein are given in Section III, specifically the RBC12 half wing-fuselage configuration [27] and four different sources
that will be used to apply multifidelity data fusion on the pressure distribution. Section IV discusses results of the
application of the multifidelity data fusion framework at fixed and variable flow conditions.

II. Multifidelity Surrogate based on Gaussian Processes

A. Gaussian process regression
A Gaussian process is a stochastic process with Gaussian finite dimensional distributions. If a design spaceD ⊆ R𝑑

of dimension 𝑑 and an input vector x ∈ D are considered, the function 𝑓 : x ∈ D ↦−→ 𝑓 (x) ∈ R represents a scalar
quantity. According to [7], a Gaussian process GP(𝑚(x), 𝑘 (x, x′)) is characterised by the mean function 𝑚(x) and the
covariance function 𝑘 (x, x′). In some cases, noisy observations are considered and written 𝑦(x) = 𝑓 (x) + Y. The noise
is an independent identically distributed Gaussian variable Y with zero mean and variance 𝜏2. Let X = [x1 x2 ... x𝑁 ]
be the matrix of 𝑁 training points x 𝑗 ∈ D and f = 𝑓 (X) = [ 𝑓1, 𝑓2, ..., 𝑓𝑁 ]⊤, the latent variable vector containing the
values 𝑓 𝑗 = 𝑓 (x 𝑗 ). The observable variable vector is defined in the same way by y = 𝑦(X) = [𝑦1, 𝑦2, ..., 𝑦𝑁 ]⊤. The
Gaussian process prior, 𝑝(y, f∗), can be written as a joint normal distribution over the random variable vectors y and
f∗ = 𝑓 (X∗) where X∗ represents the matrix of testing points in D.

𝑝(y, f∗) = N
( [

𝑚(X)
𝑚(X∗)

]
,

[
𝑘 (X,X) + 𝜏2I 𝑘 (X,X∗)
𝑘 (X,X∗)⊤ 𝑘 (X∗,X∗)

] )
(1)

The notations 𝑚(X) and 𝑘 (X,X) generalises the component-wise evaluation of X by 𝑚 and 𝑘 , e.g. 𝑚(X) =

[𝑚(x1) 𝑚(x2) ... 𝑚(x𝑁 )]. Standard Gaussian process regression uses a zero prior for the mean, 𝑚(x) = 0, and the
Gaussian-form radial basis function, also called exponentiated quadratic, for the covariance function, written here:

𝑘 (x, x′) = 𝜎2 exp

(
−

𝑑∑︁
𝑘=1

∥𝑥𝑘 − 𝑥 ′
𝑘
∥22

2𝑙2
𝑘

)
(2)

where 𝜎 and 𝑙𝑘 are, respectively, the output standard deviation and a length scale. They are the model hyperparameters
and are denoted by the vector 𝜽. The covariance uses automatic relevance determination [28] to learn a length
scale for each dimension of the design space. It was decided to take a universal standard formulation for the
Gaussian process because the objective is to study the broader multifidelity data fusion framework. Future work
will aim to improve the intermediate surrogate models. To make predictions of the function outputs 𝑓 (X∗) = f∗, the
posterior distribution 𝑝(f∗ |X∗,X, y) can be derived by applying the multivariate Gaussian conditional rule which gives
𝑝(f∗ |X∗,X, y) = N(f∗ |`𝐺𝑃 (X∗), 𝜎𝐺𝑃 (X∗)) with posterior mean `𝐺𝑃 (x) and posterior standard deviation 𝜎𝐺𝑃 (x)
defined as

`𝐺𝑃 (X∗) = 𝑘 (X,X∗)⊤ [𝑘 (X,X) + 𝜏2I]−1y (3)

𝜎𝐺𝑃 (X∗) = 𝑘 (X∗,X∗) − 𝑘 (X,X∗)⊤ [𝑘 (X,X) + 𝜏2I]−1𝑘 (X,X∗) (4)

The standard deviation 𝜎𝐺𝑃 quantifies the uncertainty arising from the approximation process and corresponds to
the uncertainty in the model prediction away from a training point. The posterior distribution strongly depends on
the formulation used for 𝑚(x) and 𝑘 (x, x′). The method often used for learning the hyperparameters is based on the
evaluation of the likelihood function 𝑝(y|𝜽). Using the standard form for a multivariate Gaussian distribution, the
log-likelihood function is given by

log 𝑝(y|X, 𝜽) = −1
2

y⊤ [𝑘 (X,X) + 𝜏2I]−1y − 1
2
log |𝑘 (X,X) + 𝜏2I| − 𝑁

2
log (2𝜋) (5)
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Gradient-based optimisation algorithms can be used to maximise this log-likelihood function. It can be seen in Eqs. (3–5)
that the regression model involves the matrix inversion of [𝑘 (X,X) + 𝜏2I]. The number of operations for this matrix
inversion scales with 𝑁3 operations. Considering the size of the data sets for the test case introduced later in this paper,
it leads to scalability limits of the Gaussian process regression and requires additional approximations.

B. Stochastic variational inference for Gaussian process models
A comprehensive review of scalable Gaussian processes is presented in [29]. Stochastic variational inference is used

herein to enable the application to large data sets. To reduce the computational complexity, a set of random variables u
at some locations Z is introduced in [26, 30]. The relation between f and u is established with a multivariate Gaussian
distribution considered as the prior distribution of the stochastic variational Gaussian process (SVGP) model

𝑝(f, u) = N
(
0,

[
𝑘 (X,X) 𝑘 (X,Z)
𝑘 (X,Z)⊤ 𝑘 (Z,Z)

] )
(6)

where 𝑘 (Z,Z) is the covariance matrix associated to u and is built by evaluating the covariance function at the pairs
(z, z′) ∈ Z × Z. The previous joint distribution can be formulated as

𝑝(f, u) = 𝑝(f|u)𝑝(u) = N
(
f|𝑘 (X,Z)𝑘 (Z,Z)−1u, 𝑘 (X,X) − Q

)
N

(
u|0, 𝑘 (Z,Z)

)
(7)

where Q = 𝑘 (X,Z)𝑘 (Z,Z)−1𝑘 (X,Z)⊤. Using the observable variable y, it is now written as

𝑝(y, f, u) = 𝑝(y|f)𝑝(f|u)𝑝(u) (8)

Themarginal likelihood 𝑝(y)measures howwell themodel explains the training data and is used to set the hyperparameters.
However, it can be demonstrated that the expression of 𝑝(y) for the SVGP is the same as Eq. (5) and implies the
problematic matrix 𝑘 (X,X) inversion. Starting from Jensen’s inequality applied on the conditional probability

log 𝑝(y|u) = logE𝑝 (f |u) [𝑝(y|f)] ≥ E𝑝 (f |u) [log 𝑝(y|f)] (9)

It is substituted into the expression 𝑝(y) =
∫
𝑝(y|u)𝑝(u)du in [31] to obtain a tractable bound on the marginal likelihood

log 𝑝(y) ≥ logN
(
y|0, 𝑘 (X,Z)𝑘 (Z,Z)−1𝑘 (X,Z)⊤ + 𝜏2I

)
− 1
2𝜏2
tr(𝑘 (X,X) − Q) (10)

This bound can then be used as an alternative maximisation objective function to optimise model hyperparameters
and the inducing points Z. In the case where all the training points are considered as inducing points, i.e. Z = X,
the bound is equal to the marginal likelihood corresponding to Eq. (5), specifically logN

(
y|0, 𝑘 (X,X) + 𝜏2I

)
. To

obtain a more computationally scalable bound, a variational distribution 𝑞(u) = N(y|m, S) is introduced such that
𝑞(f, u) = 𝑝(f|u)𝑞(u). Indeed, in order to make predictions, it is necessary to compute the posterior distribution 𝑝(f, u|y)
from Bayes’ formula which requires the computation of 𝑝(y). Thus, the idea is to approximate the posterior with 𝑞(f, u).
It is shown in [26] that applying a standard variational bound leads to the Evidence Lower BOund (ELBO)

log 𝑝(y) ≥ logN
(
y|𝑘 (X,Z)𝑘 (Z,Z)−1m, 𝜏2I

)
− 1
2𝜏2
tr(𝑘 (X,X) − Q)

− 1
2𝜏2
tr(𝑘 (X,Z)𝑘 (Z,Z)−1S𝑘 (Z,Z)−1𝑘 (X,Z)⊤) − KL[𝑞(u) | |𝑝(u)]

(11)

where KL[.| |.] is the Kullback–Leibler divergence. The ELBO has a unique optimum over the parameters m and S at
which point it equals the bound given by Eq. (10). The advantages of this formulation come from the use of stochastic
optimisation and mini-batch learning which reduces the computational complexity to 𝑂 (𝑁3ind). In this paper, the ELBO
is optimised by the Adam Optimizer designed in [32] for stochastic objective functions. Predictions of f∗ are made in
test points X∗ by substituting the approximate posterior into 𝑝(f∗ |y):

𝑝(f∗ |y) =
∫

𝑝(f∗ |f, u)𝑝(f, u|y)dfdu

≈
∫

𝑝(f∗ |f, u)𝑝(f|u)𝑞(u)dfdu

=

∫
𝑝(f∗ |u)𝑞(u)du

(12)
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This expression is tractable because 𝑞(u) = N(y|m, S) is known and 𝑝(f∗ |u) can be derived by applying the multivariate
Gaussian conditional rule to the prior 𝑝(f∗, u). It only depends on the inducing variables u and does not depend on the
training data. All the information is incorporated in the variational distribution 𝑞 and the hyperparameters are obtained
during the training process.

C. Fidelity function
In order to quantify the physical uncertainty associated with the generation of the data by an information source, we

use the fidelity function 𝜎 𝑓 defined in [24]. It is a representation of the confidence in an information source over the
design space and comes from expert knowledge, past experience and/or empirical data. The total variance is then

𝜎2𝑡 = 𝜎2𝐺𝑃 + 𝜎2𝑓 (13)

which captures both the quality of the Gaussian process model and the expert’s confidence in the underlying data.

D. Variance-weighted combination of intermediate surrogate models
As presented in [24, 25], a surrogate model is built for every information source, i.e. a Gaussian process regression

model is trained from every f𝑖 and X𝑖 produced by the 𝑖-th among 𝐼 information sources. The resulting intermediate
posterior mean and posterior standard deviation are denoted `𝐺𝑃,𝑖 and 𝜎𝐺𝑃,𝑖 . As it is defined earlier, the total variance
of the 𝑖-th information source is 𝜎2

𝑡 ,𝑖
= 𝜎2

𝐺𝑃,𝑖
+ 𝜎2

𝑓 ,𝑖
where 𝜎 𝑓 ,𝑖 is the fidelity function defined for the 𝑖-th information

source. The multifidelity fused estimation of 𝑓 (x) is computed with a weighted sum of `𝐺𝑃,𝑖 and 𝜎𝐺𝑃,𝑖 . The weighting
established in [33] to give more importance to high-confidence models is defined by the multifidelity mean estimate and
the multifidelity total variance as

`(x) = 𝜎2 (x)
𝐼∑︁

𝑖=1

`𝐺𝑃,𝑖 (x)
𝜎2
𝑡 ,𝑖
(x)

(14)

𝜎2 (x) =
(

𝐼∑︁
𝑖=1

1
𝜎2
𝑡 ,𝑖
(x)

)−1
(15)

This methodology combines the non-hierarchical multifidelity formulations to fuse disparate data and the definition
of fidelity function to quantify information source uncertainty.

III. Civil Aircraft Wing Configuration

A. Half-wing-fuselage geometry and previous test campaign
Figure 1 presents the RBC12 half-wing-fuselage wind tunnel model which is representative of a typical 1970s/1980s

commercial aircraft design and has been used in previous work to investigate the shock-buffet phenomenon [27, 34, 35].
The wind tunnel model has been scaled down by a factor of 17.5. Its mean aerodynamic chord is 0.279 m, the wing tip
chord is 0.098 m, the semispan is 1.085 m, the aspect ratio is 7.78 and the reference area is 0.2959 m2. The model wing
is twisted, tapered and swept back with a constant quarter-chord sweep angle of 25° and a leading-edge sweep angle
of 28.3°. For visualisation purposes, a dimensionless spanwise coordinate is defined as [ = (𝑌 − 0.019)/1.085. It is
derived from the spanwise coordinate 𝑌 from which the plinth thickness (0.019 m) is subtracted.
The work presented here uses data from experiments conducted in the Aircraft Research Association Transonic Wind

Tunnel in 2015 within the European Commission Clean Sky buffet control of transonic wings project (BUCOLIC) [36].
The wind tunnel is of a closed-circuit, continuous type. It has a test section of 2.74 m by 2.44 m, an operating Mach
number of up to 1.4, and the stagnation pressure can be varied between 80 and 120 kPa. The RBC12 half-model
installed on the floor of the test section is shown in Fig. 1a. Although the previous test entry focused on shock buffet, the
data considered hereafter are assumed to be steady in pre-buffet-onset conditions. A more detailed description of the
experimental study concerning the unsteady phenomenon can be found in [27].
Herein we focus on pressure features, through the pressure coefficient, over the upper surface of the RBC12 wing.

An overview of all available data in this study is shown in Fig. 2 with details discussed in the following. The chosen
flow conditions follow the available data from the previous test campaign including reference Mach numbers between
𝑀 = 0.7 and 0.84, a Reynolds number (with respect to mean aerodynamic chord) of approximately 3.4×106 to 3.7×106
and angles of attack approximately between 𝛼 = −1.2° and 8.4°.
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(a) Model mounted on wind tunnel floor

1.085 m

2.68 m

𝑌 = 510 mm
𝑌 = 574.4 mm

(b) Front, side and top views of geometry

Fig. 1 Perspective of installed physical model as well as front, side and top views of computational model.

B. Experimental data
A large number of static pressure taps (chosen as the first data source) were installed on the wing and the fuselage to

observe the shock movement and flow development around shock-buffet onset with varying Mach number and angle
of attack. Figure 3 (left) shows a total of 124 static pressure taps located on the upper surface of the wing as well as
the measured pressure coefficient at an arbitrarily chosen experimental condition (Mach number 𝑀 = 0.74 and angle
of attack 𝛼 = 3°). In addition, the second data source is dynamic pressure-sensitive paint (DPSP) recorded with a
high-frame-rate imaging system and previously processed to analyse the unsteady behaviour of the shock dynamics with
plenty of detail presented in [27]. Such an advanced optical measurement technique can provide pressure information
over a large region of the wing surface, which offers a significant advantage over discrete pressure measurements.
For instance, the set-up of the previous test campaign resulted in a resolution of 1.3 pixel/mm. The idea is to exploit
time-averaged DPSP measurements to benefit from its spatial abundance (and indeed to address the impact of this
abundance in a machine learning context using Gaussian processes) and to complement static pressure tap data.

C. Reynolds-averaged Navier–Stokes simulations
The geometry shown in Fig. 1 was reconstructed from the wind tunnel model with a laser-equipped scanner. A hybrid

mesh was created from it with the mesh generator SOLAR [37], following industry best-practice guidelines. The resulting
mesh is composed of approximately 12.2 × 106 points. The unstructured finite volume flow solver DLR-TAU [38],
developed by the German Aerospace Center (DLR), is used to perform Reynolds-averaged Navier–Stokes (RANS)
simulations (i.e. the third data source). The turbulence model applied is the negative Spalart-Allmaras model [39]. The
convective fluxes of the mean flow equations are computed through the central scheme with scalar artificial dissipation
and those of the turbulence model use a Roe scheme. To the extent possible, numerical flow conditions have been
matched to the available wind tunnel experimental conditions. The reference Mach number varies between 0.7 and 0.8,
the Reynolds number (based on mean aerodynamic chord) is fixed to 3.75 × 106 (in accordance with previous work by
the authors), the reference temperature is 266.5 K, and the reference pressure varies between 66 and 76 kPa. For the
steady-state simulations computed here, the angle of attack varies between 𝛼 = 0° and 5° depending on Mach number to
stay below the onset of the shock-buffet instability.
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Table 1 Overview of different data sets and attributed constant fidelity functions.

Information source Flow conditions Spatial coordinates Total number of points Fidelity function value

Pressure tappings 183 150 27,450 0.0
DPSP 30 289,215 8,676,450 0.025
RANS 14 52,491 734,874 0.05
XFLR5 42 900 37,800 0.8

Fig. 2 Available data according to Mach number and angle of attack.

D. Three-dimensional panel method
Panel methods normally solve the linear, inviscid and irrotational (i.e. linear potential) flow equations on a suitable

surface discretisation of the geometry. Such a method developed in [40] and implemented in XFLR5 has been used
to generate the pressure distribution over the model wing. Obviously, the potential flow hypothesis lacks accuracy
for the transonic Mach numbers and viscous flow addressed herein, but the flexibility and execution speed justify its
inclusion, while its associated fidelity function will take its inaccuracy into account. Rather than only considering the
wing planform for the discretisation, the model geometry used in XFLR5 accounts for the main geometrical information
of the RBC12 half-model configuration (going beyond the wing span and local chord length to describe the planform),
such as the aerofoil profile, the twist and dehidral angles. The fuselage has been replaced by a flat wing extension
with the same profile as the wing-root profile for modelling purposes. XFLR5 computes the pressure coefficient at the
centroid of each panel. The flow solution has been computed for angles of attack varying between 𝛼 = 0° and 6° with an
increment of 1° and Mach numbers varying between 𝑀 = 0.7 and 0.8 with an increment of 0.2, cf. Fig. 2.

IV. Results for Surface Pressure Distribution
An initial phase of the work concerned the preparation of standardised pressure data from the four information

sources presented in Section III. Each information source has been pre-processed to get arrays of unique pressure
coefficient data points identified by their spatial location on the wing and the associated flow conditions (limited to
Mach number and angle of attack herein). The experimental and numerical data are summarised with respect to the
flow conditions in Fig. 2. All numerical data were produced as part of this work, in order to go through the design
space considering the computational cost and the shock-buffet onset limit. From a data analysis perspective, Table 1
summarises the number of flow conditions studied and the number of spatial coordinates at which a pressure coefficient
value is known. The latter gives an idea of the spatial abundance of each information source. In practice, the data
availability can differ significantly, particularly for wind tunnel testing, and it can fairly be said that the amount of
available data is correlated with the cost of data generation. The test case studied in this paper offers a great example of
such variety, specifically accuracy and resolution on the wing. In terms of dimension, the input space is limited to
four dimensions herein, defined by Mach number and angle of attack, and the spatial coordinates (𝑋,𝑌 ) in stream- and
spanwise directions, respectively. The third spatial coordinate has been discarded (in agreement with the information
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Fig. 3 Pressure coefficient on the wing surface.

available from the experimental data sets) while projecting each numerical data set equally onto the wing planform.
The table also gives the constant values of the fidelity function used herein. They are case dependent and have been
set somewhat arbitrarily to reflect the confidence and desired influence of each of the information sources. Pressure
tappings are considered as the ‘ground truth’ and therefore have a null value of fidelity function over the whole design
space. DPSP and RANS have low fidelity-function values as they are considered the best aerodynamic information
sources in this study whereas XFLR5 is considered a low quality information source for the reasons given in Section III,
and therefore has a significantly higher value in the fidelity function. The relative difference between DPSP and
RANS is explained by the fact that DPSP is calibrated on pressure tapping data. Going forward, we will explore more
sophisticated fidelity functions which take into account variation in the design space and more refined expert opinion. It
can be argued about the data fusion framework, albeit being presented as non-hierarchical, that the values of the fidelity
function create a hierarchy between the information sources. However, this hierarchy is absent in the construction of
the multifidelity model because the total standard deviation balances the fidelity function with the posterior standard
deviation of each intermediate surrogate model. It leads to values of the total standard deviation that vary over the
design space and whose hierarchy between information sources changes over the same design space.
Application of the multifidelity approach to high-fidelity (and hence high-dimensional) data sources is challenging

because it increases significantly the number of data points considered in addition to facing the ‘curse of dimensionality’.
Initially, the framework is applied to the design space of spatial coordinates at fixed flow condition, and then the
investigation is extended to include also the variable flow conditions. Hence, the first objective (addressed in Section IV.A)
is to demonstrate the feasibility of the approach in a way that allows its explanation and a visual representation of the
SVGP regression. The second objective (addressed in Section IV.B) seeks to understand the capabilities and limitations
on a higher-dimensional design space. The numerical library adopted in the implementation of the data fusion framework
is GPflow, a Python module based on TensorFlow [41, 42]. It has Graphics Processing Unit (GPU) enabled capability.
All GPU computations make use of a dedicated compute node equipped with four Nvidia Tesla V100 GPUs.

A. Two-dimensional input space of coordinates (𝑿,𝒀) at representative fixed flow conditions
At fixed flow conditions, the model input space D has two dimensions (spatial coordinates in stream- and spanwise

directions). Pressure coefficient distributions on the wing from experimental pressure tappings as well as numerical
RANS and XFLR5 simulations at a representative Mach number 𝑀 = 0.74 and angle of attack 𝛼 = 3° are considered.
This first demonstration is limited to three information sources because DPSP data are not available at this flow condition.
The standardised (raw) data sets used to train the model are shown on Fig. 3. Standard Gaussian process regression can
be applied to train two (out of the three) intermediate surrogate models. The number of spatial coordinates given in
Table 1 rules out the use of a standard Gaussian process in practice when leveraging the information obtained from
RANS simulations, even at a single fixed flow condition. Thus, SVGP regression is applied instead and its ability
to form a suitable surrogate model from a big data set for such aerodynamic application is demonstrated. The two
important points to consider when setting up the SVGP method are the choice of the number of inducing points and
their initial location. It is worth remembering that the SVGP regression method seeks to optimise the hyperparameters,
the parameters of the variational distribution and the inducing points. The impact of both the number of inducing points
and their initial distribution in space is presented in Table 2 (and later in Table 3 in Section IV.B). It was found that the

9



Table 2 Accuracy of SVGP regression on a two-dimensional input space for RANS data.

Random initialisation Uniform initialisation
𝑁ind Training

time (s)
MSE
(training)

MSE
(test)

𝑁ind Training
time (s)

MSE
(training)

MSE
(test)

50 115 0.237 0.241 50 113 0.218 0.218
100 122 0.172 0.174 101 119 0.136 0.135
500 145 0.075 0.076 523 158 0.103 0.103
1000 239 0.051 0.052 1121 288 0.077 0.078
2000 713 0.035 0.037 2057 783 0.051 0.052
3000 1673 0.028 0.030 3055 1785 0.040 0.041
5000 5873 0.022 0.023 5059 6055 0.034 0.035

initialisation has an influence on the results. Indeed, it was observed that the optimisation acts predominantly on the
hyperparameters and the parameters of the variational distribution. This tends to reinforce with an increasing dimension
of the input space. Thus, the inducing points do not move significantly and have to be initialised wisely. In this example,
two different initialisation methods are presented. The first one randomly selects 𝑁ind inducing points in the training
data set while the second uniformly distributes points over the wing in both spatial dimensions. We will assess the
SVGP approach with an evaluation of the relative accuracy of the model with respect to the training time required. Then,
we will use SVGP with the RANS training set to enable the application of the multifidelity data fusion framework. The
mean squared error to assess the relative accuracy of the surrogate model is used

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (16)

where 𝑦𝑖 and �̂�𝑖 are the 𝑖-th original known and predicted values, respectively, and 𝑛 is the total number of predictions.
The RANS data set at 𝑀 = 0.74 and 𝛼 = 3° has been randomly divided for training (80% of the data) and testing
purposes (the remaining 20%). In Table 2, the MSE values are similar for the training and testing data set. This suggests
that the model has been set up correctly and that the model also predicts well for points not used for training. In other
words, it indicates that overfitting has been avoided. The quality of the model increases with the number of inducing
points. However, the computation time required also increases significantly due to the cubic complexity with respect to
𝑁ind. The choice of the number of inducing points is a trade-off between calculation time and accuracy. Non-linear
transonic features of the flow such as shock waves are difficult to model and this explains the need to take into account a
sensible number of data points. Despite a slightly better accuracy of the intermediate surrogate model with the random
initialisation, the uniform initialisation was found to give better results when utilised for multifidelity data fusion and
will be chosen in the following. To apply the framework on the three information sources mentioned, it was decided
(after consulting Table 2) to initialise 2,480 inducing points uniformly over the wing for the RANS pressures.
Figures 4 and 5 present the resulting intermediate surrogate models showing mean and standard deviation. It can be

observed immediately for the intermediate surrogate model based on pressure-tap data that the posterior mean presents
an inaccurate pressure prediction and that the associated posterior standard deviation is high away from the training
points. The abundance of data in the design space for the two other information sources, particularly from RANS
simulations, explains a more realistic pressure distribution predicted by the surrogate models. For instance, the RANS
prediction based on 2,480 inducing points is almost indistinguishable from the raw data with 52,491 surface mesh
points. It also explains the low standard deviation values for these two information sources. However, this does not
give any information on the physical accuracy of the intermediate models. Low values of standard deviation indicate
that a predicted location is close to a training point but do not give any particular information on its relevance. For the
RANS data set, the corresponding intermediate surrogate model exhibits an interesting (spotty) pattern in the standard
deviation in which we can see the influence of the inducing points. In our case, we consider the data from pressure
tappings as the most accurate source of information whereas the data obtained from the linear potential panel method
lacks accuracy at the flow conditions considered. The idea is to benefit from the spatial abundance while balancing with
the assumed accuracy of and confidence in each information source. The fidelity function is exactly defined for this
purpose. It aims to benefit from the highest confidence in the discrete pressure taps where they are available while
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Fig. 4 Mean of each intermediate surrogate model.

Fig. 5 Standard deviation of each intermediate surrogate model.

giving more importance to the RANS results compared with the potential-flow data where the standard deviation of
the pressure tap surrogate model is high. Of course, in the absence of relatively expensive RANS simulations (e.g. at
benign flow conditions with low Mach number and angle of attack), the potential-flow data would fill the gap.
A multifidelity surrogate model is then obtained by applying Eqs. (14) and (15), and its output is plotted in Fig. 6.

The figure demonstrates the feasibility of the multifidelity approach for such realistic application. It shows that the
resulting model respects the ‘ground truth’ pressure-tap data and learns the spatial distribution of the pressure field
from the spatially more resolved data sets to obtain a physically reliable surrogate. The standard deviation plotted in
Fig. 6b may seem higher than that of the intermediate models but accounts for the total standard deviation, including the
fidelity function. As required, the standard deviation is relatively low in the whole design space benefiting from all
data available, except for the wing root where there is little information and, in particular, no CFD data. The spanwise
region for extraction of CFD data was a deliberate choice to demonstrate the characteristics of the resulting intermediate
surrogate model. Locations with little or no training data have a resulting mean that visually appears false and higher
standard deviation values. An isolated pressure tap located near the wing tip seems to be out of the standard range and
could be considered as an outlier, as seen in Fig. 3. This highest value of pressure coefficient (deep red spot) is found in
its intermediate surrogate model in Fig. 4 and is propagated to the multifidelity model in Fig. 6a. The high confidence
attributed to the pressure taps entails an extensive discussion of automatically and reliably dealing with possible outliers
in the construction of the intermediate and multifidelity surrogate models. The benefits of the data fusion approach
are also showcased in Fig. 7 for pressure distributions at two selected spanwise stations, The figure compares the
predictions (and raw data where available) showing the posterior mean and the Gaussian process confidence intervals
(±1.96𝜎𝐺𝑃) superimposed. Pressure-tap data is available for spanwise station 𝑌 = 574.4 mm. In contrast, at the other
station 𝑌 = 510.0 mm, pressure-tap data is not available and instead the Gaussian process will heavily rely on RANS
data included as reference. Away from training data, the standard deviation of the intermediate surrogate model based
on pressure-tap data is high. Yet, in both locations, owing to its construction, the multifidely model behaves similarly
to the model with the lowest total standard deviation. The prediction follows the RANS intermediate surrogate when
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(a) Mean (b) Standard deviation

Fig. 6 Mean and standard deviation of multifidelity surrogate model.

(a) 𝜼 = 45%, 𝒀 = 510.0 mm (b) 𝜼 = 51%, 𝒀 = 574.4 mm

Fig. 7 Comparison of data and predictions at two chosen spanwise stations. Solid lines describe the posterior
mean and the colour-matched transparent areas give the corresponding confidence intervals. Note the difference
in available training data and its impact on the prediction of the multifidelity model.

the posterior standard deviation of the pressure-tap model is high due to a lack of its training data. It is clear that the
potential-flow intermediate surrogate model is inaccurate and the fidelity function accounts for that by a relatively high
constant. Despite the large number of inducing points, the confidence interval of the RANS intermediate surrogate
(transparent blue area in Fig 7) is higher than other intermediate surrogate models. It is due to the specific use of SVGP
regression for this information source.
The preceding demonstration at fixed flow conditions shows both the capability of the multifidelity data fusion

framework for a realistic case and the feasibility of using SVGP regression to incorporate information from spatially
resolved sources leading to very large data sets. However, the motivation of using SVGP regression is also to explore
higher-dimensional design spaces. Indeed, if we consider variable flow conditions, Table 1 suggests that the cubic
complexity of standard Gaussian processes with respect to the data size makes it prohibitive even for the spatially coarse
data sources (i.e. discrete pressure tappings and potential-flow modelling). This is investigated next.

B. Four-dimensional input space (including variable flow conditions)
For the four-dimensional design space, the data set sizes range from 27,450 to 8,676,450 input points. The latter

results from highly-resolved, time-averaged DPSP measurements. Indeed, this optical measurement technique gives a
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Table 3 Accuracy of SVGP regression on a four-dimensional input space for DPSP data.

Random initialisation Uniform initialisation
𝑁ind Training

time (s)
MSE
(training)

MSE
(test)

𝑁ind Training
time (s)

MSE
(training)

MSE
(test)

500 157 0.034 0.036 504 154 0.186 0.209
1000 205 0.031 0.031 984 205 0.051 0.055
2000 511 0.028 0.027 1992 517 0.035 0.037
5000 3747 0.026 0.023 4992 3646 0.031 0.030
10000 24811 0.025 0.022 10464 30023 0.028 0.027

pressure value at each pixel of the captured image. It is an advantage over traditional pressure-tap measurements but can
be problematic computationally. In general, possible solutions to overcome the computational cost arising from the size
of the data set could be to reduce the resolution of the image or to sub-sample the data set. It is considered here that it
may lead to the loss of valuable information; cf. [27] where the quantity of the data set was instrumental in studying
the details of the flow physics featuring unsteady shock motions. For reference, in [26], SVGP regression has been
applied on a data set with over a million points for the study of apartment prices in the United Kingdom and enabled the
surrogate model to be approximated with a compromise on accuracy and computation time. First, we will assess the
SVGP approach for our aerodynamic test case in higher dimension. Second, we will exploit the capabilities of the SVGP
approach when applying it to the multifidelity data fusion framework in the four-dimensional parameter space.
Concerning the SVGP assessment, the data set composed of the DPSP measurements has been randomly divided for

training (80% of the data) and testing purposes (the remaining 20%). This division has been carried out only with
respect to the experimental conditions of Mach number and angle of attack to conform to the experimental reality,
i.e. for each flow condition it is assumed that the full spatial resolution is available. The two initialisation methods
presented in Section IV.A are used again. The first one randomly selects 𝑁ind inducing points in the training data set
while the second uniformly distributes over the wing at each experimental condition considered for training. For the
uniform point distribution, the total number of inducing points 𝑁ind is divided by the number of experimental conditions.
The resulting number of inducing points per experimental condition corresponds to the number of points distributed
uniformly over the wing. Table 3 summarises the MSE computed on the training and testing subsets for various values
of 𝑁ind and for the two initialisation methods. Evidently, the conclusions as stated in the discussion surrounding Table 2
remain the same and are not repeated.
For the SVGP exploitation, all four information sources have been used. As stated previously, pressure tappings are

considered as the most accurate (albeit spatially sparse) source of information of the pressure distribution on the wing.
Its corresponding data set has been divided in equal halves with respect to the experimental conditions for training and
testing purposes. SVGP regression is applied to build the four intermediate surrogate models. For pressure tappings,
only the training data set is used to train the intermediate surrogate model and the inducing points are initialised
randomly. For the RANS, DPSP and XFLR5 information sources, a number of around 5,000 inducing points is initially
shared between all available flow conditions and then distributed uniformly over the wing. For example, considering the
number of flow conditions for RANS and DPSP data sets, these information sources result in 350 and 164 inducing
points per flow condition, respectively. The number of inducing points was chosen as a trade-off between accuracy and
computing time, based on the insight gained earlier. The total time required to train the four intermediate surrogate
models was just under four hours in total. To compute the resulting multifidelity model, the four fidelity functions
(previously stated in Table 1) are defined as different constants in the design space with values characterising the relative
confidence that the user has in the information source. The MSE of each intermediate model as well as the multifidelity
model is computed on the defined training and testing subsets. Specifically, the MSE compares the predictions of each
surrogate model at the training and testing subsets of the pressure tappings with known pressure-tap values at these
locations. Table 4 summarises the computed results and, importantly, shows a relatively low MSE for the multifidelity
model in comparison with the intermediate surrogate models. Indeed, it is comparable with that of the intermediate
surrogate model for the pressure tappings itself. To explain, the pressure-tap data are used to compute the MSE, i.e. the
original known value 𝑦𝑖 in Eq. (16), explaining the low MSE of the pressure-tap surrogate. Hence, calculating the MSE
of a model with respect to the data that trained the model results in a low MSE (training) value. Also, the pressure-tap
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Table 4 Relative accuracy of intermediate and multifidelity surrogate models.

Information source 𝑁ind MSE (training) MSE (testing) final ELBO

Pressure tappings 5000 0.003 0.006 1 × 104

DPSP 4900 0.191 0.188 −1 × 106

RANS 4920 0.067 0.063 −4 × 106

XFLR5 4704 0.093 0.100 −1 × 104

Multifidelity - 0.008 0.010 -

training data are widely spread over the design space in terms of flow conditions (see Table 1), resulting in a globally
well-suited model and the value of the MSE (testing) remains low. If an information source does not have data at the
pressure-tap locations or if the data provided is significantly different, the resulting intermediate surrogate model will
have high MSE. For example, the values from DPSP are similar to those from pressure tappings because the latter are
used to calibrate the DPSP. However, the available DPSP data are concentrated at similar flow conditions (near Mach
number 𝑀 = 0.8 and angle of attack 𝛼 = 3.0°) and therefore do not allow sufficiently accurate predictions on the entire
design space. On the other hand, as seen earlier, XFLR5 predictions are not physically accurate for the transonic Mach
numbers involved because of the underlying assumptions of the aerodynamic model, but the distribution of data over the
design space allows a global prediction closer to the training and test data sets. The intermediate surrogate based on
RANS data has balanced characteristics between these two aspects (accuracy with respect to the value of pressure taps
and exploration of the input space), which explains a lower MSE value. The multifidelity model thus benefits from the
accuracy of the different models and the presence of data from different sources on the design space considered.
Rather than assessing the multifidelity model over the entire design space, specific predictions at desired user-defined

flow conditions are sought. The multifidelity posterior mean and standard deviation of the surface pressure coefficient
for Mach number 𝑀 = 0.72 and angle of attack 𝛼 = 3.0° are plotted in Fig. 8. This set of flow parameters is deliberately
chosen as it is away from most training flow conditions. Nevertheless, the resulting multifidelity posterior mean has a
contour with physically coherent shape. The uniform grid used for initialisation is visible as patterns in the posterior
mean but especially in the posterior standard deviation. For instance, the multifidelity mean in Fig. 8a presents irregular
patterns at the leading edge. The lack of inducing points at some locations of the leading edge prevents the model from
taking into account the strong pressure gradient at those same locations. As observed with fixed flow conditions in
Section IV.A, the position of the inducing points has an influence on the model, which is more accurate around these
points. This explains why the uniform initialisation is chosen. Indeed, with random initialisation, the uneven distribution
of data on the wing for some information source intensifies this phenomenon and makes predictions unevenly distributed
over the design space. This phenomenon diminishes with the number of inducing points. It is therefore important to
consider a sufficient number of inducing points, especially in a high-dimensional problem. A possible improvement
would be to distribute the training time and thus the number of inducing points according to the number of data. Each
source information would have a different number of inducing points depending on the size of the training data set.
As explained in Section II, the ELBO function is the lower bound of the marginal likelihood and describes how well

the model explains the training data. The idea is then to maximise the ELBO to derive the set of model hyperparameters
that explains best the training data. Stochastic gradient descent is used to find optimal values of those parameters. The
ELBO evolution over 20,000 iterations of the Adam optimiser [32] during the training of the four intermediate surrogate
models with SVGP regression is plotted in Fig. 9. An estimate of the final value is computed as the average over the
last 2,000 iterations and included in Table 4. According to the table, the two largest data sets have significantly lower
values of final ELBO. Indeed, each intermediate surrogate model used the same number of inducing points but some
intermediate surrogate models have a significant higher number of training data. It is thus harder for them to capture
the variation of all the training data. For instance, the intermediate surrogate model associated with the RANS data
has a lower value than that of the DPSP data, which may be attributed to the wider spread of the RANS data over the
design space. The calculation time of the method depends on the number of iterations specified. Figure 9 shows that
20,000 iterations is a reasonable choice for obtaining a converged ELBO value from these data, while convergence is
reached in a tenth of that for the pressure taps. The strong oscillations of the ELBO can be explained by a large learning
rate in the Adam optimiser. It is planned in future work to study the influence of the formulation and the settings of
the stochastic optimiser used for SVGP regression. The converged value of ELBO, and thus the model accuracy with
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(a) Mean (b) Standard deviation

Fig. 8 Multifidelity surrogate model predicted at 𝑴 = 0.72 and 𝜶 = 3.0°

Fig. 9 ELBO evolution over 20,000 iterations of the Adam optimiser. The blue lines give the ELBO values every
ten iterations while the red horizontal lines give the final value.

respect to the training data, depends on different elements of the Gaussian process model such as the choice of the
number and the initialisation of the inducing points, the choice of the covariance function and the initialisation of its
(hyper-) parameters and the likelihood variance initialisation. While some of these aspects have been studied in this test
case, further scrutiny of the impact of the different parameters could lead to an optimised ELBO value and therefore to a
better description of the physics by the model.

V. Conclusions
This paper presents a multifidelity data fusion framework based on a variance-weighted combination of Gaussian

process models. Rich exploitation of data describing large aircraft wing pressure distributions obtained from experimental
and computational methods has been carried out. Computation and memory constraints due to the volume of the data
sets have been addressed by applying stochastic variational inference for Gaussian processes. The multifidelity data
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fusion framework has been applied on two- and four-dimensional input spaces using up to four information sources of
different fidelity. The viability of the multifidelity data fusion approach for large data sets arising from high-fidelity
experimental and computational aerodynamics is illustrated. Over a defined design space, the model provides results
with a quantified uncertainty from uncertainty-aware disparate data sources. With standard Gaussian process regression,
the model uncertainty is decreased where more data are available (while observing the practical limit of approximately
10,000 data points) while with SVGP regression this depends on the number and location of so-called inducing points.
It has been demonstrated that there is a trade-off between accuracy and training time.
The use of the fidelity function in this case proves its importance but does not show its full potential to balance the

influence of each intermediate surrogate model on the input space. In order to improve the data fusion framework, future
work will look into a detailed definition of the fidelity function such as taking into account variations in the reliability
of an information source under different flow conditions. Enabling a multifidelity surrogate model with quantified
uncertainty to be obtained, it is possible to apply the framework to address the practical question of sensor placement.
There is a question in choosing the position of pressure taps on a wing in order to calibrate the more advanced optical
pressure-sensitive-paint technique. Bayesian optimisation techniques based on the presented multifidelity surrogate can
be applied to determine the most relevant locations for pressure-tap sensor placement by evaluating different information
sources with a defined computational cost and with a desired accuracy.
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