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I INTRODUCTION

Abstract

We investigate the near-wake flow of an Ahmed body which is characterized by switches

between two asymmetric states that are mirrors of each other in the spanwise direction. The

work focuses on the relationship between the base pressure distribution and the near-wake

velocity field. Using direct numerical simulation obtained at a Reynolds number of 104

based on incoming velocity and body height as well as Bonnavion and Cadot’s experiment

(Journal of Fluid Mechanics 2018), we perform Proper Orthogonal Decomposition (POD)

of the base pressure field. The signature of the switches is given by the amplitude of

the most energetic, antisymmetric POD mode. However switches are also characterized

by a global base suction decrease, as well as deformations in both vertical and lateral

directions, which all correspond to large-scale symmetric modes. Most of the base suction

reduction is due to the two most energetic symmetric modes. Using the linear stochastic

estimation technique of [2], we show that the large scales of the near-wake velocity field

can be recovered to some extent from the base pressure modes. Conversely, it is found that

the dominant pressure modes and the base suction fluctuation can be well estimated from

the POD velocity modes of the near-wake.

I. INTRODUCTION

Bluff bodies are characterized by a large pressure drag, the reduction of which

represents a significant industrial challenge in order to reduce vehicle emissions or

to increase the range of electric vehicles. The present study focuses on the flat-

backed Ahmed body, which represents a simplified model to study the aerodynamics

of trucks, SUVs and other flat-backed vehicles. For sufficiently large ground heights,

the near-wake of the body is characterized by bistability, corresponding to asymmet-
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ric (reflection-symmetry-breaking or RSB) mirror states [3]. The variations of the

pressure drag are correlated with the occurrence of intermittent switches between

these two states, during which the flow becomes briefly symmetric. It has been

shown that reducing the deviation of the wake leads to a drag reduction, which has

motivated several control attempts ([4–8]).

A central question is to determine how the different velocity motions contribute to

the total drag. A large number of studies have therefore focused on the description

of the flow dynamics. Beside the large-scale switches between the quasi-stationary

states, which take place on a time scale of O(1000) convective time units based on

the incoming flow velocity U and body height H, the flow is also characterized by

three-dimensional vortex shedding, with a characteristic frequency of 0.2 U/H, as

well as deformations of the recirculation zone associated with low frequencies in the

range 0.05-0.1 U/H. These time scales have been identified in experiments [9, 10] and

confirmed by numerical simulations [11–15]. We note that all times will be expressed

in convective time units based on U et H throughout the paper.

Understanding the connection between the base pressure and the near-wake flow

is a key ingredient of a successful control strategy. Stochastic estimation, originally

developed in a conditional average framework, can provide useful insight into this

relationship. Linear Stochastic Estimation (LSE) was first developed by Adrian [16]

to identify coherent structures in a turbulent boundary layer, then its interest for

control purposes was quickly made apparent [17], which spurred on a number of

variants.

Several implementations of LSE are based on the combination of linear stochastic

estimation with Proper Orthogonal Decomposition (POD). Bonnet et al. [18] first

proposed an estimate based on a low-dimensional representation of the flow. We note
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that a connection can be made between linear stochastic estimation and the extended

Proper Orthogonal Decomposition proposed by Borée [19]. Extensions of the method

include spectral linear stochastic estimation, which has been applied to shear layers

[20] as well as jets [21], and multi-time delay stochastic estimation, which has been

applied to separated flows such as a backward-facing step [22], a cavity shear layer

[23], or the wake of a bluff body [24]. In [2] a new LSE-POD variant was proposed

in which POD is applied to both the conditional and unconditional variables. The

method was applied to a turbulent boundary layer and provided a highly resolved

velocity estimate in both space and time from the combination of spatially resolved

measurements with a low time resolution and and time resolved, but spatially sparse

measurements.

In many studies, wall pressure measurements are used as the conditional variable

to estimate the velocity field, since wall pressure sensors are non-intrusive and can

easily be fitted on a body. However, it can be argued that the inverse problem is

also of interest, as it allows identification of the velocity patterns that create pressure

fluctuations, following boundary layer studies [25, 26].

The purpose of the present paper is to investigate how the near-wake velocity field

depends on the base pressure, but also to determine how the fluctuations of the base

pressure field are related to the dominant wake motions. To do this, we consider

a direct numerical simulation of the flow behind an Ahmed body at a moderate

Reynolds number Re = 104. We apply POD to extract the near-wake velocity

modes, as well as the dominant base pressure structures, which we compare with the

experimental results of Bonnavion and Cadot [1].

The paper is organized as follows: after describing the numerical and experimental

settings, we carry out POD analysis of the base pressure and of the near-wake velocity
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field. Using POD-based linear stochastic estimation, we investigate the relationship

between the most energetic POD pressure modes and the dominant POD velocity

modes in the near-wake.

II. METHODOLOGY

A. Numerical simulation

The characteristics of the simulation have been given in [27]. The dimensions of

the squareback Ahmed body are the same as in Evrard et al. [6] , L = 1.124m,H =

0.297m, W = 0.350m. The ground clearance (distance from the body to the lower

boundary of the domain) was taken equal to C = 0.334H in the simulation. The

code SUNFLUIDh, which is a finite volume solver, is used to solve the incompress-

ible Navier-Stokes equations. The Reynolds number based on the fluid viscosity ν,

incoming velocity U and Ahmed body height H is 104. The temporal discretization

is based on a second-order backward Euler scheme, with implicit treatment of the

viscous terms and explicit representation of the convective terms (Adams-Bashforth

scheme). The divergence-free velocity and pressure fields are obtained from a incre-

mental projection method [28]. We use (512×256×256) grid points in, respectively,

the longitudinal direction x, the spanwise direction y, and the vertical direction z,

with a time step set to ∆t = 5 10−4H/U (the CFL number never exceeded 0.4). The

flow was integrated over more than 500H/U.
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B. Constitution of the POD Dataset

The investigation described in this paper relies on POD analysis, which is detailed

in the Appendix. We apply the method of snapshots [29] to both the fluctuating

pressure c′p and velocity fields u′ where cp(t) = Cp + c′p(t), u(t) = U + u′(t) and

capital letters refer to as time averaged values. The pressure p has been translated

into a pressure coefficient defined as cp = 2p−p∞
ρU2 where ρ is the air density, p∞ and U

respectively the free stream pressure and velocity. The velocity u is given in U units.

Due to the comparatively short extent of the time period, which is a well-known

limitation of numerical simulations [30], the set of snapshots was artificially enlarged

in order to enforce the statistical symmetry that would be observed if the simulation

could be run for a long enough period of time. A discussion of the theoretical

importance of symmetry for the application of Proper Orthogonal Decomposition can

be found in [31]. Data augmentation procedures have been applied to different types

of flows such as turbulent channel flows [32, 33], Rayleigh-Bénard convection [34]. In

the case of the Ahmed body, the statistical symmetry that needs to be enforced is

the reflection with respect to the mid-vertical plane. An extended discussion of the

procedure can be found in [35], which we briefly summarize here.

Statistical symmetry in the set of snapshots was enforced by adding to each snap-

shot extracted from the simulation the image of that snapshot through a reflec-

tion symmetry with respect to the mid-vertical plane. A consequence of the sym-

metrization procedure is that each (asymmetric) snapshot is represented as a sum

of reflection-symmetric and anti-reflection-symmetric POD modes. Results shown in

this paper were based on a set of 600 snapshots, 300 of which are directly extracted

from the simulation at a sampling rate of 1 convective time unit, and 300 are virtual
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snapshots obtained from the original ones by application of the reflection symmetry.

The time span corresponds to that used for POD in [27], that is 300 convective time

units, 200 of which correspond to the duration of a switch. As will be shown in the

next sections, convergence of the POD procedure was established with respect to the

number of snapshots considered for both the velocity and the pressure fields. The

last 200 time units were used to test the estimation procedure for both the pressure

and the velocity fields.

The normalized amplitudes of the k − th modes for the pressure and velocity

components will be respectively referred to as apk and avk. We will refer to the corre-

sponding estimated amplitudes as apek and avek .

III. PRESSURE FIELD

POD was first applied to the fluctuating pressure field on the base of the body

(see Appendix) :

c′p(y, z, t) =
∑
k

√
λp
ka

p
k(t)ϕ

p
k(y, z). (1)

As mentioned above, the data set was symmmetrized, in order to compensate for the

possible lack of statistical symmetry due to the presence of very long time scales in

the dataset. However no significant difference was observed in the dominant modes

corresponding to the symmetrized and the unsymmetrized (original) dataset.

POD analysis of the numerical pressure field was compared with the experimental

results described in [1] for an Ahmed body having the same base aspect ratio and at

a Reynolds number of Re = 4× 105. The same symmetrization procedure was used

for the experimental data. The pressure was recovered from 21 sensors on the base

of the body and then interpolated on a regular 10× 10 grid to compute the spatial
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autocorrelation tensor from about 20000 snapshots spanning 6000 convective time

units . Since POD is a linear procedure, applying POD to the fluctuating interpolated

field did not change the dimension of the data set, which is limited by the number

of sensors and is therefore equal to 20. We note that the decomposition of the

fluctuating pressure field yielded the same dominant modes at all ground heights

investigated in the experiment for which bistability was observed and therefore we

chose to show only results corresponding to the ground height C = 0.164H. We

note that statistical symmetry was not generally observed in the experiments, in

particular since only a limited number (about 10) of switches was observed.

Figure 1 compares the experimental and the numerical POD spectrum. The

numerical POD spectra were computed for two different acquisition rates associated

with time separations of δU/H = 0.5 and δU/H = 1, respectively corresponding to a

total number of snapshots of 1200 and 600 snapshots. The spectra were nearly iden-

tical, with maximal differences between the eigenvalues which represented less than

1% of the total variance. The correlation coefficients between the POD amplitudes

were larger than 0.95 for at least the first 20 modes, which capture more than 95%

of the total variance. Convergence of the POD decomposition was therefore estab-

lished. In order to make comparison between the experiment and the DNS possible,

each spectrum was rescaled with the sum of the eigenvalues. A remarkably good

agreement is observed, given the discrepancy in Reynolds number and spatial reso-

lution between the simulation and the experiment. Both spectra are characterized

by a similar rate of decrease λn ∼ n−2 for the largest-order modes. Based upon ex-

amination of the spectrum, we chose to focus on the first four modes, which capture

82 % of the fluctuating energy in the simulation, with respective contributions of 55

%, 14%, 10% and 3 % of the fluctuations.
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The spatial modes are represented in figure 2. As is standard in the POD proce-

dure [31], the spatial modes are normalized, i.e.
∫
base ϕn(y, z)ϕm(y, z)dydz = δnm,

which allows direct comparison between the numerical simulation and the experi-

ment over the same domain. The first fluctuating POD mode n = 1 in figure 2 is

antisymmetric and corresponds to the well-identified wake deviation. The evolution

of POD pressure amplitudes for both the simulation (left) and the experiment (right)

can be seen in figure 3, which represents only the original (i.e. non-symmetrized)

snapshots. The coefficients are normalized and filtered with a moving average of

10 convective time units for both experimental and numerical datasets. Evidence

of switches in both the simulation and the experiment can be seen in the evolution

of the first mode in the top row of figure 3. The total extent of the experimental

data was more than 6000 convective time units, and a time window of 600 time

units was selected to focus on the switching process. The times associated with the

switches are indicated by a red patch in the figures. In both the simulation and the

experiment, we can see that the normalized amplitude of mode 1 hovers near the

characteristic value 1 for about 100 times units then switches sign during about 100

units, then remains negative for 100 units around the value -1, then experiences a

switch back towards the positive value. Although it seems on this particular example

that switches are slightly longer in the simulation than in the experiment, evidence

of longer-lasting switches was found in the experimental data. In order to provide

more robust statistical comparison, we also used joint histograms to compare the

experiment and the simulation, which are presented in figure 4 - again only the

original snapshots were used to compute the histograms.

For n ≥ 2, the three fluctuating modes are symmetric, as can be seen in figure 2.

The second mode n = 2 in figure 2 corresponds to a pressure variation of constant
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sign over the base. Its amplitude takes positive values during the switches, as can

be seen in figure 3, and corroborated by the histograms in figure 4 a). This indicates

that the second POD mode produces a global pressure increase during a switching

event. The third mode n = 3 is characterized by strong gradients in the vertical

direction. Its characteristic amplitude is weakly negative for quasi-stationary states

but no specific behavior could be clearly identified from the histograms in figure 4.

We note that the first three modes are similar to the pressure modes identified by [9]

for the Windsor body (see figure 4 from their paper) and in particular display the

same symmetries. The fourth mode n = 4 is dominated by vertical pressure gradients

at the edges of the recirculation zone. Examination of the histograms in figure 4 c)

shows that its characteristic amplitude is negative around quasi-stationary states

and becomes positive during the switch, so that the pressure decreases on the lateral

sides during the switch, which suggests that the local curvature is increased at the

edges of the recirculation zone during the switch.

Characteristic amplitudes for the quasi-stationary state and the switching event

can be defined from conditional averages based on the deviation amplitude ap1: a
p,s
n≥2 =

E[apn||a
p
1| < 0.1] and ap,eqn≥2 = E[apn||a

p
1| > 0.9]. In figure 5, a reconstruction based on

these characteristic amplitudes shows the evolution of the pressure distribution as

the flow goes through one switch. The pressure at the base globally increases by 5%

during the switch mostly due to the second mode, indicating a drag reduction. We

note that the drag reduction level is comparable to the 7% observed by [9] during a

switch.

Figure 6(a) shows the contribution of each mode to the variance of the base

suction coefficient cb = − 1
HW

∫∫
base

cp(y, z)dydz, defined as < c′2bn > / < c′2b > using

the classical Reynolds decomposition cb(t) = Cb+c′b(t). The base suction, also called
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base drag is the base contribution to the drag coefficient. The variance of each POD

mode

< c′2bn >= λn < apn
2 >

(
1

HW

∫∫
base

Φp
n(y, z)dydz

)2

(2)

is simply related to the base suction variance by < c′2b >=
∑

n < c′2bn >. Only sym-

metric modes for which
∫∫

base
Φp

n(y, z)dydz)
2 ̸= 0 provide a non-zero contribution,

and it can be seen in figure 6(a) that most of the base suction variations are due to the

combined action of modes 2 and 3. Figure 6(b) shows the average contribution to the

base suction coefficient for the characteristic events corresponding to a switch (s) or

the wake in the quasi-stationary state (eq) identified earlier. Both contributions are

evaluated with the conditional averaging < c′bn >eq=
√
λna

p,eq
n

1
HW

∫∫
base

Φp
n(y, z)dydz

and < c′bn >s=
√
λna

p,s
n

1
HW

∫∫
base

Φp
n(y, z)dydz. We can see that the most significant

contribution is that of mode 2 during the switch, which is opposite to that of mode

3 and mode 4. The global effect of the first four POD modes is therefore to decrease

the base suction during the switch.

IV. POD ANALYSIS OF THE VELOCITY FIELD IN THE NEAR WAKE

We now consider the velocity field in the near-wake region, taken here as −0.5H <

y < 0.5H, −H < z < 0, 3.8H < x < 5.5H. The modes are computed from the

autocorrelation tensor limited to the near-wake region defined above and extended

to the full domain, as explained in the Appendix.

An important question is to establish whether velocity POD modes are converged.

To do this, we compared results for two datasets consisting respectively of 600 snap-

shots and 400 snapshots. The difference between the eigenvalues represented less

than 0.5% of the total variance, and the Pearson correlation coefficient between the
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amplitudes was larger than 0.9 for the first eight POD modes, and larger than 0.8

for modes 9 and 10, as can be seen in table I.

Figure 7 shows the mean velocity field in the mid-height plane restricted to the

POD domain. A cross-stream section of the modes is shown at a streamwise location

at x = 4.5H in the middle of the recirculation zone, corresponding to the vertical

line. On the velocity contours the isoline corresponding to a zero mean velocity is

indicated in order to delimitate the contours of the recirculation zone. The first mode

corresponds to the antisymmetric deviation mode, associated with an increased flow

speed on one side, and a decreased flow speed on the other side. The second mode is

symmetric and was termed the switch mode, as it did not appear in a earlier study

of a data set that did not include switches (see [35]). It corresponds to a velocity

difference between the top and the bottom part of the recirculation zone. Modes 3,

5 and 7 are symmetric and characterized by intense fluctuations at the bottom of

the recirculation zone. Modes 4, 6 and 8 are antisymmetric and are characterized

by gradients in both the vertical and horizontal directions. Modes 9 and 10 are

symmetric and associated with strong velocity fluctuations in the middle upper part

of the recirculation zone.

To complement the description of the modes, figure 8 represents a view of the spa-

tial modes extended to the entire horizontal mid-plane along with the power spectral

density of the normalized amplitude avn. The vertical black lines show the limits of

the POD domain. Figure 8 shows that the first two fluctuating modes corresponding

to the deviation (lateral asymmetry) and the switch (vertical asymmetry) modes

extend in the far wake outside the reciculation zone. The next-order modes are a

mixture of vortex shedding dynamics characterized by a peak at the frequency of

fH/U ∼ 0.2, as can be seen particularly for modes 4, 6, 8, which correspond to
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lateral vortex shedding, while the vertical vortex shedding motions associated with

modes 3, 5, 7 cannot be seen on the mid-plane view (see [27] for a fuller discus-

sion). These modes are characterized by strong shear layers on the outside of the

the recirculation zone and are associated with intense fluctuations in the far wake.

Results are consistent with those obtained with a decomposition applied to the

full numerical domain ([35], [27]). The hierarchy of the modes is generally similar,

however some variations can be observed in their relative energy content. The relative

importance of the switch mode to the deviation mode λ2/λ1 remains about the same

(26% versus 21% in the near wake), however the relative importance of the vortex

shedding modes compared to the energy of the deviation mode λ1 is decreased by

almost a factor of 2, as it changes from 62% in the full domain to only 34% in the

far wake. In contrast, the relative content of the next-order modes (modes 7 to 10)

decreases by less than 30%, from 36% to 23%.

V. POD-BASED LINEAR STOCHASTIC ESTIMATION

A. Method

In this section we describe the principle of the POD-LSE method [2]. We suppose

that two different quantities h and q can be extracted simultaneously from a set of N

snapshots. The quantities may have different dimensions (in particular be scalars)

and can be defined on the same or different parts of the domain. Independent POD

decomposition of each set of snapshots yields

q(x, ti) =
N∑

n=1

a
q
n(ti)ϕ

q

n
(x), h(x, ti) =

N∑
n=1

ahn(ti)ϕ
h

n
(x). (3)

The idea is then to use POD to estimate one quantity (for instance h) based on
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measurements of the other (for instance q). For each time ti, i = 1, . . . N , the N

coefficients ahn(ti) can be obtained from the mapping

ahn(ti) = M
hq

nka
q

k(ti) (4)

where

Mhq = Ah(Aq)T

Ah and Aq are respectively the matrices consisting of rows of coefficients ahk(ti) and

ahk(ti):

Ah =



ah1(t1) ah1(t2) . . . ah1(tN)

ah2(t1) ah2(t2) . . . ah2(tN)

. . .

ahN(t1) ahN(t2) . . . ah1(tN)

.


The expression is exact for the snapshots of the database ti if the full N−th order

matrix is used. However if the matrix is truncated, one can still obtain an estimate

at any time t of the first Nh ≤ N POD amplitudes based on a subset of Nq ≤ N

POD amplitudes using

ahen (t) = M̃
hq

nka
q

k(t) (5)

where M̃ is a sub-matrix of M containing the Nh rows and Nq columns. A high value

of the matrix entry M̃
hq

nk indicates that the k-th mode of q has a strong influence on

the n-th mode of h. The final step of the estimation method is to normalize the

estimate with its standard deviation on the set of POD snapshots:

ahek (t) →
√
N√∑N

i=1|a
he
k (ti)|2

ahek (t)
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In the paper the method is applied to the base pressure p and the velocity field

u in the near-wake. The aim is to determine whether a linear relationship exists

between the base pressure modes and the velocity modes. The estimation matrix

is determined from the snapshots constituting the set used to compute the POD

modes, which spanned 300 time units of the simulation. It is then tested to recon-

struct the velocity (resp. pressure) field from pressure (resp. velocity) measurements

corresponding to the next 200 time units. Since the turbulent flow is characterized

by apparently chaotic dynamics, the snapshots constituting the test database can be

assumed to be decorrelated from those used to compute the POD modes.

B. Determining the velocity field from the pressure

We first investigate the dependence of the velocity field on the base pressure in

the near wake. We then examine the largest velocity modes, focusing on the large

scales with a moving time average of 5 convective time units, which corresponds to

the vortex shedding period. Figure 9 and 10 compare the evolution of the exact

velocity mode amplitude with its pressure-based estimation using

aven (t) = M̃ vp
nka

p
k(t) (6)

We can see that the first two POD velocity modes, i.e the deviation and the switch

mode, are well estimated from the pressure coefficients. Figure 9 shows that the first

fluctuating velocity and pressure modes are perfectly correlated, while the switch

mode can be estimated from the difference from the second and third POD pressure

modes. Table I presents the correlation coefficient between the velocity POD am-

plitudes and the pressure-based estimates. We can see that modes 8, 9 and 10 are

very well correlated with the pressure estimation, in particular if a moving average
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of length 5 time units is applied in order to remove the high frequencies associated

with vortex shedding. Figure 10 shows that the POD amplitude of modes 9 and 10 is

well estimated. Comparison of figures 2 and 7 suggests that this could be due to the

good spatial correlation of modes 9 and 10 with the most energetic pressure modes.

Figure 11 compares instantaneous fields with their projection on the ten most

energetic velocity modes and estimation for three different times (indicated by the

vertical lines in figures 9 and 10) corresponding to a quasi-stationary asymmetric

state, a nearly symmetric state, and the opposite asymmetric state. We can see that

the large scales of the near-wake flow are very well estimated from the pressure base

measurements. However, the vortex shedding modes are not very well reconstructed

from the pressure modes, which suggests that these modes have a limited influence

on the dynamics of the recirculation zone. This is supported by examination of figure

7, which suggests that the fluctuations associated with modes are strongest outside

the recirculation zone.

C. Reconstructing the pressure from the near-wake field

Figure 12 compares the real pressure POD amplitudes (extracted from the sim-

ulation) apn with their estimation apen , based on 10 velocity modes using equation

(5):

apen (t) = M̃pv
nka

v
k(t). (7)

A good agreement is observed, with a nearly perfect correlation for the first fluctuat-

ing mode corresponding to the deviation amplitude, and high correlation coefficients

particularly for the second and the third modes as can be seen in table II. We note

that due to antisymmetry, the dominant deviation pressure mode does not contribute
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to the base suction fluctuation c′b(t), the variations of which are due to symmetric

modes only.

Figure 13 shows that the second pressure mode is mostly determined by velocity

modes 2, 3, and 9 while the third pressure mode was mostly associated with mode

2 and 10. This is not entirely surprising since the imprint of the pressure modes on

velocity modes 9 and 10 was found to be large. Since the pressure modes 2 and 3

contribute most to the pressure coefficient (figure 6), we constructed an estimation

of the pressure coefficient from the second and third POD pressure modes

c′eb = −
3∑

n=2

λp,1/2
n apen

1

HW

∫∫
base

ϕp
ndydz. (8)

which we compared with the equivalent projection

c′projb = −
3∑

n=2

λp,1/2
n apn

1

HW

∫∫
base

ϕp
ndydz. (9)

Results are shown in figure 14. As expected, the agreement between the full

pressure coefficient and its projection is excellent. A very good agreement is obtained

for the estimation. The correlation coefficient between the full drag and estimated

one is 0.7 and increases to 0.8 with a moving average of length 5 convective units.

VI. CONCLUSION

We have investigated how the wake dynamics in the flow around an Ahmed body

can be described using POD analysis of the base pressure. Decomposition of the

pressure field shows that the switch is characterized by the following modifications

of the pressure distribution: i) a global increase over the body base ii) a gradient in

the vertical direction and iii) a symmetric lateral gradient within the recirculation
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zone corresponding to a pressure increase along the mid-vertical plane and decrease

in the outer recirculation zone. These features were identified in both the numerical

simulation and in experimental results. The signature of the pressure modes could

clearly be identified in the evolution of the dominant POD velocity modes. The fluc-

tuating velocity field, in particular the most energetic deviation and switch modes,

was well recovered from pressure measurements. Conversely, variations of the pres-

sure drag coefficient, which are essentially determined by the largest two symmetric

pressure modes, could be well recovered from the near-wake velocity field.
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Appendix A: POD

The main tool of analysis used in this paper is Proper Orthogonal Decomposition

(POD) [36]. We consider a spatio-temporal vector field q̃(x, t) defined on a spatial

domain D. q̃(x, t) will refer either to the pressure field p or the velocity field u. The

fluctuating part of the field q (with respect to its temporal mean) an be expressed

as a superposition of spatial modes

q(x, t) =
∑
k

ãk(t)ϕk
(x) (A1)

where the spatial modes ϕ
k
are orthogonal (and can be made orthonormal), i.e∫

D

ϕ
k
(x).ϕ

m
(x)dx = δkm,
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and the amplitudes ak are uncorrelated. The modes can be ordered by decreasing

energy λ1 ≥ λ2 ≥ . . . ≥ λk =< ãkãk >, where < . > represents a time average.

The amplitudes ãk can be obtained from the knowledge of the spatial modes by

projection of the vector field q onto the spatial modes

ãk(t) =

∫
Ω

u(x, t).ϕ
k
(x)dx. (A2)

The modes ϕk and the values λk can be obtained from the eigenproblem (direct

method) ∫
D

C(x, x′).ϕq

m
(x′)dx′ = λkϕk

(x) (A3)

where C is the spatial autocorrelation tensor

C(x, x′) =< q(x, t)q(x′, t′) >

Alternatively, if the number of snapshots N used to compute C is smaller than

the spatial dimension of the problem, one can obtain the modes through the method

of snapshots where

C̄ij.Ajk = λkAik (A4)

where Ajk = ak(tj) and C̄ is the temporal autocorrelation matrix

C̄ij =
1

N

∫
D

q(x, ti).q(x, tj)dx

We note that spatial modes obtained for quantity q on a domainD can be extended

to another quantity q′ (which can be for instance the same quantity q on a domain

D′) [19] using

ϕq′

n (x, t) =
N∑
k=1

aqn(tk)q
′(x, tk) (A5)

In the paper we will consider pressure and velocity decompositions and will index

the corresponding amplitudes as respectively apk and avk. In the paper we will consider

normalized amplitudes defined as ak = ãk/
√
λk.
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FIG. 1. POD pressure spectrum in the simulation and in the experiment [1].

C(avn, a
ve
n ) n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

instantaneous 0.94 0.67 0.30 0.16 0.04 0.31 0.30 0.35 0.40 0.57
averaged over τ = 5 0.99 0.93 0.27 0.62 0.08 0.52 0.41 0.60 0.73 0.81

TABLE I. Correlation coefficient between the velocity POD amplitude and the pressure-

based estimation ; top row: for instantaneous amplitudes; bottom row: for amplitudes

filtered with a moving average of 5 convective time units.

C(apn, a
pe
n ) n = 1 n = 2 n = 3 n = 4 n = 5

instantaneous 0.94 0.67 0.82 0.31 0.37
averaged over τ = 5 0.99 0.86 0.91 0.44 0.80

TABLE II. Correlation coefficient between the pressure POD amplitude and the velocity-

based estimation; top row: for instantaneous amplitudes; bottom row: for amplitudes

filtered with a moving average of 5 convective time units.
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Experiment Simulation

n=1

n=2

n=3

n=4

FIG. 2. POD pressure modes; Left: Experiment; Right: Simulation.

25



A POD

Experiment Simulation

FIG. 3. Evolution of the normalized pressure POD amplitudes in the simulation (left) and

the experiment (right). Top row: Modes 1 and 2; Bottom row: modes 3 and 4. A moving

average of 10 convective time units was used.
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a) b) c)

FIG. 4. Comparison of the joint histograms of the POD amplitudes apn1 and apnk for

k = 2, 3, 4. The color contours correspond to the numerical data. The dashed line contours

correspond to the same levels for the experiment. The contour levels are the following: a)

k = 2: 0.003, 0.005, 0.01, 0.02, 0.03; b) k = 3: 0.0025, 0.005, 0.01, 0.024; c) k = 4: 0.002,

0.005, 0.01, 0.015, 0.02, 0.025. A moving average of 10 convective time units was used.

FIG. 5. Reconstruction of the mean pressure coefficient distribution at the base cp(y, z)

using the symmetrized mean and the first four POD modes based on the characteristic

amplitudes ap,eqn and ap,sn left) quasistationary state Cp+
√
λp
1ϕ

p
1+

∑4
n=2

√
λp
na

p,eq
n ϕp

n; center)

switch state Cp +
∑4

n=2

√
λp
na

p,s
n ϕp

n; right) symmetric quasistationary state Cp −
√
λp
1ϕ

p
1 +∑4

n=2

√
λp
na

p,eq
n ϕp

n.
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FIG. 6. Left ) Relative contribution of the POD modes to the variations of the base pressure

coefficient (see text). Right) Contribution of the modes corresponding to the characteristic

states ap,eqn and ap,sn .
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mean streamwise velocity n=1 n=2

n=3 n=4

n=5 n=6

n=7 n=8

n=9 n=10

FIG. 7. Top left: mean flow in the mid-vertical plane. The vertical dashed line represents

the cross-section on which the streamwise component of the POD modes is represented in

the right two columns. The black contour corresponds to a zero mean velocity.
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FIG. 8. Velocity modes computed over the near-wake volume (delimited with the thick

black line) and extended to the full domain, viewed in a horizontal plane at mid-height.
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a) b)

c) d)

FIG. 9. a)b): Velocity mode contribution to first POD mode Mvp
1n (a) and second POD

mode Mvp
2n (b). c)d): Velocity POD amplitudes for the first (c) and second mode (d):

the top row corresponds to the exact coefficient avn. The bottom row corresponds to the

estimated coefficient av,en . The dotted line represents the instantaneous signal, and the red

thick line to the signal filtered with a moving average of 5 time units. The vertical dashed

line corresponds to the limit of the POD snapshot acquisition. The three red dotted lines

correspond to the times selected for reconstruction in figure 11.
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a) b)

c) d)

FIG. 10. a)b): Influence coefficients Mvp
9n (a) andMvp

10n (b). c)d): Velocity POD amplitudes

for the ninth (c) and tenth mode (d): legend as in figure 9

.
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t = 300 t = 385 t = 495

FIG. 11. Streamwise velocity field at three instants t = 300, 385, 495 materialized by the

vertical dotted lines in figures 9 and 10 ; Top row: DNS field; Middle row: Field projected

on the first 10 POD velocity modes; Bottom row: Field estimated from the first 10 POD

pressure modes.
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a) b)

c) d)

FIG. 12. Base pressure POD coefficients estimated from the near-wake velocity field.

The top row of each subfigure corresponds to the exact coefficient apn. The bottom row

corresponds to the estimated coefficient ap,en . The dotted line represents the instantaneous

coefficient, and the red thick line to its filtered with a moving average of 5 time units. The

dashed vertical line corresponds to the limit of the POD snapshot acquisition. a) n = 1 b)

n = 2 c) n = 3 d) n = 4.
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FIG. 13. Pressure contribution to second velocity mode Mpv
2n (a) and third velocity mode

Mpv
3n (b)
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FIG. 14. Base drag coefficient: top: DNS; middle: reconstruction based on pressure modes

2 and 3; bottom: estimation based on POD velocity modes. The dashed vertical line

corresponds to the limit of the POD snapshot acquisition.
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