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Transcriptomic profiling 
of Escherichia coli K‑12 in response 
to a compendium of stressors
Rama P. Bhatia1*, Hande A. Kirit1,2, Alexander V. Predeus1 & Jonathan P. Bollback1*

Environmental perturbations impact multiple cellular traits, including gene expression. Bacteria 
respond to these stressful situations through complex gene interaction networks, thereby inducing 
stress tolerance and survival of cells. In this paper, we study the response mechanisms of E. coli when 
exposed to different environmental stressors via differential expression and co‑expression analysis. 
Gene co‑expression networks were generated and analyzed via Weighted Gene Co‑expression 
Network Analysis (WGCNA). Based on the gene co‑expression networks, genes with similar expression 
profiles were clustered into modules. The modules were analysed for identification of hub genes, 
enrichment of biological processes and transcription factors. In addition, we also studied the link 
between transcription factors and their differentially regulated targets to understand the regulatory 
mechanisms involved. These networks validate known gene interactions and provide new insights into 
genes mediating transcriptional regulation in specific stress environments, thus allowing for in silico 
hypothesis generation.

Regulation of gene expression is important to organisms, as it allows them to survive fluctuating and stressful 
environments without changes in gene content. Bacterial gene expression is regulated by two tightly coupled 
processes, transcription and translation, that allow bacteria to survive numerous environmental insults. Bacterial 
regulatory proteins controlling the flow of genetic information often respond to environment signals by fine-
tuning their transcriptional network. Identifying how they respond to distinct challenges will elucidate common 
and distinct processes that underlie physiological adaptation to challenging environments.

Escherichia coli (E. coli) is found as commensal member of the mammalian gut microbiome, and, in the case 
of some pathotypes, as an enteric  pathogen1, in addition to being omnipresent in soil, water and plants. It is a 
model organism for biological research due to its non-pathogenic properties, easy handling, and a wide nutri-
tional palate. Non-pathogenic E. coli, like the pathogenic variants, respond to sublethal environmental triggers 
by means of a stress response. The stress response may enable survival in addition to increasing the virulence 
potential of the  bacterium2. The role of these plastic stress responses in persistence and virulence highlight the 
importance of studying changes in gene expression in response to stress to understand disease.

In E. coli, a global stress regulatory response is largely mediated by the sigma factors and the Rel/Spo homolog 
(RSH) proteins (p)ppGpp3,4. As such, changes in gene expression as a response to a stressful environment can 
lead to stress-induced cross protection to multiple other stressors. For instance, the stress response elicited by 
encountering carbon or nitrogen starvation also provides protection from high temperature, and otherwise lethal 
dose of hydrogen peroxide and  disinfectants5. Similarly, studies have reported that an acid tolerance response in 
E. coli leads to the induction of heat shock proteins to maintain  homeostasis6.

Gene expression analysis using RNA sequencing (RNA Seq) has been used extensively to elucidate E. coli 
response mechanisms to a variety of growth conditions. To mention a few examples, a transcriptomic analysis 
studying the factors involved in survival of pathogenic E. coli O157: H7 from digestion by the protist Tetrahy-
mena revealed an upregulation of oxidative stress response genes, notably among which are ahPF and katG, that 
play a role in scavenging reactive oxygen species as well as other genes belonging to multiple stress  responses7. 
Another study using a combination of RNA Seq and RT-qPCR investigated the transcriptome of E. coli O26:H11 
in response to subinhibitory concentration of ciprofloxacin and reported an overexpression of the SOS response, 
Type III Secretion System (T3SS) effectors and a downregulation of  motility8.
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In addition to gene expression analysis, the Weighted Gene Co-expression Network Analysis (WGCNA), is an 
extensively used data mining technique for the study of complex biological interactions. It allows us to identify 
co-expression patterns between genes in a particular  condition9. Based on co-expression similarity, the genes 
are clustered into modules that are representatives of specific biological  processes10. The centrality-lethality rule 
points out that deleting a hub protein is more likely to be lethal than deleting a non hub protein. This is due to the 
fact that since a hub protein has multiple interactions, there is a higher probability for these hubs to be involved in 
essential interactions and also account for essential genes in the  cell11,12. Identification of highly connected protein 
nodes (hubs/ hub proteins) from the protein–protein interaction (PPI) network in each co-expressed module 
will help understand the regulatory network architecture of E. coli when grown in a specific growth condition.

Few studies have used WGCNA to study gene co-expression in non-pathogenic E. coli13,14. Bacterial gene 
expression is highly sensitive to shifts in environmental factors like temperature, oxygen, nutrients, etc. To better 
understand the physiological adaptation to environments, it is important to disentangle the complex response 
elicited by bacteria when encountering a combination of multiple stressors in a heterogeneous environment. To 
address this we have used a systematic approach by exposing E. coli to multiple stress conditions that it potentially 
encounters in nature. We have examined global gene expression in E. coli using both differential expression and 
network approaches (i.e., WGCNA). These results clarify co-regulated gene networks, and the transcription 
factors that control differential gene expression.

Materials and methods
Bacterial strains and growth conditions. Overnight cultures of E. coli K12 strain MG1655 grown in 
different environments were diluted 1:1000 and grown at 37 °C and 220 rpm. On reaching the desired  OD600, 
growth was stopped by adding Qiagen RNA Protect Bacteria Reagent (cat no. 76506). The antibiotic concentra-
tions used were determined by performing an minimum inhibitory concentration (MIC) experiment for chlo-
ramphenicol and trimethoprim, and a concentration that gave twice the doubling time compared to growth in 
control media was chosen. The growth conditions are described in detail in Table 1. For each growth condition, 
two biological replicates were grown, except for Rich M9_1, which had four. Different OD600 values account for 
the differential growth rates of E. coli in different conditions.

Library preparation and sequencing. Total RNA was isolated using the Qiagen RNeasy Mini Kit (cat no. 
74104) and checked for purity and intactness with a Agilent 2100 Bioanalyzer. The libraries were prepared with 
ribosomal RNA depletion (Ribo—Zero, NEB) and were sequenced on Illumina HiSeq2500-v4, SR100 mode at 
the VBCF NGS Unit (https:// www. vbcf. ac. at), resulting in 10.7–13.8 million single-end 100 bp Illumina reads 
per sample.

Mapping of sequenced reads. RNA-Seq data quality control, alignment, quantification, and statistics cal-
culations were done using the “simple” workflow of Bacpipe RNA-seq processing pipeline v0.6.0 (https:// github. 
com/ apred eus/ multi- bacpi pe), using the reference genome and annotation of E. coli strain MG1655 from NCBI 
(genome sequence GenBank ID U00096.3; assembly ID GCA_000005845.2). Annotation of tRNA and rRNA 
features was performed independently using Prokka v1.13.3. Basic read quality control was performed with 
FastQC v0.11.8. Reads were aligned to the genome sequence using STAR v2.6.0c using the “--alignIntronMin 20 
--alignIntronMax 19 --outFilterMultimapNmax 20” options. For 20 processed samples, 96.2–97.9% reads were 
mapped successfully; 0.6–2.4% of these mapped to rRNA operons and were removed from further analyses. The 
remaining 92.0–95.5% of reads mapped to the rest of the genome, with 1.0–1.5% mapped to more than 1 loca-
tion. Overall, 10.0–13.1 M reads aligned to the genome uniquely for each sample; another 0.13–0.19 M reads 
aligned non-uniquely to non-rRNA regions.

For RNA-seq quantification, a processed GFF file was generated by Bacpipe, where all features of interest 
were listed as a “gene”, with each gene identified by MG1655 locus tag. Resulting GFF file contained 4566 fea-
tures (4240 protein coding, 147 pseudogene, 71 noncoding RNA, 22 rRNA, and 86 tRNA). Following this, read 
counting was done by featureCounts v1.6.4, using options “-O -M --fraction -t gene -g ID -s 2”, since the library 

Table 1.  Growth conditions representing stress encountered by E. coli.  Rich M9: 1 × M9 salts, 1% CAA, 0.4% 
glucose, 2 mM  MgSO4, 0.1 mM  CaCl2. Poor M9: 1 × M9 salts, 0.4% glycerol, 2 mM  MgSO4, 0.1 mM  CaCl2, 1 
μg/ml thiamine.

Environmental traits Growth characteristics

Rich M9_1 Growth in M9 medium to  OD600 0.12 (4 replicates, cultures grown in deep well plates)

Rich M9_2 Growth in M9 medium to  OD600 0.4

Poor M9 Growth in M9 medium to  OD600 0.12

pH5 Growth in rich M9 medium at pH 5 to  OD600 0.4

Trimethoprim (TMP) Growth in rich M9 medium supplemented with trimethoprim 0.3 µg/mL to  OD600 0.4

Chloramphenicol (CAM) Growth in rich M9 medium supplemented with chloramphenicol 1.2 µg/mL to  OD600 0.4

Low Oxygen (LOX) Growth in rich M9 medium with an overlay of paraffin oil to  OD600 0.4

Lennox Broth (LB) Growth in Lennox (low salt) broth to  OD600 0.4

https://www.vbcf.ac.at
https://github.com/apredeus/multi-bacpipe
https://github.com/apredeus/multi-bacpipe


3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8788  | https://doi.org/10.1038/s41598-022-12463-3

www.nature.com/scientificreports/

was sequenced using a dUTP-based strand-specific protocol. Overall, 95.0–97.6% of initial reads were assigned 
to an annotated feature.

For visualization, scaled gedGraph files were generated using bedtools genomecov with a scaling coefficient of 
109/(number of aligned bases), separately for sense and antisense DNA strands. Bedgraph files were converted to 
bigWig using bedGraphToBigWig utility (Kent utilities, http:// hgdow nload. soe. ucsc. edu/ admin/ exe/ linux. x86_ 
64/). Coverage tracks, annotation, and genome sequence were visualized using JBrowse v1.16.6, and are available 
at the following URL: http:// hinto nlab. com/ jbrow se/ index. html? data= MG1655/ data.

Analysis
Differential gene expression. Differentially expressed genes (DEGs) were identified by subjecting raw 
counts to DeSeq2 package (Love et al., 2014) in R version 4.0.2. The Benjamini and Hochberg False Discovery 
Rate (FDR) criterion proposed by (Reiner-Benaim, 2007) was used to compute Padj values. An absolute value of 
 log2 fold change > 2 (i.e., a fourfold difference in either direction) and an Padj < 0.001 was used as the threshold 
for selecting DEGs.

Stress response network (SRN). Genes involved in E. coli K12 stress response were obtained using GO 
term GO:0006950 (Response to stress) from  Ecocyc15. Protein–protein interaction (PPI) networks were con-
structed for (i) genes in GO:0006950 and (ii) DEGs identified in E. coli K12 grown in carbon and amino acid 
starvation, low oxygen, presence of antibiotic stress and low pH, using the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database version 11.0b using high confidence (cutoff score: 0.7). Each of these 
networks were exported to Cytoscape 3.8.0 and a union of the two networks was created to be used as the final 
Stress Response Network (SRN). Densely connected regions in the network representing important pathways 
were identified using MCODE (Molecular Complex Detection) clustering  algorithm16. Additionally, the net-
work was analysed to identify crucial stress response proteins. Functional enrichment of Gene Ontology (GO) 
annotations was performed using Database for Annotation, Visualization, and Integrated Discovery (DAVID) 
6.8 and was visualized using  MonaGO17.

Co‑expression network analysis. Signed weighted gene co-expression networks were constructed for 
the dataset using the Weighted Co-Expression Network Analysis (WGCNA)  package9 in R version 4.0.2. Firstly, 
to reduce the effect of noise due to low expression, genes where the sum of counts across all samples was < 10 
TPM (Transcripts Per Million) were discarded from further  analysis18 (297 genes were discarded). A variance 
stabilizing transformation was then applied to the TPM counts using the DESeq2 package (Love et al., 2014). 
The goodSamplesGenes function was used to ensure the dataset had no missing values. A distance matrix was 
created for the samples and hierarchical clustering was applied to detect any sample outliers. Hierarchical clus-
tering on the distance matrix of samples did not detect any outliers, hence all samples were retained for the 
analysis. Network topology analysis was performed using multiple soft-thresholding powers to obtain reliable 
scale independence and mean connectivity measures. Based on a scale-free topology criterion, an appropriate 
soft-thresholding power b was chosen using the pickSoftThreshold function. We chose the power for which the 
scale-free topology fit index  (R2) was > 0.80. The Pearson’s correlations were raised to a power (b) of 14 to create a 
weighted adjacency matrix, which was then transformed into a Topological Overlap Matrix (TOM) and the cor-
responding dissimilarity was calculated to reduce the effects of pseudo associations. The topological overlap for 
a pair of genes is calculated by comparing their connections with all other genes in the network. Genes sharing 
the same neighbourhood are said to have a high topological  overlap19. The TOM matrix was used as an input to 
create a dendrogram of genes using average linkage hierarchical clustering. Each leaf in the dendrogram repre-
sents a gene and the highly interconnected and co-expressed genes are grouped together by the branches. Gene 
modules were identified by cutting the branches off the dendrogram using the cutreeDynamic function and 
using a minimum cluster size of 30 genes. Modules with similar expression profiles were merged by clustering 
the module eigengenes and using the mergeCloseModules function with a height cut of 0.25. Eigengenes of the 
new merged modules were calculated and each module was identified with a colour, grey colour representing a 
module of uncorrelated genes. Module eigengenes were correlated to the environmental traits in the dataset to 
look for the most significant associations. P-values were calculated for the correlations and an FDR correction 
was applied to compute Padj values. Significant modules were identified using a cut-off criteria of correlation 
value > 0.7 and Padj ≤ 0.005.

Network construction and identifying hubs. Protein–protein interaction (PPI) networks were con-
structed for the significant modules using the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database version 11.0b with default parameters. The interactions from the STRING database were 
exported to Cytoscape 3.8.0 and the top 10 protein hubs for each module were identified using the Maximal 
Clique Centrality (MCC) algorithm of the CytoHubba plugin. The MCC algorithm was chosen for hub identifi-
cation, as it performs better in comparison with the other algorithms of the CytoHubba plugin and can capture 
both high and low degree essential proteins in a  network20.

Identification and distribution of transcription factors (TFs) and sigma factors. A collection of 
TFs and sigma factors was obtained using the RegulonDB version 10.8 datasets supported by experimental evi-
dence. In order to identify key genes induced by stress, we analysed the DEGs in each of the stress environments 
in our study to look for TFs and their regulated gene targets.

An enrichment analysis was also carried out using the hypergeometric test in R version 4.0.2 to identify mod-
ules highly enriched in TFs and sigma factors and comprehend their association with the co-expression modules.

http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/
http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/
http://hintonlab.com/jbrowse/index.html?data=MG1655/data
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Differentially co‑expressed genes (DCGs). The WGCNA function in the DCGL package in R version 
4.0.2 was used to identify DCGs for relevant pairwise comparisons of different environments.

Alternatively, overlapping genes between the co-expressed genes in the hub modules and the respective DEG 
set were also identified. Briefly, for environmental traits with more than one significant module, co-expressed 
genes were pooled into a single list and the genes overlapping with the DEGs were identified. They are referred 
to as differential co-expression overlap gene set (DCOGs) in this paper. TFs from DCOGs and the gene targets 
regulated by them were identified and the targets showing differential regulation were extracted for further study.

Functional enrichment analysis. Gene Ontology Biological Processes (GO-BP) and Kyoto Encyclopae-
dia of Genes and Genomes (KEGG) Pathway enrichment analysis were carried out using the ClusterProfiler 
package in  R21 to determine the processes and pathways regulated by the co-expression modules, transcription 
factors and their DE targets. Enriched terms were identified using a cut-off criteria of Padj ≤ 0.01.

Results
Identification of differentially expressed genes (DEGs). Transcriptomic changes were studied by 
identifying DEGs showing significant fourfold difference in gene expression in either direction. To under-
stand the effect of environmental stress on gene regulation, we compared antimicrobial (Fig. 1a,c,d), acidic pH 
(Fig. 1a,f), and low oxygen environments (Fig. 1a,e) to the Rich M9 environment. The effect of nutrient limita-
tion was analysed by comparing gene expression data in minimal environments (Rich M9 and poor M9) to a 
nutrient rich growth media (LB) (Fig. 1b). In comparison with the nutritionally rich growth condition, growth in 
poor M9 showed the highest number of DEGs, a total of 746 genes were identified, of which 558 genes were sig-
nificantly up-regulated and 188 genes were significantly down-regulated. In comparison with Rich M9, growth 
in antimicrobial containing environments had the highest number of DEGs.

SRN network. The SRN generated consisted of 1431 nodes and 12,076 edges. Topological analysis of the 
network using the NetworkAnalyzer plugin in Cytoscape 3.8.0 showed that the highest degree was 157 and 
the average was 18.184. Degree of a node represents the number of nodes connected to it. Nodes with a higher 
degree are likely to be considered as hubs or central proteins in the  network22. Using degree of a node as a meas-
ure of centrality, we identified 33 central proteins. We hypothesize that these proteins are crucial in responses to 
a variety of stressors and might also be involved in mediating stress-induced cross-protection. The list of proteins 
central to stress response and their literature annotations can be found as Supplementary Table S1 online. Out of 
the 33 central proteins identified, 24 were found to have known roles in stress response.

Five sub-networks using the DEGs were generated for each of the stress environments—Poor M9, CAM, 
TMP, LOX, and pH5. We observed that a majority (> 70–80%) of these central proteins were present in each 
of the stressor specific sub-networks, except for the LOX sub-network which had 40% of the central proteins 
present. The genes in top five densely connected clusters in the SRN identified by MCODE belonged to Flagel-
lar assembly, Energy metabolism, SOS response and DNA Repair, RNA binding proteins, and Biosynthesis of 
amino acids and secondary metabolites. Genes involved in each of the clusters are outlined in Supplementary 
Table S2 online. Functional enrichment of SRN identified response to heat and oxidative stress, DNA repair, 
SOS response, TCA cycle, anaerobic respiration, nitrate assimilation, flagellum based cell motility and cellular 
response to DNA damage as significantly enriched (Padj < 0.01) (Fig. 2).

Co‑expression networks. Signed networks were constructed to identify genes that are co-expressed in the 
tested growth conditions as they take into consideration the sign of the correlation coefficients and can identify 
modules that are significantly positively or negatively correlated with the categorical variables or experimental 
conditions.

There are trade-offs for maximising  R2 and retaining the number of mean connections, hence a power (β) of 
14 was chosen.The network analysis identified a total of 20 co-expression modules and were assigned a colour 
each indicated at the bottom of the dendrogram.

On introducing environmental traits in the network, significant associations (modules) were identified using 
a threshold of correlation value (between module eigengenes (ME) and traits) > 0.7 and Padj ≤ 0.005. Of the 20, 
7 modules were identified with significant associations (Fig. 2). No modules were found to be significantly 
associated with Rich M9, Rich M9 supplemented with 1.2 µg/ml chloramphenicol (CAM) and Rich M9 acidic 
condition (pH5). Summary about the modules is given in Table 2. Detailed information about the genes in the 
modules can be found in Supplementary Table S3 online.

Functional enrichment analysis was carried out to understand the relationship between the modular bio-
logical functions and the experimental conditions. Analysis of E. coli K-12 grown in nutritionally rich Lennox 
broth identified two modules, green and darkorange (Fig. 3) that are positively and negatively correlated to the 
environment, respectively. The genes in the green module are significantly enriched in biological processes like 
carbohydrate metabolism and transport (Fig. 4a), whereas the darkorange module is involved in vitamin, amino 
acid, and nucleotide metabolic and biosynthetic processes (Fig. 4b). Three modules, blue, darkred and purple 
(Fig. 3) were found to be significantly associated with the minimal growth media—Poor M9. Of these, the darkred 
module (Fig. 4a) was significantly negatively correlated with the growth environment. Some of the GO-BP terms 
associated with the darkred module include ribosome biogenesis, RNA metabolic processes, post-transcriptional 
regulation of gene expression, translation. The blue module was largely involved in organic substance catabolic 
processes and alpha-amino acid biosynthesis and metabolism(Fig. 4b). The purple module was mainly linked 
with small molecule catabolic process and carbohydrate transport (Fig. 4c). Growth of E. coli K-12 in Rich M9 
medium supplemented with trimethoprim 0.3 µg/mL was found to be significantly associated with genes in the 
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Figure 1.  Differential expression in different environments. Venn diagrams depicting the number of genes 
showing significant differential regulation (> 4-fold) in stress environments in comparison to Rich M9 (a) and in 
nutrient limiting conditions compared to Lennox Broth(LB) (b). Volcano plots showing the top 10 differentially 
expressed genes for E.coli K12 grown in Rich M9 with 1.2 µg/mL chloramphenicol (c), 0.3 µg/mL trimethoprim 
(d), low oxygen (e) and pH5 (f), each in comparison with Rich M9. The vertical dotted lines are indicative of the 
 log2 fold change thresholds and the horizontal dotted line depicts an FDR threshold (Padj < 0.001).
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orange module (Fig. 3). The orange module is associated with processes like SOS response, cellular response to 
DNA damage, stress, and external stimulus (Fig. 4c). Genes in the saddle brown module were positively correlated 
with the low oxygen (LOX) environment (Fig. 3) and were majorly involved in cofactor metabolic processes, 
iron-sulfur cluster assembly and protein maturation (Fig. 4c). In the KEGG enrichment analysis, 27 pathways 
were significantly enriched among five of these modules, some of which include microbial metabolism in diverse 
environments, quorum sensing and phosphotransferase system (PTS) (Fig. 4d). No significantly enriched KEGG 
terms were found to be associated with the orange and saddle brown module.

Figure 2.  Cross-talk between significantly enriched GO annotations in SRN. Chord diagram depicting the 
connections between significantly enriched GO annotations (Padj < 0.01). The fragments on the outer ring 
of the circular layout represent the nodes/GO annotations. The nodes are clustered based on the number of 
overlapping genes. The curved arcs within the circle show the interactions between different annotations.
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Protein–protein interaction (PPI) networks and screening hub genes. PPI network interactions 
for the hub modules were obtained from the STRING tool and exported to Cytoscape for network visualization 
(Fig. 5). The MCC algorithm of the CytoHubba plugin in  Cytoscape20 was used to identify the top 10 hub genes 
in each of the modules. Module hubs and their respective functions can be found as Supplementary Table S4 
online.

Distribution of TFs and sigma factors. Transcription factors rewire bacterial gene expression based on 
environmental signals allowing the bacterium to rapidly survive  stress23,24. We found a total of 32 TFs to be dif-
ferentially expressed across Poor M9 (individually compared to LB and Rich M9), CAM, TMP and pH5. The 
frequently occurring TF families found were AraC/Xyls, LuxR/UhpA and LysR. A comprehensive list for each 
stress environment detailing the TFs identified, their family classification, target genes and their differential 
expression status in that environment can be found in Supplementary Tables S5-S9 online. Figure 6a shows dif-
ferential expression of the 32 TFs across Poor M9, CAM, TMP and pH5.

Additionally, the distribution of experimentally validated TFs and sigma factors in the modules was identified. 
Based on the enrichment analysis using the hypergeometric distribution, two modules, green (p-value = 0.001) 
and purple (p-value = 0.02) were found to be significantly enriched in TFs. To identify the pivotal pathways regu-
lated by TFs during stress, a KEGG enrichment analysis was carried out for the differentially regulated TF -gene 
targets only in the purple module (significantly associated with carbon and nitrogen starvation environment). 

Table 2.  Module summary.

Growth condition Module Correlation p-adjusted Gene count

Lennox Broth
Green 0.77 0.002 472

Dark Orange −0.77 0.002 230

Poor M9

Blue 0.97 8e−11 691

Dark Red −0.76 0.002 503

Purple 0.76 0.002 149

TMP Orange 0.83 3e−04 61

LOX Saddle brown 0.97 3e−10 41

Figure 3.  Module-trait relationships. Associations between module eigengenes (ME) and experimental 
conditions. Rows represent MEs and columns represent growth environments. Numbers outside and within 
parentheses are correlation coefficients and FDR corrected p-values of the correlations, respectively. Positive 
correlations are indicated by pink colour and negative correlations by blue colour. Significant associations are 
highlighted with an asterisk sign (*).
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The KEGG analysis identified quorum sensing to be significantly enriched (Padj < 0.01). Out of the seven mod-
ules, only two modules (blue and darkred—significantly associated with Poor M9 environment) were found to 
be significantly enriched (Padj < 0.05) in sigma factors. Figure 6b shows the distribution of sigma factors in the 
blue and darkred modules. The entire list of sigma factor regulated genes in the two modules can be found as 
Supplementary Table S10 online.

Association between differentially expressed and co‑expressed genes. The WGCNA function 
in the DCGL package did not identify any differentially co-expressed genes in the tested pairwise comparisons.

To understand the link between differential expression and co-expression, a list of all genes that were signifi-
cantly co-expressed in an environment were compared to the list of genes differentially expressed in the same 
environment. This analysis was carried out only for the carbon and amino acid starvation condition (Poor M9), 
low oxygen (LOX), and antimicrobial stress (TMP), as significant co-expression was observed only in these envi-
ronments (Fig. 3). DCOGs or the genes commonly identified between differential expression and co-expression 
were extracted for each of the stress environments—Poor M9, LOX and TMP. The list of DCOGs was further 
analysed to look for the presence of TFs and its respective differentially regulated targets. A KEGG pathway 
analysis was carried out for the identified TFs and its differentially regulated targets, in an effort to understand 
the regulation of transcriptional network by bacteria when encountering stress. No TFs were identified in the 
DCOGs for the low oxygen (LOX) environment. Six TFs were identified in the DCOGs for Poor M9 and the 
flagellar assembly pathway was found to be significantly enriched (Padj < 0.01) in KEGG analysis. A single TF 
RcsAB was identified in the DCOGs for environment containing the antibiotic trimethoprim (TMP) and the 
KEGG analysis revealed the biofilm formation pathway to be significantly associated (Padj < 0.01).

Discussion
In this study we use RNA-Seq and WGCNA to understand the functional modules and co-expression networks 
involved in the stress response of E. coli K12.

Figure 4.  Functional and pathway enrichment analysis. Enriched GO-BP and KEGG terms in individual hub 
modules (Padj < 0.01). The colours are representative of modules.
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The stress response network (SRN) identified 33 proteins that are central to E. coli stress response. The pres-
ence of majority of these proteins in stressor specific sub-networks indicates the essentiality of these proteins in 
mediating bacterial response to a variety of stressors.

Figure 5.  PPI networks. Protein–protein interactions of gene products for significant module-environment 
associations identified. Modules were subsetted based on their intramodular connectivity on a scale of 0 to 1. 
Subset of highly interconnected genes in LB (a), Poor M9 (b), Rich M9 with 0.3 µg/mL trimethoprim (c) and 
Rich M9—low oxygen growth (d). Due to the small number of PPIs for orange (trimethoprim) and saddle 
brown (low oxygen), these modules were not subsetted, Node colours represent module colours. Magenta and 
yellow edges show positive (both genes connected are either upregulated or downregulated) and negative (one 
gene is upregulated and the other is downregulated) correlation between genes, respectively.
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The Poor M9 medium is a representative of carbon limitation and amino acid starvation conditions. Analysis 
of TFs showed that genes involved in response to sulfate starvation, curli assembly and transport, biofilm forma-
tion, maintenance of pH homeostasis, arabinose catabolism, glycolate utilization were induced in response to 
starvation, indicative of their role in response to starvation. Based on co-expression analysis, nutrient depletion 
and amino acid stress activates a stringent response pathway in E. coli. The pathway is mediated by genes relA and 
spoT through the synthesis of the alarmone (p)ppGpp25. (p)ppGpp serves a global regulator for gene expression 
and redirects gene transcription from genes required for growth to genes required for survival during  starvation4. 
The modules blue, darkred and purple were identified as being significantly associated with the Poor M9 medium 
(Fig. 3). The darkred module (Fig. 4a) was significantly negatively associated with the Poor M9 medium and was 
involved in translation, ribosome biogenesis, RNA metabolic processes and post-transcriptional regulation of 
gene expression, which is indicative of the induction of the stringent response  pathway26. Although, the genes 
involved in mediating this pathway, relA and spoT, were not found to be differentially expressed in the Poor M9 
medium in our dataset, previous studies have reported a decrease in basal levels of (p)ppGpp with high levels of 
 SpoT27,28. Also, the “hopping model” for RelA mediated (p)ppGpp synthesis suggested that during a stringent 
response, RelA may hop between ribosomes, thereby allowing low enzyme concentrations to produce sufficient 
levels of (p)ppGpp29. However, this model has not been supported by other  studies30,31 and the mechanistic details 
of (p)ppGpp synthesis via RelA remains unclear. Based on this, it can be inferred that the darkred module is 
involved in regulatory interactions leading to the activation of the stringent response pathway under starvation 
conditions. On the other hand, the blue (Fig. 4b) and purple (Fig. 4c) modules, found to be positively correlated 
with Poor M9, are mostly involved in amino acid biosynthesis and import, and catabolism. This can be attrib-
uted to the stringent response as well as the RpoS dependent stress response mechanisms. RpoS is known to 
be a master regulator of stress response, required for adapting to growth in conditions with glycerol as the sole 
carbon source by inducing the carbon scavenging mechanisms in the  cell32. Out of the 558 genes significantly 
upregulated in the Poor M9 medium, 105 were found to be RpoS-dependent. Also, an increase in the (p)ppGpp 
level due to the activation of the stringent response pathway favours the transcription of  s38 (RpoS) dependent 

Figure 6.  Distribution of transcription factors (TFs) and sigma factors. (a) Heatmap showing the  log2 fold 
change value of the 32 differentially expressed TFs (from left to right) in Poor M9 1 compared with LB, Poor M9 
2, CAM, pH5 and TMP compared with Rich M9. (b) Dot plot showing the distribution of sigma factors in blue 
and darkred modules.
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 promoters33. Several studies have shown that a rise in the alarmone ((p)ppGpp) levels, in co-ordination with the 
nutrient responsive transcription factor DksA, activate transcription of genes involved in de novo amino acid 
biosynthesis and  import34–37. The RpoS dependent stress response also activates the transcription of poxB and acs 
(differentially upregulated in Poor M9) involved in carbon metabolism converting pyruvate to acetyl coenzyme 
A as well as other genes involved in catabolic  reactions33,38.

This explains the role of the co-expressed genes identified in the three modules significantly associated with 
Poor M9. Furthermore, our analysis also shows how the (p)ppGpp mediated stringent response activated by 
coexpressed genes in the darkred module feeds into the induction of coexpressed genes in blue and purple mod-
ules, thereby activating the RpoS dependent stress response mechanisms. This explores a potential link between 
the three different coexpressed gene modules in an environment.

Based on the hypergeometric distribution, the purple module was significantly enriched in transcription fac-
tors. A KEGG analysis of the DEG regulated by the TFs revealed the quorum sensing pathway to be significantly 
enriched and the genes mediating the quorum sensing (QS) pathway belong to lsr operon. Although, a previous 
study showed that the presence of glycerol and glycerol-3-phosphate (G3P) repress the lsr  operon39, the lsr operon 
genes are found to be significantly upregulated in our study, making it an interesting experimental candidate for 
further exploration of the role of lsr operon in nutrient limiting conditions. Also, it would be interesting to see 
if there is a link between the stringent response and the lsr mediated QS circuit in E. coli K-12. Links between 
the stringent response and QS regulation have been demonstrated in the enterohemorrhagic E. coli O157:H7 
EDL933  strain40. In addition, the blue and darkred modules were found to be significantly enriched for sigma 
factors. Majority of the genes in these modules were under the control of σ70 (regulation of housekeeping genes), 
followed by σ54 (regulation of genes involved in nitrogen metabolism), σ38 (regulation of stationary phase genes), 
σ32 (heat shock regulating genes), σ24 (extreme heat shock genes) and a small number of genes under the control 
of σ28 (regulation of flagellar proteins)41. The data confirms that a starvation response offers cross-protection to 
high temperatures in E. coli, and is also supported by the GO enrichment analysis of SRN (Fig. 2).

Analysing the transcriptional regulation using the association between differential expression and co-expres-
sion indicated that the Poor M9 medium was enriched in flagellar assembly. Genes involved in the pathway 
were under the control of the CsgD transcription activator/master biofilm regulator, that is known to repress 
the flagellar assembly  genes42. This is in line with the upregulation of the CsgD (Curli subunit gene D) cascade 
(genes involved in curli assembly and transport) and downregulation of the flagellar genes observed in our study. 
E. coli can switch between a sessile lifestyle regulated by CsgD and motile planktonic growth regulated by the 
flagellar cascade depending on environmental signals. Studies have reported a “foraging behaviour” in E. coli 
in response to poor carbon sources (e.g., glycerol, glycine, and succinate), in which bacteria activate the costly 
mechanism of flagellar synthesis in order to access better growth  conditions43–45. Six non-coding, small RNAs 
(sRNA) (OmrA, OmrB, GcvB, RprA, McaS, ArcZ) have been reported to fine-tune the interplay between curli 
mediated biofilm state and flagellar mediated  motility46,47. The expression levels of the six sRNAs were analysed 
and were indicative of curli mediated biofilm formation in Poor M9 in this study. Pathogenic E. coli may undergo 
rapid biofilm dispersal and revert back to single cell planktonic  state48, suggesting that cell motility is related to 
virulence/pathogenicity, whereas biofilm formation is a mechanism of defence against  stress49.

Trimethoprim (TPM) is an inhibitor of bacterial DNA synthesis by inhibiting dihydrofolate reductase, thereby 
preventing thymine  incorporation50. Exposure to antibiotic stress lead to the upregulation of curli genes and 
genes involved in synthesis of colanic acid capsule (See Supplementary Table S8 online). WGCNA identified 
the orange module to be significantly associated with the TMP environment. The module is mostly involved in 
SOS response and cellular response to stimulus via recA expression (Fig. 4c), which confirms the facts known 
regarding SOS induction caused by trimethoprim. The SOS response is also known to induce filament production 
on exposure to trimethoprim by transcribing the SOS cell division inhibitor, sulA50,51, found to be differentially 
upregulated in the TMP environment in our study. The rcsA gene encoding the RcsAB transcription factor was 
identified in the DCOGs for TMP, and its differentially regulated targets (csgDEF) were enriched in biofilm for-
mation. Bacteria are known to form biofilms as part of the SOS response, providing them with protection from 
antibiotic exposure and other harsh  environments42,52. The Rcs system is a negative regulator of the csg operons 
in an Rcs-A dependent  manner53, however, there is a significant upregulation of genes csgD, csgE and csgF of the 
csgDEFG operon as well as csgB of the csgBA operon in our study. The regulation of curli expression is a highly 
complex interaction, with more than ten transcription factors controlling the csgD promoter, each responding to 
a different aspect in stress related  environments54,55. It will be interesting to explore if the antibiotic stress signal 
causes a derepression of the Rcs system to activate curli expression and biofilm formation.

The stress response generated by low oxygen environment was studied by sealing the E. coli cultures with a 
layer of paraffin oil, thereby limiting gas exchange. An air-saturated medium leads to endogenous production of 
hydrogen peroxide, initiating an oxidative stress response in E. coli56. Hydrogen peroxide signals the activation 
of the OxyR regulon, leading to the transcription of hydrogen peroxide resistance  genes57,58, of which katG, ahPF 
and trxC were among the top 10 upregulated genes (Fig. 1e), grxA was significantly upregulated and ahpC was 
threefold upregulated in the LOX environment. Hydrogen peroxide destabilises bacterial iron-sulfur clusters and 
cause the release of molecular  iron59. This explains the involvement of genes co-expressed in the saddle brown 
module significantly associated with LOX in the de novo assembly of iron-sulfur clusters via the ics operon 
(Fig. 4c). Although, hydrogen peroxide can inactivate the ics operon and induce the suf operon to compensate 
for the iron-sulfur cluster assembly, the effect is reversed with a decline in hydrogen peroxide  stress60. Since, 
we did not see a strong expression of the suf operon genes in the LOX environment, combining the differential 
expression and co-expression analysis, it can be inferred that hydrogen peroxide is detoxified by the resistance 
genes, allowing for the ics operon to assemble and repair the damaged iron-sulfur clusters.
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Conclusions
In this study, we applied WGCNA on RNA-Seq data to identify relevant gene modules and the biological func-
tions involved in E. coli stress response. Linking co-expression, differential expression and transcription factors 
allows us to find candidate genes that might help explore and further our understanding of the stress response 
cascade. In addition, further analysis of the module hubs might give useful insights into the regulation of co-
expressed genes in a particular environment. Our data can lay the ground work for hypothesis based experimental 
validation of gene functions potentially involved in E. coli stress response mechanisms.

Received: 18 December 2021; Accepted: 5 May 2022

References
 1. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140. https:// doi. org/ 10. 1038/ nrmic 

ro818 (2004).
 2. Chung, H. J., Bang, W. & Drake, M. A. Stress response of Escherichia coli. Comprehens. Rev. Food Sci. Food Saf. 5, 52–64. https:// 

doi. org/ 10. 1111/j. 1541- 4337. 2006. 00002.x (2006).
 3. Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 21, 174–180. https:// doi. org/ 

10. 1016/j. tim. 2013. 01. 002 (2013).
 4. Magnusson, L. U., Farewell, A. & Nystrom, T. ppGpp: A global regulator in Escherichia coli. Trends Microbiol. 13, 236–242. https:// 

doi. org/ 10. 1016/j. tim. 2005. 03. 008 (2005).
 5. Matin, A., Auger, E. A., Blum, P. H. & Schultz, J. E. Genetic basis of starvation survival in non-differentiating bacteria. Annu. Rev. 

Microbiol. 43, 293–314. https:// doi. org/ 10. 1146/ annur ev. mi. 43. 100189. 001453 (1989).
 6. Olson, E. R. Influence of pH on bacterial gene expression. Mol. Microbiol. 8, 5–14. https:// doi. org/ 10. 1111/j. 1365- 2958. 1993. tb011 

98.x (1993).
 7. George, A. S., Rehfuss, M. Y. M., Parker, C. T. & Brandl, M. T. The transcriptome of Escherichia coli O157: H7 reveals a role for 

oxidative stress resistance in its survival from predation by Tetrahymena. FEMS Microbiol. Ecol. https:// doi. org/ 10. 1093/ femsec/ 
fiaa0 14 (2020).

 8. Valat, C. et al. Overall changes in the transcriptome of Escherichia coli O26:H11 induced by a subinhibitory concentration of 
ciprofloxacin. J. Appl. Microbiol. 129, 1577–1588. https:// doi. org/ 10. 1111/ jam. 14741 (2020).

 9. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. (2008).
 10. van Dam, S., Võsa, U., van der Graaf, A., Franke, L. & de Magalhães, J. P. Gene co-expression analysis for functional classification 

and gene-disease predictions. Brief. Bioinform. 19, 575–592. https:// doi. org/ 10. 1093/ bib/ bbw139 (2017).
 11. Crua Asensio, N., Munoz Giner, E., de Groot, N. S. & Torrent Burgas, M. Centrality in the host-pathogen interactome is associated 

with pathogen fitness during infection. Nat. Commun. 8, 14092. https:// doi. org/ 10. 1038/ ncomm s14092 (2017).
 12. He, X. & Zhang, J. Why do hubs tend to be essential in protein networks?. PLoS Genet. 2, e88. https:// doi. org/ 10. 1371/ journ al. 

pgen. 00200 88 (2006).
 13. Liu, W. et al. Construction and analysis of gene co-expression networks in Escherichia coli. Cells https:// doi. org/ 10. 3390/ cells 70300 

19 (2018).
 14. Wang, J. et al. Global metabolomic and network analysis of Escherichia coli responses to exogenous biofuels. J. Proteome Res. 12, 

5302–5312. https:// doi. org/ 10. 1021/ pr400 640u (2013).
 15. Keseler, I. M. et al. EcoCyc: Fusing model organism databases with systems biology. Nucleic Acids Res. 41, D605-612. https:// doi. 

org/ 10. 1093/ nar/ gks10 27 (2013).
 16. Bader, G. D. & Hogue, C. W. An automated method for finding molecular complexes in large protein interaction networks. BMC 

Bioinform. 4, 2. https:// doi. org/ 10. 1186/ 1471- 2105-4-2 (2003).
 17. Xin, Z. et al. MonaGO: A novel Gene Ontology enrichment analysis visualisation system. bioRxiv. (2020).
 18. Kroger, C. et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe 

14, 683–695. https:// doi. org/ 10. 1016/j. chom. 2013. 11. 010 (2013).
 19. Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 

22. https:// doi. org/ 10. 1186/ 1471- 2105-8- 22 (2007).
 20. Chin, C. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8, 1–4 (2014).
 21. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. 

OMICS J. Integr. Biol. 16, 284–287. https:// doi. org/ 10. 1089/ omi. 2011. 0118 (2012).
 22. Fornito, A., Zalesky, A. & Bullmore, E. T. Fundamentals of Brain Network Analysis (eds. Fornito, A., Zalesky, A., & Bullmore, E.T.). 

115–136. (Academic Press, 2016).
 23. Feugeas, J.-P. et al. Links between transcription, environmental adaptation and gene variability in Escherichia coli: Correlations 

between gene expression and gene variability reflect growth efficiencies. Mol. Biol. Evol. 33, 2515–2529. https:// doi. org/ 10. 1093/ 
molbev/ msw105 (2016).

 24. Guo, M. S. & Gross, C. A. Stress-induced remodeling of the bacterial proteome. Curr. Biol. 24, R424-434. https:// doi. org/ 10. 1016/j. 
cub. 2014. 03. 023 (2014).

 25. Bullwinkle, T. J. & Ibba, M. Translation quality control is critical for bacterial responses to amino acid stress. Proc. Natl. Acad. Sci. 
113, 2252–2257 (2016).

 26. Sanchez-Vazquez, P., Dewey, C. N., Kitten, N., Ross, W. & Gourse, R. L. Genome-wide effects on Escherichia coli transcription 
from ppGpp binding to its two sites on RNA polymerase. Proc. Natl. Acad. Sci. U S A 116, 8310–8319. https:// doi. org/ 10. 1073/ 
pnas. 18196 82116 (2019).

 27. Germain, E. et al. YtfK activates the stringent response by triggering the alarmone synthetase SpoT in Escherichia coli. Nat. Com-
mun. 10, 5763. https:// doi. org/ 10. 1038/ s41467- 019- 13764-4 (2019).

 28. Murray, D. K. & Bremer, H. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J. Mol. Biol. 259, 
41–57. https:// doi. org/ 10. 1006/ jmbi. 1996. 0300 (1996).

 29. Wendrich, T. M., Blaha, G., Wilson, D. N., Marahiel, M. A. & Nierhaus, K. H. Dissection of the mechanism for the stringent factor 
RelA. Mol. Cell 10, 779–788. https:// doi. org/ 10. 1016/ s1097- 2765(02) 00656-1 (2002).

 30. Li, W. et al. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli. Mol. Microbiol. 99, 571–585. https:// 
doi. org/ 10. 1111/ mmi. 13252 (2016).

 31. English, B. P. et al. Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc. Natl. Acad. 
Sci. U S A 108, E365-373. https:// doi. org/ 10. 1073/ pnas. 11022 55108 (2011).

 32. Martínez-Gómez, K. et al. New insights into Escherichia coli metabolism: Carbon scavenging, acetate metabolism and carbon 
recycling responses during growth on glycerol. Microb. Cell Fact. 11, 46. https:// doi. org/ 10. 1186/ 1475- 2859- 11- 46 (2012).

https://doi.org/10.1038/nrmicro818
https://doi.org/10.1038/nrmicro818
https://doi.org/10.1111/j.1541-4337.2006.00002.x
https://doi.org/10.1111/j.1541-4337.2006.00002.x
https://doi.org/10.1016/j.tim.2013.01.002
https://doi.org/10.1016/j.tim.2013.01.002
https://doi.org/10.1016/j.tim.2005.03.008
https://doi.org/10.1016/j.tim.2005.03.008
https://doi.org/10.1146/annurev.mi.43.100189.001453
https://doi.org/10.1111/j.1365-2958.1993.tb01198.x
https://doi.org/10.1111/j.1365-2958.1993.tb01198.x
https://doi.org/10.1093/femsec/fiaa014
https://doi.org/10.1093/femsec/fiaa014
https://doi.org/10.1111/jam.14741
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1038/ncomms14092
https://doi.org/10.1371/journal.pgen.0020088
https://doi.org/10.1371/journal.pgen.0020088
https://doi.org/10.3390/cells7030019
https://doi.org/10.3390/cells7030019
https://doi.org/10.1021/pr400640u
https://doi.org/10.1093/nar/gks1027
https://doi.org/10.1093/nar/gks1027
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1016/j.chom.2013.11.010
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/molbev/msw105
https://doi.org/10.1093/molbev/msw105
https://doi.org/10.1016/j.cub.2014.03.023
https://doi.org/10.1016/j.cub.2014.03.023
https://doi.org/10.1073/pnas.1819682116
https://doi.org/10.1073/pnas.1819682116
https://doi.org/10.1038/s41467-019-13764-4
https://doi.org/10.1006/jmbi.1996.0300
https://doi.org/10.1016/s1097-2765(02)00656-1
https://doi.org/10.1111/mmi.13252
https://doi.org/10.1111/mmi.13252
https://doi.org/10.1073/pnas.1102255108
https://doi.org/10.1186/1475-2859-11-46


13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8788  | https://doi.org/10.1038/s41598-022-12463-3

www.nature.com/scientificreports/

 33. Flores, N. et al. New insights into the role of sigma factor RpoS as revealed in Escherichia coli strains lacking the phosphoenolpyru-
vate: Carbohydrate phosphotransferase system. J. Mol. Microbiol. Biotechnol. 14, 176–192 (2007).

 34. Roghanian, M., Semsey, S., Lobner-Olesen, A. & Jalalvand, F. (p)ppGpp-mediated stress response induced by defects in outer 
membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci. Rep. 9, 2934. https:// doi. org/ 10. 1038/ s41598- 
019- 39371-3 (2019).

 35. Kim, J.-S. et al. DksA–DnaJ redox interactions provide a signal for the activation of bacterial RNA polymerase. Proc. Natl. Acad. 
Sci. 115, E11780–E11789 (2018).

 36. Traxler, M. F. et al. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol. Microbiol. 
68, 1128–1148. https:// doi. org/ 10. 1111/j. 1365- 2958. 2008. 06229.x (2008).

 37. Durfee, T., Hansen, A. M., Zhi, H., Blattner, F. R. & Jin, D. J. Transcription profiling of the stringent response in Escherichia coli. 
J. Bacteriol. 190, 1084–1096. https:// doi. org/ 10. 1128/ JB. 01092- 07 (2008).

 38. Olvera, L. et al. Transcription analysis of central metabolism genes in Escherichia coli. Possible roles of σ38 in their expression, as 
a response to carbon limitation. PLoS ONE 4, e7466. https:// doi. org/ 10. 1371/ journ al. pone. 00074 66 (2009).

 39. Xavier, K. B. & Bassler, B. L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. 
Bacteriol. 187, 238–248. https:// doi. org/ 10. 1128/ JB. 187.1. 238- 248. 2005 (2005).

 40. Oh, K. & Cho, S.-H. Interaction between the quorum sensing and stringent response regulation systems in the enterohemorrhagic 
Escherichia coli O157:H7 EDL933 strain. J. Microbiol. Biotechnol. 24(3), 401–407 (2014).

 41. Burgess, R. R. Encyclopedia of Genetics (eds. Brenner, S. & Miller, J.H.). 1831–1834. (Academic Press, 2001).
 42. Gomez-Gomez, J. M. & Amils, R. Crowning: A novel Escherichia coli colonizing behaviour generating a self-organized corona. 

BMC Res. Notes 7, 108. https:// doi. org/ 10. 1186/ 1756- 0500-7- 108 (2014).
 43. Vichi, J. et al. High-throughput transcriptome sequencing and comparative analysis of Escherichia coli and Schizosaccharomyces 

pombe in respiratory and fermentative growth. PLoS ONE 16, e0248513. https:// doi. org/ 10. 1371/ journ al. pone. 02485 13 (2021).
 44. Zhao, K., Liu, M. & Burgess, R. R. Adaptation in bacterial flagellar and motility systems: From regulon members to ‘foraging’-like 

behavior in E. coli. Nucleic Acids Res. 35, 4441–4452. https:// doi. org/ 10. 1093/ nar/ gkm456 (2007).
 45. Liu, M. et al. Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol. Chem. 280, 

15921–15927. https:// doi. org/ 10. 1074/ jbc. M4140 50200 (2005).
 46. Chambers, J. R. & Sauer, K. Small RNAs and their role in biofilm formation. Trends Microbiol. 21, 39–49. https:// doi. org/ 10. 1016/j. 

tim. 2012. 10. 008 (2013).
 47. Thomason, M. K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to 

changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17–35. https:// doi. org/ 10. 1111/j. 1365- 2958. 2012. 07965.x 
(2012).

 48. Sheikh, J. et al. A novel dispersin protein in enteroaggregative Escherichia coli. J. Clin. Invest. 110, 1329–1337. https:// doi. org/ 10. 
1172/ JCI16 172 (2002).

 49. Rossi, E., Paroni, M. & Landini, P. Biofilm and motility in response to environmental and host-related signals in Gram negative 
opportunistic pathogens. J. Appl. Microbiol. https:// doi. org/ 10. 1111/ jam. 14089 (2018).

 50. Lewin, C. S. & Amyes, S. G. The role of the SOS response in bacteria exposed to zidovudine or trimethoprim. J. Med. Microbiol. 
34, 329–332. https:// doi. org/ 10. 1099/ 00222 615- 34-6- 329 (1991).

 51. Thi, T. D. et al. Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. 
J. Antimicrob. Chemother. 66, 531–538. https:// doi. org/ 10. 1093/ jac/ dkq496 (2011).

 52. Podlesek, Z. & ŽgurBertok, D. The DNA damage inducible SOS response is a key player in the generation of bacterial persister 
cells and population wide tolerance. Front. Microbiol. https:// doi. org/ 10. 3389/ fmicb. 2020. 01785 (2020).

 53. Vianney, A. et al. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 
(Reading) 151, 2487–2497. https:// doi. org/ 10. 1099/ mic.0. 27913-0 (2005).

 54. Ogasawara, H., Yamamoto, K. & Ishihama, A. Regulatory role of MlrA in transcription activation of csgD, the master regulator 
of biofilm formation in Escherichia coli. FEMS Microbiol. Lett. 312, 160–168. https:// doi. org/ 10. 1111/j. 1574- 6968. 2010. 02112.x 
(2010).

 55. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147. https:// doi. org/ 10. 1146/ 
annur ev. micro. 60. 080805. 142106 (2006).

 56. Ravindra Kumar, S. & Imlay, J. A. How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J. 
Bacteriol. 195, 4569–4579. https:// doi. org/ 10. 1128/ JB. 00737- 13 (2013).

 57. Baez, A. & Shiloach, J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide 
dismutase. Microb. Cell Fact. 12, 23. https:// doi. org/ 10. 1186/ 1475- 2859- 12- 23 (2013).

 58. Zheng, M. et al. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. 
Bacteriol. 183, 4562–4570. https:// doi. org/ 10. 1128/ JB. 183. 15. 4562- 4570. 2001 (2001).

 59. Djaman, O., Outten, F. W. & Imlay, J. A. Repair of oxidized iron-sulfur clusters in Escherichia coli. J. Biol. Chem. 279, 44590–44599. 
https:// doi. org/ 10. 1074/ jbc. M4064 87200 (2004).

 60. Jang, S. & Imlay, J. A. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the 
Suf system to compensate. Mol. Microbiol. 78, 1448–1467. https:// doi. org/ 10. 1111/j. 1365- 2958. 2010. 07418.x (2010).

Acknowledgements
We thank Andrea J. Betancourt and Seth M. Barribeau for valuable discussions and contributions to the 
manuscript.

Author contributions
R.P.B., H.A.K. and J.P.B. designed the study and experiments together. H.A.K. performed wet-lab experiments. 
A.V.P. carried out the mapping of sequenced reads and TPM calculations. A.V.P. wrote Mapping of sequenced 
reads section in the Materials and Methods. R.P.B. analyzed and interpreted the data. R.P.B. wrote the manuscript. 
All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 12463-3.

Correspondence and requests for materials should be addressed to R.P.B. or J.P.B.

https://doi.org/10.1038/s41598-019-39371-3
https://doi.org/10.1038/s41598-019-39371-3
https://doi.org/10.1111/j.1365-2958.2008.06229.x
https://doi.org/10.1128/JB.01092-07
https://doi.org/10.1371/journal.pone.0007466
https://doi.org/10.1128/JB.187.1.238-248.2005
https://doi.org/10.1186/1756-0500-7-108
https://doi.org/10.1371/journal.pone.0248513
https://doi.org/10.1093/nar/gkm456
https://doi.org/10.1074/jbc.M414050200
https://doi.org/10.1016/j.tim.2012.10.008
https://doi.org/10.1016/j.tim.2012.10.008
https://doi.org/10.1111/j.1365-2958.2012.07965.x
https://doi.org/10.1172/JCI16172
https://doi.org/10.1172/JCI16172
https://doi.org/10.1111/jam.14089
https://doi.org/10.1099/00222615-34-6-329
https://doi.org/10.1093/jac/dkq496
https://doi.org/10.3389/fmicb.2020.01785
https://doi.org/10.1099/mic.0.27913-0
https://doi.org/10.1111/j.1574-6968.2010.02112.x
https://doi.org/10.1146/annurev.micro.60.080805.142106
https://doi.org/10.1146/annurev.micro.60.080805.142106
https://doi.org/10.1128/JB.00737-13
https://doi.org/10.1186/1475-2859-12-23
https://doi.org/10.1128/JB.183.15.4562-4570.2001
https://doi.org/10.1074/jbc.M406487200
https://doi.org/10.1111/j.1365-2958.2010.07418.x
https://doi.org/10.1038/s41598-022-12463-3
https://doi.org/10.1038/s41598-022-12463-3


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8788  | https://doi.org/10.1038/s41598-022-12463-3

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Transcriptomic profiling of Escherichia coli K-12 in response to a compendium of stressors
	Materials and methods
	Bacterial strains and growth conditions. 
	Library preparation and sequencing. 
	Mapping of sequenced reads. 

	Analysis
	Differential gene expression. 
	Stress response network (SRN). 
	Co-expression network analysis. 
	Network construction and identifying hubs. 
	Identification and distribution of transcription factors (TFs) and sigma factors. 
	Differentially co-expressed genes (DCGs). 
	Functional enrichment analysis. 

	Results
	Identification of differentially expressed genes (DEGs). 
	SRN network. 
	Co-expression networks. 
	Protein–protein interaction (PPI) networks and screening hub genes. 
	Distribution of TFs and sigma factors. 
	Association between differentially expressed and co-expressed genes. 

	Discussion
	Conclusions
	References
	Acknowledgements


