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Abstract12

A graph is temporally connected if there exists a strict temporal path, i.e., a path whose edges have13

strictly increasing labels, from every vertex u to every other vertex v. In this paper we study temporal14

design problems for undirected temporally connected graphs. The basic setting of these optimization15

problems is as follows: given a connected undirected graph G, what is the smallest number |λ| of16

time-labels that we need to add to the edges of G such that the resulting temporal graph (G,λ) is17

temporally connected? As it turns out, this basic problem, called Minimum Labeling (ML), can18

be optimally solved in polynomial time. However, exploiting the temporal dimension, the problem19

becomes more interesting and meaningful in its following variations, which we investigate in this20

paper. First we consider the problem Min. Aged Labeling (MAL) of temporally connecting the21

graph when we are given an upper-bound on the allowed age (i.e., maximum label) of the obtained22

temporal graph (G,λ). Second we consider the problem Min. Steiner Labeling (MSL), where23

the aim is now to have a temporal path between any pair of “important” vertices which lie in a24

subset R ⊆ V , which we call the terminals. This relaxed problem resembles the problem Steiner25

Tree in static (i.e., non-temporal) graphs. However, due to the requirement of strictly increasing26

labels in a temporal path, Steiner Tree is not a special case of MSL. Finally we consider the27

age-restricted version of MSL, namely Min. Aged Steiner Labeling (MASL). Our main results28

are threefold: we prove that (i) MAL becomes NP-complete on undirected graphs, while (ii) MASL29

becomes W[1]-hard with respect to the number |R| of terminals. On the other hand we prove that30

(iii) although the age-unrestricted problem MSL remains NP-hard, it is in FPT with respect to the31

number |R| of terminals. That is, adding the age restriction, makes the above problems strictly32

harder (unless P=NP or W[1]=FPT).33
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1 Introduction45

A temporal (or dynamic) graph is a graph whose underlying topology is subject to discrete46

changes over time. This paradigm reflects the structure and operation of a great variety of47

modern networks; social networks, wired or wireless networks whose links change dynamically,48

transportation networks, and several physical systems are only a few examples of networks49

that change over time [23,32,34]. Inspired by the foundational work of Kempe et al. [25], we50

adopt here a simple model for temporal graphs, in which the vertex set remains unchanged51

while each edge is equipped with a set of integer time-labels.52

I Definition 1 (temporal graph [25]). A temporal graph is a pair (G,λ), where G = (V,E)53

is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to54

every edge of G a set of discrete time-labels.55

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. Throughout56

the paper we may refer to “time-labels” simply as “labels” for brevity. Furthermore, the age57

(or lifetime) α(G,λ) of the temporal graph (G,λ) is the largest time-label used in it, i.e.,58

α(G,λ) = max{t ∈ λ(e) : e ∈ E}. One of the most central notions in temporal graphs is59

that of a temporal path (or time-respecting path) which is motivated by the fact that, due to60

causality, entities and information in temporal graphs can “flow” only along sequences of61

edges whose time-labels are strictly increasing, or at least non-decreasing.62

I Definition 2 (temporal path). Let (G,λ) be a temporal graph, where G = (V,E) is the63

underlying static graph. A temporal path in (G,λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk),64

where (e1, e2, . . . , ek) is a path in G, ti ∈ λ(ei) for every i = 1, 2, . . . , k, and t1 < t2 < . . . < tk.65

A vertex v is temporally reachable (or reachable) from vertex u in (G,λ) if there exists66

a temporal path from u to v. If every vertex v is reachable by every other vertex u in67

(G,λ), then (G,λ) is called temporally connected. Note that, for every temporally connected68

temporal graph (G,λ), we have that its age is at least as large as the diameter dG of the69

underlying graph G. Indeed, the largest label used in any temporal path between two70

anti-diametrical vertices cannot be smaller than dG. Temporal paths have been introduced71

by Kempe et al. [25] for temporal graphs which have only one label per edge, i.e., |λ(e)| = 172

for every edge e ∈ E, and this notion has later been extended by Mertzios et al. [27] to73

temporal graphs with multiple labels per edge. Furthermore, depending on the particular74

application, both variations of temporal paths with non-decreasing [6,25,26] and with strictly75

increasing [15,27] labels have been studied. In this paper we focus on temporal paths with76

strictly increasing labels. Due to the very natural use of temporal paths in various contexts,77

several path-related notions, such as temporal analogues of distance, diameter, reachability,78

exploration, and centrality have also been studied [1–3,6,8,10,11,13,15–18,20,26,27,31,33,35].79

Furthermore, some non-path temporal graph problems have been recently introduced80

too, including for example temporal variations of maximal cliques [7, 36], vertex cover [4, 21],81

vertex coloring [30], matching [28], and transitive orientation [29]. Motivated by the need of82

restricting the spread of epidemic, Enright et al. [15] studied the problem of removing the83

smallest number of time-labels from a given temporal graph such that every vertex can only84

temporally reach a limited number of other vertices. Deligkas et al. [12] studied the problem85

of accelerating the spread of information for a set of sources to all vertices in a temporal86

graph, by only using delaying operations, i.e., by shifting specific time-labels to a later time87

slot. The problems studied in [12] are related but orthogonal to our temporal connectivity88

problems. Various other temporal graph modification problems have been also studied, see89

for example [6, 11,13,16,33].90
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The time-labels of an edge e in a temporal graph indicate the discrete units of time (e.g.,91

days, hours, or even seconds) in which e is active. However, in many real dynamic systems,92

e.g., in synchronous mobile distributed systems that operate in discrete rounds, or in unstable93

chemical or physical structures, maintaining an edge over time requires energy and thus94

comes at a cost. One natural way to define the cost of the whole temporal graph (G,λ) is95

the total number of time-labels used in it, i.e., the total cost of (G,λ) is |λ| =
∑
e∈E |λe|.96

In this paper we study temporal design problems of undirected temporally connected97

graphs. The basic setting of these optimization problems is as follows: given an undirected98

graph G, what is the smallest number |λ| of time-labels that we need to add to the edges99

of G such that (G,λ) is temporally connected? As it turns out, this basic problem can be100

optimally solved in polynomial time, thus answering to a conjecture made in [2]. However,101

exploiting the temporal dimension, the problem becomes more interesting and meaningful in102

its following variations, which we investigate in this paper. First we consider the problem103

variation where we are given along with the input also an upper bound of the allowed age104

(i.e., maximum label) of the obtained temporal graph (G,λ). This age restriction is sensible105

in more pragmatic cases, where delaying the latest arrival time of any temporal path incurs106

further costs, e.g., when we demand that all agents in a safety-critical distributed network are107

synchronized as quickly as possible, and with the smallest possible number of communications108

among them. Second we consider problem variations where the aim is to have a temporal109

path between any pair of “important” vertices which lie in a subset R ⊆ V , which we call110

the terminals. For a detailed definition of our problems we refer to Section 2.111

Here it is worth noting that the latter relaxation of temporal connectivity resembles the112

problem Steiner Tree in static (i.e., non-temporal) graphs. Given a connected graph113

G = (V,E) and a set R ⊆ V of terminals, Steiner Tree asks for a smallest-sized subgraph114

of G which connects all terminals in R. Clearly, the smallest subgraph sought by Steiner115

Tree is a tree. As it turns out, this property does not carry over to the temporal case.116

Consider for example an arbitrary graph G and a terminal set R = {a, b, c, d} such that G117

contains an induced cycle on four vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da118

but not the edges ac or bd. Then, it is not hard to check that only way to add the smallest119

number of time-labels such that all vertices of R are temporally connected is to assign one120

label to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.121

The main underlying reason for this difference with the static problem Steiner Tree is that122

temporal connectivity is not transitive and not symmetric: if there exists temporal paths123

from u to v, and from v to w, it is not a priori guaranteed that a temporal path from v to u,124

or from u to w exists.125

Temporal network design problems have already been considered in previous works.126

Mertzios et al. [27] proved that it is APX-hard to compute a minimum-cost labeling for127

temporally connecting an input directed graph G, where the age of the graph is upper-128

bounded by the diameter of G. This hardness reduction was strongly facilitated by the129

careful placement of the edge directions in the constructed instance, in which every vertex130

was reachable in the static graph by only constantly many vertices. Unfortunately this131

cannot happen in an undirected connected graph, where every vertex is reachable by all132

other vertices. Later, Akrida et al. [2] proved that it is also APX-hard to remove the largest133

number of time-labels from a given temporally connected (undirected) graph (G,λ), while still134

maintaining temporal connectivity. In this case, although there are no edge directions, the135

hardness reduction was strongly facilitated by the careful placement of the initial time-labels136

of λ in the input temporal graph, in which every pair of vertices could be connected by only137

a few different temporal paths, among which the solution had to choose. Unfortunately138
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this cannot happen when the goal is to add time-labels to an undirected connected graph,139

where there are potentially multiple ways to temporally connect a pair of vertices (even if we140

upper-bound the largest time-label by the diameter).141

Summarizing, the above technical difficulties seem to be the reason why the problem of142

adding the minimum number of time-labels with an age-restriction to an undirected graph to143

achieve temporal connectivity remained open until now for the last decade. In this paper we144

overcome these difficulties by developing a hardness reduction from a variation of the problem145

Max XOR SAT (see Theorem 12 in Section 3) where we manage to add the appropriate146

(undirected) edges among the variable-gadgets such that simultaneously (i) the distance147

between any two vertices from different variable gadgets remains small (constant) and (ii)148

there is no shortest path between two vertices of the same variable gadget that leaves this149

gadget.150

Our contribution and road-map. In the first part of our paper, in Section 3, we151

present our results on Min. Aged Labeling (MAL). This problem is the same as ML,152

with the additional restriction that we are given along with the input an upper bound on the153

allowed age of the resulting temporal graph (G,λ). Using a technically involved reduction154

from a variation of Max XOR SAT, we prove that MAL is NP-complete on undirected155

graphs, even when the required maximum age is equal to the diameter dG of the input static156

graph G.157

In the second part of our paper, in Section 4, we present our results on the Steiner-tree158

versions of the problem, namely on Min. Steiner Labeling (MSL) and Min. Aged159

Steiner Labeling (MASL). The difference of MSL from ML is that, here, the goal is to160

have a temporal path between any pair of “important” vertices which lie in a given subset161

R ⊆ V (the terminals). In Section 4.1 we prove that MSL is NP-complete by a reduction162

from Vertex Cover, the correctness of which requires showing structural properties of163

MSL. Here it is worth recalling that, as explained above, the classical problem Steiner164

Tree on static graphs is not a special case of MSL, due to the requirement of strictly165

increasing labels in a temporal path. Furthermore, we would like to emphasize here that, as166

temporal connectivity is neither transitive nor symmetric, a straightforward NP-hardness167

reduction from Steiner Tree to MSL does not seem to exist. For example, as explained168

above, in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner169

tree is sub-optimal for MSL.170

In Section 4.2 we provide a fixed-parameter tractable (FPT) algorithm for MSL with171

respect to the number |R| of terminal vertices, by providing a parameterized reduction to172

Steiner Tree. The proof of correctness of our reduction, which is technically quite involved,173

is of independent interest, as it proves crucial graph-theoretical properties of minimum174

temporal Steiner labelings. In particular, for our algorithm we prove (see Lemma 14)175

that, for any undirected graph G with a set R of terminals, there always exists at least one176

minimum temporal Steiner labeling (G,λ) which labels edges either from (i) a tree or from177

(ii) a tree with one extra edge that builds a C4.178

In Section 4.3 we prove that MASL is W[1]-hard with respect to the number |R| of179

terminals. Our results actually imply the stronger statement that MASL is W[1]-hard even180

with respect to the number of time-labels of the solution (which is a larger parameter than181

the number |R| of terminals).182

Finally, we complete the picture by providing some auxiliary results in our preliminary183

Section 2. More specifically, in Section 2.1 we prove that ML can be solved in polynomial184

time, and in Section 2.2 we prove that the analogue minimization versions of ML and MAL185

on directed acyclic graphs are solvable in polynomial time.186
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2 Preliminaries and notation187

Given a (static) undirected graph G = (V,E), an edge between two vertices u, v ∈ V188

is denoted by uv, and in this case the vertices u, v are said to be adjacent in G. If the189

graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to denote the oriented190

edge from u to v (resp. from v to u). The age of a temporal graph (G,λ) is denoted by191

α(G,λ) = max{t ∈ λ(e) : e ∈ E}. A temporal path (e1, t1), (e2, t2), . . . , (ek, tk) from vertex192

u to vertex v is called foremost, if it has the smallest arrival time tk among all temporal193

paths from u to v. Note that there might be another temporal path from u to v that uses194

fewer edges than a foremost path. A temporal graph (G,λ) is temporally connected if, for195

every pair of vertices u, v ∈ V , there exists a temporal path (see Definition 2) P1 from u196

to v and a temporal path P2 from v to u. Furthermore, given a set of terminals R ⊆ V ,197

the temporal graph (G,λ) is R-temporally connected if, for every pair of vertices u, v ∈ R,198

there exists a temporal path from u to v and a temporal path from v to u; note that P1 and199

P2 can also contain vertices from V \R. Now we provide our formal definitions of our four200

decision problems.201

Min. Labeling (ML)
Input: A static graph G = (V,E) and
a k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G,λ),
where |λ| ≤ k?

Min. Aged Labeling (MAL)
Input: A static graph G = (V,E)
and two integers a, k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G,λ),
where |λ| ≤ k and α(λ) ≤ a?

202

Min. Steiner Labeling (MSL)
Input: A static graph G = (V,E),
a subset R ⊆ V and a k ∈ N.
Question: Does there exist an temporally
R-connected temporal graph (G,λ),
where |λ| ≤ k?

Min. Aged Steiner Labeling (MASL)
Input: A static graph G = (V,E),
a subset R ⊆ V , and two integers a, k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G,λ),
where |λ| ≤ k and α(λ) ≤ a?

203

Note that, for both problems MAL and MASL, whenever the input age bound a is204

strictly smaller than the diameter d of G, the answer is always NO. Thus, we always assume205

in the remainder of the paper that a ≥ d, where d is the diameter of the input graph G. For206

simplicity of the presentation, we denote next by κ(G, d) the smallest number k for which207

(G, k, d) is a YES instance for MAL.208

I Observation 3. For every graph G with n vertices and diameter d, we have that κ(G, d) ≤209

n(n− 1).210

The next lemma shows that the upper bound of Observation 3 is asymptotically tight as,211

for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).212

I Lemma 4. Let Cn be a cycle on n vertices, where n 6= 4, and let d be its diameter. Then213

κ(Cn, d) =
{
d2, when n = 2d
2d2 + d, when n = 2d+ 1.

214

CVIT 2016
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2.1 A polynomial-time algorithm for ML215

As a first warm-up, we study the problem ML, where no restriction is imposed on the216

maximum allowed age of the output temporal graph. It is already known by Akrida et al. [2]217

that any undirected graph can be made temporally connected by adding at most 2n − 3218

time-labels, while for trees 2n− 3 labels are also necessary. Moreover, it was conjectured219

that every graph needs at least 2n− 4 time-labels [2]. Here we prove their conjecture true220

by proving that, if G contains (resp. does not contain) the cycle C4 on four vertices as a221

subgraph, then (G, k) is a YES instance of ML if and only if k ≥ 2n− 4 (resp. k ≥ 2n− 3).222

The proof is done via a reduction to the gossip problem [9] (for a survey on gossiping see223

also [22]).224

The related problem of achieving temporal connectivity by assigning to every edge of the225

graph at most one time-label, has been studied by Göbel et al. [19], where the relationship226

with the gossip problem has also been drawn. Contrary to ML, this problem is NP-hard [19].227

That is, the possibility of assigning two or more labels to an edge makes the problem228

computationally much easier. Indeed, in a C4-free graph with n vertices, an optimal solution229

to ML consists in assigning in total 2n − 3 time-labels to the n − 1 edges of a spanning230

tree. In such a solution, one of these n− 1 edges receives one time-label, while each of the231

remaining n− 2 edges receives two time-labels. Similarly, when the graph contains a C4, it232

suffices to span the graph with four trees tooted at the vertices of the C4, where each of the233

edges of the C4 receives one time-label and each edge of the four trees receives two labels.234

That is, a graph containing a C4 can be temporally connected using 2n− 4 time-labels.235

In the gossip problem we have n agents from a set A. At the beginning, every agent236

x ∈ A holds its own secret. The goal is that each agent eventually learns the secret of every237

other agent. This is done by producing a sequence of unordered pairs (x, y), where x, y ∈ A238

and each such pair represents one phone call between the agents involved, during which the239

two agents exchange all the secrets they currently know.240

The above gossip problem is naturally connected to ML. The only difference between the241

two problems is that, in gossip, all calls are non-concurrent, while in ML we allow concurrent242

temporal edges, i.e., two or more edges can appear at the same time slot t. Therefore, in243

order to transfer the known results from gossip to ML, it suffices to prove that in ML we244

can equivalently consider solutions with non-concurrent edges.245

I Theorem 5. Let G = (V,E) be a connected graph. Then the smallest k ∈ N for which246

(G, k) is a YES instance of ML is:247

k =
{

2n− 4, if G contains C4 as a subgraph,
2n− 3, otherwise.

248

2.2 A polynomial-time algorithm for directed acyclic graphs249

As a second warm-up, we show that the minimization analogues of ML and MAL on250

directed acyclic graphs (DAGs) are solvable in polynomial time. More specifically, for the251

minimization analogue of ML we provide an algorithm which, given a DAG G = (V,A) with252

diameter dG, computes a temporal labeling function λ which assigns the smallest possible253

number of time-labels on the arcs of G with the following property: for every two vertices254

u, v ∈ V , there exists a directed temporal path from u to v in (G,λ) if and only if there255

exists a directed path from u to v in G. Moreover, the age α(G,λ) of the resulting temporal256

graph is equal to dG. Therefore, this immediately implies a polynomial-time algorithm257
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for the minimization analogue of MAL on DAGs. For notation uniformity, we call these258

minimization problems MLdirected and MALdirected, respectively.259

I Theorem 6. Let G = (V,E) be a DAG with n vertices and m arcs. Then MLdirected(G)260

and MALdirected(G) can be both computed in O(n(n+m)) time.261

3 MAL is NP-complete262

In this section we prove that it is NP-hard to determine the number of labels in an optimal263

labeling of a static, undirected graph G, where the age, i.e., the maximum label used, is not264

larger than the diameter of the input graph.265

To prove this we provide a reduction from the NP-hard problem Monotone Max266

XOR(3) (or MonMaxXOR(3) for short). This is a special case of the classical Boolean267

satisfiability problem, where the input formula φ consists of the conjunction of monotone268

XOR clauses of the form (xi ⊕ xj), i.e., variables xi, xj are non-negated. If each variable269

appears in exactly r clauses, then φ is called a monotone Max XOR(r) formula. A clause270

(xi ⊕ xj) is XOR-satisfied (or simply satisfied) if and only if xi 6= xj . In Monotone Max271

XOR(r) we are trying to find a truth assignment τ of φ which satisfies the maximum number272

of clauses. As it can be easily checked, MonMaxXOR(3) encodes the problem Max-Cut273

on cubic graphs, which is known to be NP-hard [5]. Therefore we conclude the following.274

I Theorem 7 ([5]). MonMaxXOR(3) is NP-hard.275

Now we explain our reduction from MonMaxXOR(3) to the problem Minimum Aged276

Labeling (MAL), where the input static graph G is undirected and the desired age of the277

output temporal graph is the diameter d of G . Let φ be a monotone Max XOR(3) formula278

with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Note that m = 3
2n, since each279

variable appears in exactly 3 clauses. From φ we construct a static undirected graph Gφ with280

diameter d = 10, and prove that there exists a truth assignment τ which satisfies at least281

k clauses in φ, if and only if there exists a labeling λφ of Gφ, with |λφ| ≤ 13
2 n

2 + 99
2 n− 8k282

labels and with age α(G,λ) ≤ 10.283

High-level construction284

For each variable xi, 1 ≤ i ≤ n, we construct a variable gadget Xi that consists of a “starting”285

vertex si and three “ending” vertices t`i (for ` ∈ {1, 2, 3}); these ending vertices correspond286

to the appearances of xi in three clauses of φ. In an optimum labeling λ(φ), in each variable287

gadget there are exactly two labelings that temporally connect starting and ending vertices,288

which correspond to the True or False truth assignment of the variable in the input formula289

φ. For every clause (xi ⊕ xj) we identifying corresponding ending vertices of Xi and Xj290

(as well as some other auxiliary vertices and edges). Whenever (xi ⊕ xj) is satisfied by a291

truth assignment of φ, the labels of the common edges of Xi and Xj in an optimum labeling292

coincide (thus using few labels); otherwise we need additional labels for the common edges293

of Xi and Xj .294

Detailed construction of Gφ295

For each variable xi from φ we create a variable gadget Xi, that consists of a base BXi on 11296

vertices, BXi = {si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F
2Xi, F

3Xi, each297

on 9 vertices, F `Xi = {t`i , f `i , g`i , h`i ,m`
i , fi

`
, gi

`, hi
`
,mi

`}, where ` ∈ {1, 2, 3}. Vertices in the298

base BXi are connected in the following way: there are two paths of length 5: siaibicidiei299
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and siaibicidiei, and 5 extra edges of form yiyi, where y ∈ {a, b, c, d, e}. Vertices in each fork300

F `Xi (where ` ∈ {1, 2, 3}) are connected in the following way: there are two paths of length301

4: t`im`
ih
`
ig
`
if
`
i and t`imi

`hi
`
gi
`fi

`, and 4 extra edges of form yiyi
`, where y ∈ {m,h, g, f}.302

The base BXi of the variable gadget Xi is connected to each of the three forks F `Xi via two303

edges eif `i and eifi
`, where ` ∈ {1, 2, 3}. For an illustration see Figure 1.304

For an easier analysis we fix the following notation. The vertex si ∈ BXi is called305

a start vertex of Xi, vertices t`i (` ∈ {1, 2, 3}) are called ending vertices of Xi, a path306

connecting si, t`i that passes through vertices aibicidieif `i g`ih`im`
i (resp. aibi . . .mi

`) is called307

the left (resp. right) si, t`i -path. The left (resp. right) si, t`i -path is a disjoint union of the left308

(resp. right) path on vertices of the base BXi of Xi, an edge of form eif
`
i (resp. eifi

`) called309

the left (resp. right) bridge edge and the left (resp. right) path on vertices of the `-th fork310

F `Xi of Xi. The edges yiyi, where y ∈ {a, b, c, d, e, f `, g`, h`,m`}, ` ∈ {1, 2, 3}, are called311

connecting edges.312

Figure 1 An example of a variable gadget Xi in Gφ, corresponding to the variable xi from φ.

Connecting variable gadgets313

There are two ways in which we connect two variable gadgets, depending whether they314

appear in the same clause in φ or not.315

1. Two variables xi, xj do not appear in any clause together. In this case we add the316

following edges between the variable gadgets Xi and Xj :317

from ei (resp. ei) to f `
′

j and fj
`′

, where `′ ∈ {1, 2, 3},318

from ej (resp. ej) to f `i and fi
`, where ` ∈ {1, 2, 3},319

from di (resp. di) to dj and dj .320
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Figure 2 An example of two non-intersecting variable gadgets and variable edges among them.

We call these edges the variable edges. For an illustration see Figure 2.321

2. Let C = (xi ⊕ xj) be a clause of φ, that contains the r-th appearance of the variable xi322

and r′-th appearance of the variable xj . In this case we identify the r-th fork F rXi of323

Xi with the r′-th fork F r′
Xj of Xj in the following way:324

tri = tr
′

j ,325

{fri , gri , hri ,mr
i } = {fj

r′

, gj
r′
, hj

r′

,mj
r′
} respectively, and326

{fi
r
, gi

r, hi
r
,mi

r} = {fr′

j , g
r′

j , h
r′

j ,m
r′

j } respectively.327

Besides that we add the following edges between the variable gadgets Xi and Xj :328

from ei (resp. ei) to f `
′

j and fj
`′

, where `′ ∈ {1, 2, 3} \ {r′},329

from ej (resp. ej) to f `i and fi
`, where ` ∈ {1, 2, 3} \ {r},330

from di (resp. di) to dj and dj .331

For an illustration see Figure 3.332

This finishes the construction of Gφ. Before continuing with the reduction, we prove the333

following structural property of Gφ.334

I Lemma 8. The diameter dφ of Gφ is 10.335

I Theorem 9. If OPTMonMaxXOR(3)(φ) ≥ k then OPTMAL(Gφ, dφ) ≤ 13
2 n

2 + 99
2 n−8k, where336

n is the number of variables in the formula φ.337

Before proving the statement in the other direction, we have to show some structural338

properties. Let us fix the following notation. If a labeling λφ labels all left (resp. right)339

paths of the variable gadget Xi (i.e., both bottom-up from si to t1i , t2i , t3i and top-down from340

t1i , t
2
i , t

3
i to si with labels 1, 2 . . . , 10 in this order), then we say that the variable gadget Xi341

is left-aligned (resp. right-aligned) in the labeling λφ. Note, if at least one edge on any of342

these left (resp. right) paths of Xi is not labeled with the appropriate label between 1 and343

10, then the variable gadget is not left-aligned (resp. not right-aligned). Every temporal344

path from si to t`i (resp. from t`i to si) of length 10 in Xi is called an upward path (resp. a345

downward path) in Xi. Any part of an upward (resp. downward) path is called a partial346

upward (resp. downward) path. Note that, for any `, `′ ∈ {1, 2, 3}, ` 6= `′, a temporal path347

from t`i to t`
′

i of length 10 is the union of a partial downward path on the fork F `i and a348
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Figure 3 An example of two intersecting variable gadgets Xi, Xj corresponding to variables
xi, xj , that appear together in some clause in φ, where it is the third appearance of xi and the first
appearance of xj .

partial upward path on F `′

i . Moreover, note that these two partial downward/upward paths349

must be either both parts of a left temporal path or both parts of a right temporal path350

between si and t`i , t`
′

i . The following technical lemma will allow us to prove the correctness351

of our reduction.352

I Lemma 10. Let λφ be a minimum labeling of Gφ. Then λφ can be modified in polynomial353

time to a minimum labeling of Gφ in which each variable gadget Xi is either left-aligned or354

right-aligned.355

I Theorem 11. If OPTMAL(Gφ, dφ) ≤ 13
2 n

2 + 99
2 n − 8k then OPTMonMaxXOR(3)(φ) ≥ k,356

where n is the number of variables in the formula φ.357

Since MAL is clearly in NP, the next theorem follows directly by Theorems 7, 9, and 11.358

I Theorem 12. MAL is NP-complete on undirected graphs, even when the required maximum359

age is equal to the diameter of the input graph.360

4 The Steiner-Tree variations of the problem361

In this section we investigate the computational complexity of the Steiner-Tree variations362

of the problem, namely MSL and MASL. First, we prove in Section 4.1 that the age-363

unrestricted problem MSL remains NP-hard, using a reduction from Vertex Cover. In364

Section 4.2 we prove that this problem is in FPT, when parameterized by the number |R| of365

terminals. Finally, using a parameterized reduction from Multicolored Clique, we prove366

in Section 4.3 that the age-restricted version MASL is W[1]-hard with respect to |R|, even if367

the maximum allowed age is a constant.368

4.1 MSL is NP-complete369

I Theorem 13. MSL is NP-complete.370
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Figure 4 An example of construction of the input graph for MSL.

Proof sketch. MSL is clearly contained in NP. To prove that the MSL is NP-hard we371

provide a polynomial-time reduction from the NP-complete Vertex Cover problem [24].372

Vertex Cover
Input: A static graph G = (V,E), a positive integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and ∀e ∈ E, e∩S 6= ∅.

373

Let (G, k) be an input of the Vertex Cover problem and denote |V (G)| = n, |E(G)| = m.374

We assume w.l.o.g. that G does not admit a vertex cover of size k − 1. We construct375

(G∗, R∗, k∗), the input of MSL using the following procedure. The vertex set V (G∗) consists376

of the following vertices:377

two starting vertices N = {n0, n1},378

a “vertex-vertex” corresponding to every vertex of G: UV = {uv|v ∈ V (G)},379

an “edge-vertex” corresponding to every edge of G: UE = {ue|e ∈ E(G)},380

2n+ 12m · k “dummy” vertices.381

The edge set E(G∗) consists of the following edges:382

an edge between starting vertices, i.e., n0n1,383

a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV using 2384

dummy vertices, and385

for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue with the386

vertex-vertices uv and uw, each with a path of length 6k + 1 using 6k dummy vertices.387

We set R∗ = {n0}∪UE and k∗ = 6k+2m(6k+1)+1. This finishes the construction. It is not388

hard to see that this construction can be performed in polynomial time. For an illustration389

see Figure 4. Note that any two paths in G∗ can intersect only in vertices from N ∪UV ∪UE390

and not in any of the dummy vertices. At the end G∗ is a graph with 3n+m(12k + 1) + 2391

vertices and 1 + 3n+ 2m(6k + 1) edges.392

In the full proof we prove that (G, k) is a YES instance of the Vertex Cover if and393

only if (G∗, R∗, k∗) is a YES instance of the MSL. J394

4.2 An FPT-algorithm for MSL with respect to the number of395

terminals396

In this section we provide an FPT-algorithm for MSL, parameterized by the number |R| of397

terminals. The algorithm is based on a crucial structural property of minimum solutions for398

CVIT 2016



23:12 The complexity of computing optimum labelings for temporal connectivity

MSL: there always exists a minimum labeling λ that labels the edges of a subtree of the399

input graph (where every leaf is a terminal vertex), and potentially one further edge that400

forms a C4 with three edges of the subtree.401

Intuitively speaking, we can use an FPT-algorithm for Steiner Tree parameterized by402

the number of terminals [14] to reveal a subgraph of the MSL instance that we can optimally403

label using Theorem 5. Since the number of terminals in the created Steiner Tree instance404

is larger than the number of terminals in the MSL instance by at most a constant, we obtain405

an FPT-algorithm for MSL parameterized by the number of terminals.406

I Lemma 14. Let G = (V,E) be a graph, R ⊆ V a set of terminals, and k be an integer407

such that (G,R, k) is a YES instance of MSL and (G,R, k − 1) is a NO instance of MSL.408

If k is odd, then there is a labeling λ of size k for G such that the edges labeled by λ form409

a tree, and every leaf of this tree is a vertex in R.410

If k is even, then there is a labeling λ of size k for G such that the edges labeled by λ411

form a graph that is a tree with one additional edge that forms a C4, and every leaf of412

the tree is a vertex in R.413

The main idea for the proof of Lemma 14 is as follows. Given a solution labeling λ, we414

fix one terminal r∗ and then (i) we consider the minimum subtree in which r∗ can reach all415

other terminal vertices and (ii) we consider the minimum subtree in which all other terminal416

vertices can reach r∗. Intuitively speaking, we want to label the smaller one of those subtrees417

using Theorem 5 and potentially adding an extra edge to form a C4; we then argue that the418

obtained labeling does not use more labels than λ. To do that, and to detect whether it is419

possible to add an edge to create a C4, we make a number of modifications to the trees until420

we reach a point where we can show that our solution is correct.421

Having Lemma 14, we can now give our algorithm for MSL. As mentioned before, it uses422

an FPT-algorithm for Steiner Tree parameterized by the number of terminals [14] as a423

subroutine.424

I Theorem 15. MSL is in FPT when parameterized by the number of terminals.425

4.3 Parameterized Hardness of MASL426

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL is already427

implied by both Theorems 12 and 13. In this section, we prove that MASL is W[1]-hard428

when parameterized by the number |R| of the terminals, even if the restriction a on the429

age is a constant. To this end, we provide a parameterized reduction from Multicolored430

Clique. This, together with Theorem 15, implies that MASL is strictly harder than MSL431

(parameterized by the number |R| of terminals), unless FPT=W[1].432

I Theorem 16. MASL is W[1]-hard when parameterized by the number |R| of the terminals,433

even if the restriction a on the age is a constant.434

Note here that, in the constructed instance of MASL in the proof of Theorem 16, the435

number of labels is also upper-bounded by a function of the number of colors in the instance436

of Multicolored Clique. Therefore the proof of Theorem 16 implies also the next437

result, which is even stronger (since in every solution of MASL the number of time-labels is438

lower-bounded by a function of the number |R| of terminals).439

I Corollary 17. MASL is W[1]-hard when parameterized by the number k of time-labels,440

even if the restriction a on the age is a constant.441



Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 23:13

References442

1 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral443

networks with random availability of links: The case of fast networks. Journal of Parallel and444

Distributed Computing, 87:109–120, 2016.445

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of446

optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,447

2017.448

3 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,449

Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic450

temporal graphs? In Proceedings of the 46th International Colloquium on Automata, Languages,451

and Programming, (ICALP), volume 132, pages 131:1–131:14, 2019.452

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex453

cover with a sliding time window. In Proceedings of the 45th International Colloquium on454

Automata, Languages, and Programming (ICALP), pages 148:1–148:14, 2018.455

5 Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic graphs.456

In Proceedings of the 3rd Italian Conference on Algorithms and Complexity (CIAC), pages457

288–298, 1997.458

6 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum459

temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on460

Automata, Languages, and Programming, (ICALP), pages 149:1–149:14, 2016.461

7 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,462

and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. ACM Journal of463

Experimental Algorithmics, 24(1):13:1–13:27, 2019.464

8 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and465

foremost journeys in dynamic networks. International Journal of Foundations of Computer466

Science, 14(2):267–285, 2003.467

9 Richard T. Bumby. A problem with telephones. SIAM Journal on Algebraic and Discrete468

Methods, 2(1):13–18, 1981.469

10 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects of470

temporal betweenness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge471

Discovery and Data Mining (KDD), pages 2084–2092, 2020.472

11 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse473

spanners. Journal of Computer and System Sciences, 121:1–17, 2021.474

12 Argyrios Deligkas, Eduard Eiben, and George Skretas. Minimizing reachability times on475

temporal graphs via shifting labels. CoRR, abs/2112.08797, 2021. URL: https://arxiv.org/476

abs/2112.08797.477

13 Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by478

delaying. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pages479

9810–9817, 2020.480

14 S.E. Dreyfus and R.A. Wagner. The steiner problem in graphs. Networks, 1:195–207, 1971.481

15 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges482

to restrict the size of an epidemic in temporal networks. Journal of Computer and System483

Sciences, 119:60–77, 2021.484

16 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in485

temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021.486

17 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. In487

Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming488

(ICALP), pages 444–455, 2015.489

18 Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal490

graphs. In Proceedings of the 43rd International Symposium on Mathematical Foundations of491

Computer Science (MFCS), pages 36:1–36:13, 2018.492

CVIT 2016

https://arxiv.org/abs/2112.08797
https://arxiv.org/abs/2112.08797
https://arxiv.org/abs/2112.08797


23:14 The complexity of computing optimum labelings for temporal connectivity

19 F. Göbel, J.Orestes Cerdeira, and H.J. Veldman. Label-connected graphs and the gossip493

problem. Discrete Mathematics, 87(1):29–40, 1991.494

20 Roman Haag, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Feedback edge sets in495

temporal graphs. Discrete Applied Mathematics, 307:65–78, 2022.496

21 Thekla Hamm, Nina Klobas, George B. Mertzios, and Paul G. Spirakis. The complexity497

of temporal vertex cover in small-degree graphs. In Proceedings of the 36th Conference on498

Artificial Intelligence (AAAI), 2022. To appear.499

22 Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liestman. A survey of gossiping500

and broadcasting in communication networks. Networks, 18(4):319–349, 1988.501

23 Petter Holme and Jari Saramäki. Temporal network theory, volume 2. Springer, 2019.502

24 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer503

Computations, pages 85–103. Springer, 1972.504

25 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for505

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.506

26 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.507

Interference-free walks in time: Temporally disjoint paths. In Proceedings of the 30th Interna-508

tional Joint Conference on Artificial Intelligence (IJCAI), pages 4090–4096, 2021.509

27 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal510

network optimization subject to connectivity constraints. In Proceedings of the 40th Inter-511

national Colloquium on Automata, Languages and Programming (ICALP), pages 657–668,512

2013.513

28 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.514

Computing maximum matchings in temporal graphs. In Proceedings of the 37th International515

Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1–516

27:14, 2020.517

29 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.518

The complexity of transitively orienting temporal graphs. In Proceedings of the 46th In-519

ternational Symposium on Mathematical Foundations of Computer Science (MFCS), pages520

75:1–75:18, 2021.521

30 George B. Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph522

coloring. Journal of Computer and System Sciences, 120:97–115, 2021.523

31 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.524

Theoretical Computer Science, 634:1–23, 2016.525

32 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-526

nications of the ACM, 61(2):72–72, January 2018.527

33 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization:528

Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical529

Foundations of Computer Science (MFCS ’21), pages 76:1–76:15, 2021.530

34 Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito531

Latora. Graph metrics for temporal networks. In Temporal Networks. Springer, 2013.532

35 Suhas Thejaswi, Juho Lauri, and Aristides Gionis. Restless reachability in temporal graphs.533

CoRR, abs/2010.08423, 2021. URL: https://arxiv.org/abs/2010.08423.534

36 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in535

link streams. Theoretical Computer Science, 609:245–252, 2016.536

https://arxiv.org/abs/2010.08423


APPENDIX
The complexity of computing optimum labelings1

for temporal connectivity2

Nina Klobas £3

Department of Computer Science, Durham University, UK4

George B. Mertzios £5

Department of Computer Science, Durham University, UK6

Hendrik Molter £7

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel8

Paul G. Spirakis £9

Department of Computer Science, University of Liverpool, UK10

Computer Engineering & Informatics Department, University of Patras, Greece11

Abstract12

A graph is temporally connected if there exists a strict temporal path, i.e., a path whose edges have13

strictly increasing labels, from every vertex u to every other vertex v. In this paper we study temporal14

design problems for undirected temporally connected graphs. The basic setting of these optimization15

problems is as follows: given a connected undirected graph G, what is the smallest number |λ| of16

time-labels that we need to add to the edges of G such that the resulting temporal graph (G,λ) is17

temporally connected? As it turns out, this basic problem, called Minimum Labeling (ML), can18

be optimally solved in polynomial time. However, exploiting the temporal dimension, the problem19

becomes more interesting and meaningful in its following variations, which we investigate in this20

paper. First we consider the problem Min. Aged Labeling (MAL) of temporally connecting the21

graph when we are given an upper-bound on the allowed age (i.e., maximum label) of the obtained22

temporal graph (G,λ). Second we consider the problem Min. Steiner Labeling (MSL), where23

the aim is now to have a temporal path between any pair of “important” vertices which lie in a24

subset R ⊆ V , which we call the terminals. This relaxed problem resembles the problem Steiner25

Tree in static (i.e., non-temporal) graphs. However, due to the requirement of strictly increasing26

labels in a temporal path, Steiner Tree is not a special case of MSL. Finally we consider the27

age-restricted version of MSL, namely Min. Aged Steiner Labeling (MASL). Our main results28

are threefold: we prove that (i) MAL becomes NP-complete on undirected graphs, while (ii) MASL29

becomes W[1]-hard with respect to the number |R| of terminals. On the other hand we prove that30

(iii) although the age-unrestricted problem MSL remains NP-hard, it is in FPT with respect to the31

number |R| of terminals. That is, adding the age restriction, makes the above problems strictly32

harder (unless P=NP or W[1]=FPT).33

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-34

atics of computing → Discrete mathematics35

Keywords and phrases Temporal graph, graph labeling, foremost temporal path, temporal con-36

nectivity, Steiner Tree.37

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2338

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.39

Hendrik Molter : Supported by the ISF, grant No. 1070/20.40

Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University41

of Liverpool and by the EPSRC grant EP/P02002X/1.42

1

mailto:nina.klobas@durham.ac.uk
 https://orcid.org/0000-0002-8024-5782
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.CVIT.2016.23


APPENDIX

1 Introduction43

A temporal (or dynamic) graph is a graph whose underlying topology is subject to discrete44

changes over time. This paradigm reflects the structure and operation of a great variety of45

modern networks; social networks, wired or wireless networks whose links change dynamically,46

transportation networks, and several physical systems are only a few examples of networks47

that change over time [24,33,35]. Inspired by the foundational work of Kempe et al. [26], we48

adopt here a simple model for temporal graphs, in which the vertex set remains unchanged49

while each edge is equipped with a set of integer time-labels.50

I Definition 1 (temporal graph [26]). A temporal graph is a pair (G,λ), where G = (V,E)51

is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to52

every edge of G a set of discrete time-labels.53

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. Throughout54

the paper we may refer to “time-labels” simply as “labels” for brevity. Furthermore, the age55

(or lifetime) α(G,λ) of the temporal graph (G,λ) is the largest time-label used in it, i.e.,56

α(G,λ) = max{t ∈ λ(e) : e ∈ E}. One of the most central notions in temporal graphs is57

that of a temporal path (or time-respecting path) which is motivated by the fact that, due to58

causality, entities and information in temporal graphs can “flow” only along sequences of59

edges whose time-labels are strictly increasing, or at least non-decreasing.60

I Definition 2 (temporal path). Let (G,λ) be a temporal graph, where G = (V,E) is the61

underlying static graph. A temporal path in (G,λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk),62

where (e1, e2, . . . , ek) is a path in G, ti ∈ λ(ei) for every i = 1, 2, . . . , k, and t1 < t2 < . . . < tk.63

A vertex v is temporally reachable (or reachable) from vertex u in (G,λ) if there exists64

a temporal path from u to v. If every vertex v is reachable by every other vertex u in65

(G,λ), then (G,λ) is called temporally connected. Note that, for every temporally connected66

temporal graph (G,λ), we have that its age is at least as large as the diameter dG of the67

underlying graph G. Indeed, the largest label used in any temporal path between two68

anti-diametrical vertices cannot be smaller than dG. Temporal paths have been introduced69

by Kempe et al. [26] for temporal graphs which have only one label per edge, i.e., |λ(e)| = 170

for every edge e ∈ E, and this notion has later been extended by Mertzios et al. [28] to71

temporal graphs with multiple labels per edge. Furthermore, depending on the particular72

application, both variations of temporal paths with non-decreasing [6,26,27] and with strictly73

increasing [15,28] labels have been studied. In this paper we focus on temporal paths with74

strictly increasing labels. Due to the very natural use of temporal paths in various contexts,75

several path-related notions, such as temporal analogues of distance, diameter, reachability,76

exploration, and centrality have also been studied [1–3,6,8,10,11,13,15–18,21,27,28,32,34,36].77

Furthermore, some non-path temporal graph problems have been recently introduced78

too, including for example temporal variations of maximal cliques [7, 37], vertex cover [4, 22],79

vertex coloring [31], matching [29], and transitive orientation [30]. Motivated by the need of80

restricting the spread of epidemic, Enright et al. [15] studied the problem of removing the81

smallest number of time-labels from a given temporal graph such that every vertex can only82

temporally reach a limited number of other vertices. Deligkas et al. [12] studied the problem83

of accelerating the spread of information for a set of sources to all vertices in a temporal84

graph, by only using delaying operations, i.e., by shifting specific time-labels to a later time85

slot. The problems studied in [12] are related but orthogonal to our temporal connectivity86

problems. Various other temporal graph modification problems have been also studied, see87

for example [6, 11,13,16,34].88
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The time-labels of an edge e in a temporal graph indicate the discrete units of time (e.g.,89

days, hours, or even seconds) in which e is active. However, in many real dynamic systems,90

e.g., in synchronous mobile distributed systems that operate in discrete rounds, or in unstable91

chemical or physical structures, maintaining an edge over time requires energy and thus92

comes at a cost. One natural way to define the cost of the whole temporal graph (G,λ) is93

the total number of time-labels used in it, i.e., the total cost of (G,λ) is |λ| =
∑
e∈E |λe|.94

In this paper we study temporal design problems of undirected temporally connected95

graphs. The basic setting of these optimization problems is as follows: given an undirected96

graph G, what is the smallest number |λ| of time-labels that we need to add to the edges97

of G such that (G,λ) is temporally connected? As it turns out, this basic problem can be98

optimally solved in polynomial time, thus answering to a conjecture made in [2]. However,99

exploiting the temporal dimension, the problem becomes more interesting and meaningful in100

its following variations, which we investigate in this paper. First we consider the problem101

variation where we are given along with the input also an upper bound of the allowed age102

(i.e., maximum label) of the obtained temporal graph (G,λ). This age restriction is sensible103

in more pragmatic cases, where delaying the latest arrival time of any temporal path incurs104

further costs, e.g., when we demand that all agents in a safety-critical distributed network are105

synchronized as quickly as possible, and with the smallest possible number of communications106

among them. Second we consider problem variations where the aim is to have a temporal107

path between any pair of “important” vertices which lie in a subset R ⊆ V , which we call108

the terminals. For a detailed definition of our problems we refer to Section 2.109

Here it is worth noting that the latter relaxation of temporal connectivity resembles the110

problem Steiner Tree in static (i.e., non-temporal) graphs. Given a connected graph111

G = (V,E) and a set R ⊆ V of terminals, Steiner Tree asks for a smallest-sized subgraph112

of G which connects all terminals in R. Clearly, the smallest subgraph sought by Steiner113

Tree is a tree. As it turns out, this property does not carry over to the temporal case.114

Consider for example an arbitrary graph G and a terminal set R = {a, b, c, d} such that G115

contains an induced cycle on four vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da116

but not the edges ac or bd. Then, it is not hard to check that only way to add the smallest117

number of time-labels such that all vertices of R are temporally connected is to assign one118

label to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.119

The main underlying reason for this difference with the static problem Steiner Tree is that120

temporal connectivity is not transitive and not symmetric: if there exists temporal paths121

from u to v, and from v to w, it is not a priori guaranteed that a temporal path from v to u,122

or from u to w exists.123

Temporal network design problems have already been considered in previous works.124

Mertzios et al. [28] proved that it is APX-hard to compute a minimum-cost labeling for125

temporally connecting an input directed graph G, where the age of the graph is upper-126

bounded by the diameter of G. This hardness reduction was strongly facilitated by the127

careful placement of the edge directions in the constructed instance, in which every vertex128

was reachable in the static graph by only constantly many vertices. Unfortunately this129

cannot happen in an undirected connected graph, where every vertex is reachable by all130

other vertices. Later, Akrida et al. [2] proved that it is also APX-hard to remove the largest131

number of time-labels from a given temporally connected (undirected) graph (G,λ), while still132

maintaining temporal connectivity. In this case, although there are no edge directions, the133

hardness reduction was strongly facilitated by the careful placement of the initial time-labels134

of λ in the input temporal graph, in which every pair of vertices could be connected by only135

a few different temporal paths, among which the solution had to choose. Unfortunately136
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this cannot happen when the goal is to add time-labels to an undirected connected graph,137

where there are potentially multiple ways to temporally connect a pair of vertices (even if we138

upper-bound the largest time-label by the diameter).139

Summarizing, the above technical difficulties seem to be the reason why the problem of140

adding the minimum number of time-labels with an age-restriction to an undirected graph to141

achieve temporal connectivity remained open until now for the last decade. In this paper we142

overcome these difficulties by developing a hardness reduction from a variation of the problem143

Max XOR SAT (see Theorem 19 in Section 3) where we manage to add the appropriate144

(undirected) edges among the variable-gadgets such that simultaneously (i) the distance145

between any two vertices from different variable gadgets remains small (constant) and (ii)146

there is no shortest path between two vertices of the same variable gadget that leaves this147

gadget.148

Our contribution and road-map. In the first part of our paper, in Section 3, we149

present our results on Min. Aged Labeling (MAL). This problem is the same as ML,150

with the additional restriction that we are given along with the input an upper bound on the151

allowed age of the resulting temporal graph (G,λ). Using a technically involved reduction152

from a variation of Max XOR SAT, we prove that MAL is NP-complete on undirected153

graphs, even when the required maximum age is equal to the diameter dG of the input static154

graph G.155

In the second part of our paper, in Section 4, we present our results on the Steiner-tree156

versions of the problem, namely on Min. Steiner Labeling (MSL) and Min. Aged157

Steiner Labeling (MASL). The difference of MSL from ML is that, here, the goal is to158

have a temporal path between any pair of “important” vertices which lie in a given subset159

R ⊆ V (the terminals). In Section 4.1 we prove that MSL is NP-complete by a reduction160

from Vertex Cover, the correctness of which requires showing structural properties of161

MSL. Here it is worth recalling that, as explained above, the classical problem Steiner162

Tree on static graphs is not a special case of MSL, due to the requirement of strictly163

increasing labels in a temporal path. Furthermore, we would like to emphasize here that, as164

temporal connectivity is neither transitive nor symmetric, a straightforward NP-hardness165

reduction from Steiner Tree to MSL does not seem to exist. For example, as explained166

above, in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner167

tree is sub-optimal for MSL.168

In Section 4.2 we provide a fixed-parameter tractable (FPT) algorithm for MSL with169

respect to the number |R| of terminal vertices, by providing a parameterized reduction to170

Steiner Tree. The proof of correctness of our reduction, which is technically quite involved,171

is of independent interest, as it proves crucial graph-theoretical properties of minimum172

temporal Steiner labelings. In particular, for our algorithm we prove (see Lemma 21)173

that, for any undirected graph G with a set R of terminals, there always exists at least one174

minimum temporal Steiner labeling (G,λ) which labels edges either from (i) a tree or from175

(ii) a tree with one extra edge that builds a C4.176

In Section 4.3 we prove that MASL is W[1]-hard with respect to the number |R| of177

terminals. Our results actually imply the stronger statement that MASL is W[1]-hard even178

with respect to the number of time-labels of the solution (which is a larger parameter than179

the number |R| of terminals).180

Finally, we complete the picture by providing some auxiliary results in our preliminary181

Section 2. More specifically, in Section 2.1 we prove that ML can be solved in polynomial182

time, and in Section 2.2 we prove that the analogue minimization versions of ML and MAL183

on directed acyclic graphs are solvable in polynomial time.184
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2 Preliminaries and notation185

Given a (static) undirected graph G = (V,E), an edge between two vertices u, v ∈ V186

is denoted by uv, and in this case the vertices u, v are said to be adjacent in G. If the187

graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to denote the oriented188

edge from u to v (resp. from v to u). The age of a temporal graph (G,λ) is denoted by189

α(G,λ) = max{t ∈ λ(e) : e ∈ E}. A temporal path (e1, t1), (e2, t2), . . . , (ek, tk) from vertex190

u to vertex v is called foremost, if it has the smallest arrival time tk among all temporal191

paths from u to v. Note that there might be another temporal path from u to v that uses192

fewer edges than a foremost path. A temporal graph (G,λ) is temporally connected if, for193

every pair of vertices u, v ∈ V , there exists a temporal path (see Definition 2) P1 from u194

to v and a temporal path P2 from v to u. Furthermore, given a set of terminals R ⊆ V ,195

the temporal graph (G,λ) is R-temporally connected if, for every pair of vertices u, v ∈ R,196

there exists a temporal path from u to v and a temporal path from v to u; note that P1 and197

P2 can also contain vertices from V \R. Now we provide our formal definitions of our four198

decision problems.199

Min. Labeling (ML)
Input: A static graph G = (V,E) and
a k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G,λ),
where |λ| ≤ k?

Min. Aged Labeling (MAL)
Input: A static graph G = (V,E)
and two integers a, k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G,λ),
where |λ| ≤ k and α(λ) ≤ a?

200

Min. Steiner Labeling (MSL)
Input: A static graph G = (V,E),
a subset R ⊆ V and a k ∈ N.
Question: Does there exist an temporally
R-connected temporal graph (G,λ),
where |λ| ≤ k?

Min. Aged Steiner Labeling (MASL)
Input: A static graph G = (V,E),
a subset R ⊆ V , and two integers a, k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G,λ),
where |λ| ≤ k and α(λ) ≤ a?

201

Note that, for both problems MAL and MASL, whenever the input age bound a is202

strictly smaller than the diameter d of G, the answer is always NO. Thus, we always assume203

in the remainder of the paper that a ≥ d, where d is the diameter of the input graph G. For204

simplicity of the presentation, we denote next by κ(G, d) the smallest number k for which205

(G, k, d) is a YES instance for MAL.206

I Observation 3. For every graph G with n vertices and diameter d, we have that κ(G, d) ≤207

n(n− 1).208

Proof. For every vertex v of G = (V,E), consider a BFS tree Tv rooted at v, while every edge209

from a vertex u 6= v to its parent in Tv is assigned the time-label dist(v, u), i.e., the length210

of the shortest path from v to u in G. Note that each of these time-labels is smaller than or211

equal to the diameter d of G. Clearly, each BFS tree Tv assigns in total n− 1 time-labels to212

the edges of G, and thus the union of all BFS trees Tv, where v ∈ V , assign in total at most213

n(n− 1) labels to the edges of G. J214

The next lemma shows that the upper bound of Observation 3 is asymptotically tight as,215

for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).216
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I Lemma 4. Let Cn be a cycle on n vertices, where n 6= 4, and let d be its diameter. Then217

κ(Cn, d) =
{
d2, when n = 2d
2d2 + d, when n = 2d+ 1.

218

Proof. Let V (Cn) = {v1, v2, . . . , vn} be the vertices of Cn. In the following, if not specified219

otherwise, all subscripts are considered modulo n. We distinguish two cases, depending on220

the parity of n.221

First, when n is odd, i.e., n = 2d+ 1. In this case one can observe that for each vertex222

vi ∈ V (Cn) there are exactly two vertices on the distance d from it, namely vi+d (on the right223

side of vi) and vi−d (on the left side of vi). Therefore, the (vi, vi+d/vi−d) and (vi+d/vi−d, vi)-224

temporal paths must be labeled using all labels from 1 to d, one per each edge. Note also225

that each edge vivi+1 lies on the d temporal paths when the starting vertex vj is on the226

left side of it (j ∈ {i, i − 1, i − 2, . . . , i − d}) and on d temporal paths, when the starting227

vertex vj′ is on the right side of it (j′ ∈ {i, i+ 1, i+ 2, . . . , i+ d}). This results in edge vivi+1228

admitting all labels. As this is true for any edge of Cn, each edge is labeled with all labels.229

Therefore we need n · d = 2d2 + 1 labels to ensure the existence of temporal paths among230

any two vertices in C2d+1.231

Now let us continue with the case when n is even, i.e., n = 2d. In this case each vertex232

vi ∈ V (Cn) has exactly one vertex, vi−d = vi+d, on the distance d from it and two on the233

distance d− 1 from it (vi−d+1 and vi+d−1). Therefore we have to label two disjoint paths234

starting in vi, one of length d and the other of length d − 1. Suppose that we chose the235

following labeling to label the edges of Cn. Let i ∈ {1, 2, . . . , d}, if the edge is of form v2iv2i+1236

then it is labeled with all even labels, {2, 4, 6, . . . , j}, where j ≤ d, and if the edge is of form237

v2i+1, v2i then it is labeled with all odd labels, {1, 3, 5, . . . , j′}, where j′ ≤ d. Now vertices238

v2i−1 and v2i use the same labels (i.e., the same temporal paths), to reach all other vertices239

from the cycle. Namely, the (v2i−1, v2i+d−1)-temporal path is of length d, uses all labels from240

1 to d and visits vertices v2i−1, v2i, v2i+1, . . . , v2i+d−1. Therefore v2i−1 and v2i can reach241

vertices {v2i+1, v2i+2, . . . , v2i+d−1}. Similarly, the (v2i, v2i−d)-temporal path is of length d,242

uses all labels from 1 to d and visits vertices v2i, v2i−1, v2i−2, . . . , v2i−d. So v2i−1 and v2i243

can reach vertices {v2i−2, v2i−3, . . . , v2i−d}. This implies that that v2i and v2i−1 reach all244

other vertices in the graph. This holds for any two endpoints of an edge in Cn. Therefore245

we need d · n2 = d2 labels to ensure the existence of temporal paths among any two vertices246

in C2d. J247

2.1 A polynomial-time algorithm for ML248

As a first warm-up, we study the problem ML, where no restriction is imposed on the249

maximum allowed age of the output temporal graph. It is already known by Akrida et al. [2]250

that any undirected graph can be made temporally connected by adding at most 2n − 3251

time-labels, while for trees 2n− 3 labels are also necessary. Moreover, it was conjectured252

that every graph needs at least 2n− 4 time-labels [2]. Here we prove their conjecture true253

by proving that, if G contains (resp. does not contain) the cycle C4 on four vertices as a254

subgraph, then (G, k) is a YES instance of ML if and only if k ≥ 2n− 4 (resp. k ≥ 2n− 3).255

The proof is done via a reduction to the gossip problem [9] (for a survey on gossiping see256

also [23]).257

The related problem of achieving temporal connectivity by assigning to every edge of the258

graph at most one time-label, has been studied by Göbel et al. [20], where the relationship259

with the gossip problem has also been drawn. Contrary to ML, this problem is NP-hard [20].260
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That is, the possibility of assigning two or more labels to an edge makes the problem261

computationally much easier. Indeed, in a C4-free graph with n vertices, an optimal solution262

to ML consists in assigning in total 2n − 3 time-labels to the n − 1 edges of a spanning263

tree. In such a solution, one of these n− 1 edges receives one time-label, while each of the264

remaining n− 2 edges receives two time-labels. Similarly, when the graph contains a C4, it265

suffices to span the graph with four trees tooted at the vertices of the C4, where each of the266

edges of the C4 receives one time-label and each edge of the four trees receives two labels.267

That is, a graph containing a C4 can be temporally connected using 2n− 4 time-labels.268

In the gossip problem we have n agents from a set A. At the beginning, every agent269

x ∈ A holds its own secret. The goal is that each agent eventually learns the secret of every270

other agent. This is done by producing a sequence of unordered pairs (x, y), where x, y ∈ A271

and each such pair represents one phone call between the agents involved, during which the272

two agents exchange all the secrets they currently know.273

The above gossip problem is naturally connected to ML. The only difference between the274

two problems is that, in gossip, all calls are non-concurrent, while in ML we allow concurrent275

temporal edges, i.e., two or more edges can appear at the same time slot t. Therefore, in276

order to transfer the known results from gossip to ML, it suffices to prove that in ML we277

can equivalently consider solutions with non-concurrent edges (see Lemma 6).278

From the set of agents A and a sequence of calls C = c(1), c(2), . . . , c(m) we build a279

temporal graph GC = (G,λ) by the following procedure. For every agent x ∈ A we create a280

vertex vx ∈ V (G). Every phone call c(i) between two agents x, y gives rise to a time edge281

(vxvy, i) of GC . Therefore the labeling λ is defined by the sequence of phone calls. Since no282

two calls are concurrent, we can order them linearly: for every 1 ≤ i ≤ m, the phone call c(i)283

gives the label i to the edge between the two agents involved.284

I Observation 5. If the sequence c(1), c(2), . . . , c(m) of m phone calls results in all agents285

knowing all secrets, then the above construction produces a temporally connected temporal286

graph GC = (G,λ) with |λ| = m.287

Now note that the temporal graph GC produced by the above procedure has the special288

property that, for every time-label t = 1, 2, . . . ,m, there exists exactly one edge labeled with289

t. In the next lemma we prove the reverse statement of Observation 5.290

I Lemma 6. Let (G,λ) be an arbitrary temporally connected temporal graph with |λ| = m291

time-labels in total. Then there exists a sequence c(1), c(2), . . . , c(m) of m phone calls that292

results in all agents knowing all secrets.293

Proof. Let (G,λ) be an arbitrary temporally connected temporal graph. W.l.o.g. we may294

assume that, for every t = 1, 2, . . . , α(G,λ), there exists at least one edge e such that t ∈ λ(e).295

Indeed, if such an edge does not exist in (G,λ), we can replace in (G,λ) every label t′ > t by296

t′ − 1, thus obtaining another temporally connected graph with a smaller age.297

Now we proceed as follows. Let t ∈ {1, 2, . . . , α(G,λ)} be an arbitrary time step within298

the lifetime of (G,λ), and let {eik}tk=1 be the edges of G such that t ∈ λ(eik ). Let ε = 1
2t .299

For every k = 1, . . . , t, we replace the label t of the edge eik by the label t + kε. Finally,300

we normalize the new time-labels of the edges of G such that they become the distinct301

consecutive natural numbers from 1 to m (since |λ| = m by the assumption of the lemma).302

Denote the resulting temporal graph by (G,λ′). Note that every temporal path in (G,λ)303

corresponds to a temporal path in (G,λ′) with the same sequence of edges, and vice versa.304

Finally we create the required sequence of phone calls as follows: for every i = 1, 2, . . . ,m,305

if (G,λ′) contains the edge e with time-label i, we add a phone call c(i) between the two306

7



APPENDIX

endpoints of the edge e. Since both (G,λ) aqnd (G,λ′) are temporally connected, it follows307

that after the sequence c(1), c(2), . . . , c(m) of calls results in every agent knowing every secret.308

This completes the proof. J309

Now denote with f(n) the minimum number of calls needed to complete gossiping among310

a set A of n agents, where a specific set of pairs of vertices B ⊆ A×A are allowed to make a311

direct call between each other. Let G0 = (A,B) be the (static) graph having the agents in312

A as vertices and the pairs of B among them as edges. Then it is known by [9] that, if G0313

contains a C4 as a subgraph then f(n) = 2n− 4, while otherwise f(n) = 2n− 3. Therefore314

the next theorem follows by Observation 5 and Lemma 6 and by the results of [9].315

I Theorem 7. Let G = (V,E) be a connected graph. Then the smallest k ∈ N for which316

(G, k) is a YES instance of ML is:317

k =
{

2n− 4, if G contains C4 as a subgraph,
2n− 3, otherwise.

318

2.2 A polynomial-time algorithm for directed acyclic graphs319

As a second warm-up, we show that the minimization analogues of ML and MAL on directed320

acyclic graphs (DAGs) are solvable in polynomial time. More specifically, for the minimization321

analogue of ML we provide an algorithm which, given a DAG G = (V,A) with diameter322

dG, computes a temporal labeling function λ which assigns the smallest possible number of323

time-labels on the arcs of G with the following property: for every two vertices u, v ∈ V , there324

exists a directed temporal path from u to v in (G,λ) if and only if there exists a directed325

path from u to v in G. Moreover, the age α(G,λ) of the resulting temporal graph is equal to326

dG. Therefore, this immediately implies a polynomial-time algorithm for the minimization327

analogue of MAL on DAGs. For notation uniformity, we call these minimization problems328

MLdirected and MALdirected, respectively. First we define a canonical layering of a DAG,329

which is useful for our algorithm.330

I Definition 8. Let G = (V,A) be a DAG with n vertices, m arcs, and diameter d. A partition331

L0, L1, L2, . . . , Ld of V into d+ 1 sets is a canonical layering of G if, for every 0 ≤ i ≤ d, the332

set Li contains all the source vertices in the induced subgraph Gi := G[{Li, Li+1, . . . , Ld}].333

An example of a canonical layering of a DAG G is illustrated in Figure 1.334

. . .

L0 L1 L2 Ld

Figure 1 Example of a canonical layering.

I Lemma 9. Let G = (V,E) be a DAG with n vertices and m arcs. We can produce the335

canonical layering of G in linear O(n+m) time.336
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Proof. First we initialize an auxiliary vertex subset S = ∅ and a counter sv = 0 for every337

vertex v. We start by computing the vertices of L0 in O(n + m) time by just visiting all338

vertices and arcs of G; L0 contains all vertices u such that N−(u) = ∅. Now, for every i ≥ 0339

we proceed as follows. First we set S = ∅. Then, for every arc (u, v), where u ∈ Li, we add340

v to S and we increase the counter sv by 1. Then we set Li+1 = {v ∈ S : sv = |N−(v)|}.341

Before we continue to the next iteration i+ 1, we reset the set S to be ∅, and we iterate until342

we reach all vertices of G, i.e., until we add every vertex u to one of the sets L0, L1, . . . , Ld.343

It is easy to check that the above procedure is correct, as at every iteration i+ 1 (where344

i ≥ 0) we include to Li all vertices v which have zero in-degree in the graph induced by the345

vertices in V \
⋃i
k=1 Lk. Furthermore, the running time is clearly O(n+m) as we visit each346

vertex and arc a constant number of times. J347

The following observations will be useful when considering the canonical layering.348

I Observation 10. Each layer Li is an independent set in G.349

I Observation 11. For every i = 0, 1, . . . , d − 1 and every u ∈ Li, there exists an arc350

(u, v) ∈ A such that v ∈ Li+1.351

I Observation 12. For every arc (u, v) ∈ A, where u ∈ Li and v ∈ Li+1 for some i ∈352

{0, 1, . . . , d− 1}, there is no directed path of length two or more from u to v in G.353

We use the canonical layering to prove the following result.354

I Theorem 13. Let G = (V,E) be a DAG with n vertices and m arcs. Then MLdirected(G)355

and MALdirected(G) can be both computed in O(n(n+m)) time.356

Proof. For the purposes of simplicity of the proof, we denote by κ(G) the optimum value357

of MLdirected with the DAG G as its input. First we calculate the canonical layering358

L0, L1, . . . , Ld of G in O(n+m) time by Lemma 9. For simplicity of the presentation, denote359

by Gv the induced subgraph of G that contains v and all vertices that are reachable by v360

in G with a directed path. Let dv be the diameter of Gv; note that dv is the length of the361

longest shortest directed path in G that starts at v. For every vertex u ∈ V , we define the362

set Lu0 = {u} and we initialize the set Su = N+(u). Then, similarly to the proof of Lemma 9,363

we iterate over all vertices v ∈ Su = N+(u) and over all vertices w ∈ N+(v). Whenever we364

encounter a vertex w ∈ N+(v) ∩N+(u), we remove v from Su. At the end of this procedure,365

the set Su contains exactly those vertices of v ∈ N+(u), for which there is no directed path of366

length two or more from u to v in G. The above procedure can be completed in O(n(n+m))367

time, as for every vertex u, we iterate at most over all arcs in G a constant number of times.368

Now we define the labeling λ of G as follows: Every arc (u, v) ∈ A, where u ∈ Li, v ∈ Lj ,369

and v ∈ Su, gets the label λ((u, v)) = j. Note here that 1 ≤ λ((u, v)) ≤ d for every arc of G,370

and thus the age α(G,λ) of the resulting temporal graph is equal to the diameter d of G.371

We will prove that |λ| = κ(G). To prove that |λ| ≤ κ(G), it suffices to show that every label372

of λ must participate in every temporal labeling of G which preserves temporal reachability.373

In fact, this is true as the only arcs of G, which have a label in λ, are those arcs (u, v) such374

that there is no other directed path from u to v. That is, in order to preserve temporal375

reachability, we need to assign at least one label to all these arcs.376

Conversely, to prove that |λ| ≥ κ(G), it suffices to show that λ preserves all temporal377

reachabilities. For this, observe first that, every directed path P = (a, . . . , b) in G can be378

transformed to a directed path P ′ = (a, . . . , b) such that, for every arc (u, v) in P ′, there is379

no other directed path from u to v in G apart from the arc (u, v) (i.e., there is no “shortcut”380
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from u to v in G). Therefore, since every arc in P ′ is assigned a label in λ and these labels381

are increasing along P ′, it follows that λ preserves all temporal reachabilities, and thus382

|λ| ≥ κ(G). Summarizing, |λ| = κ(G) and the labeling λ can be computed in O(n(n+m))383

time.384

Finally, since α(G,λ) = d, the obtained optimum labeling for ML is also an optimum385

labeling for MAL (provided that the upper bound a in the input of MAL is at least d). J386

3 MAL is NP-complete387

In this section we prove that it is NP-hard to determine the number of labels in an optimal388

labeling of a static, undirected graph G, where the age, i.e., the maximum label used, is not389

larger than the diameter of the input graph.390

To prove this we provide a reduction from the NP-hard problem Monotone Max391

XOR(3) (or MonMaxXOR(3) for short). This is a special case of the classical Boolean392

satisfiability problem, where the input formula φ consists of the conjunction of monotone393

XOR clauses of the form (xi ⊕ xj), i.e., variables xi, xj are non-negated. If each variable394

appears in exactly r clauses, then φ is called a monotone Max XOR(r) formula. A clause395

(xi ⊕ xj) is XOR-satisfied (or simply satisfied) if and only if xi 6= xj . In Monotone Max396

XOR(r) we are trying to find a truth assignment τ of φ which satisfies the maximum number397

of clauses. As it can be easily checked, MonMaxXOR(3) encodes the problem Max-Cut398

on cubic graphs, which is known to be NP-hard [5]. Therefore we conclude the following.399

I Theorem 14 ([5]). MonMaxXOR(3) is NP-hard.400

Now we explain our reduction from MonMaxXOR(3) to the problem Minimum Aged401

Labeling (MAL), where the input static graph G is undirected and the desired age of the402

output temporal graph is the diameter d of G . Let φ be a monotone Max XOR(3) formula403

with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Note that m = 3
2n, since each404

variable appears in exactly 3 clauses. From φ we construct a static undirected graph Gφ with405

diameter d = 10, and prove that there exists a truth assignment τ which satisfies at least406

k clauses in φ, if and only if there exists a labeling λφ of Gφ, with |λφ| ≤ 13
2 n

2 + 99
2 n− 8k407

labels and with age α(G,λ) ≤ 10.408

High-level construction409

For each variable xi, 1 ≤ i ≤ n, we construct a variable gadget Xi that consists of a “starting”410

vertex si and three “ending” vertices t`i (for ` ∈ {1, 2, 3}); these ending vertices correspond411

to the appearances of xi in three clauses of φ. In an optimum labeling λ(φ), in each variable412

gadget there are exactly two labelings that temporally connect starting and ending vertices,413

which correspond to the True or False truth assignment of the variable in the input formula414

φ. For every clause (xi ⊕ xj) we identifying corresponding ending vertices of Xi and Xj415

(as well as some other auxiliary vertices and edges). Whenever (xi ⊕ xj) is satisfied by a416

truth assignment of φ, the labels of the common edges of Xi and Xj in an optimum labeling417

coincide (thus using few labels); otherwise we need additional labels for the common edges418

of Xi and Xj .419

Detailed construction of Gφ420

For each variable xi from φ we create a variable gadget Xi, that consists of a base BXi on 11421

vertices, BXi = {si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F
2Xi, F

3Xi, each422
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on 9 vertices, F `Xi = {t`i , f `i , g`i , h`i ,m`
i , fi

`
, gi

`, hi
`
,mi

`}, where ` ∈ {1, 2, 3}. Vertices in the423

base BXi are connected in the following way: there are two paths of length 5: siaibicidiei424

and siaibicidiei, and 5 extra edges of form yiyi, where y ∈ {a, b, c, d, e}. Vertices in each fork425

F `Xi (where ` ∈ {1, 2, 3}) are connected in the following way: there are two paths of length426

4: t`im`
ih
`
ig
`
if
`
i and t`imi

`hi
`
gi
`fi

`, and 4 extra edges of form yiyi
`, where y ∈ {m,h, g, f}.427

The base BXi of the variable gadget Xi is connected to each of the three forks F `Xi via two428

edges eif `i and eifi
`, where ` ∈ {1, 2, 3}. For an illustration see Figure 2.429

For an easier analysis we fix the following notation. The vertex si ∈ BXi is called430

a start vertex of Xi, vertices t`i (` ∈ {1, 2, 3}) are called ending vertices of Xi, a path431

connecting si, t`i that passes through vertices aibicidieif `i g`ih`im`
i (resp. aibi . . .mi

`) is called432

the left (resp. right) si, t`i -path. The left (resp. right) si, t`i -path is a disjoint union of the left433

(resp. right) path on vertices of the base BXi of Xi, an edge of form eif
`
i (resp. eifi

`) called434

the left (resp. right) bridge edge and the left (resp. right) path on vertices of the `-th fork435

F `Xi of Xi. The edges yiyi, where y ∈ {a, b, c, d, e, f `, g`, h`,m`}, ` ∈ {1, 2, 3}, are called436

connecting edges.437

Figure 2 An example of a variable gadget Xi in Gφ, corresponding to the variable xi from φ.

Connecting variable gadgets438

There are two ways in which we connect two variable gadgets, depending whether they439

appear in the same clause in φ or not.440

1. Two variables xi, xj do not appear in any clause together. In this case we add the441

following edges between the variable gadgets Xi and Xj :442

from ei (resp. ei) to f `
′

j and fj
`′ , where `′ ∈ {1, 2, 3},443
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Figure 3 An example of two non-intersecting variable gadgets and variable edges among them.

from ej (resp. ej) to f `i and fi
`, where ` ∈ {1, 2, 3},444

from di (resp. di) to dj and dj .445

We call these edges the variable edges. For an illustration see Figure 3.446

2. Let C = (xi ⊕ xj) be a clause of φ, that contains the r-th appearance of the variable xi447

and r′-th appearance of the variable xj . In this case we identify the r-th fork F rXi of448

Xi with the r′-th fork F r′Xj of Xj in the following way:449

tri = tr
′

j ,450

{fri , gri , hri ,mr
i } = {fj

r′

, gj
r′ , hj

r′

,mj
r′} respectively, and451

{fi
r
, gi

r, hi
r
,mi

r} = {fr′j , gr
′

j , h
r′

j ,m
r′

j } respectively.452

Besides that we add the following edges between the variable gadgets Xi and Xj :453

from ei (resp. ei) to f `
′

j and fj
`′ , where `′ ∈ {1, 2, 3} \ {r′},454

from ej (resp. ej) to f `i and fi
`, where ` ∈ {1, 2, 3} \ {r},455

from di (resp. di) to dj and dj .456

For an illustration see Figure 4.457

This finishes the construction of Gφ. Before continuing with the reduction, we prove the458

following structural property of Gφ.459

I Lemma 15. The diameter dφ of Gφ is 10.460

Proof. We prove this in two steps. First we show that the diameter of any variable gadget is461

10 and then show that the diameter does not increase, when the variable edges are introduced,462

i.e., vertices in any two variable gadgets are at most 10 apart.463

Let us start with fixing a variable gadget Xi. A path from the starting vertex si to any464

ending vertex t`i (` ∈ {1, 2, 3}) has to go through at least one of the vertices from {ai, ai},465

then through at least one of the vertices from {bi, bi}, then through {ci, ci}, {di, di}, {ei, ei},466

{f `i , fi
`}, {g`i , gi`}, {h`i , hi

`} and finally through {m`
i ,mi

`}, before reaching the ending vertex.467

The shortest si, t`i path will go through exactly one vertex from each of the above sets.468

Therefore it is of length 10. Because of the construction of Xi, there are exactly two si, t`i469

paths of length 10, which are edge and vertex disjoint, as they share only the starting and470

ending vertices. One of this paths uses the vertices ai, bi, ci, di, ei, f `i , g`i , h`i ,m`
i (i.e., the left471
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Figure 4 An example of two intersecting variable gadgets Xi, Xj corresponding to variables
xi, xj , that appear together in some clause in φ, where it is the third appearance of xi and the first
appearance of xj .

path) and the other uses vertices ai, bi, . . . ,mi
` (i.e., the right path). A path between any two472

ending vertices t`i , t`
′

i (where `, `′ ∈ {1, 2, 3} and ` 6= `′), has to go through the following sets of473

vertices, {m`
i ,mi

`},{m`′

i ,mi
`′}, {h`i , hi

`},{h`′i , hi
`′}, {g`i , gi`},{g`

′

i , gi
`′}, {f `i , fi

`},{f `′i , fi
`′},474

{ei, ei}. Similarly as before, the shortest path uses exactly one vertex from each set and is475

of size 10. Even more, there are exactly two t`i , t`
′

i paths of length 10. They are edge and476

vertex disjoint, as they share only the starting and ending vertices. One of this paths uses477

the vertices without the line in the label (i.e., the left path) and the other uses vertices with478

the line in the label (i.e., the right path). It is not hard to see that the distance between any479

other vertex in Xi and starting or ending vertices is at most 9, as that vertex lies on one480

of the si, t`i or t`i , t`
′

i -paths, but it is not an endpoint of it. By the similar reasoning there481

exists a path between any two vertices in Xi (different than si, t`i), of distance at most 9.482

Therefore the diameter of Xi is 10.483

Now let us fix two variable gadgets Xi, Xj , that share no fork (i.e., xi and xj appear in484

no clause of φ). The shortest path from the starting vertex si of Xi to the starting vertex485

sj of Xj has to reach vertex di (resp. di), which is done in 4 steps, from where it connects486

to either dj or dj , using a variable edge, and continues toward sj , with 4 edges. Therefore,487

d(si, sj) = 9. The shortest path connecting vertex si with t`
′

j , uses one of the vertices ei or488

ei, that are on the distance 5 from si, then using one variable edge reaches f `′j or fj
`′ , which489

is on the distance 4 from the ending vertex t`′j . Therefore, d(si, t`
′

j ) = 10, for all `′ ∈ {1, 2, 3}.490

Lastly, the shortest path between an ending vertex t`i of Xi and an ending vertex t`′j uses491

4 edges in the fork F `Xi to reach the vertex f `i or f `i , from where it uses a variable edge492

that connects it to the vertex ej or ej , that is on the distance 5 from the t`′j . Therefore,493

d(t`i , t`
′

j ) = 10, for all `, `′ ∈ {1, 2, 3}. It is not hard to see that if two variable gadgets Xi, Xj494

share a fork the shortest path among any two vertices does not increase.495

We proved that the distance among any two vertices in Gφ is at most 10 and thus its496

diameter is 10. J497
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I Theorem 16. If OPTMonMaxXOR(3)(φ) ≥ k then OPTMAL(Gφ, dφ) ≤ 13
2 n

2 + 99
2 n − 8k,498

where n is the number of variables in the formula φ.499

Proof. Let τ be an optimum truth assignment of φ, i.e., a truth assignment that satisfies at500

least k clauses of φ. We will prove that there exists a temporal labeling λφ of Gφ which uses501

|λφ| ≤ 13
2 n

2+ 99
2 n−8k labels, such that (G,λ) is temporally connected and α(G,λ) = dφ = 10.502

Recall that, since φ is an instance of MonMaxXOR(3) with n variables, it has m = 3
2n503

clauses. We build the labeling λφ using the following rules. For an illustration see Figure 5.504

1. If a variable xi from φ is set to be True by the truth assignment τ , we label the edges in505

Xi in the following way:506

all three left (si, t`i)-paths, for all ` ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10, one on each507

edge,508

similarly, all left (t`i , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each edge,509

all connecting edges (i.e., edges of form yiyi, where y ∈ {a, b, c, d, e, f `, g`, h`,m`}) get510

the labels 1 and 10.511

If a variable xi from φ is set to be False by the truth assignment τ , we label the edges512

in Xi in the following way:513

all three right (si, t`i)-paths, for all ` ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10, one on514

each edge,515

similarly, all right (t`i , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each edge,516

all connecting edges get the labels 1 and 10.517

Labeling λφ uses 10 labels on the left (resp. right) path of the base BXi, 10 labels on the518

left (resp. right) path of each fork F `Xi, where ` ∈ {1, 2, 3} and 10 + 3 · 8 labels on the519

connecting edges. All in total λφ uses 74 labels on the variable gadget Xi.520

We still need to prove that there exists a temporal path among any two vertices in521

Xi. There is a (unique) temporal path from the starting si vertex to all three ending522

vertices t`i , where ` ∈ {1, 2, 3}, using left (in case of xi being True) or right (in case of xi523

being False) paths of the base BXi and forks F `Xi. Similarly it holds for all temporal524

(t`i , si)-paths. The temporal path connecting two ending vertices t`1
i , t

`2
i , uses first the left525

(in case of xi being True) or right (in case of xi being False) path of the fork F `1Xi to526

reach ei (in case of xi being True) or ei (in case of xi being False), using the labels527

1 to 5, and then continues on the left (in case of xi being True) or right (in case of xi528

being False) path of the F `2Xi from ei or ei to t`2
i , using labels 6 to 10. Any vertex529

not on the left (in case of xi being True) or right (in case of xi being False) path, can530

reach the starting vertex or any of the ending vertices, using a connecting edge at time 1.531

Similarly it hold for the paths in the opposite direction, where the connecting edges have532

the label 10. A temporal path among two vertices not on the left (in case of xi being533

True) or right (in case of xi being False) path uses first a connecting edge at time 1,534

then a portion of the left (in case of xi being True) or right (in case of xi being False)535

path and again the appropriate connecting edge at time 10. This proves that λφ on Xi536

admits a temporal path among any two vertices in Xi.537

2. If two variable gadgets Xi and Xj do not share a fork, i.e., variables xi and xj are not in538

the same clause in φ, and are both set to True by τ , then we label the following variable539

gadgets:540

the edge didj , connecting the left path of BXi with the left path of BXj , gets the541

label 5,542

three edges of the form eif
`′

j (`′ ∈ {1, 2, 3}), that connect the left path of BXi to left543

paths of F `′Xj , with the labels 4 and 6,544
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three edges of the form ejf
`
i (` ∈ {1, 2, 3}), that connect the left path of BXj to left545

paths of F `Xi, with the labels 4 and 6.546

The labeling λφ uses 74 labels for each variable gadget and 13 labels on 7 variable edges547

that connect both variable gadgets. Note, the three other combinations (xi, xj are both548

False, one of xi, xj is True and the other False) give rise to the labeling λφ that uses549

the same number of labels on both variable gadgets and variable edges, where the labeled550

variable edges are chosen appropriately.551

Since labeling variable edges does not change the labeling on each variable gadget, we552

know that there is still a temporal path among any two vertices from the same variable553

gadget. We need to prove now that there is a temporal path among any two vertices554

from Xi and Xj . The edge didj , with the label 5, connects all the vertices from the555

BXi \ {ei, ei} to the vertices from the BXj \ {ej , ej} and vice versa. To go from the556

starting vertex si of Xi to the ending vertex t`j of Xj we use the following route. From si557

to ei we use the left labeled path on Xi with labels from 1 to 5, then the edge eif `
′

j at558

time 6 to reach the corresponding fork F ell′Xj of Xj and from f `
′

j to the ending vertex559

t`
′

j we use the left labeled path of Xj with labels 7 to 10. This temporal path connects all560

vertices in the base BXi to all vertices in the forks FX`′

j , where `′ ∈ {1, 2, 3}. Similar we561

obtain temporal paths from vertices in the base BXj to vertices in the forks FX`
i , where562

` ∈ {1, 2, 3}. To go from any vertex in the fork F `Xi to any vertex of the Xj we use563

the following route. First, we reach the vertex f `i , by the time 4, using the left labeled564

path of Xi. Then we use the edge f `i ej at time 5. Now, by the construction of λφ of Xj ,565

each vertex in Xj can be reached from ej from time 5 to 10. Therefore all vertices from566

F `Xi can reach any vertex in Xj . This is true for all ` ∈ {1, 2, 3}. Similarly it holds for567

temporal paths from any vertex in the fork F `′Xj (`′ ∈ {1, 2, 3}) to vertices of the Xi.568

The only thing left to show is that the vertices {ei, ei can reach all other vertices in BXj .569

This is true as there is a temporal path using the edge eif `
′

j at time 5 and then, from570

f `
′

j to any vertex in the base BXj , the left labeled path of BXj , that is labeled by λφ.571

This is true for all `′ ∈ {1, 2, 3}. Similarly it holds for the temporal paths from {ej , ej}572

to the vertices in BXi. Therefore λφ admits a temporal path among any two vertices of573

variable gadgets, that do not share the fork.574

3. If two variable gadgets Xi and Xj share a fork, i.e., variables xi and xj are in the same575

clause, are both set to True and F rXi = F r
′
Xj , then we label the following variable576

edges:577

the edge didj , connecting the left path of BXi and BXj , gets the label 5,578

two edges of the form eif
`′

j (`′ ∈ {1, 2, 3} \ {r′}), that connect the left path of BXi to579

left paths of F `′Xj , with the labels 4 and 6,580

two edges of the form ejf
`
i (` ∈ {1, 2, 3} \ {r}), that connect the left path of BXj to581

left paths of F `Xi, with the labels 4 and 6.582

The labeling λφ uses 9 labels on 5 variable edges that connect both variable gadgets.583

Note, the three other combinations (xi, xj are both False, one of xi, xj is True and584

the other False) give rise to the labeling λφ that uses the same number of labels on585

variable edges, where the labeled edges are chosen accordingly to the truth values of xi586

and xj . The only difference is in the labeling of the shared fork F rXi = F r
′
Xj . There587

are two possibilities, one when the truth value of xi and xj is the same and one when it588

is different, i.e., xi = xj or xi 6= xj .589

a) Let us start with the case when xi 6= xj . Without loss of generality (w.l.o.g.) we can590

assume that xi is True and xj False. In the labeling λφ we label all left paths in the591

variable gadget Xi and all right paths in Xj . By the construction of the graph Gφ592
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(and the rules of how to identify vertices of the two forks), the left labeling of F rXi593

coincides with the right labeling of F r′Xj . Therefore λφ uses 2 · 74− 16 = 132 labels594

on both variable gadgets.595

b) Let us now observe the case when xi = xj . W.l.o.g. we can assume that both variables596

are True. In the labeling λφ we label all left paths of both variable gadgets. By the597

construction of the graph Gφ (and the rules of how to identify vertices of the two598

forks), the fork F rXi = F r
′
Xj gets labeled from both sides, i.e., all edges in the fork599

get 2 labels. Therefore λφ uses 2 · 74− 8 = 140 labels on both variable gadgets.600

Identifying two forks F rXi = F r
′
Xj and labeling them using the union of both labelings601

on each fork, preserves temporal paths among all the vertices from Xi and Xj . This is602

true as the labeling in each variable is not changed by the labeling in the other variable.603

Among forks that are not in the intersection there are still the variable edges left, which604

assure that vertices from different variable gadgets can reach them or can be reached by605

them. Therefore the labeling λφ admits a temporal path among any two vertices from606

the variable gadgets Xi, Xj , that have a fork in the intersection.607

Summarizing all of the above we get that the labeling λφ uses 74 labels on each variable608

gadget and 13 labels on variable edges among any two variables, from which we have to609

subtract the following:610

4 labels for each pairs of variable edges between two variables that appear in the same611

clause,612

16 labels for the shared fork between two variables, that appear in a satisfied clause,613

8 labels for the shared fork between two variables, that appear in a non-satisfied clause.614

Altogether sums up to the 74n + 13n(n−1)
2 − 4m − 16k − 8(m − k) labels. Therefore, if τ615

satisfies at least k clauses of φ, the labeling λφ consists of at most 13
2 n

2 + 99
2 n−8k labels. J616

Before proving the statement in the other direction, we have to show some structural617

properties. Let us fix the following notation. If a labeling λφ labels all left (resp. right)618

paths of the variable gadget Xi (i.e., both bottom-up from si to t1i , t2i , t3i and top-down from619

t1i , t
2
i , t

3
i to si with labels 1, 2 . . . , 10 in this order), then we say that the variable gadget Xi620

is left-aligned (resp. right-aligned) in the labeling λφ. Note, if at least one edge on any of621

these left (resp. right) paths of Xi is not labeled with the appropriate label between 1 and622

10, then the variable gadget is not left-aligned (resp. not right-aligned). Every temporal623

path from si to t`i (resp. from t`i to si) of length 10 in Xi is called an upward path (resp. a624

downward path) in Xi. Any part of an upward (resp. downward) path is called a partial625

upward (resp. downward) path. Note that, for any `, `′ ∈ {1, 2, 3}, ` 6= `′, a temporal path626

from t`i to t`
′

i of length 10 is the union of a partial downward path on the fork F `i and a627

partial upward path on F `′i . Moreover, note that these two partial downward/upward paths628

must be either both parts of a left temporal path or both parts of a right temporal path629

between si and t`i , t`
′

i . The following technical lemma will allow us to prove the correctness630

of our reduction.631

I Lemma 17. Let λφ be a minimum labeling of Gφ. Then λφ can be modified in polynomial632

time to a minimum labeling of Gφ in which each variable gadget Xi is either left-aligned or633

right-aligned.634

Proof. Let λφ be a minimum labeling of Gφ that admits at least one variable gadget Xi635

that is neither left-aligned nor right-aligned.636

First we will prove that there exists a fork F `Xi of Xi that admits at least three partial637

upward or downward paths, i.e., it either has two partial upward paths (one on each side of638
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(a) xi and xj do not appear together in any clause.

(b) xi and xj appear together in a clause, where xi appears with its third and xj with its first appearance.

Figure 5 Example of the labeling λ on variable gadgets Xi, Xj and variable edges between them,
where xi is True and xj False in φ. Note, edges that are not labeled are omitted, F 3Xi = F 1Xj
and t3i = t1j .

the fork) and at least one partial downward path, or two partial downward paths (one on639

each side of the fork) and at least one partial upward path. For the sake of contradiction,640

suppose that each of the forks F 1Xi, F
2Xi, F

3Xi contains at most two partial upward or641

downward paths. Then, since λφ must have in Xi at least one upward and at least one642

downward path between si and t`i , ` ∈ {1, 2, 3}, it follows that each fork F `Xi has exactly643
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one partial upward and exactly one partial downward path.644

Assume that each of the forks F 1Xi, F
2Xi, F

3Xi has both its partial upward and down-645

ward paths on the same side of Xi (i.e., either both on the left or both on the right side of646

Xi). If all of them have their partial upward and downward paths on the left (resp. right)647

side of Xi, then Xi is left-aligned (resp. right-aligned), which is a contradiction. Therefore,648

at least one fork (say F 1Xi) has its partial upward and downward paths on the left side of649

Xi and at least one other fork (say F 2Xi) has its partial upward and downward paths on650

the right side of Xi. But then there is no temporal path from t1i to t2i of length 10 in λφ,651

which is a contradiction. Therefore there exists at least one fork F `Xi (say, F 1Xi w.l.o.g.),652

in which (w.l.o.g.) the partial upward path is on the right side and the partial downward653

path is on the left side of Xi.654

Since the partial downward path of F 1Xi is on the left side of Xi, it follows that the655

partial upward path of each of F 2Xi and F 2Xi is on the left side of Xi. Indeed, otherwise656

there is no temporal path of length 10 from t1i to t2i or t3i in λφ, a contradiction. Similarly,657

since the partial upward path of F 1Xi is on the right side of Xi, it follows that the partial658

downward path of each of F 2Xi and F 2Xi is on the right side of Xi. But then, there is no659

temporal path of length 10 from t2i to t3i , or from t3i to t2i in λφ, which is also a contradiction.660

Therefore at least one fork F `Xi (say F 3Xi) of Xi admits at least three partial upward or661

downward paths.662

W.l.o.g. we can assume that the fork F 3Xi has two partial downward paths and at least663

one partial upward path which is on the left side of Xi. We distinguish now the following664

cases.665

Case A. The fork F 3Xi has no partial upward path on the right side of Xi. Then the666

base BXi has a partial upward path on the left side of Xi. Furthermore, each of the forks667

F 1Xi, F
2Xi has a partial downward path on the left side of Xi.668

Case A-1. The base BXi of Xi has no partial downward path on the left side of Xi; that is,669

there is no temporal path from vertex ei to vertex si with labels “6,7,8,9,10”. Then the base670

BXi of Xi has a partial downward path on the right side of Xi, as otherwise there would be671

no temporal path of length 10 from any of t1i , t2i , t3i to si. For the same reason, each of the672

forks F 1Xi, F
2Xi has a partial downward path on the right side of Xi.673

Case A-1-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.674

Then each of the forks F 1Xi, F
2Xi has a partial upward path on the right side of Xi, as675

otherwise there would be no temporal path of length 10 from si to t1i or t2i . For the same676

reason, the base BXi has a partial upward path on the right side of Xi. Therefore we677

can remove the label “5” from the left bridge edge eif3
i of the fork F 3Xi, thus obtaining a678

labeling with fewer labels than λφ, a contradiction.679

Case A-1-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path680

on the left side of Xi. Then the fork F 2Xi has a partial upward path on the right side of Xi.681

Furthermore the base BXi has a partial upward path on the right side of Xi, since otherwise682

there would be no temporal path of length 10 from si to t2i . In this case we can modify the683

solution as follows: remove the labels “1,2,3,4,5” from the partial right-upward path of BXi684

and add the labels “6,7,8,9,10” to the partial left-upward path of the fork F 2Xi. Finally we685

can remove the label “5” from the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a686

labeling with fewer labels than λφ, a contradiction.687

Case A-1-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the left side688

of Xi. In this case we can modify the solution as follows: remove the labels “10,9,8,7,6” from689

the partial right-downward path of BXi and add the same labels “10,9,8,7,6” to the partial690

left-downward path of the base BXi. Finally we can remove the label “5” from the right691
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bridge edge eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer labels than λφ, a692

contradiction.693

Case A-2. The base BXi of Xi has a partial downward path on the left side of Xi; that is,694

there is a temporal path from vertex ei to vertex si with labels “6,7,8,9,10”.695

Case A-2-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.696

Then the base BXi and each of the forks F 1Xi, F
2Xi have a partial upward path on the697

right side of Xi, as otherwise there would be no temporal paths of length 10 from si to698

t1i , t
2
i . Moreover, as none of F 1Xi, F

2Xi has a partial left-upward path, it follows that each699

of F 1Xi, F
2Xi has a partial downward path on the right side of Xi. Indeed, otherwise there700

would be no temporal paths of length 10 between t1i and t2i . In this case we can modify the701

solution as follows: remove the labels “1,2,3,4,5” from the partial left-upward path of BXi702

and add the labels “6,7,8,9,10” to the partial right-upward path of the fork F 3Xi. Finally703

we can remove the label “6” from the left bridge edge eif3
i of the fork F 3Xi, thus obtaining704

a labeling with fewer labels than λφ, a contradiction.705

Case A-2-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path706

on the right side of Xi. Then the fork F 2Xi has a partial upward path on the left side of707

Xi. Furthermore the base BXi must have a partial right-upward path, as otherwise there708

would be no temporal path from si to t2i . In this case we can modify the solution as follows:709

remove the labels “1,2,3,4,5” from the partial right-upward path of BXi and add the labels710

“6,7,8,9,10” to the partial left-upward path of the fork F 2Xi. Finally we can remove the label711

“5” from the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer712

labels than λφ, a contradiction.713

Case A-2-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the right side714

of Xi. Then we we can simply remove the label “5” from the right bridge edge eifi
3 of the715

fork F 3Xi, thus obtaining a labeling with fewer labels than λφ, a contradiction.716

Case B. The fork F 3Xi has also a partial upward path on the right side of Xi. That is,717

F 3Xi has partial upward-left, upward-right, downward-left, and downward-right paths.718

Case B-1. The base BXi of Xi has no partial downward path on the left side of Xi. Then719

the base BXi of Xi has a partial downward path on the right side of Xi, as otherwise there720

would be no temporal path of length 10 from any of t1i , t2i , t3i to si. For the same reason, each721

of the forks F 1Xi, F
2Xi has a partial downward path on the right side of Xi.722

Note that Case B-1 is symmetric to the case where the base BXi of Xi has no partial723

right-downward (resp. left-upward, right upward) path.724

Case B-1-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.725

This case is the same as Case A-1-i.726

Case B-1-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path on727

the left side of Xi. Then both the base BXi and the fork F 2Xi has a partial right-upward728

path, as otherwise there would be no temporal path of length 10 from si to t2i . In this case,729

we can always remove the label “6” from the left bridge edge eif3
i of the fork F 3Xi (without730

compromising the temporal connectivity), thus obtaining a labeling with fewer labels than731

λφ, a contradiction.732

Case B-1-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.733

That is, each of F 1Xi, F
2Xi has a partial left-upward and a partial right-downward path.734

The following subcases can occur:735

Case B-1-iii(a). None of the forks F 1Xi, F
2Xi has a partial right-upward path. Then736

each of the forks F 1Xi, F
2Xi has a partial left-downward path, since otherwise there would737

not exist temporal paths of length 10 between t1i and t2i . Furthermore, the base BXi has a738
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partial left-upward path, since otherwise there would not exist a temporal path of length 10739

from si to t1i and t2i . In this case, we can remove the label “6” from the right bridge edge740

eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer labels than λφ, a contradiction.741

Case B-1-iii(b). Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial right-upward742

path. Then the base BXi has a partial left-upward path, since otherwise there would not743

exist a temporal path of length 10 from si to t2i . Similarly, the fork F 1Xi has a partial744

left-downward path, since otherwise there would not exist a temporal path of length 10745

from t1i to t2i . In this case we can modify the solution as follows: First, remove the labels746

“10,9,8,7,6” from the partial right-downward path of BXi and add the labels “10,9,8,7,6” to747

the partial left-downward path of BXi. Second, remove the labels “5,6” from each of t two748

right bridge edges eifi
1 and eifi

3 of the forks F 1Xi and F 3Xi, respectively. Third, remove749

the label “5” from the right bridge edge eifi
1 of the fork F 2Xi. Finally, add the five labels750

“5,4,3,2,1” to the partial left-downward path of the fork F 2Xi. The resulting labeling λ∗φ still751

preserves the temporal reachabilities and has the same number of labels as λφ, while the752

variable gadget Xi is aligned.753

Case B-1-iii(c). Each of the forks F 1Xi, F
2Xi has a partial right-upward path. In this754

case, we can always remove the label “5” from the left bridge edge eif3
i of the fork F 3Xi,755

thus obtaining a labeling with fewer labels than λφ, a contradiction.756

Case B-2. The base BXi of Xi has partial left-downward, right-downward, left-upward,757

and right-upward paths. Then, due to symmetry, we may assume w.l.o.g. that the fork F 1Xi758

has a left-upward path. Suppose that F 1Xi has also a left-downward path. In this case we759

can modify the solution as follows: remove the labels “1,2,3,4,5” and “10,9,8,7,6” from the760

partial right-upward and right-downward paths of BXi and add the labels “6,7,8,9,10” and761

“5,4,3,2,1” to the partial left-upward and left-downward paths of the fork F 2Xi. Finally we762

can remove the label “6” from the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a763

labeling with fewer labels than λφ, a contradiction.764

Finally suppose that F 1Xi has no partial left-downward path. Then F 1Xi has a partial765

right-down path, since otherwise there would not exist any temporal path of length 10 from766

t1i to si. Similarly, the fork F 2Xi has a partial right-upward path, since otherwise there767

would not exist any temporal path of length 10 from t1i to t2i . In this case we can modify768

the solution as follows: First remove the labels “1,2,3,4,5” and “10,9,8,7,6” from the partial769

left-upward and left-downward paths of BXi. Second add the labels “6,7,8,9,10” to the770

partial right-upward path of the fork F 1Xi and add the labels “5,4,3,2,1” to the partial771

right-downward path of the fork F 2Xi. Finally remove the label “6” from the left bridge edge772

eif
3
i of the fork F 3Xi, thus obtaining a labeling with fewer labels than λφ, a contradiction.773

Summarizing, starting from an optimum λφ of Gφ, in which at least one variable gadget is774

neither left-aligned nor right-aligned, we can modify λφ to another labeling λ∗φ, such that λ∗φ775

has one more variable-gadget that is aligned and |λφ| = |λ∗φ|. Note that this modification can776

only happen in Case B-1-iii(b); in all other cases our case analysis arrived at a contradiction.777

Note here that, by making the above modifications of λφ, we need to also appropriately modify778

the “connecting edges” (within the variable gadgets) and the “variable edges” (between779

different variable gadgets), without changing the total number of labels in each of these780

edges. Finally, it is straightforward that all modifications of λφ can be done in polynomial781

time. This concludes the proof. J782

I Theorem 18. If OPTMAL(Gφ, dφ) ≤ 13
2 n

2 + 99
2 n − 8k then OPTMonMaxXOR(3)(φ) ≥ k,783

where n is the number of variables in the formula φ.784
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Proof. Recall by Lemma 15 that dφ = 10. Let λφ be an optimum solution to MAL(Gφ, 10),785

which uses OPTMAL(Gφ, dφ) ≤ 13
2 n

2 + 99
2 n− 8k labels by the assumption of the theorem.786

We will prove that there exists a truth assignment τ that satisfies at least k clauses of φ.787

Recall that, since φ is an instance of MonMaxXOR(3) with n variables, it has m = 3
2n788

clauses.789

Let Xi and Xj be two variable gadgets in Gφ. First we observe that the temporal path790

from a starting vertex si of Xi, to any of the ending vertices t`i , where ` ∈ {1, 2, 3}, must only791

go through the vertices and edges of the variable gadget Xi. This is true since in any other792

case the temporal path would use at least one variable edge and in this case the distance793

of the path would increase by at least one. Therefore, the path would be of length at least794

11, but since the diameter of the graph is 10, the largest label that is allowed to be used795

is 10 and thus the longest temporal path can use at most 10 edges. Similarly it holds for796

temporal paths from the ending vertices t`i (` ∈ {1, 2, 3}) to the starting vertex si and the797

temporal paths among the ending vertices. Even more, these temporal paths must be either798

all on the left or all on the right side of Xi, i.e., they have to use vertices and edges that are799

all on the left or the right side of the base BXi and each fork F `Xi. This holds as paths800

of any other form (i.e., containing vertices and edges of both sides) are of length at least801

11. Consequently, to label a (si, t1i )-path in both directions any labeling must use at least802

2 · 10 labels. Now, to label (si, t2i ) and (si, t3i )-paths, the labels on the base BXi can be803

reused, which produces additional 10 labels on each fork F 2Xi and F 3Xi. In the case when804

all these labels were used on the same path of the variable gadget i.e., all labels were placed805

on the left or on the right side of BXi and F iXi, there are also temporal paths connecting806

all three ending vertices, without having to introduce any extra labels. The only missing807

part is to assure that also all the vertices from the opposite side (i.e., if the labeling used left808

paths, then the opposite vertices are on the right side, or vice versa) are able to reach and809

be reached by any other vertex. Therefore, we need at least 2 more labels (one for incoming810

and one for outgoing temporal paths) on the edges connecting them with the path (vertices)811

on the other side. Altogether, to ensure the existence of a temporal path between any two812

vertices from Xi, a labeling must use at least 74 labels on a variable gadget Xi.813

Now, let Xi and Xj be such variable gadgets that do not share the fork. As observed814

above, all vertices from each variable gadget can only be reached among each other, without815

using the variable edges. Therefore, the variable edges must be labeled in such a way, that816

they ensure a temporal path among vertices from different variable gadgets. W.l.o.g. we can817

assume that Xi is left-aligned and Xj is right-aligned by λφ (all the other cases of aligned818

and non-aligned labelings of Xi and Xj by λφ, are symmetric). Since the starting vertex819

si is on the distance 10 from the ending vertices of t`′j (`′ ∈ {1, 2, 3}) of Xj , there must820

be a temporal path using all labels, to connect them. This path must use the edge of the821

form eifj
`′ , as any other path is longer than 10. Since the path must be traversed in both822

direction each edge eifj
`′ (`′ ∈ {1, 2, 3}) must have at least 2 labels. Similarly it holds for823

the (sj , t`i)-paths (` ∈ {1, 2, 3}) and the edges ejf `i (` ∈ {1, 2, 3}). For a vertex si to reach sj824

we must label the edge didj , as any other (si, sj)-path is longer than 10. Therefore, we need825

at least one extra label for the edge didj . Altogether, to ensure the existence of a temporal826

path among two vertices from two variable gadgets that do not share a fork, a labeling must827

use at least 13 labels on the variable edges.828

Lastly, let Xi and Xj be two variable gadgets that share a fork. W.l.o.g. we can suppose829

that Xi is left-aligned by the optimum labeling λφ and that F rXi = F r
′
Xj . By the830

construction of Gφ, there exists a temporal path to and from all the vertices in the fork831

F rXi = F r
′
Xj to all vertices in Xi and Xj , as there is a temporal path among all vertices832
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from Xi and a temporal path among all vertices in Xj . As observed above, these paths do833

not use the variable edges, but the variable edges must be labeled in such a way, that they834

ensure a temporal path among vertices from different variable gadgets. Now if we suppose835

that the variable gadget Xj is right-aligned by the labeling λφ, then a temporal path between836

si and sj must use the edge didj and therefore at least one extra label is used for this edge. A837

temporal path between si and t`
′

j , where `′ ∈ {1, 2, 3} \ {r′}, must use the edge eifj
`′ . Since838

the edge of this form is traversed in both directions it must have at least two labels. Similarly839

it holds for the temporal paths between t`i (` ∈ {1, 2, 3} \ {r}) and sj . Altogether, to ensure840

the existence of a temporal path among any two vertices from two variable gadgets that841

share a fork, a minimum labeling must use at least 9 labels on the variable edges. Similarly842

we can see that also all other combinations of aligned and non-aligned labelings of Xi and843

Xj by λφ, require at least 9 labels on the variable edges.844

The only thing left to study, in the case of two variable gadgets that share a fork, is what845

happens in the intersecting fork. By Lemma 17 we know that the variable gadgets Xi and846

Xj are aligned by the labeling λφ. Suppose that F rXi = F r
′
Xj . W.l.o.g. we can assume847

that Xi is left-aligned. We distinguish the following two cases.848

The variable gadget Xj is right-aligned. Then, by the construction of Gφ, the fork849

F 1Xi = F 1Xj is labeled using the same labeling, i.e., the left labeling of the variable850

gadget Xi coincides with the right labeling of the variable gadget Xj . This “saves” 16851

labels from the total number of labels used on variable gadgets Xi and Xj .852

The variable gadget Xj is left-aligned. In this case all edges in the fork F 1Xi = F 1Xj853

admit two labels. This “saves” 8 labels from the total number of labels used on variable854

gadgets Xi and Xj , since both labelings coincide on the connecting edges.855

From the labeling λφ of Gφ we construct a truth assignment τ of φ in the following way.856

If a variable gadget Xi is left-aligned, we set xi to True and if it is right-aligned, we set xi857

to False. Using the results from above we deduce that the truth assignment τ satisfies at858

most k clauses. J859

Since MAL is clearly in NP, the next theorem follows directly by Theorems 14, 16, and 18.860

I Theorem 19. MAL is NP-complete on undirected graphs, even when the required maximum861

age is equal to the diameter of the input graph.862

4 The Steiner-Tree variations of the problem863

In this section we investigate the computational complexity of the Steiner-Tree variations864

of the problem, namely MSL and MASL. First, we prove in Section 4.1 that the age-865

unrestricted problem MSL remains NP-hard, using a reduction from Vertex Cover. In866

Section 4.2 we prove that this problem is in FPT, when parameterized by the number |R| of867

terminals. Finally, using a parameterized reduction from Multicolored Clique, we prove868

in Section 4.3 that the age-restricted version MASL is W[1]-hard with respect to |R|, even if869

the maximum allowed age is a constant.870

4.1 MSL is NP-complete871

I Theorem 20. MSL is NP-complete.872

Proof. MSL is clearly contained in NP. To prove that the MSL is NP-hard we provide a873

polynomial-time reduction from the NP-complete Vertex Cover problem [25].874
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Vertex Cover
Input: A static graph G = (V,E), a positive integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and ∀e ∈ E, e∩S 6= ∅.

875

Let (G, k) be an input of the Vertex Cover problem and denote |V (G)| = n, |E(G)| = m.876

We assume w.l.o.g. that G does not admit a vertex cover of size k − 1. We construct877

(G∗, R∗, k∗), the input of MSL using the following procedure. The vertex set V (G∗) consists878

of the following vertices:879

two starting vertices N = {n0, n1},880

a “vertex-vertex” corresponding to every vertex of G: UV = {uv|v ∈ V (G)},881

an “edge-vertex” corresponding to every edge of G: UE = {ue|e ∈ E(G)},882

2n+ 12m · k “dummy” vertices.883

The edge set E(G∗) consists of the following edges:884

an edge between starting vertices, i.e., n0n1,885

a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV using 2886

dummy vertices, and887

for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue with the888

vertex-vertices uv and uw, each with a path of length 6k + 1 using 6k dummy vertices.889

We set R∗ = {n0}∪UE and k∗ = 6k+2m(6k+1)+1. This finishes the construction. It is not890

hard to see that this construction can be performed in polynomial time. For an illustration891

see Figure 6. Note that any two paths in G∗ can intersect only in vertices from N ∪UV ∪UE892

and not in any of the dummy vertices. At the end G∗ is a graph with 3n+m(12k + 1) + 2893

vertices and 1 + 3n+ 2m(6k + 1) edges.894

We claim that (G, k) is a YES instance of the Vertex Cover if and only if (G∗, R∗, k∗)895

is a YES instance of the MSL.896

Figure 6 Example of a canonical layering of a directed acyclic graph (DAG).

(⇒): Assume (G, k) is a YES instance of the Vertex Cover and let S ⊆ V (G) be a897

vertex cover for G of size k. We construct a labeling λ for G∗ that uses k∗ labels and admits898

a temporal path between all vertices from R∗ as follows.899

For the sake of easier explanation we use the following terminology. A temporal path900

starting at n0 and finishing at some ue is called a returning path. Contrarily, a temporal901

path from some ue to n0 is called a forwarding path.902

Let US be the set of corresponding vertices to S in G∗. From each edge vertex ue there903

exists a path of length 6k + 1 to at least one vertex uv ∈ US , since S is a vertex cover904

in G. We label exactly one of these paths, using labels 1, 2, . . . , 6k + 1. Since S is of size k,905
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this part uses k(6k + 1) labels. Now we label a path from each v ∈ US to n1 using labels906

6k + 2, 6k + 3, 6k + 4. Each path uses 3 labels, and since S is of size k we used 3k labels907

for all of them. At the end we label the edge n0n1 with the label `∗ = 6k + 5. Using this908

procedure we have created a forwarding path from each edge vertex ue to the start vertex n0909

and we used 3k +m(6k + 1) + 1 labels.910

To create the returning paths, we label paths from n1 to each vertex in US with labels911

`∗ + 1, `∗ + 2, `∗ + 3. Now again, we label exactly one path from vertices in US to each912

edge-vertex ue, using labels `∗ + 4, `∗ + 5, . . . , `∗ + 3 + 6k. We used extra 3k + m(6k + 1)913

labels and created a returning path from n0 to each vertex in UE .914

All together, the constructed labeling uses k∗ = 6k+ 2m(6k+ 1) + 1 labels, the only thing915

left to show is that there exists a temporal path between any pair of edge-vertices ue, uf ∈ UE .916

It is not hard to see that this holds, as we can construct a temporal path between two917

edge-vertices as a union of a (sub)path of a temporal path from the first edge-vertex to the918

starting vertex n0 and a (sub)path of a temporal path from the starting vertex to the other919

edge-vertex.920

(⇐): Assume that (G∗, R∗, k∗) is a YES instance of the MSL. We construct a vertex921

cover of size at most k for G as follows.922

Let us first observe the following, a forwarding and returning path between the starting923

vertex n0 and the same edge-vertex ue, can intersect in at most one time edge. Even more,924

two temporal paths between the same pair of vertices, going in the opposite directions,925

intersect in at most one time edge.926

By the construction of G∗ each (temporal) path between n0 and a vertex in UE passes927

through the set UV . Since there are m vertices in UE and each path between a vertex ue ∈ UE928

and some uv ∈ UV is of length 6k + 1, we need at least m(6k + 1) labels to connect UE to929

UV in “one direction”. Using the observation from above, we get that there can be at most930

1 time edge in common between any two temporal paths among any pair of edge-vertices,931

therefore we need at least 2m(6k + 1)− 1 labels for paths in both directions. We call these932

the forwarding path Fe (from ue to some uv) and the returning path Re (from some uv′ to933

ue) for ue. It is straightforward to check that every ue can have at most one forwarding path934

and one returning path, since every additional path would require at least an additional 6k935

labels and then no connection between n0 and UV would be possible.936

All labeled temporal paths between N and UV can be split into two sets, one containing937

all temporal paths that are a part of (or can be extended to) some returning path, denote938

them P+
N and the others which are a part of (or can be extended to) some forwarding path,939

denote them P−N . It is not hard to see that each temporal path from P+
N or P−N starts and940

ends in N ∪ UV , i.e., no temporal path starts/ends in one of the dummy vertices. Therefore941

each temporal path in P+
N or P−N uses 3 labels. Again, using the above observation we get942

that temporal paths from P+
N and P−N share at most one label. Since this part uses at most943

6k+ 1 labels, there are at most 2k temporal paths in P+
N and P−N . Suppose that |P+

N | ≤ |P
−
N |944

(the case where |P+
N | > |P

−
N | is analogous). Let US ⊆ UV be the set of vertices in UV such945

that P+
N ∩ US 6= ∅, i.e., US consists of vertices that are endpoints of temporal paths in P+

N .946

We claim that S = {v | uv ∈ US} is a vertex cover of G and |S| ≤ k. It is not hard to see947

that |P+
N | ≤ k and therefore |S| ≤ k.948

We first make the following observation. We define a partial order on the set P = {Fe, Re |949

e ∈ E} of forwarding and returning paths as follows. For two paths P,Q ∈ P, we say that950

P < Q if all labels used in P are strictly smaller than the smallest label used in Q. We951

can assume w.l.o.g. that the defined ordering is a total ordering on P since we can order952

incomparable path pairs arbitrarily by modifying the labels in a way that does not change953
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the size and the connectivity properties of the labeling. Furthermore, we can observe that for954

any two e, e′ ∈ E with e 6= e′ we have that Fe < Re′ since in order for ue to reach ue′ , the955

path Fe needs to be used before the path Re′ . It follows that there is at most one edge e ∈ E956

such that Re < Fe, otherwise we would reach a contradiction to the above observation.957

Now assume for contradiction that S is not a vertex cover of G. Then there is an edge958

e = {v, w} ∈ E such that {v, w} ∩ S = ∅. To reach ue from n0 there needs to be an edge959

e′ = {v, w′} (or symmetrically {w,w′}) such that we can reach uw′ from n1 via some path960

P , then continue to ue′ using Re′ , then continue to uv using Fe′ , finally reach ue using961

Re. Notice that this requires P < Re′ < Fe′ < Re. This implies that the path from n0 to962

ue cannot be longer since otherwise there would be two edges e′, e′′ with Re′ < Fe′ and963

Re′′ < Fe′′ , a contradiction. It also implies that edge e is the only edge in E with e ∩ S = ∅.964

Now consider an edge e′′ = {w′, v′′} 6= e′ such that there is no direct path from n0 to965

uv′′ . If such an edge does not exist then w′ and all of its neighbors , different than v, are in966

S. Hence we can remove w′ from S and add v to S to obtain a vertex cover for G of size at967

most k. Assume that edge e′′ with the described properties exists and consider the temporal968

path from ue′ to ue′′ . This path must start with Fe′ thus reaching uv. From there the path969

cannot continue to some ue′′′ since for all e′′′ 6= e′ we have that Fe′′′ < Re′′′ hence the path970

cannot continue from ue′′′ . It follows that the path has to eventually reach n1 continue to971

uw′ from there. However, recall that P < Fe′ which means that we cannot use P to reach972

uw′ from n1. Hence, there is a second temporal path P ′ (using the same edges as P with973

later labels) from n1 to uw′ with Fe′ < P ′. This implies that |S| < k and we can add v to S974

to obtain a vertex cover of size at most k for G. J975

4.2 An FPT-algorithm for MSL with respect to the number of976

terminals977

In this section we provide an FPT-algorithm for MSL, parameterized by the number |R| of978

terminals. The algorithm is based on a crucial structural property of minimum solutions for979

MSL: there always exists a minimum labeling λ that labels the edges of a subtree of the980

input graph (where every leaf is a terminal vertex), and potentially one further edge that981

forms a C4 with three edges of the subtree.982

Intuitively speaking, we can use an FPT-algorithm for Steiner Tree parameterized by983

the number of terminals [14] to reveal a subgraph of the MSL instance that we can optimally984

label using Theorem 7. Since the number of terminals in the created Steiner Tree instance985

is larger than the number of terminals in the MSL instance by at most a constant, we obtain986

an FPT-algorithm for MSL parameterized by the number of terminals.987

I Lemma 21. Let G = (V,E) be a graph, R ⊆ V a set of terminals, and k be an integer988

such that (G,R, k) is a YES instance of MSL and (G,R, k − 1) is a NO instance of MSL.989

If k is odd, then there is a labeling λ of size k for G such that the edges labeled by λ form990

a tree, and every leaf of this tree is a vertex in R.991

If k is even, then there is a labeling λ of size k for G such that the edges labeled by λ992

form a graph that is a tree with one additional edge that forms a C4, and every leaf of993

the tree is a vertex in R.994

The main idea for the proof of Lemma 21 is as follows. Given a solution labeling λ, we995

fix one terminal r∗ and then (i) we consider the minimum subtree in which r∗ can reach all996

other terminal vertices and (ii) we consider the minimum subtree in which all other terminal997

vertices can reach r∗. Intuitively speaking, we want to label the smaller one of those subtrees998

using Theorem 7 and potentially adding an extra edge to form a C4; we then argue that the999
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obtained labeling does not use more labels than λ. To do that, and to detect whether it is1000

possible to add an edge to create a C4, we make a number of modifications to the trees until1001

we reach a point where we can show that our solution is correct.1002

Proof. Assume there is a labeling λ for G that labels all edges in the subgraph H of G. We1003

describe a procedure to transform H into a tree T by removing edges from H such that T1004

can be labeled with k labels such that all vertices in R are pairwise temporally connected.1005

Consider a terminal vertex r∗ ∈ R. Let H+
r∗ be a minimum subgraph of H and λ+

r∗ a1006

minimum sublabeling of λ for H+
r∗ such that r∗ can temporally reach all vertices in R \ {r∗}1007

in (H+
r∗ , λ

+
r∗). Let us first observe that H+

r∗ is a tree where all leafs are vertices from R and1008

λ+
r∗ assigns exactly one label to every edge in H+

r∗ .1009

First note that all vertices in (H+
r∗ , λ

+
r∗) are temporally reachable from r∗. If a vertex is not1010

reachable, we can remove it, a contradiction to the minimality of H+
r∗ . Now assume that H+

r∗1011

is not a tree. Then there is a vertex v ∈ V (H+
r∗) such that v is temporally reachable from r∗1012

in (H+
r∗ , λ

+
r∗) via two temporal paths P, P ′ that visit different vertex sets, i.e. V (P ) 6= V (P ′).1013

Assume w.l.o.g. that both P and P ′ are foremost among all temporal paths that visit the1014

vertices in V (P ) and V (P ′), respectively, in the same order. Let the arrival time of P be1015

at most the arrival time of P ′. Then we can remove the last edge traversed by P ′ with all1016

its labels from (H+
r∗ , λ

+
r∗) such that afterwards r∗ can still temporally reach all vertices in1017

R \ {r∗}, a contradiction to the minimality of H+
r∗ . From now on, assume that H+

r∗ is a tree.1018

Assume that H+
r∗ contains a leaf vertex v that is not contained in R. Then we can remove v1019

from (H+
r∗ , λ

+
r∗) such that afterwards r∗ can still temporally reach all vertices in R \ {r∗}, a1020

contradiction to the minimality of H+
r∗ . Lastly, assume that there is an edge e = uv in H+

r∗1021

such that λ+
r∗ assigns more than one label to e. Let v be further away from r∗ than u in H+

r∗1022

and let P be a foremost temporal path from r∗ to v in (H+
r∗ , λ

+
r∗) with arrival time t. Then1023

we can remove all labels except for t from e and afterwards r∗ can still temporally reach all1024

vertices in R \ {r∗}, a contradiction to the minimality of λ+
r∗ .1025

Let H−r∗ be a minimum subgraph of H and λ−r∗ a minimum sublabelling of λ for H−r∗1026

such that each vertex in R \ {r∗} can temporally reach r∗ in (H−r∗ , λ−r∗). We can observe by1027

analogous arguments as above that H−r∗ is a tree where all leafs are vertices from R and λ−r∗1028

assigns exactly one label to every edge in H−r∗ .1029

We define the following sets of edges:1030

The set of edges only appearing in H+
r∗ : E+

r∗ = E(H+
r∗) \ E(H−r∗).1031

The set of edges only appearing in H−r∗ : E−r∗ = E(H−r∗) \ E(H+
r∗).1032

The set of edges appearing in both H+
r∗ and H−r∗ : E+−

r∗ = E(H+
r∗) ∩ E(H−r∗).1033

The set of edges appearing in both H+
r∗ and H−r∗ that receive the same label from λ+

r∗1034

and λ−r∗ : E∗r∗ = {e ∈ E+−
r∗ | λ+

r∗(e) = λ−r∗(e)}.1035

We claim that there exists a labelling λ′ of size k for G such that there are two trees1036

H+
r∗ , H

−
r∗ with the above described properties and |E(H+

r∗)|+ |E(H−r∗)| − |E∗r∗ | = k − x for1037

some x ≥ 0 and1038

|E∗r∗ | ≤ x+ 1 if k is odd, and1039

if k is even, then |E∗r∗ | ≤ x+ 2 and there exist two edges e+, e− in H that each of them,1040

when added to H+
r∗ , H

−
r∗ , respectively, creates a C4 in H+

r∗ , H
−
r∗ , respectively.1041

We first argue that the statement of the lemma follows from this claim. Afterwards we prove1042

the claim. Assume that |E+
r∗ | ≤ |E−r∗ | (the case where |E+

r∗ | > |E−r∗ | is analogous).1043

Assume that |E∗r∗ | ≤ x+ 1. Then we clearly have1044

2|E(H+
r∗)| − 1 = 2|E+

r∗ |+ 2|E+−
r∗ | − 1 ≤ |E(H+

r∗)|+ |E(H−r∗)| − 1 = k− x+ |E∗r∗ | − 1 ≤ k.1045
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It follows that we can temporally label H+
r∗ with at most k labels such that all vertices in1046

H+
r∗ can pairwise temporally reach each other, using the result that trees with m edges can1047

be temporally labeled with 2m− 1 labels (see Theorem 7). Since we assume (G,R, k− 1) is a1048

NO instance of MSL it follows that k = 2m− 1 and hence this can only happen if k is odd.1049

Assume that |E∗r∗ | ≤ x+ 2 and there exist two edges e+, e− in H that each of them, when1050

added to H+
r∗ , H

−
r∗ , respectively, creates a C4 in H+

r∗ , H
−
r∗ , respectively.. Then we clearly have1051

2|E(H+
r∗)∪{e+}|−4 = 2|E+

r∗ |+2|E+−
r∗ |−2 ≤ |E(H+

r∗)|+|E(H−r∗)|−2 = k−x+|E∗r∗ |−2 ≤ k.1052

It follows that we can temporally label H+
r∗ together with edge e+ with at most k labels such1053

that all vertices in H+
r∗ with edge e+ can pairwise temporally reach each other, using the1054

result that graphs containing a C4 with n vertices can be temporally labeled with 2n − 41055

labels (see Theorem 7). Since we assume (G,R, k − 1) is a NO instance of MSL it follows1056

that k = 2n− 4 and hence this can only happen if k is even.1057

Now we prove that there exists a labeling λ′ of size k for G such that there are two trees1058

H+
r∗ , H

−
r∗ with the above described properties and |E(H+

r∗)|+ |E(H−r∗)| − |E∗r∗ | = k − x for1059

some x ≥ 0 and |E∗r∗ | ≤ x+ 1.1060

Let H+
r∗ , H

−
r∗ be two trees with the above described properties and |E(H+

r∗)|+ |E(H−r∗)|−1061

|E∗r∗ | = k − x for some x ≥ 0. We will argue that by slightly modifying the labeling λ1062

(and with that λ+
r∗ and λ−r∗ , that way ultimately obtaining λ′) and H+

r∗ , H
−
r∗ , we achieve1063

that |E(H+
r∗)| + |E(H−r∗)| − |E∗r∗ | = k − x′ for some x′ ≥ 0 and either |E∗r∗ | ≤ x′ + 1 or1064

|E∗r∗ | ≤ x′ + 2. We will argue that in the former case we must have that k is odd, and in the1065

latter case we must have that k is even. Note that if |E∗r∗ | = 1 we are done, hence assume1066

from now on that |E∗r∗ | ≥ 2.1067

We consider several cases. For the sake of presentation of the next cases, define the head1068

of a temporal path as the last vertex visited by the path and the extended head of a temporal1069

path as the last two vertices visited by the path. Furthermore, define the tail of a temporal1070

path as the first vertex visited by the path and the extended tail of a temporal path as the1071

first two vertices visited by the path.1072

Case A. Assume there is a temporal path P from r∗ to some r ∈ R \ {r∗} in H+
r∗ that1073

traverses two edges in E∗r∗ . Let e, e′ ∈ E∗r∗ with e 6= e′ such that there is a temporal path P1074

from r∗ to some r ∈ R\{r∗} in H+
r∗ that traverses w.l.o.g. first e and then e′ and a maximum1075

number α of edges lies between them in P and the distance β between r∗ and e is minimum.1076

Note that this implies that λ+
r∗(e) < λ+

r∗(e′).1077

In the following we analyse several cases. In some of them we can deduce that the labeling1078

λ must use labels that are not present in λ+
r∗ or λ−r∗ that are unique to that case. This implies1079

that for each of these cases we can attribute one label outside of λ+
r∗ and λ−r∗ to edge e or e′.1080

In some other cases we describe modifications that do not increase |E(H+
r∗) ∪ E(H−r∗)|1081

and either1082

strictly decrease β, or1083

strictly decrease α and not increase β, or1084

strictly decrease |E∗r∗ | and not increase α and β,1085

while preserving that1086

H+
r∗ and H+

r∗ are trees with leafs in R, and1087

λ+
r∗ and λ−r∗ assign at most one label per edge.1088

Whenever a modification satisfies the above requirements it is clear that it can only be1089

applied a finite number of times. Whenever we describe a case that requires modifications1090

that do not satisfy the above requirements, we explicitly show that these modifications can1091
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only be applied a finite number of times as well. Overall this then shows that after a finite1092

number of modifications, none of the described cases will apply.1093

We partition the temporal path P into the part P1 from r∗ to e, the part consisting of e1094

itself, the part P2 between e and e′, the part consisting of e′ itself, and the part P3 from e′1095

to r. Now in H−r∗ we can have two different scenarios. For illustrations of all variations of1096

Case A see Figures 7–9.1097

(a) Case A: an example of a path P from r∗ in H+
r∗ ,

that traverses e, e′ ∈ E∗r∗ .
(b) Case A-1: an example of P in H+

r∗ and P ′ in
H−r∗ , that share e, e

′ ∈ E∗r∗ .

(c) Case A-1-i: P ∗ from r̂2 to r̂1 either uses no
labels from λ+

r∗ or no from λ−r∗ .
(d) Modification of Case A-1-i.

(e) Case A-1-ii: P ∗ from r̂1 to r̂2 either uses no
labels from λ+

r∗ or no from λ−r∗ .
(f) Modification of Case A-1-ii.

Figure 7 Cases A-1 – A-1-ii, where blue color corresponds to the labeling λ+
r∗ and red to λ−r∗ .

Case A-1. There is a temporal path P ′ from some r′ ∈ R \ {r∗} to r∗ in H−r∗ that traverses1098

both e and e′. Note that this implies that e is traversed before e′.1099

We partition the temporal path P ′ into the part P ′1 from r′ to e, the part consisting of e1100

itself, the part P ′2 between e and e′, the part consisting of e′ itself, and the part P ′3 from e′1101

to r∗.1102
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The analysis of each one follows from the observation that the labels in P ′3 are larger1103

than the ones in P1.1104

Case A-1-i. Assume there is a path P̂1 in H+
r∗ starting at a vertex that is visited by P11105

and ending at r̂1 ∈ R \ {r∗} such that r̂1 = r′ or P̂1 and P ′1 intersect in a vertex. For our1106

analysis, we treat these two cases the same since in both cases we can assume that r′ can1107

reach r̂1, in the latter through the intersection point. If there is a path P̂2 in H−r∗ starting at1108

some r̂2 ∈ R \ {r∗, r′} and ending at the extended tail of P ′2 or P ′3, then the temporal path1109

P ∗ in (G,λ) from r̂2 to r̂1 either uses no labels from λ+
r∗ or no from λ−r∗ .1110

Case A-1-ii. Assume there is a path P̂1 in H−r∗ starting at r̂1 ∈ R \ {r∗} and ending at a1111

vertex that is visited by P ′3, such that r̂1 = r or P̂1 and P3 intersect in a vertex. Again for1112

our analysis, we treat these two cases the same since in both cases we can assume that r̂11113

can reach r, in the latter through the intersection point. If there is a path P̂2 in H+
r∗ starting1114

at the extended tail of P1 or P2 and ending at some r̂2 ∈ R \ {r∗, r}, then the temporal path1115

P ∗ in (G,λ) from r̂1 to r̂2 either uses no labels from λ+
r∗ or no from λ−r∗ .1116

Assume that one of the above two applies. We assume that there is no path P̂2 in H−r∗1117

starting at some r̂2 ∈ R \ {r∗, r′} and ending at the extended tail of P ′2 or P ′3 in Case A-1-i1118

and that there is no path P̂2 in H+
r∗ starting at the extended tail of P1 or P2 and ending at1119

some r̂2 ∈ R \ {r∗, r}, since in both cases we can directly deduce that we need labels outside1120

of λ+
r∗ and λ−r∗ . Then we modify λ in the following way without changing its connectivity1121

properties. First, we scale all labels in λ by a factor of |V |.1122

The idea is first to essentially switch the roles of P ′1 and P̂1 in Case A-1-i and switch the1123

roles of P3 and P̂1 in Case A-1-ii. Assume Case A-1-i applies.1124

We remove P̂1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P̂1’s edges to H−r∗ .1125

Add the edges between the (original) tail of P̂1 to e to H−r∗ and add the respective labels1126

for those edges from λ+
r∗ also to λ−r∗ . Add new labels for the edges of P̂1 to λ−r∗ such that1127

there is temporal paths from r′ to r∗ that does use edges from P ′1.1128

We remove P ′1’s edges and labels from H−r∗ and λ−r∗ , respectively, add P ′1’s edges to H+
r∗ ,1129

and add new labels for the edges of P ′1 to λ+
r∗ such that there is a temporal path from r∗1130

to r′.1131

Now assume Case A-1-ii applies. We make analogous modifications.1132

We remove P̂1’s edges and labels from H−r∗ and λ−r∗ , respectively, add P̂1’s edges to H+
r∗ .1133

Add the edges from the head of P̂1 to e′ to H+
r∗ and add the respective labels for those1134

edges from λ−r∗ also to λ+
r∗ . Add new labels for the edges of P̂1 to λ+

r∗ such that there is1135

temporal paths from r∗ to r that does use edges from P3.1136

We remove P3’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P3’s edges to H−r∗ ,1137

and add new labels for the edges of P3 to λ−r∗ such that there are temporal paths from r1138

to r∗.1139

Note that after the modifications H+
r∗ and H−r∗ are still trees, and λ+

r∗ and λ−r∗ still assign at1140

most one label per edge. Furthermore, we have that the modification do not increase the1141

sum of edges in both trees |E(H+
r∗) ∪ E(H−r∗)|. Note that these modifications potentially1142

increase |E∗r∗ | and α. However, note that in both cases we strictly decrease β. From now on1143

assume that Cases A-1-i and A-1-ii do not apply.1144

We start with three further subcases. The analysis of each one follows from the observation1145

that the labels in P ′3 are larger than the ones in P1.1146

Case A-1-iii. Assume there is a path P̂ in H+
r∗ starting at a vertex that is visited by P11147

but is different from its tail and extended head and ending at some r̂ ∈ R \ {r∗, r}. Then1148

the temporal path P ∗ in (G,λ) from r′ to r̂ needs at least one label that is not contained in1149

λ+
r∗ or λ−r∗ . More specifically, P ∗ either uses no labels from λ+

r∗ or no from λ−r∗ .1150
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Case A-1-iv. Assume there is a path P̂ in H−r∗ starting at some r̂ ∈ R \ {r∗, r′} and ending1151

at a vertex that is visited by P ′3 but is different from its extended tail and head. Then the1152

temporal path P ∗ in (G,λ) from r̂ to r needs at least one label that is not contained in λ+
r∗1153

or λ−r∗ . More specifically, P ∗ either uses no labels from λ+
r∗ or no from λ−r∗ .1154

Case A-1-v. Assume there is a path P̂1 in H+
r∗ starting at a vertex that is visited by P2 but1155

is different from its tail and extended head and ending at some r̂1 ∈ R \ {r∗, r}. Furthermore,1156

assume there is a path P̂2 in H−r∗ starting at some r̂2 ∈ R \ {r∗, r′} and ending at a vertex1157

that is visited by P ′2 but is different from its extended tail and head. Then, if r̂2 6= r̂1 and1158

P2 6= P ′2, or the starting vertex of P̂1 is by at least two edges closer to e than the starting1159

vertex of P̂2, the temporal path P ∗ in (G,λ) from r̂2 to r̂1 needs at least one label that is not1160

contained in λ+
r∗ or λ−r∗ . More specifically, P ∗ either uses no labels from λ+

r∗ or no from λ−r∗ .1161

In the above three Cases A-1-iii to A-1-v we do not make any modifications, since we can1162

directly deduce that we need labels outside of λ+
r∗ and λ−r∗ . For the remainder of this case1163

distinction, we assume that Cases A-1-iii to A-1-v do not apply.1164

We can further observe the following using analogous arguments as above.1165

Case A-1-vi. Assume there is a path P̂1 in H+
r∗ starting at the extended head of P11166

and ending at some r̂1 ∈ R \ {r∗, r, r′}. If there is a path P̂2 in H−r∗ starting at some1167

r̂2 ∈ R \ {r∗, r′} and ending at a vertex from P ′2 that is not its tail or a vertex from P ′3, then,1168

if r̂2 6= r̂1, the temporal path P ∗ in (G,λ) from r̂2 to r̂1 either uses no labels from λ+
r∗ or no1169

from λ−r∗ .1170

Case A-1-vii. Assume there is a path P̂1 in H−r∗ starting at some r̂1 ∈ R \ {r∗, r, r′} and1171

ending at the extended tail of P ′3. If there is a P̂2 in H+
r∗ starting at a vertex from P1 or a1172

vertex from P2 that is not its head and ending at some r̂2 ∈ R \ {r∗, r}, then, if r̂1 6= r̂2, the1173

temporal path P ∗ in (G,λ) from r̂1 to r̂2 either uses no labels from λ+
r∗ or no from λ−r∗ .1174

First, assume that Case A-1-vi or Case A-1-vii or none of them apply. Then we modify λ1175

in the following way without changing its connectivity properties. First, we scale all labels in1176

λ by a factor of |V |.1177

The idea is first to essentially switch the roles of P1 and P ′3.1178

We remove P1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P1’s edges to H−r∗ ,1179

and add new labels for the edges of P1 to λ−r∗ such that there are temporal paths from1180

both endpoints of e to r∗ that only use the new labels.1181

We remove P ′3’s edges and labels from H−r∗ and λ−r∗ , respectively, add P ′3’s edges to H+
r∗ ,1182

and add new labels for the edges of P ′3 to λ+
r∗ such that there are temporal paths from r∗1183

to both endpoints of e that only use the new labels.1184

In both modification above, we assume w.l.o.g. that the smallest and the largest label assigned1185

to an edge of P1 by λ+
r∗ before the modification are equal the smallest and the largest label,1186

respectively, assigned to an edge of P ′3 by λ+
r∗ after the modification. Symmetrically, we1187

assume w.l.o.g. that the smallest and the largest label assigned to an edge of P ′3 by λ−r∗1188

before the modification are equal the smallest and the largest label, respectively, assigned to1189

an edge of P1 by λ−r∗ after the modification. Note that now there is a path from r∗ to r in1190

(H+
r∗ , λ

+
r∗) that does not use edges e and e′. Furthermore, there is a path from r′ to r∗ in1191

(H−r∗ , λ−r∗) that does not use edges e and e′.1192

Now we have to adjust labels on e, e′, P2, and P ′2, depending on whether Case A-1-vi,1193

Case A-1-vii or none of them apply.1194

If Case A-1-vi applies, then we remove e, e′, and the edges of P ′2 and their labels from1195

H−r∗ and λ−r∗ , respectively. Furthermore, we exchange the labels of e and e′ and the edges1196

of P2 assigned by λ+
r∗ in a way that there is a temporal path from r∗ to r̂1 (see Case1197

A-1-vi) in (H+
r∗ , λ

+
r∗).1198
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(a) Case A-1-iii: P ∗ from r′ to r̂ either uses no
labels from λ+

r∗ or no from λ−r∗ .
(b) Case A-1-iv: P ∗ from r̂ to r either uses no
labels from λ+

r∗ or no from λ−r∗ .

(c) Case A-1-v: P ∗ from r̂2 to r̂1 either uses no
labels from λ+

r∗ or no from λ−r∗ . (d) Case A-1-vi: P ∗ from r̂2 to r̂1 either uses no
labels from λ+

r∗ or no from λ−r∗ .

(e) Case A-1-vii: P ∗ from r̂1 to r̂2 either uses no
labels from λ+

r∗ or no from λ−r∗ . (f) Modification of Case A-1-vi.

(g) Modification of Case A-1-vii.
(h) Modification when none of the cases A-1-vi nor
A-1-vii apply.

Figure 8 Cases A-1-iii – A-1-vii, where blue color corresponds to the labeling λ+
r∗ and red to λ−r∗ .
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If Case A-1-vii applies, then we remove e, e′, and the edges of P2 and their labels from1199

H+
r∗ and λ+

r∗ , respectively. Furthermore, we exchange the labels of e and e′ and the edges1200

of P ′2 assigned by λ−r∗ in a way that there is a temporal path from r̂1 (see Case A-1-vii)1201

to r∗ in (H−r∗ , λ−r∗).1202

If none of the Cases A-1-vi and A-1-vii apply, then we remove e its labels from H+
r∗ and1203

λ+
r∗ , respectively, and we remove e′ its labels from H−r∗ and λ−r∗ , respectively. We modify1204

the labels of P2 assigned by λ+
r∗ is a way that all terminals that were reachable from r∗1205

before the modifications can now be reached via e′. We modify the labels of P ′2 assigned1206

by λ−r∗ is a way that all terminals that could reach r∗ before the modifications can now1207

reach r∗ via e.1208

Note that after the modifications H+
r∗ and H−r∗ are still trees, and λ+

r∗ and λ−r∗ still assign at1209

most one label per edge. Furthermore, we have that the modification do not increase the1210

sum of edges in both trees |E(H+
r∗) ∪ E(H−r∗)|. Lastly, and most importantly, we have that1211

at least one of H+
r∗ and H−r∗ does contain both edges e and e′. It follows that we strictly1212

decrease |E∗r∗ | without increasing α.1213

It follows that after exhaustively performing the above modifications we have that if Case1214

A-1 applies, then one of the Cases A-1-iii to A-1-v has to apply.1215

Case A-2. There are two temporal paths P ′, P ′′ from some r′, r′′ ∈ R \ {r∗}, respectively,1216

to r∗ in H−r∗ such that P ′ traverses e and P ′′ traverses e′. We consider several different1217

subcases. Let e = uv and let u be the vertex that is closer to r∗ in H+
r∗ . Partition P ′ into P ′11218

from r′ to e, then e, and then P ′2 from e to r∗.1219

Case A-2-i. Assume the head of P ′1 is v.1220

We remove e and its labels from H−r∗ and λ−r∗ , respectively. To obtain a new path in1221

(H−r∗ , λ−r∗), we traverse P ′1, then traverse P2 (by modifying λ−r∗ on P ′1 accordingly) which lets1222

us reach P ′′ and then we traverse P ′′ to reach r∗.1223

Note that after the modifications H−r∗ is still a tree and λ−r∗ still assign at most one label1224

per edge. However, the size of E∗r∗ changes, in particular it can increase, but the maximal1225

number α of edges between two edges from E∗r∗ in P decreases by one.1226

Case A-2-ii. Assume the head of P ′1 is u. Assume there is a path P̂ in H+
r∗ starting at a1227

vertex that is visited by P1 but is different from its tail and extended head and ending at1228

some r̂ ∈ R \ {r∗, r}, such that r̂ = r′ or P̂ and P ′1 intersect in a vertex. For our analysis, we1229

treat these two cases the same since in both cases we can assume that r′ can reach r̂, in the1230

latter through the intersection point.1231

Case A-2-ii(a). Furthermore, assume there is a path P̂ ′ in H−r∗ starting at some r̂′ ∈1232

R \ {r∗, r′} and ending at a vertex that is visited by P ′2. Then the temporal path P ∗ in1233

(G,λ) from r̂′ to r′ either uses no labels from λ+
r∗ or no from λ−r∗ .1234

Case A-2-ii(b). Furthermore, assume there is a path P̂ ′′ in H−r∗ starting at some r̂′′ ∈1235

R \ {r∗, r′} and ending at a vertex that is visited by P ′′2 . Then the temporal path P ∗ in1236

(G,λ) from r̂′′ to r′ either uses no labels from λ+
r∗ or no from λ−r∗ .1237

Assume that Cases A-2-ii(a) and (b) do not apply. Then we modify λ in the following1238

way without changing its connectivity properties. First, we scale all labels in λ by a factor1239

of |V |.1240

The idea is to essentially switch the roles of P̂ and P ′2.1241

We remove P1’s and P̂ ’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P̂ ’s edges1242

to H−r∗ . Add the edges from the tail of P̂ to r∗ to H−r∗ and add labels for those edges to1243

λ−r∗ such that there is a path from r′ to r∗ in (H−r∗ , λ−r∗) that uses the newly added labels.1244

We remove P ′1’s and P ′2’s edges and labels from H−r∗ and λ−r∗ , respectively, add P ′1’s and1245

P ′2’s edges to H+
r∗ , and add new labels for the edges of P ′1 and P ′2 to λ+

r∗ such that there1246
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(a) Example of Case A-2-i. (b) Modification of Case A-2-i.

(c) Example of Case A-2-ii. (d) Case A-2-ii(a): P ∗ from r̂′ to r′ either uses no
labels from λ+

r∗ or no from λ−r∗ .

(e) Case A-2-ii(b): P ∗ from r̂′′ to r′ either uses no
labels from λ+

r∗ or no from λ−r∗ .
(f) Modification of Case A-2-ii when A-2-ii(a) and
A-2-ii(b) do not apply.

(g) Case A-2-iii: P ∗ from r̂′ to r either uses no
labels from λ+

r∗ or no from λ−r∗ .

(h) Modification of Case A-2-iii.

Figure 9 Cases A-2-i – A-2-iii, where blue color corresponds to the labeling λ+
r∗ and red to λ−r∗ .
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is temporal path from r∗ to r̂ in (H+
r∗ , λ

+
r∗).1247

Note that after the modifications H+
r∗ and H−r∗ are still trees, and λ+

r∗ and λ−r∗ still assign1248

at most one label per edge. Furthermore, we have that the modification do not increase1249

the sum of edges in both trees |E(H+
r∗) ∪E(H−r∗)|. Lastly, and most importantly, we have1250

that the path from r∗ to r in H+
r∗ does not contain both edges e and e′. It follows that we1251

decreased α.1252

Case A-2-iii. Assume the head of P ′1 is u. Assume there is a path P̂ in H+
r∗ starting at a1253

vertex that is visited by P1 but is different from its tail and extended head and ending at1254

some r̂ ∈ R \ {r∗, r, r′}. Then the temporal path P ∗ in (G,λ) from r′ to r̂ either uses no1255

labels from λ+
r∗ or no from λ−r∗ . Furthermore, assume there is a path P̂ ′ in H−r∗ starting at1256

some r̂′ ∈ R \ {r∗, r′} and ending at a vertex that is visited by P ′2 but is different from its1257

extended tail and head. Then the temporal path P ∗ in (G,λ) from r̂′ to r either uses no1258

labels from λ+
r∗ or no from λ−r∗ .1259

We again modify λ in a way that does not change its connectivity properties. First, we1260

scale all labels in λ by a factor of |V |. We essentially switch the roles of P1 and P ′2.1261

We remove P1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P1’s edges to H−r∗ ,1262

and add new labels for the edges of P1 to λ−r∗ such that there are temporal paths from both1263

endpoints of e to r∗ that only use the new labels. We remove P ′2’s edges and labels from1264

H−r∗ and λ−r∗ , respectively, add P ′2’s edges to H+
r∗ , and add new labels for the edges of P ′2 to1265

λ+
r∗ such that there are temporal paths from r∗ to both endpoints of e that only use the new1266

labels.1267

Note that now there is a path from r̂′ to r∗ in (H−r∗ , λ−r∗) that does not use edge e. Further1268

note that after the modifications H+
r∗ and H−r∗ are still trees, and λ+

r∗ and λ−r∗ still assign1269

at most one label per edge. Furthermore, we have that the modification do not increase1270

the sum of edges in both trees |E(H+
r∗) ∪ E(H−r∗)|. It follows that we strictly decrease |E∗r∗ |1271

without increasing α.1272

Now consider the case where we have a temporal path P from some r ∈ R \ {r∗} to1273

r∗ in H−r∗ that traverses both e and e′ and two temporal paths P1, P2 from r∗ to some1274

r1, r2 ∈ R \ {r∗}, respectively, in H+
r∗ such that P1 traverses e and P2 traverses e′. This case1275

is analogous to the previously discussed case.1276

From now on we assume that Case A-2 does not apply.1277

Case B. From now on we assume that none of the above described cases apply. This means1278

that there is no path from r∗ to some r ∈ R \ {r∗} in H+
r∗ that traverses both e and e′ and1279

there is no path from some r′ ∈ R \ {r∗} to r∗ in H−r∗ that traverses both e and e′. It follows1280

that for every e ∈ E∗r∗ we have a path in H+
r∗ from r∗ to some r ∈ R\{r∗} that only traverses1281

e from the edges in E∗r∗ and we have a path in H−r∗ from some r′ ∈ R \ {r∗} to r∗ that only1282

traverses e from the edges in E∗r∗ . All the following cases are illustrated in Figure 10.1283

Case B-1. Let e, e′ ∈ E∗r∗ and let P1 be a path in H+
r∗ from r∗ to some r1 ∈ R \ {r∗} that1284

only traverses e from the edges in E∗r∗ and let P2 be a path in H−r∗ from some r2 ∈ R \ {r∗}1285

to r∗ that only traverses e from the edges in E∗r∗ . Let P ′1 be a path in H+
r∗ from r∗ to some1286

r′1 ∈ R \ {r∗} that only traverses e′ from the edges in E∗r∗ and let P ′2 be a path in H−r∗ from1287

some r′2 ∈ R \ {r∗} to r∗ that only traverses e′ from the edges in E∗r∗ .1288

Consider the case where all choices of P1, P2, P
′
1, P

′
2 with the above properties we have1289

r1 = r′2 or P1 and P ′2 intersect in a vertex after they traversed e and e′, respectively. Again1290

for our analysis, we treat these two cases the same since in both cases we can assume that1291

r′2 can reach r1, in the latter through the intersection point. The case where all choices of1292

P1, P2, P
′
1, P

′
2 with the above properties we have r′1 = r2 or P ′1 and P2 intersect in a vertex1293
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(a) Case B-1-i: |P̂1| ≤ |P̂ ′2| and |P̂1|+ |P̂ ′2| ≥ 3 . (b) Modification of Case B-1-i.

(c) Case B-1-ii(a): The edges e, e′, ê1, ê2 form a C4. (d) Case B-1-ii(b): e, e′, ê1, ê2 do not form a C4.

(e) Modification of Case B-1-ii-b. (f) Case B-2: r+ 6= r+
i and r− 6= r−i .

Figure 10 Cases B-1 – B-2, where blue color corresponds to the labeling λ+
r∗ and red to λ−r∗ .

after they traversed e′ and e, respectively, is symmetric.1294

Fix temporal paths P1, P2, P
′
1, P

′
2 with the above properties and r1 = r′2 or P1 and P ′21295

intersect in a vertex after they traversed e and e′, respectively. Let P̂1 be the path segment1296

from e to the first vertex included in P ′2 (excluding e) and let P̂ ′2 be the path segment from1297

the last vertex included in P1 to e′ (excluding e′).1298

Case B-1-i. Assume |P̂1| ≤ |P̂ ′2| (the opposite case is symmetric) and |P̂1|+ |P̂ ′2| ≥ 3 (not1299

both paths are only a single edge). We remove P̂ ′2’s edges and e and the corresponding labels1300

from H−r∗ and λ−r∗ , respectively, such that there is a temporal path from r′2 to e that uses the1301

new labels.1302

Note that after the modifications H+
r∗ and H−r∗ are still trees, and λ+

r∗ and λ−r∗ still assign1303

at most one label per edge. Furthermore, we have that the modification do not increase the1304

sum of edges in both trees |E(H+
r∗) ∪ E(H−r∗)|. Lastly, and most importantly, we have that1305

at least one of H+
r∗ and H−r∗ does contain both edges e and e′.1306

Case B-1-ii. Assume |P̂1| = |P̂ ′2| = 1, that is, both paths are only a single edge ê1 and ê2,1307

respectively.1308

Case B-1-ii(a). The edges e, e′, ê1, and ê2 form a C4. Then we are in the case that k is1309
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even. In this case we set ê1 to be e+ and we set ê2 to be e−. One of these two edges will1310

be used to close the C4, depending on whether which of H+
r∗ and H−r∗ has fewer edges. The1311

edges e and e′ stay in E∗r∗ and will be the only two edges for which we cannot account a label1312

in λ that is not present in λ+
r∗ or λ−r∗ . In this case we have that |E∗r∗ | ≤ x′ + 2 is fulfilled.1313

If Case B-1-ii(a) never applies, then we are in the case that k is odd and we have to be1314

able to account a label in λ that is not present in λ+
r∗ or λ−r∗ for all but one edge in E∗r∗ .1315

Case B-1-ii(b). The edges e, e′, ê1, and ê2 do not form a C4. Let e = uv and e′ = u′v′ and1316

let u and u′ be the vertices closer to r∗ in P1 and P ′2, respectively. Then this means there is1317

either at least one edge e∗ between r∗ and u or between r∗ and u′. Consider the case where1318

e∗ is between r∗ and u and let e∗ = uu∗ for some vertex u∗. In this case e∗ is contained in1319

H+
r∗ . The other case is symmetric. Let e∗∗ be the edge between r∗ and u in H−r∗ , that is1320

incident with u.1321

Note that λ+
r∗(e∗) < λ+

r∗(e) < λ−r∗(e∗∗). We now make the following modification. We1322

remove label λ+
r∗(e∗) and add a new label to ê2 in λ+

r∗ that is chosen in a way that allows for1323

a temporal path from r∗ to r1 via e′ and then ê2.1324

Case B-2. Fix some e ∈ E∗r∗ and let P+ be a path in H+
r∗ from r∗ to some r+ ∈ R\{r∗} that1325

only traverses e from the edges in E∗r∗ and let P− be a path in H−r∗ from some r− ∈ R \ {r∗}1326

to r∗ that only traverses e from the edges in E∗r∗ . For all ei ∈ E∗r∗ \ {e} let P+
i be a path1327

in H+
r∗ from r∗ to some r+

i ∈ R \ {r∗} that only traverses ei from the edges in E∗r∗ and let1328

P−i be a path in H−r∗ from some r−i ∈ R \ {r∗} to r∗ that only traverses ei from the edges in1329

E∗r∗ . Note that for all i 6= i′ we have that r+
i 6= r+

i′ and r
−
i 6= r−i′ . Now consider edge ei. If1330

λ+
r∗(e) ≤ λ+

r∗(ei), then the temporal path in (G,λ) from r−i to r+ needs at least one label1331

that is not contained in λ+
r∗ or λ−r∗ . If λ+

r∗(e) > λ+
r∗(ei), then the temporal path in (G,λ)1332

from r− to r+
i needs at least one label that is not contained in λ+

r∗ or λ−r∗ . This implies, if1333

Case B-1-ii(a) does not apply, that λ contains at least |E∗r∗ | − 1 labels that are not contained1334

in λ+
r∗ or λ−r∗ and hence |E∗r∗ | ≤ x′ + 1. If Case B-1-ii(a) applies, then λ contains at least1335

|E∗r∗ | − 2 labels that are not contained in λ+
r∗ or λ−r∗ and hence |E∗r∗ | ≤ x′ + 2.1336

This finishes the proof. J1337

Having Lemma 21, we can now give our algorithm for MSL. As mentioned before, it uses1338

an FPT-algorithm for Steiner Tree parameterized by the number of terminals [14] as a1339

subroutine. Recall the definition of Steiner Tree.1340

Steiner Tree
Input: A static graph G = (V,E), a subset of vertices R ⊆ V and a positive integer k.
Question: Is there a subtree of G that includes all the vertices of R and that contains at most

k edges.

1341

Let (G,R, k) be an instance of MSL. Note that ifG is C4-free, then Lemma 21 immediately1342

implies that we can use an algorithm for Steiner Tree on the same input graph G with1343

the same terminal vertices R and check whether the resulting solution subtree has at most1344

k∗ = d(k+ 1)/2e edges. In the case where G contains C4s, we have to determine first whether1345

there is a C4 in G that can be labeled in an optimal labeling. Formally, we show the following.1346

I Theorem 22. MSL is in FPT when parameterized by the number of terminals.1347

Proof. Assume we have access to an algorithm A for Steiner Tree that on input (G,R)1348

outputs the size of a minimum solution, that is, an integer k such that (G,R, k) is a YES1349

instance of Steiner Tree and (G,R, k − 1) is a NO instance of Steiner Tree.1350
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Let (G,R, k) be an instance of MSL and let k∗ = A(G,R). For all C4’s in G let1351

kC4 = A(G,R ∪ V (C4)). If there exist an C4 in G such that kC4 = k∗, then (G,R, k) is a1352

YES instance of MSL if and only if k ≥ 2k∗ − 2. Otherwise (G,R, k) is a YES instance of1353

MSL if and only if k ≥ 2k∗ − 1.1354

We first show correctness, then we analyse the running time.1355

(⇐): Assume there exist a C4 in G such that kC4 = k∗. Then there exist a subtree1356

of G connecting all terminal vertices and containing three edges of the C4. We add the1357

missing edge of the C4 and label the subgraph using Theorem 7. This requires 2k∗ − 2 labels1358

and clearly afterwards all terminals can pairwise reach each other. Hence, we have that if1359

k ≥ 2k∗− 2, then (G,R, k) is a YES instance of MSL. Assume there is no C4 in G such that1360

kC4 = k∗. Then there exist a subtree of G connecting all terminal vertices and containing1361

k∗ edges. We label this tree using Theorem 7. This requires 2k∗ − 1 labels and clearly1362

afterwards all terminals can pairwise reach each other. Hence, we have that if k ≥ 2k∗ − 1,1363

then (G,R, k) is a YES instance of MSL.1364

(⇒): Assume that (G,R, k) is a YES instance of MSL and let kopt ≤ k such that1365

(G,R, kopt) is a YES instance of MSL and (G,R, kopt − 1) is a NO instance of MSL. By1366

Lemma 21, we have that if kopt is odd, then there is a labeling λ of size kopt for G such that1367

the edges labeled by λ form a tree H, and every leaf of H is a vertex in R. It is easy to see1368

that H is a solution for the Steiner Tree instance (G,R). Hence, A(G,R) outputs a lower1369

bound k∗ for the number of edges in H. Furthermore, since all leafs of H are terminals, we1370

have that every vertex in (H,λ) can temporally reach every other vertex. By Theorem 7 we1371

know that then λ needs 2k∗ − 1 labels. This implies that k ≥ kopt ≥ 2k∗ − 1.1372

Now assume that kopt is even. Then by Lemma 21 we have that there is a labeling λ of1373

size k∗ for G such that the edges labeled by λ form a graph H that is a tree H ′ with one1374

additional edge that forms a C4, and every leaf of H ′ is a vertex in R. For the C4 that is1375

formed we have that A(G,R ∪ V (C4)) outputs a lower bound k∗ for the number of edges in1376

H ′. Note that we have k∗ ≤ A(G,R), since otherwise 2k∗ − 2 > 2A(G,R)− 1, which means1377

by Theorem 7 that kopt < 2k∗ − 2. However, since all leafs of H ′ are terminals, we have that1378

every vertex in (H,λ) can temporally reach every other vertex. Hence, Theorem 7 implies1379

that kopt ≥ 2k∗ − 2. It follows that kopt < 2k∗ − 2 leads to a contradiction and we have1380

k ≥ kopt ≥ 2k∗ − 2.1381

Running time: We can use the FPT-algorithm for Steiner Tree parameterized by the1382

number of terminals by Dreyfus and Wagner [14] for algorithm A. Note that we need to1383

iterate over all C4s in G (there are at most n4 of them). Each time we invoke A(G,R∪V (C4)),1384

we increase the number of terminals by at most four. It follows that overall we obtain an1385

FPT running time for the number of terminals as a parameter. J1386

4.3 Parameterized Hardness of MASL1387

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL is already1388

implied by both Theorems 19 and 20. In this section, we prove that MASL is W[1]-hard1389

when parameterized by the number |R| of the terminals, even if the restriction a on the1390

age is a constant. To this end, we provide a parameterized reduction from Multicolored1391

Clique. This, together with Theorem 22, implies that MASL is strictly harder than MSL1392

(parameterized by the number |R| of terminals), unless FPT=W[1].1393

I Theorem 23. MASL is W[1]-hard when parameterized by the number |R| of the terminals,1394

even if the restriction a on the age is a constant.1395

Proof. To prove that the MASL is W[1]-hard when parameterized by the combination of the1396
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number |R| of the terminals and the number k of labels, even if the restriction a on the age1397

is a constant, we provide a parameterized polynomial-time reduction from Multicolored1398

Clique parameterized by the number of colors, which is W[1]-hard [19].1399

Multicolored Clique
Input: A static graph G = (V,E), a positive integer k, a vertex-coloring c : V (G) →

{1, 2, . . . , k}.
Question: Does G have a clique of size k including vertices of all k colors?

1400

Let (G, k, c) be an input of the Multicolored Clique problem and denote |V (G)| =1401

n, |E(G)| = m. We construct (G∗, R∗, a∗, k∗), the input of MASL using the following1402

procedure. The vertex set V (G∗) consists of the following vertices:1403

a “color-vertex” corresponding to every color of V (G): C = {ci|i ∈ {1, 2, . . . , k} a color1404

of V (G)},1405

a “vertex-vertex” corresponding to every vertex of G: UV = {uv|v ∈ V (G)},1406

an “edge-vertex” corresponding to every edge of G: UE = {ue|e ∈ E(G)},1407

a “color-combination-vertex” corresponding to a pair of two colors of V (G): W =1408

{ci,j |i, j ∈ {1, 2, . . . , k}, i < j, colors of V (G)}, and1409

2n+ 4m+ 5m+ 11
8 (k4 − 2k3 − k2 + 2k) + 11

2 (k3 − 3k2 + 2k) “dummy” vertices.1410

The edge set E(G∗) consists of the following edges:1411

a path of length 3 (using 2 dummy vertices) between a color-vertex ci, corresponding to1412

the color i, and every vertex-vertex uv ∈ UV , where v is of color i in V (G), i.e., c(v) = i,1413

for every edge e = vw ∈ E(G), where c(v) = i and c(w) = j, we connect the corresponding1414

edge-vertex ue with1415

- the vertex-vertices uv and uw, each with a path of length 3 (using 2 dummy vertices),1416

- the color-combination-vertex ci,j , with a path of length 6 (using 5 dummy vertices),1417

a path of length 12 (using 11 dummy vertices), between each pair of color-combination-1418

vertices, and1419

a path of length 12 (using 11 dummy vertices), between all pairs of color-vertices ci and1420

color-combination-vertices cjk, where i /∈ {j, k}, i.e., we connect the color-vertex of color1421

i with all color-combination vertices of pairs of color that do not include i.1422

We set R∗ = C ∪W (note that |R∗| ∈ O(k2)), a∗ = 12 and k∗ = 6k+ 6(k2− k) + 6(k2− k) +1423

3(k4− 2k3−k2 + 2k) + 12(k3− 3k2 + 2k). This finishes the construction. It is not hard to see1424

that this construction can be performed in polynomial time. For an illustration see Figure 11.1425

At the end G∗ is a graph with 3n+10m+ 1
2 (k2 +k)+ 11

8 (k4−2k3−k2 +2k)+ 11
2 (k3−3k2 +2k)1426

vertices and 3n+ 12m+ 3
2 (k4 − 2k3 − k2 + 2k) + 6(k3 − 3k2 + 2k) edges.1427

We claim that (G, k, c) is a YES instance of the Multicolored Clique if and only if1428

(G∗, R∗, a∗, k∗) is a YES instance of the MASL.1429

(⇒): Assume (G, k, c) is a YES instance of the Multicolored Clique. Let S ⊆ V (G)1430

be the set of vertices that form a multicolored clique in G. We construct a labeling λ for G∗1431

that uses k∗ labels, which are not larger than a∗ = 12, and admits a temporal path between1432

all vertices from R∗ as follows.1433

Let US be the set of corresponding vertices to S in G∗. For each v ∈ S of color i we1434

label the three edges connecting ci to uv with labels 1, 2, 3, one per each edge, in order to1435

create temporal paths starting in ci and with labels 12, 11, 10, one per each edge, in order1436

to create temporal paths that finish in ci. For every edge vw = e ∈ E with endpoints in1437

S we label the path from both of its endpoint vertex-vertices uv, uw to the edge-vertex ue1438

with labels 4, 5, 6, one per each edge, and with labels 9, 8, 7, one per each edge. This ensures1439

the existence of both temporal paths between ci and cj . More precisely, (ci, cj)-temporal1440
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Figure 11 An example of the construction of the input graph for MASL. For better readability,
some paths among the vertices in W and paths among ci ∈ C and cjk ∈ W (i 6= j 6= k), are not
depicted.

path (resp. (cj , ci)-temporal path) uses labels 1, 2, 3 to reach uv (resp. uw), from where it1441

continues with 4, 5, 6 to ue, then with 7, 8, 9 reaches uw (resp. uv) and finally with 10, 11, 121442

it finishes in cj (resp. ci). Note, since S is a multicolored clique then each vertex v′ ∈ S is of1443

a unique color i′ and all vertices in S are connected. Therefore, using the above construction1444

for all vertices in S, vertex ci reaches and is reached by every other color vertex cj through1445

the vertex-vertex uv. Even more, since there is an edge e connecting any two vertices1446

v, w ∈ S, there is a unique edge vertex ue (and consequently a unique path), that is used for1447

both temporal paths between vertex-vertices uv, uw and their corresponding color-vertices.1448

The above construction clearly produces a temporal path (of length 12) between any two1449

color-vertices. This construction uses 2 · 3 labels between every color-vertex ci and its unique1450

vertex-vertex uv, where v ∈ S and c(c) = i, and 2 · 6 labels from each edge vertex ue to1451

both of its endpoint vertex-vertices, where e is an edge of the multicolored clique formed1452

by the vertices in S. All in total we used 6k + 12
(
k
2
)

= 6k + 6(k2 − k) labels, to connect all1453

edge-vertices corresponding to edges formed by S with their endpoints vertex-vertices.1454

Now, let cij and ci′j′ be two arbitrary color-combination-vertices. By the construction of1455

G∗ there is a unique path of length 12 connecting them, which we label with labels 1, 2, . . . , 121456

in both directions. This labeling uses 2 · 12 labels for each pair of color-combination-1457

vertices, hence all together we use 24 |W |(|W |−1)
2 labels, since |W | =

(
k
2
)
this equals to1458

3(k4 − 2k3 − k2 + 2k).1459

Finally, let ci′ and cij be two arbitrary color and color-combination-vertices, respectively.1460

In the case when i′ /∈ {i, j} there is a unique path of length 12 in G∗ between them (that1461

uses only the dummy vertices). We label this path with labels 1, 2, . . . , 12 in both directions.1462

This procedure uses 2 · 12 labels for each pair of such vertices, hence all together we use1463

24k
(
k−1

2
)
labels, which equals to 12(k3 − 3k2 + 2k). In the case when i′ ∈ {i, j} (w.l.o.g.1464

i′ = i) we connect the vertices using the following path. In S exists a unique vertex of color1465

i, denote it v. By the definition of S there is also vertex w of color j, which is connected1466

to v with some edge, denote it e. Therefore, to obtain a (ci, cij)-temporal path, we first1467

reach uv from ci with labels 1, 2, 3, then continue to ue, using labels 4, 5, 6, from where we1468

continue to ci,j using the labels 7, 8, . . . , 12. The (cij , ci)-temporal path uses the same edges,1469
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with labels in reversed order. This construction introduced 2 · 6 new labels on the path of1470

length 6 between the edge-vertex ue and the color-class-vertex cij and reused all labels on1471

the (ci, ue)-temporal paths. Repeating this for every color-class-vertex we use 2 · 6|W | new1472

labels, since |W | =
(
k
2
)
this equals to 6(k2 − k).1473

All together λ uses 6k+ 6(k2− k) + 6(k2− k) + 3(k4− 2k3− k2 + 2k) + 12(k3− 3k2 + 2k)1474

labels.1475

(⇐): Assume that (G∗, R∗, a∗, k∗) is a YES instance of the MASL and let λ be the1476

corresponding labeling of G∗. Before we construct a multicolored clique for G, we prove that1477

the distance between any two terminal vertices from R∗ in G∗ is 12.1478

Case A. Let ci, cj ∈ C be two arbitrary color-vertices and let e be an edge in G with1479

endpoints of color i and j, i.e., e = vw ∈ E(G) and c(v) = i, c(w) = j. There are two options1480

how to reach cj from ci. One when the path connecting them passes through the set E and1481

the other, when it passes through the set W .1482

Case A-1. If the path passes through the set E, we must first go through a vertex-vertex1483

uv, then we go to the edge-vertex ue, continue to the vertex-vertex uw and finish in cj . Since1484

all these vertices are connected with a path of length 3, we get that the distance of the whole1485

(ci, cj)-path is 12.1486

Case A-2. If the path passes through the set W , then we must go through the color-class-1487

vertex cij . Since the path between any color-vertex and color-class-vertex is of length 12 (we1488

prove this in the following paragraph), the whole (ci, cj)-path is of length 24.1489

Therefore, the shortest path connecting two color-vertices is of length 12 and must go1490

through the appropriate edge-vertex.1491

Case B. Let cij and ci′ be two arbitrary vertices from the color-class-vertices and color-1492

vertices. We distinguish two cases.1493

Case B-1. First, when i′ /∈ {i, j}. Then, by the construction of G∗, there exists a direct1494

path of length 12, connecting them. Any other (ci′ , cij)-path must either go from ci′ to some1495

color-class-vertex ci′j′ , which is then connected with a path of length 12 to the cij , or go to1496

one of the color-vertices and then continue to the cij . In both cases the constructed path is1497

strictly longer than 12.1498

Case B-2. Second, when i′ ∈ {i, j}. Let c(v) = i and vw = e ∈ E(G). Then there is a path1499

from ci to cij that goes through the vertex-vertex uv (using a path of length 3), continues to1500

the edge-vertex ue (using a path of length 3), which is connected to the color-class-vertex1501

cij (using a path of length 6). Hence the constructed (ci, cij)-path is of length 12. There1502

exists also another (ci, cij)-path, that goes through some other cij′ color-class-vertex, but it1503

is longer than 12.1504

Case C. Let cij and ci′j′ be two arbitrary color-class-vertices. By construction of G∗, there1505

is a path of length 12 connecting them. Any other (cij , ci′j′)-path, must use at least one1506

vertex-vertex, which is on the distance 9 from the color-class-vertices (therefore the path1507

through it would be of length at least 18), or a color-vertex, which is on the distance 12 from1508

the color-class-vertices. In both cases the constructed path is strictly longer than 12.1509

It follows that the distance between any two terminal vertices in R∗ is 12, hence a1510

temporal path connecting them must use all labels from 1 to 12. Using this property we know1511

that any labeling that admits a temporal path among all terminal vertices must definitely1512

use all labels 1, 2, . . . , 12 on the temporal paths among any two color-combination-vertices cij1513

and ci′j′ , and among a color-vertex ci′ and a color-combination-vertex cij , where i′ /∈ {i, j}.1514

This is true as there are unique paths of length 12 among them. For these temporal paths1515
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we must use 2 · 12 |W |(|W |−1)
2 labels (since |W | =

(
k
2
)
this equals to 3(k4 − 2k3 − k2 + 2k))1516

and 2 · 12k
(
k−1

2
)
labels (which equals to 12(k3 − 3k2 + 2k)). Therefore, the labeling λ can1517

use only 6k + 6(k2 − k) + 6(k2 − k) labels to connect all other terminals.1518

Let us now observe what happens with the temporal paths connecting remaining temporal1519

vertices. To create a temporal path starting in a color-vertex ci and ending in some other1520

color-vertex (or color-combination-vertex), λ must label at least 3 edges, to allow ci to reach1521

one of its corresponding vertex-vertices uv. Similarly it holds for a temporal path ending in1522

ci. Since the path connecting ci to some other terminal is of length 12, the labels used on1523

the temporal paths starting and ending in ci cannot be the same. In fact the labels must1524

be 1, 2, 3 for one direction and 12, 11, 10 for the other. Therefore, λ uses at least 6k labels1525

on edges between vertices of C and UV . Extending the arguing from above, for ci to reach1526

some (suitable) edge vertex ue the path needs to continue from uv to ue and must use the1527

labels 4, 5, 6 (or 9, 8, 7 in case of the path in the opposite direction). From ue the path can1528

continue to the corresponding color-combination-vertex ci,j where it must use the labels1529

7, 8, . . . , 12, or to the vertex-vertex corresponding to the other endpoint of e. This finishes1530

the construction of the temporal path from a color-vertex to the color-class-vertex and the1531

temporal paths among color-vertices. The remaining thing is to connect a color-class-vertex1532

with its corresponding color-vertices. The temporal path must go through some edge vertex1533

ue, that is on the distance 6 from it, therefore the labeling must use the labels 1, 2, . . . , 6.1534

From ue the path continues to the suitable vertex-vertex and then to the color-vertex. Using1535

the above labeling we see that λ must use at least 2 · 6|W | labels (which equals to 6(k2 − k)1536

labels) on the edges between the color-class-vertices in W and the edge vertices in UE and at1537

least 2 · 6
(
k
2
)
labels (which equals to 6(k2 − k) labels) on the edges between the edge-vertices1538

in UE and vertex-vertices in UV . Since all this together equals to k∗, all of the bounds are1539

tight, i.e., labeling cannot use more labels.1540

We still need to show that for every color-vertex ci there exists a unique vertex-vertex uv1541

connected to it such that all temporal paths to and from ci travel only through uv. By the1542

arguing on the number of labels used, we know that there can be at most two vertex-vertices1543

that lie on temporal paths to or from ci. More precisely, one that lies on every temporal1544

path starting in ci and the other that lies on every temporal path that finishes in ci. Let1545

now uv, uv′ be two such vertex-vertices. Suppose that uv lies on all temporal paths that1546

start in ci and uv′ on all temporal paths that end in ci. Now let ue be the edge-vertex1547

on a temporal path from ci to cj , and let uw be the vertex-vertex connected to cj and ue.1548

Therefore the (ci, cj)-temporal path has the following form: it starts in ci, uses the labels1549

1, 2, 3 to reach uv, then continues to ue with 4, 5, 6, then with 7, 8, 9 reaches uw and with1550

10, 11, 12 ends in the cj . To obtain the (ci, cij)-teporal path we must label the edges from ue1551

to cij with the labels 6, 7, . . . , 12, since the edge-vertex ue is the only edge-vertex connected1552

to the color-class-vertex cij that can be reached from ci (if there would be another such1553

edge-vertex, then the labeling λ would use too many labels on the edges between UV and1554

UE). Now, for the color-vertex cj to be able to reach the color-class-vertex cij , it must use1555

the same labels between the ue and cij (using the same reasoning as before). Therefore1556

the path from cj to ue (through) uw uses also the labels 1, 2, . . . , 6. But then for cj to1557

reach ci the temporal path must use the vertex-vertex uw, even more it must use the edge1558

vertex ue and consequently the vertex-vertex uv, from where it would reach ci. But this1559

is in the contradiction with the assumption that the path from ci to uv uses only labels1560

1, 2, 3. Therefore, every color-vertex ci admits a unique vertex-vertex uv that lies on all1561

(ci, cj) and (cj , ci)-temporal paths. For the conclusion of the proof we claim that all vertices1562

v corresponding to these unique vertex-vertices uv of color-vertices ci, form a multicolored1563
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clique in G. This is true as, by construction, a temporal path between two vertex-vertices1564

uv, uw corresponds to the edge vw = e ∈ E(G). Since every vertex-vertex is connected to1565

exactly one color-vertex, this corresponds to the vertex coloring of V (G). In G∗ there is1566

a temporal path among any two color vertices, therefore the vertex-vertices used in these1567

temporal paths can be reached among each other, which means that they really do form a1568

multicolored clique. J1569

Note here that, in the constructed instance of MASL in the proof of Theorem 23, the1570

number of labels is also upper-bounded by a function of the number of colors in the instance1571

of Multicolored Clique. Therefore the proof of Theorem 23 implies also the next1572

result, which is even stronger (since in every solution of MASL the number of time-labels is1573

lower-bounded by a function of the number |R| of terminals).1574

I Corollary 24. MASL is W[1]-hard when parameterized by the number k of time-labels,1575

even if the restriction a on the age is a constant.1576

5 Concluding remarks1577

Several open questions arise from our results. As we pointed out in Lemma 4, κ(Cn, d) =1578

Θ(n2), while κ(G, d) = O(n2) for every graph G by Observation 3. For which graph classes1579

G do we have κ(G, d) = o(n2) (resp. κ(G, d) = O(n)) for every G ∈ G?1580

As we proved in Theorem 19, MAL is NP-complete when the upper age bound is equal to1581

the diameter d of the input graph G. In other words, it is NP-hard to compute κ(G, d). On1582

the other hand, κ(G, 2r) can be easily computed in polynomial time, where r is the radius of1583

G. Indeed, using the results of Section 2.1, it easily follows that, if G contains (resp. does1584

not contain) a C4 then κ(G, 2r) = 2n− 4 (resp. κ(G, 2r) = 2n− 3). For which values of an1585

upper age bound a, where d ≤ a ≤ 2r, can κ(G, a) computed efficiently? In particular, can1586

κ(G, d+ 1) or κ(G, 2r − 1) be computed in polynomial time for every undirected graph G?1587

With respect to parameterized algorithmics, is MAL FPT with respect to the number k1588

of time-labels?1589
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