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Abstract of thesis entitled
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Vacua
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in June, 2022

This thesis centres around the classification of different types of non-supersymmetric
Z2 ×Z2 heterotic string vacua in four dimensions according to certain phenomeno-
logical characteristics. Of notable interest are models that descend from the tachyonic
heterotic string in ten dimensions. It is shown that tachyon-free models can be classi-
fied and their observable matter content studied, as well as their one-loop cosmological
constants evaluated. A similar analysis can also be performed for non-supersymmetric
vacua descending from the more widely studied SO(16) × SO(16) tachyon-free het-
erotic string in ten dimensions. Exploration in these spaces of models gives rise to
uncovering novel string vacua, Type 0 and Type 0̄ strings, that are free from massless
fermions and untwisted massless bosons, respectively.

A key tool to help in this investigation are the sophisticated computation algo-
rithms SAT/SMT solvers, which are highly optimised for dealing with large constraint
systems and deciding satisfiability. These solvers are shown to be useful in both effi-
ciently solving phenomenological constraint systems and declaring when certain char-
acteristics in classes of models are in contradiction.

The classification of non-supersymmetric vacua with asymmetric shifts is further
introduced. In this setup several important phenomenological effects are noted arising
from the asymmetric shifts. Worth special emphasis is their impact on fixing moduli
in the internal space, which is suspected to be instrumental when seeking to deduce
general features of the string vacua throughout the moduli space.
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1

Chapter 1

Introduction

Picture a vacuum.
An endless and unmoving blackness.
Peace, or the absence at least, of terror.
I see, and amongst all this space,
That speck of light in the furthest corner,
Gold as a pharaoh’s coffin,
Now follow that light with your tired eyes,
Its been a long day, I know, but look.
Watch as it flickers and it roars into
fullness and fills the whole frame blazing a
fire you can’t bear the majesty of.
Here is our Sun.
And look.
See how the planets are dangled around it
And held in that intricate dance.
There is our Earth.
Our Earth.

Kae Tempest

1.1 Motivation

At least since the 1970s much work has gone into successful unification of General Rela-
tivity (GR) and the Standard Model (SM) of particle physics within a single framework.
The key reason for trying to move beyond these two theories into a unified framework
is to address a range of mysteries that remain unanswered by GR and the SM. Some of
these mysteries are motivated by theory and some by experimental observation. More
concretely, the discovery of dark matter and right-handed neutrinos require some form
of extension of the SM. There is a long list of additional mysteries unexplained by the
SM, perhaps the two most notable being the hierarchy problem and the cosmological
constant problem. The latter problem speaks to the deeper issue of how a theory of
gravity can be unified with our understand of particle physics coming from the SM.
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The leading candidate and most powerful framework for trying to understand all
four fundamental forces within a single framework is, still, string theory. The crucial
fact in this regard is that string theory can naturally unify gravitational and gauge in-
teractions within a single theory. In particular, it evades the problem of perturbative
non-renormalisability of GR under quantisation and embeds a spin-2 representation
of the Poincaré group automatically, giving rise to the graviton: the particle generat-
ing gravitational interactions. In order to realise the gauge sectors of the SM requires
the incorporation of chiral fermions in the theory and for them to have representations
under a gauge group consistent with the SM. The introduction of spacetime fermions
induces some supersymmetry (SUSY) into the string theory, which is a symmetry be-
tween bosons and fermions. The study of SUSY predates string theory and is the most
widely postulated resolution to some of the aforementioned mysteries left open by the
SM. In particular, SUSY gives a natural way to resolve the radiative corrections that
destabilise the Higgs mass and, thus, resolve the hierarchy problem. Furthermore,
SUSY automatically allows for the cosmological constant to be zero (although the small
positive value still needs explanation). A final key motivation in the history of SUSY
was that, when combined with a Grand Unified Theory (GUT) gauge group, such as
SU(5) or SO(10) in which the SM gauge group is contained, allows for the gauge cou-
plings of strong and electroweak forces from the SM to naturally unify at a higher
energy scale. Both SUSY GUTs and string theory also allow for several routes for un-
derstanding the origin of dark matter.

Perhaps the key stumbling block for string theory and SUSY GUTs is the question
of falsifiability [1]. In one sense this is somewhat unavoidable since they are naturally
constructed to explain physics at higher energies than those currently probed at particle
colliders. However, SUSY theorists have been able to essentially build models where
the undetected superpartners to the SM particle content are at higher and higher en-
ergies so as to evade the upper limit at the LHC. Similarly, string theory gives rise to
a vast landscape of vacua, large classes of which are consistent with the SM (or, usu-
ally more specifically, the Minimally SUSY Standard Model- the MSSM). Despite there
being some model-independent results and predictions arising from string theory, it
still suffers from difficulties finding concrete predictions and, thus, the unfalsifiability
problem [2]. This large space of vacua is referred to as the string landscape [3] and can
be thought of as arising due to the fact that the superstring can only be consistently
embedded within 10 spacetime dimensions and so, in order to reproduce realistic 4D
models, is required to be compactified in 6 of its dimensions. Choosing this 6D com-
pactification manifold gives rise to a vast choice of 4D theories, in fact there are, a priori,
an (uncountable) infinity of ways to construct this manifold.

To constrain this large space of possibilities one approach is to study promising
specific classes of compactifications, motivated by known physics. One such promis-
ing class of models are those generated by Z2 ×Z2 orbifold compactifications of the
heterotic string, which are investigated in this thesis. The key attraction of this class
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of models is that the appearance of three particle generations is tied to the orbifold
structure- providing a fascinating natural geometric origin for this feature of the SM.
Even through specifying a promising class of string models, one still has to deal with
vast spaces of vacua. Handling such large spaces brings string theory into the realms
of Big data, Machine learning (ML) [4] and other advanced computing tools such as the
Satisfiability Modulo Theories (SMTs) that will also be studied in this thesis.

Another important set of, still emerging, ideas is to find general sets of constraints
from a theory of quantum gravity (QG) consistent with known physics. These con-
straints are called swampland conjectures and include the Weak Gravity Conjecture,
de-Sitter conjecture and Distance conjecture and are the subject of much active research
within the string phenomenology community at present. The fundamental idea is that
such constraints can dump large areas of the string landscape into the so-called swamp-
land, where such constraints are unsatisfied [5, 6]. Such investigations may help shine
a light on promising parts of the landscape.

Having mentioned the role of SUSY in the development of string theory, a deep
question persists as to what relationship string theory ought to now have with (space-
time) SUSY, given it’s increasingly shakey foundation observationally. Although world-
sheet SUSY is a necessary ingredient to building consistent string theories, the issue of
SUSY breaking and study of non-SUSY strings is a more pressing issue for string theory
now than ever.

Despite being worked on for at least 40 years, it is fair to say that our understand-
ing of string theory remains in its infancy. This is testament to the depth and profound
subtlety of the mathematics embroiled within it. There is a strong case to be made for
taking an instrumental approach and effectively see string theory as a web of tools to
approach novel questions and mysteries within physics. Where the theory may lead
once its dualities, geometries and new symmetries are better understood is yet to be
determined. I hope that my small contribution in this thesis to the exploration of novel
regions of the string landscape can form some part of a baby step within the general
direction of determining where this wonderful theory leads.

1.2 Outline

In Chapter 2 we begin with a fast, and accelerating, overview of the key aspects of the
bosonic string and classical superstrings. Chapter 3 introduces the free fermionic for-
mulation for model building in 10 and 4 dimensions and uses it to complete the expla-
nation of some fundamental results of (perturbative closed) superstring theory. Special
attention is given to non-supersymmetric strings and key features for the kind of model
building done in the rest of the thesis. Chapter 4 presents a general overview of the clas-
sification program for Z2×Z2 orbifolds. Chapter 5 is largely based on the paper [7], in
which a classification of tachyon-free non-SUSY models with unbroken SO(10) gauge
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group descending from a tachyonic 10D heterotic string is presented. Following this,
Chapter 6 is based on refs. [8, 9] and explores some novel string models, the Type 0 and
Type 0̄, arising from studies of non-supersymmetric Z2 ×Z2 orbifold models. Chap-
ter 7 is based on ref. [10] and presents a first application of SAT/SMT solvers to the
string landscape, in regard to the Type 0̄ models discussed in Chapter 6. In Chapter 8
we turn to extending the classification methodology to Classes of Flipped SU(5) string
vacua with asymmetric shifts, which is work presented in ref. [11]. Finally, Chapter 9
presents final reflections on classifying the string landscape and non-supersymmetric
string model building.
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Chapter 2

Key Aspects of String Theory

In this chapter some basic aspects of perturbative string theory are quickly reviewed,
beginning with the bosonic string and then introducing spacetime fermions to explore
the superstring. We will focus on highlighting some key elements with a view towards
later topics in this work. Some of the presentation in this chapter is based around refs.
[12, 13, 14, 15, 16, 17].

2.1 Overview of the Bosonic String

In analogy to a point particle with the fundamental property of mass which carves out
a one-dimensional worldline in spacetime, we can consider a string with fundamental
property tension, T, generating a 2D surface as it propagates in spacetime. This 2D sur-
face is called the worldsheet, Σ, and can be parametised by a local spacelike coordinate
σ and a local timelike coordinate τ such that Σ 3 {σa} = {τ, σ}, a = 0, 1. The string
is then embedded1 in spacetime via the spacetime coordinates Xµ(σa), µ = 0, ..., D− 1,
which is a vector field mapping the worldsheet to the target space,M.

The Nambu-Goto action

We can lean on the analogy with the point particle, whose action is given by the proper
length of its worldline, in order to construct an action for our string. The natural quan-
tity to use is the proper worldsheet area and we therefore postulate the action

S = −T
∫

dA, (2.1)

where the string tension T has units of mass per unit length.

In order to write the area in terms of the spacetime coordinates Xµ(σa) we can
identify the induced metric on the worldsheet, gab, as the pullback of the spacetime
metric Gµν

gab(σ
c) = Gµν(X)∂aXµ∂bXν (2.2)

1As noted in ref. [18], it is more precise to talk about the map Σ → M as an immersion, rather than an
embedding, to allow for self-intersections of the string but embedding is more intuitive.
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and then the area can be expressed in terms of the determinant of this induced metric

SNG = −T
∫

dσdτ
√
−det{gab}, (2.3)

which is called the Nabu-Goto action. The characteristic string scale is connected to the
string tension via

T =
1

2πα
, Ms = α′−1/2 =

1
ls

. (2.4)

The introduction of α′ has a historical origin in the application of string theory to the
theory of strong interactions, where it was identified as the ‘universal Regge slope’[19].

The Polyakov action

The square root in the Nabu-Goto action (2.3) ends up causing difficulties when quan-
tising and making calculations, so it is preferable to write the action of the theory in
polynomial form using an auxiliary field, hab, which can be identified as a dynamical
metric for the worldsheet Σ. This action is called the Polyakov action2 and takes the
form

SP[X, h] = −T
∫

Σ
d2σ
√
−h hab∂aXµ∂bXνGµν(X), (2.5)

where h := det{hab}. We can therefore see we have a theory for D massless, real scalar
fields Xµ coupled to gravity in two-dimensions, described through the worldsheet dy-
namical metric, hab. String theory can then be considered as the study of consistent
quantisations of these fields on the 2D Riemann worldsheet surface, Σ3. Varying the
Polyakov action with respect to the metric hab generates the energy-momentum tensor

Tab = − 1
T

1√
−h

δS
δhab =

1
2

∂aXµ∂bXµ −
1
4

habhcd∂cXµ∂dXµ = 0, (2.6)

solving for hab gives
hab = 2 f (σc)∂aXµ∂bXµ, (2.7)

where we introduce the conformal factor given through

f (σc)−1 = gab∂aXµ∂bXµ. (2.8)

This illustrates the difference between hab and the pullback metric gab from equation
2.2. Substituting this expression for hab back into the Polyakov action reduces it to the
Nambu-Goto action- showing their equivalence, at least at the classical level.

2Incidentally, Polyakov did not discover the action he just understood how to work with it and perform
the path integral quantisation.

3We note here that there are a couple of extra terms that can be added to the Polyakov action consistent
with Poincaré invariance and power counting renormalizability for closed strings. The most relevant one is
a 2D Gauss-Bonnet term which does play a role in string perturbation theory. This will not be discussed here
but more details can, for example, be found in ref. [14].
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The equations of motion for Xµ can be found through the action variation

δS
δXµ

=
√
−hhabna∂bXµ

∥∥∥σ=σR

σ=σL
+ ∂a

(√
−hhab∂bXµ

)
= 0 (2.9)

where na is normal to the boundary of Σ. The boundary term will vanish for strings
that are closed loops, i.e. closed strings, but give rise to non-trivial boundary conditions
for open strings. In this work we will not consider open strings.

Symmetries of the Polyakov action

So far we have not specified a metric for the target space M. To begin investigat-
ing the properties of the Polyakov action we can now specify a D-dimensional (flat)
Minkowskian target-space so that Gµν = ηµν

4. We can identify 3 symmetries of the
resultant Polyakov action

• Poincaré invariance: arises as the global symmetry of the spacetime such that

δXµ = ω
µ
νXν + aµ, δhab = 0, (2.10)

where ωµν are the (antisymmetric) infinitesimal generators of Lorentz transfor-
mations

• Diffeomorphism invariance: this is simply the basic requirement that the physics
of our theory is unaffected by (local) reparameterisation of Σ. This is a gauge
symmetry as it speaks to a redundancy in the labelling of worldsheet coordinates
σa. Infinitesimally this can be written σa → σ̃a = σa − ξa(σa) such that the fields
transform according to

δXµ = ξa∂aXµ

δhab = −(∇aξb +∇bξa).
(2.11)

• Weyl Invariance: is less familiar and rather novel. It leaves Xµ unchanged and
induces a scale factor to the worldsheet metric and infinitesimally can be written

δXµ = 0, δhab = 2Λ(σa)hab. (2.12)

An important consequence of this symmetry is that it ensures that the stress-
energy tensor is traceless. Furthermore, it allows for the worldsheet metric to
be rescaled to the 2D flat Minkowski metric to simplify the theory. Weyl sym-
metry will also give rise to important consistency constraints once the theory is

4The generalised action with a curved background can be considered, in which the theory is a non-linear
sigma model and the massless excitations we derive through quantisation, the graviton, anti-symmetric ten-
sor and the dilaton, become dynamical fields. The case Gµν = ηµν can be considered as the zeroth order term
in an expansion around a flat background. More details can be found in Chap. 14 of [14].
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quantised, in particular because the aforementioned stress-energy tensor trace,
Ta

a, becomes non-zero at the quantum level.

Path Integral Approach to Bosonic String

A powerful formalism to employ for quantisation and calculation of scattering ampli-
tudes is the path integral formulation. In particular, such a path integral will include
an integration over the fields Xµ and hab, modulo gauge transformations. As a starting
point we can take the partition function of the bosonic string with Euclidean world-
sheet signature

Z =
∫ DhDX

Vgauge
e−SP [h,X] =

∫ DhDX
Vgauge

eT
∫

Σ d2σ
√
−h hab∂aXµ∂bXνηµν (2.13)

where the Vgauge ensures the modding out by Xµ and hab’s related by gauge transforma-
tions (Diffeomorphisms and Weyl). In order to define the integration measures for Xµ

and hab, which preserve all symmetries of the classical theory, we can write the norms

||δh|| =
∫

d2σ
√

hhabhcdδhadδhbc

||δXµ|| =
∫

d2σ
√

hhabδXµδXµ,
(2.14)

but these are not Weyl invariant. If we take a general gauge transformation, Ξ, of the
metric

Ξ : hab(σ)→ h′ab(σ
′) = e2Λ(σ) ∂σc

∂σ′a
∂σd

∂σ′b
hcδ, (2.15)

we can put the metric into a gauge fixed form ĥ, called the fiducial metric. Infinitesi-
mally we can write this transformation as

δhab = ∇aξb +∇bξa + 2Λhab = (P̂ξ)ab + 2Λ̃hab, (2.16)

where (P̂ξ)ab = ∇aξb +∇bξa − (∇cξc)hab maps vectors into symmetric traceless ten-
sors and Λ̃ = Λ + 1

2∇cξc. In this form we can see that there is a traceless symmetric
part independent of the scale factor Λ and a pure trace part. In these components we
can write the integration measure for hab as

Dh = D(P̂ξ)D(Λ̃) = DξDΛ
∣∣∣∂(P̂ξ, Λ̃)

∂(ξ, Λ)

∣∣∣, (2.17)

where the Jacobian is called the Fadeev-Popov determinant and is equal to

∣∣∣∂(P̂ξ, Λ̃)

∂(ξ, Λ)

∣∣∣ = ∣∣∣det

{(
P ∗
0 1

)}∣∣∣ = ∣∣∣det
{

P̂
}∣∣∣, (2.18)

where ∗ doesn’t affect the determinant value. This determinant can be rewritten in ex-
ponential form through an integration over two new fields we introduce called bαβ and
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cα, which are both necessarily (anti-commuting) Grassman-valued fields. Doing this,
we now have a gauge fixed partition function where the Polykov action is augmented
by the action of these new ghost fields b and c

Z[ĥ] =
∫

DXDbDc exp
{
−SP[X, ĥ]− Sghost[b, c, ĥ]

}
, (2.19)

such that
Sghost[b, c, ĥ] =

1
2π

∫
d2σ
√

ĥbab∇acb. (2.20)

In order to explore this further we can choose a convenient fiducial metric

ĥab = δab, (2.21)

where we have used Weyl symmetry with Euclidean signature. We can now employ
a conformal map from the Euclidean cylinder to the complex plane via z = eτE+iσ and
z̄ = eτE−iσ, where the τE emphasises that we are in Euclidean signature. In terms of
these coordinates we can write the measure as d2σ = 1

2 d2z, the covariant derivative
becomes the normal partial derivative and our partition function becomes

Z =
∫

DXDbDc exp
{(

T
2

∫
C

dz2(∂zX∂z̄X) +
1

4π

∫
C

d2z(bzz∂z̄cz + bz̄z̄∂zcz̄)

)}
. (2.22)

This is a theory of two decoupled CFTs relating to the matter theory (Xµ) and the ghost
theory (b and c). The ghost CFT is universal, resulting from the impact of gauge fix-
ing the Polyakov action, whereas the matter CFT arises from a specific choice of back-
ground. We can note that the ghost theory has equations of motion

∂̄b = ∂b̄ = ∂̄c = ∂c̄ = 0, (2.23)

where b = bzz, ∂ = ∂z, c = cz and so on. We can thus observe that b and c are
holomorphic and b̄, c̄ are antiholomorphic.

The Ghost CFT andD = 26

The total energy-momentum tensor of the theory is the sum of the (normal-ordered)
contributions to it from the matter sector and the ghost sector, i.e. T = TM + Tgh,
where TM has two non-zero components

TM(z) := Tzz = −2 : ∂zX∂zX : and TM(z̄) := Tz̄z̄ = −2 : ∂z̄X∂z̄X : . (2.24)

For which we note the Laurent expansion

TM(z) = ∑
n∈Z

Ln

zn+2 (2.25)
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and similarly on the antiholomorphic side with Laurent modes L̄n. Meanwhile, we also
have the ghost contribution

Tgh(z) = 2 : (∂c)b : + : c∂b :, and Tgh(z̄) = 2 : (∂̄c̄)b̄ : + : c̄∂̄b̄ : . (2.26)

Taking variations of the ghost action with respect to b and c results in the OPEs

c(z)b(w) =
1

z− w
+ ..., (2.27)

where the ... refer to regular terms. We can show that b and c are in fact primary fields
of the ghost CFT by taking their OPEs with the holomorphic ghost energy-momentum
tensor

Tgh(z)c(w) = − c(w)

(z− w)2 +
∂c(w)

z− w
+ ..., (2.28)

which corresponds to an OPE for a conformal primary of weight -1 and

Tgh(z)b(w) = − 2b(w)

(z− w)2 +
∂b(w)

z− w
+ ..., (2.29)

which corresponds to a OPE of a conformal primary weight 2. In order to calculate the
central charge, c, of the ghost CFT we can take the OPE of the ghost energy-momentum
tensor which can be calculated to equal

Tgh(z)Tgh(w) =
−13

(z− w)4 +
2T(w)

(z− w)2 +
∂T(w)

z− w
+ ..., (2.30)

which implies that that ghost central charge is c = −26. In order to cancel this (for the
preservation of the Weyl symmetry) we require the matter CFT to be cM = 26. This can
be done by having Xµ live in D = 26, the so-called critical dimension of the bosonic
string.

BRST Quantisation

The Hilbert space of our matter-ghost theory can be decomposed as

H = HM ⊗Hgh. (2.31)

In order to build states we must examine the residual symmetry of the theory after
we used the Fadeev-Popov method to gauge fix our action. The residual symmetry is
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called the BRST transformation and is generated by

δBXµ = −iκ(c∂Xµ + c∂Xµ)

δBc = −iκc̄∂̄c̄

δB c̄ = iκc∂c

δBb = −iκT

δB b̄ = −iκT̄,

(2.32)

where T and T̄ are the holomorphic and antiholomorphic total energy-momentum ten-
sors, respectively. By Noether’s theorem there exists a corresponding BRST current

jB(z) = c(z)TM(z)+ : b(z)c(z)∂c(z) : +
3
2

∂2c(z) (2.33)

and correspondingly for the antiholomorphic part. Additionally this comes with the
Noether charge QB

QB =
1

2π

∮
dz
(

c(z)TM(z)+ : b(z)c(z)∂c(z) :
)

, (2.34)

which is just the contour integral of the BRST current without the total derivative term
which is inserted by hand into (2.33) to ensure that jB transforms as a conformal pri-
mary when cM = 26.

Writing the Laurent expansion of the ghost fields as

b(z) =
∞

∑
m=−∞

bm

zm+2

c(z) =
∞

∑
m=−∞

cm

zm−1 .
(2.35)

We can rewrite the BRST charge in terms of the modes (Virasoro generators) of the
matter theory’s energy-momentum tensor, Lm, of eq. (2.25) and the modes bm, cm of the
ghost theory

QB =
∞

∑
m=−∞

(L−m − δm,0) cm −
∞

∑
m,n=−∞

(m− n) : c−mc−nbm+n :, (2.36)

and similarly for the antiholomorphic Q̄B. The Hilbert space of physical states contains
those states |phys〉 that are BRST invariant

(QB + Q̄B) |phys〉 = 0. (2.37)

We must ensure that the BRST charge remains conserved under a change in gauge-
fixing condition. To check this we can compute that it commutes with the full Hamil-
tonian H under a BRST variation δBH. Doing this proves the important fact that QB is
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nilpotent, that is
Q2

B = 0, (2.38)

otherwise the theory becomes anomalous under gauge changes. This nilpotency im-
plies that any state QB |χ〉 will be annihilated by QB and so naively is physical. How-
ever, this state is orthogonal to all physical states, including itself, and is therefore called
a null state and should be ignored when exploring quantum dynamics.

The upshot is that the Hilbert space of physical states are given by the cohomology
of QB. In other words, physical states are the BRST closed states modulo the BRST exact
states.

In order to begin building the Hilbert space we need to define the full vacuum of
the theory

∣∣0X〉⊗ |0〉gh. The Hilbert space of the CFT for the free scalar fields Xµ is built
from primary highest weight states |pµ〉 of conformal dimensions

L0 |p〉 = L̄0 |p〉 =
α′

4
pµ pµ |p〉 (2.39)

and its descendents obtained by acting with creation operators associated with Xµ

|Φ〉 = ...(ᾱµ2
−2)

N̄µ2
2 (αν2

−2)
Nν2

2 (ᾱ
µ1
−1)

N̄
µ1
1 (αν1

−1)
N

ν1
1 |p〉 , (2.40)

such that the conformal dimension for a state is

L0 |Φ〉 =
(

α′

4
p2 + NX

)
|Φ〉 , NX = ∑

νr ,r
rNνr

r (2.41)

and similarly for the antiholomorphic side, where we call NX (and N̄X) the holomor-
phic (and antiholomorphic) level(s) of the states in the module.

For the ghost CFT, we can define |0〉gh in the standard way as annihilated by the
modes bn, cn for n ≥ 1. Inspecting the zero modes b0, c0, we see they satisfy anticom-
mutation relations

{b0, c0} = 1, (2.42)

generating a Clifford algebra and, thus, an SL(2, C) doubly degenerate vacuum with
spin up |↑〉 and spin down |↓〉 states such that

b0 |↑〉 = |↓〉 , b0 |↓〉 = 0, c0 |↑〉 = 0, and c0 |↓〉 = |↑〉 . (2.43)

Once we try to build physical amplitudes it turns out that the |↑〉 generates null states
and typically unphysical amplitudes. Another way to implement this choice is through
imposing

b0 |phys〉 = 0, (2.44)

which is called the ‘Siegel gauge’ as a new condition on physical states. Now that we
have |↓〉 as the ghost vacuum acting with the negative modes of the ghosts will create
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our states

|Φ〉gh =
(

...(b−1)
N1(c−1)

M1 |↓〉gh
)
⊗
(

...(b̄−1)
N̄1(c̄−1)

M̄1
∣∣∣↓〉gh

)
. (2.45)

We can now deduce the spectrum level by level for closed strings according to the levels
of the full CFT, which is allowed since from (2.36) we see that QB does not mix terms
of different levels.

At level zero there is a unique state of the form

|pµ〉T = |p〉 ⊗ |↓〉gh ⊗
∣∣∣↓〉gh

(2.46)

and acting with the BRST charge gives

QB |pµ〉T =

(
α′

4
p2 − 1

)
|p〉 ⊗ |↑〉gh ⊗

∣∣∣↓〉gh
(2.47)

and similarly for the antiholomorphic side. Therefore the constraint for physical states
(2.37) holds when

α′

4
p2 = 1, (2.48)

which corresponds to a tachyon, indicating that our bosonic string theory has not been
constructed at a true vacuum.

The next level to consider is N = N̄ = 1 due to level matching5. At this level, we can
write a general physical state as the following linear combination of operators acting
on the level 0 state∣∣∣Ψ1

〉
=

(
eµνα

µ
−1ᾱν

−1 + ζµα
µ
−1b̄−1 + vµα

µ
−1 c̄−1 + ζ̄µᾱ

µ
−1b−1 + v̄µᾱ

µ
−1c−1

+ λ1b−1b̄−1 + λ2c−1 c̄−1 + λ3b−1 c̄−1 + λ4c−1b̄−1

)
|pµ〉T .

(2.49)

Now acting with QB tells us that physical states at this level are massless. Being careful
to remove null states we find that the BRST invariant states simplify to being of the
form ∣∣∣Ψ1

〉
= eµνα

µ
−1ᾱν

−1 |p〉 ⊗ |↓〉
gh ⊗

∣∣∣↑〉gh
(2.50)

subject to the conditions

pµ pµ = 0, (2.51)

pµeµν = pνeµν = 0, (2.52)

eµν ∼ eµν + aµ pν + bν pµ, aµ pµ = bν pν = 0. (2.53)

5Level-matching implies that, for a closed string, holomorphic and antiholomorphic excitations contribute
equally to the mass. This can be viewed as a consequence of translation invariance in σ.
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In order to interpret these states as spacetime particles we consider that (2.52) imposes
that the polarisation vector eµν satisfies transversality and we can decompose it into
irreducible representations of the Poincaré group in the standard way. There is a sym-
metric traceless part corresponding to the graviton Gµν, an antisymmetric part corre-
sponding to the Kalb-Ramond tensor Bµν and a trace part corresponding to the dilaton
Φ.6

This BRST procedure can be continued to higher levels to give massive string
states. A couple of important facts one finds doing this are that the masses are of the
string scale and there is an exponential increase in the degeneracy of states with the
level N.

2.2 The Classical Fermionic String

There is a fundamental omission from the bosonic string theory when thinking from the
perspective of it being related to real world physics: the absence of spacetime fermions.
As mentioned previously, the physical tachyon that arises in the spectrum indicates that
a stable background for the bosonic string needs to be found, whether this is possible
is still an open question. A true vacuum has been found in string field theory for the
case of the open string tachyon (see review [20] and references therein) but it is still
unknown how to roll the theory to a true vacuum for the closed string tachyon within
closed string field theory.

A natural way to introduce fermions is to append the action of a free boson Xµ

with that of a Majorana fermion, Ψµ, which with a Euclidean 2D flat metric generates
the action

S = T
∫

dzdz̄(∂aXµ∂αXµ + Ψ∂Ψ + Ψ∂Ψ), (2.54)

where Ψµ(z, z̄) = (Ψµ(z)
Ψµ(z̄)) = (Ψ

Ψ) has two real Weyl components, one holomorphic and
the other antiholomorphic.

Since the worldsheet fermions Ψµ are taken to be real their possible closed string
boundary conditions are

Ψ(e2πiz) = eπiνΨ(z), (2.55)

with ν = 0, 1 being periodic and antiperiodic which we will rename Neveu-Schwarz
(NS) and Ramond (R), respectively, from now on. With these boundary conditions we

6As mentioned in footnotes 3 and 4, the bosonic string, as defined through the Polyakov action, is de-
pendent on background fluctuations from these massless fields (Gµν, Bµν, Φ). By considering the Polyakov
action (2.5) with Gµν = ηµν we are choosing to set the background fluctuations of Bµν and Φ to zero. The
full action would be a non-linear sigma model incorporating their contributions. A consistent background
for the bosonic string must be Weyl invariant, which generates equations of motion for these background
fields given through beta functions βµν(G) = βµν(B) = β(Φ) = 0. More details can be found in [14, 16], for
example.
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can write the Laurent expansion

Ψ(z) = ∑
r

z−r− 1
2 with

NS ↔ r ∈ Z + 1
2

R ↔ r ∈ Z
(2.56)

and similar for the antiholomorphic side. Quantising these fields is achieved through
imposing the anticommutation relations

{Ψr, Ψs} = δr+s,0. (2.57)

The (holomorphic) energy momentum tensor in this theory is

T(z) = − 1
α′

: ∂Xµ∂Xµ : −1
2

: Ψµ∂Ψµ : . (2.58)

There is a important enhancement to the symmetry of the theory now that the fermionic
contribution has been added. This is (1, 1) worldsheet supersymmetry generated by the
infinitesimal transformations

δX ∝ εψ (2.59)

δΨ ∝ εγα∂aX, (2.60)

where ε is an infinitesimal spinor and γα generate a Clifford algebra. Using the OPE

Ψµ(z)Ψν(w) =
ηµν

z− w
, (2.61)

one can use the OPE : T(z)Ψµ(w) : to verify that the conformal weight of the free
fermion Ψ(z) is ( 1

2 , 0), which is consistent with the structure of the (Dirac-like) kinetic
term in the action (2.54). The superpartner of the energy-momentum tensor is

G(z) =: ∂XΨ : (z) (2.62)

and can be Laurent expanded as

G(z) = ∑
r∈Z+ 1

2

Grz−r− 3
2 . (2.63)

The central charge of the theory is then determined in the usual way by taking the
OPEs

: T(z)G(w) : =
3/2

(z− w)2 G(w) +
1

z− w
∂G(w) (2.64)

: G(z)G(w) : =
ĉ

(z− w)3 +
2

z− w
T(w), (2.65)



16 Chapter 2. Key Aspects of String Theory

with ĉ = 2
3 c. These OPEs generate a N = 1 superconformal algebra for the holomorphic

degrees of freedom and we have an analogous result for the antiholomorphic sector.
These OPEs furthermore imply that G(z) is a primary field of conformal weight 3

2 .

Superghosts andD = 10

For the superstring just defined, the ghost fields b, c arising in the bosonic string through
the Fadeev-Popov prescription are accompanied by (commuting) superghost fields β, γ

required for the gauge fixing and new superparameterisation invariance. These su-
perghosts contribute a similar term ∼

∫
β∂̄γ to the action and give contributions to the

ghost energy-momentum tensor and supercurrent:

Tgh(z) = −(∂b)c− 2b∂c− 1
2
(∂β)γ− 3

2
β∂γ (2.66)

Ggh(z) = (∂β)c +
3
2

β∂c− 2bγ. (2.67)

By doing the OPEs of these with T(z) we find the conformal dimensions of β and γ

are 3
2 and − 1

2 , respectively, making them superpartners of the b, c ghost system. Taken
altogether, these give rise to a ghost supermultiplet contributing a total of cgh = cβγ +

cbc = 11− 26 = −15 such that cmatter = 15 or ĉ = 10. Therefore the matter fields of the
superstring Xµ(z, z̄), Ψµ(z, z̄) have critical dimension D = 10.

Superstring BRST

We can follow similar steps as in the bosonic case to perform the BRST proce-
dure to construct physical states through the cohomology of BRST charge QB. On
the holomorphic side we have contributions to the conserved Noether current from
Xµ(z), Ψµ(z), b, c, β and γ giving

jB = cTM + γGM(z) + bc∂c +
3
4
(∂c)βγ +

1
4

c(∂β)γ− 3
4

cβ∂γ− bγ2 (2.68)

and then QB is the zero mode of this current. The superconformal anomaly cancellation
again imposes the nilpotency condition Q2

B = 0. There is an analogous Siegel gauge
condition as well b0 |χ〉 = β0 |χ〉 = 0, which ensures only physical amplitudes remain
in the spectrum. This condition leads to the following constraints on physical states:

L0 |χ〉 = {QB, b0} |χ〉 = 0 (2.69)

G0 |χ〉 = [QB, β0] |χ〉 = 0, (2.70)

where L0 is the zero mode of the total (matter plus ghost) energy-momentum tensor.
The low lying states of the superstring can be found in an analogous way as with the
bosonic string. We will leave the derivation of the massless spectrum for the Type IIA/B
and heterotic strings to Chapter 3 once we define the free fermionic construction.
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2.3 CFT Representation theory and Current Algebras

From the bosonic string we saw that the modes Ln (L̄n) of the stress-energy tensor
T(z) (T(z̄)) satisfy the Virasoro algebra. The introduction of fermionic fields in the last
section resulted in the presence of an additional primary field G(z) of conformal weight
3
2 that enhanced the theory to a superconformal algebra. In general, we can discuss
c ≥ 1 CFTs built from the Virasoro algebra that get enhanced by some additional set
of chiral operators.The set of these operators generate an operator product algebra that
depends on h with: h = 1

2 being free fermions; h = 1 being Kac-Moody algebras; h = 3
2

being superconformal algebras; h = 2 including the Virasoro algebra and h = 3 being
the so-called W-algebra.

Free Fermion Current Algebras

As seen in the discussion of the classical superstring, the superconformal algebra is cen-
tral to the superstring. The situation of free fermions is also of interest in the forthcom-
ing discussion of the heterotic string and so we will present some of the key ingredients
of how to deal with them in a CFT. In order to discuss the details of their representation
theory we take a theory of just N holomorphic and N antiholomorphic real fermions
given by the Euclidean action

S =
1

4π

∫
d2z

(
δijΨi ∂̄Ψj + δijΨ̄i∂Ψ̄j

)
. (2.71)

This action has a symmetry under SO(N) chiral rotations

Ψ→ Ri
jΨ

i, R ∈ SO(N) (2.72)

and similarly for the antiholomorphic side. The corresponding Noether currents are

Jij(z) = − : ΨiΨj : (z), i < j, (2.73)

with conformal weight (1, 0). Using the fundamental OPE

Ψi(z)Ψ(w) =
δij

z− w
, (2.74)

we can calculate the OPE of two currents

Jij(z)Jkl(w) = − κijkl

(z− w)2 + f ijkl
mn

Jmn

(z− w)
+ ..., (2.75)

where κijkl is the Killing form and f ijkl
mn are the structure constants of the Lie algebra

so(N).
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We can further construct the affine-Sugawara stress-tensor from these currents

T(z) =
1

2(N − 1)

N

∑
i<j

: Jij Jij : (z). (2.76)

Any such (2, 0) operator from such a current obeys the general OPE

T(z)T(w) =
cG/2

(z− w)4 +
2T(w)

(z− w)2 +
∂T(w)

z− w
, (2.77)

such that the central charge is determined by the level k, dual Coxeter number h̃ and
dimension DG of the group G through

cG =
kDG

k + h̃
. (2.78)

We are interested here in level one k = 1 for the group SO(N) with h̃ = N − 2 and
D = 1

2 N(N − 1) so that

cG =
N
2

, (2.79)

verifying what we found in Section 2.2 that each fermion contributes 1
2 to the central

charge.

We can now consider the Hilbert Space of the free fermion CFT as given by the irre-
ducible representations of the SO(N) current algebra. At k = 1 this gives rise to 3 possi-
bilites: the Unit/Trivial representation obtained by acting on the vacuum with negative
current modes; the vector representation and the spinor representation(s). Typically in
string theory applications N is even, N = 2k, and there are two dimensional 2k−1 spino-
rial representations of the Spin(2k) group that is the double-cover of SO(N). We call
these the spinor, S, and the conjugate, C, representations.

To understand these representations we first define primary states of the affine
algebra which should be annihilated by the positive modes of the currents, Jij

n , n > 0.
In particular, we consider the algebra of the zero modes

[Jij
0 , Jkl

0 ] = f ijkl
mn Jmn

0 , (2.80)

which is a (horizontal) subalgebra coinciding with the Lie algebra so(N). Therefore we
can classify states in terms of representations of this zero-mode algebra. Sets of states
|Ri〉 that transform in a representation R and are annihilated by the positive modes of
the current will have some local operator counterparts Ri(z, z̄) with the OPE

Jij(z)Rα(w, w̄) =
R(Tij)

β
α Rβ

z− w
, (2.81)
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which defines affine primary fields. By acting with the Virasoro zero-mode L0 on |Ri〉
we can deduce the conformal dimension for an affine primary to be

h =
CR

k + h̃
, (2.82)

where CR is the quadratic Casimir of the representation R. For SO(N) we see that affine
primaries have

h =
CR

2(N − 1)
. (2.83)

With this technology we can better understand the three aforementioned representa-
tions of the so(N) subalgebra (2.80).

• The Trivial Representation: is associated with the Neveu-Schwarz vacuum |0〉NS

such that
∀i, ∀r ∈N +

1
2

, Ψi
r |0〉NS = 0, (2.84)

and descendent states are obtained by acting with negative modes of the currents
Jij.

• The Vector Representation: From eq. (2.72) we observe that Ψ(z) transforms as
a vector of SO(N) and so we can consider the set of states

|i〉 := Ψi
−1/2 |0〉 , i ∈ {1, ..., N} (2.85)

to define the vector representation of the horizontal subalgebra. This can be seen
to have h = 1

2 . As usual, descendents can be obtained by acting with negative
modes of currents Jij.

• The Spinorial Representation: From eq. (2.83), we use that CR = N(N−1)
8 for the

spinorial representation of SO(N) to observe that

h =
N
16

. (2.86)

In eq. (2.56) we noted the case of integer moded Ramond fermions which can be
seen to arise from the action (2.71) through the Z2 symmetry

Ψi → −Ψi, (2.87)

which commutes with the SO(N) symmetry. We note that there are anticommut-
ing zero modes from the Ramond fermions giving the SO(N) Clifford algebra

{Ψi, Ψj} = δij, (2.88)

which is realised by Hermitean SO(N) γ matrices. We thus expect the Ramond
‘vacuum’ to be a Dirac spinor with 2N/2 components. We expect the R vacua,
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|Sα〉, corresponding to the S and C representations, to be generated by the action
of some local affine primary field on the NS vacuum

|Sα〉 = lim
z→0

Sα(z) |0〉NS . (2.89)

This operator, Sα(z), is called the spin field, which can be constructed through the
OPE

Ψi(z)Sα(w) =
1√

2(z− w)
(γi)

β
αSβ(w) + ..., (2.90)

which we note incurs a branch cut in the complex plane that needs to be consid-
ered carefully in constructing the Hilbert space of the theory and will be consid-
ered in relation to the GSO projection in the following subsection. Despite this
branch cut, one can take the OPE with the currents Jij and see that the spin field
is indeed the desired affine primary of the spinorial representation. The spin field
can be split into fields of positive and negative chirality and then be used to define
the S and C Ramond vacua as distinct, |Sα〉 and |Sα̇〉.

2.4 GSO Projection

In [21, 22] Gliozzi, Scherk and Olive introduced a consistent requirement on the con-
struction of the Hilbert space of fermionic strings. It can be seen to arise either from
considerations of modular invariance or as a way to ensure the correlation functions
involving fermions with Ramond boundary conditions are free from branch cuts. The
idea is to introduce a projection such that only states with even total (matter plus ghost)
worldsheet Fermion number, F , remain in the Hilbert space of the theory.

Acting on the NS and Ramond vacua with the worldsheet fermion number opera-
tor gives

(−)F |0〉NS = − |0〉NS (2.91)

(−)F |0〉R = ΓD |0〉R , (2.92)

where

ΓD = i±
D
2

D

∏
m=1

γm (2.93)

is the D-dimensionality chirality operator. The GSO projection is such that it fixes the
chirality of states in the theory to even fermion number

(−)F |χ〉 = + |χ〉 (2.94)

and similarly on the antiholomophic side with operator (−)F̄ .

Therefore, the GSO projection can be viewed as ensuring that only states with even
number of fermionic excitations survive from the NS sector, whilst in the R sector it
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fixes the chirality of the spin field (2.89). It can be seen as directly related to ensur-
ing spactime supersymmetry since the projection results in the vertex operator of the
gravitino being local with respect to the other vertex operators of the theory.

Imposing the projection independently on both sides of the theory we will see re-
sults in the Type IIA and Type IIB superstrings, which are tachyon-free and supersym-
metric. However, a projection onto states with total (left plus right) even worldsheet
fermion number, given through the operator (−)F+F̄ gives the so-called Type 0A and
Type 0B theories which are tachyonic and non-supersymmetric. We illustrate this in
Section 3.4 in the free fermionic formulation.

2.5 One-Loop Partition Function and Modular Invariance

The simplest quantum corrections in string theory are from the vacuum to vacuum
one-loop amplitude which gives the first quantum correction to the vacuum energy.
For closed strings this one-loop amplitude is the torus amplitude and will be our focus
in this section.

The one-loop amplitude, when interpreted in Euclidean time, corresponds to the
statistical partition function of the string theory. This object is of fundamental impor-
tance and relevance to model builders in string phenomenology since the structure of
the string spectrum is manifest through the partition function and it allows for the
one-loop string potential to be calculated, which generates the leading order contri-
bution to the cosmological constant. Constructing our (S)CFT on the two-torus leads
to a crucial fact about the partition function called modular invariance, which means
our amplitude must be invariant under the modular group PSL(2, Z). This provides
rather stringent consistency constraints on our (super)string theories, especially when
we compactify to four-dimensions.

In this section, we will see how to build the partition function, which will require
considering both compact and non-compact bosonic and fermionic contributions. Once
modular invariance is explained, we will then compute these different contributions
from the Hamiltonian perspective.

Modular Invariance

A key result from the study of Riemann surfaces is the Riemann-Roch theorem, which
relates the Euler characteristic, χ, of the surface to the number of, so-called, moduli, nµ,
and the number of conformal Killing vectors, nk, through

nµ − nk = −3χ = 6(g− 1), (2.95)

where g is the genus of the surface. The moduli are defined as parameters for gauge-
inequivalent metrics on the surface, while the (conformal) Killing vectors are gauge
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transformations that leave the gauge-fixed metric form invariant. We can define the
Teichmüller space, T, of the surface as the quotient of the space of metrics with respect
to the gauge transformations, continuously connected to the identity

T =
metrics

Diff. × Weyl
. (2.96)

However, in general there will be additional gauge transformations on the Riemann
surface not connected to the identity, i.e. ‘large’ diffeomorphisms, that will usually be
given by some discrete group Γ. Considering these allows us to define the true moduli
space as

M =
metrics

Diff. × Weyl× Γ
, (2.97)

so called because it is generated by the space of the moduli for the surface.

We can now apply this to the case of g = 1 (χ = 0) Riemann surfaces that are
topologically equivalent to T2. The translations along the two non-contractible cycles of
the torus correspond to two Killing vector fields generating a conformal Killing group
U(1) ×U(1). From the Riemann-Roch theorem we expect the torus to have two real
moduli. We can define a complex parameter τ = τ1 + iτ2 to parameterise the torus
metric, through conformal invariance we can choose to set the surface area of the torus
to 1 and then we can write the metric as

gij =
1
τ2

(
|τ|2 −τ1

−τ1 1

)
, (2.98)

where we have picked coordinates on the torus σ1, σ2 ∈ [0, 1]. With this choice we can
identify the space of τ as giving the Teichmüller space, which will be the upper half
plane, H. We can then consider the additional symmetries of the torus parameter τ not
connected to the identity that generate the group Γ. These symmetries of τ are given by
global operations called Dehn twists. An obvious such Dehn twist is to consider cutting
the torus open along its first cycle, rotating it by 2π and then glueing it back together.
This is given by taking τ → τ + 1. Additionally, the transformation τ → −1/τ can be
seen to only change the metric by an overall scale factor and so is equivalent by Weyl
transformations.

Together these two transformations act on τ according to

τ → aτ + b
cτ + d

, a, b, c, d ∈ Z, (2.99)

where we can identify the action of the group SL(2, Z) with elements

M =

(
a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z, (2.100)
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quotiented by its centre: the Z2 identification (a, b, c, d) → (−a,−b,−c,−d), which
clearly leaves the action (2.99) unchanged. Therefore we have found that Γ = PSL(2, Z)

and we can define the moduli spaceM as the fundamental domain F defined by

F =
{

τ ∈H |
∣∣∣ |τ1| ≤ 1, |τ| ≥ 1

}
. (2.101)

We can locate the origin of UV finiteness for string theory in the fact that, since the
one-loop toroidal amplitude is integrated over F , the UV limit, which corresponds
to τ2 → 0, is excluded from the integration region. In the analagous limit for one-
dimensional QFT we have the well-known UV singularities at one-loop that ultimately
restrict these QFTs to being effective theories.

Partition Function in Hamiltonian formalism

As mentioned above, the one loop amplitude corresponds to a statistical partition func-
tion when considered in Euclidean time. For T2 with local coordinates σ1, σ2 ∈ [0, 1)
such that σ2 is spacelike and σ1 is given the interpretation of Euclidean time on the
string worldsheet. Considering the torus as a cylinder with its ends identified along
the time direction, we note this corresponds to setting the initial and final states as the
same and the amplitude will correspond to summing all states in the physical Hilbert
space, which will give us a trace. Before gluing the ends, the real part of the modular
parameter τ1 induces a rotation or, analogously, a translation along σ2. On the cylinder
such translations are generated by the momentum operator

P = −2πi(L0 − L̄0) (2.102)

and we have already seen that the Hamiltonian of a CFT is given by

H = 2π

(
L0 + L̄0 −

c + c̄
24

)
, (2.103)

which, as usual, can be associated to time translations, in particular along the σ1 direc-
tion of the cylinder. We note that the prefactors in these equations (2.102) and (2.103)
would be absent had we chosen the conventional σ1, σ2 ∈ [0, 2π).

With all these considerations the torus amplitude can be restated as the following
partition function

Z(τ, τ̄) = Tr
[
e−2πτ2(L0+L̄0− c+c̄

24 )e−2πτ1(L0−L̄0)
]

, (2.104)

which can be rewritten as

Z(τ, τ̄) = Tr
[
qL0− c

24 q̄L̄0− c̄
24

]
, (2.105)

where we have defined q = e2πiτ , sometimes called the ‘nome’ to number theorists.
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This is a very useful form of the partition because it will have the form of an expansion
of Fourier modes

Z = ∑
m,n

amnqm q̄n, (2.106)

also known as a q-expansion. The exponents m, n will count the mass level in CFT units
and amn gives the degeneracy of states at that level.

Partition Function for free scalar CFT

For the Xµ(σa) spacetime scalar fields of the bosonic string we have seen µ = 0, ..., 25.
A general state constructed out of the creation operators αn, n > 0 can be written

|Φ〉 =
25

∏
µ=0

∞

∏
n=1

(α
µ
−n)

Nn(ᾱ
µ
−n)

N̄n |p〉 , (2.107)

which is just a rewriting of eq. (2.40). We note that the Ni ∈ N completely specify the
state and that the conformal weights of states are given by eq. (2.41). Then, computing
the trace corresponds to performing the integration

iV26

∫ d26k
(2π)26 e−2πτ2k2

q−
c

24 q̄−
c̄

24

[
∞

∏
r=1

∞

∑
N=0

∞

∑̄
N=0

qrN q̄rN̄

]26

, (2.108)

where the imaginary unit arises due to us employing Euclidean space such that k0 →
ik0. Performing the integration results in

ZX(τ, τ̄) =
iV26

(4π2α′τ2)13
1

η26(τ)η̄26(τ̄)
, (2.109)

where

η(τ) = q1/24
∞

∏
n=0

(1− qn), (2.110)

is the Dedekind eta function with the nice modular transformation properties

η(τ + 1) = eiπ/12η(τ), η(− 1
τ
) =
√
−iτη(τ). (2.111)

It is interesting to note that we could have done this calculation without setting c = 26
and then using these modular transformation properties of η(τ) to prove it. In other
words, modular invariance alone could have been used to fix the central charge of
the CFT. In general, modular invariance is strongly related to unitarity and, thus, the
consistency of the theory and the constraints it imposes at one-loop from the torus CFT,
as well the constraints at higher genus (although these can be considered as minor
additions to those from the torus), can be used as the general guiding principle for
constructing consistent string vacua.
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Partition Function of the ghost CFT

The scalar fields Xµ(σa) we saw were accompanied by the ghost system (b, c) for the
full bosonic string theory. We may naturally wish to take a trace over states, where we
have now two raising operators bn and cn, which we note are anticommuting. From
the path integral perspective, this trace would give a path integral over antiperiodic
boundary conditions in the time direction. In order to calculate the Faddeev–Popov
determinant, we require that the ghosts must have the same periodicity as the original
coordinate transformations, which were periodic. Hence we require that

Z(τ) = Tr
[
(−1)Fe(2πiτ1P−2πτ2 H)

]
= 0. (2.112)

The non-vanishing contribution arises due to the zero modes b0 and c0. These can be
soaked up by insertions, the simplest choice being two b and two c insertions that can
be fixed at the origin such that the partition function is augmented as

Z(τ) = Tr
[
(−1)Fc0b0 c̄0b̄0e(2πiτ1P−2πτ2 H)

]
(2.113)

= (qq̄)26/24Tr
[
(−1)Fc0b0 c̄0b̄0qL0 q̄L̄0

]
(2.114)

= η2η̄2. (2.115)

The full one-loop amplitude for the bosonic string is then

Z1 =
iV26

(4π2α′)13

∫
F

d2τ

4τ2
2

1
(
√

τ2η(τ)η̄(τ̄))24 , (2.116)

which can be shown to be modular invariant as it should be. Interestingly we can
see that the contribution from the ghosts essentially cancels two of the scalar fields in
Xµ. This can be interpreted as meaning we are left with the contributions only from
transverse fields Xi(σa), i = 1, ..., 24, which is related to the fact we can formulate the
bosonic string theory in the light-cone gauge.

Using our amplitude (2.116) we can consider the IR limit τ2 → ∞ where we could
potentially have a divergence. By expanding the Dedekind η functions it is easy to
check that the tachyon will, as expected, cause a divergence precisely in this limit.

Partition Function for Fermions

For our torus with local coordinates σ1, σ2 ∈ [0, 1) we can consider the boundary con-
ditions of a complex fermion Ψ around the two non-contractible cycles

Ψ(σ1 + 1, σ2) = eiπ(1−a)Ψ(σ1, σ2) (2.117)

Ψ(σ1, σ2 + 1) = eiπ(1−b)Ψ(σ1, σ2). (2.118)
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The partition function will split into sectors for each boundary condition possibility.
More specifically, the modding of states and the value of the zero-point constant in the
Hamiltonian will differ depending on a, whilst b = 1 will introduce an operator eiπF

into the trace. For our single holomorphic complex fermion we have

ZΨ[
a
b ] = Tra

[
eiπbFqL0[a]−1/24

]
=

θ[ a
b ]

η
, (2.119)

where we have introduced the Jacobi theta functions

θ[ a
b ] = ∑

n∈Z

q(n+a/2)2/2e2πi(n+a/2)b/2, (2.120)

with a, b ∈ {0, 1}. We note that a, b = 1 correspond to Ramond boundary conditions
and a, b = 0 to NS. We can in general allow for more general boundary conditions
a, b ∈ R, however, for complex fermions.

It will be useful to introduce the following definitions as we seek to construct con-
sistent partition functions

θ1 := θ[ 0
0 ] = TrNS qL0− c

24 (2.121)

θ2 := θ[ 1
0 ] = TrR qL0− c

24 (2.122)

θ3 := θ[ 0
1 ] = TrNS(−1)FqL0− c

24 (2.123)

θ4 := θ[ 1
1 ] = TrR(−1)FqL0− c

24 = 0. (2.124)

We recall that the superstring theory contained the superghost system (β, γ). It
can be shown with appropriate consideration of how to define the trace and operator
insertions for different sectors of the superghost system that the contribution to the
partition function from these superghosts is

Zβ,γ = (−)b+µab η

θ[ a
b ]

, (2.125)

where µ = 0, 1 gives the chirality of the R vacuum. For D = 10, for example, we can
see that the supeghosts are acting to cancel the contribution of longitudinal fermions,
similar to the bosonic string case with the ghost contribution (2.113). This again means
that we could have written the partition function of the transverse fermionic fields
and ignored the superghosts, which is exactly what one does in the lightcone gauge
approach.
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Partition Function for Compact Scalars

If we consider d compact scalars that can be said to parameterise a d-dimensional torus
Td. The fields can be given the boundary conditions

X I(σ1 + 2π, σ2) = X I(σ1, σ2) + 2πnI (2.126)

X I(σ1, σ2 + 2π) = X I(σ1, σ2) + 2πm̃I , (2.127)

where n, m̃ ∈ Z are winding numbers. The partition function will be given by the d-
dimensional non-compact bosonic partition multiplied by a part, Zn,m, given by tracing
over the winding and internal Kaluza-Klein (KK) degrees of freedom. In the Hamilto-
nian representation it takes the form

Zd = Znon−comp.Zn,m =
1

ηdη̄d ∑
nI ,mI

q
1
2 P2

L q̄
1
2 P2

R =
1

ηdη̄d Γ(d,d)(G, B), (2.128)

where mI are the momentum space versions of m̃I and

(PL,R)I =

√
α′√
2

(
mI + (α′)−1(BI J ± GI JnJ

)
, (2.129)

are the compact momenta and we see the appearance of the metric of Td, GI J and its
antisymmetric tensor BI J .

For d = 1 we consider the partition function as a boson compactified on a circle of
radius R

Z(R) =
1

ηη̄ ∑
n,m∈Z

q
1
2 P2

L q̄
1
2 P2

R , (2.130)

where
PL =

1√
2

(m
R

+ nR
)

, PR =
1√
2

(m
R
− nR

)
. (2.131)

We can note here the emergence of T-duality through the interchanges R → 1/R and
m→ n.

Bosonisation/Fermionisation

Using the partition function result for a single complex fermion (2.119) we can write
the partition function of two holomorphic and two anti-holomorphic fermions on the
torus as

Z f =
1
2 ∑

a,b=0,1

∣∣∣∣∣ θ[ a
b ]

η

∣∣∣∣∣
2

, (2.132)

which, through a Poisson resummation and some relabelling can be shown to equal

Z f =
1√

2τ2ηη̄
∑

n,m∈Z

e−
π

2τ2
|m−nτ|2 , (2.133)
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which we can see is equal to Z(R = 1√
2
) from eq. (2.130). This is an example of the

phenomenon of bosonisation/fermionisation where the partition functions for bosons
and fermions are related at a specific value of moduli parameters. This result can be
extended, for example to a compactification on the complex torus T2. In this case, we
can introduce the complex structure modulus T and Kähler modulus U and construct
the lattice defined in (2.128) Γ(2,2)(T, U). It can then be seen that at the specific point
(T, U) = (i, i) in the moduli space, the T2 compactified bosonic partition function coin-
cides exactly with that of four holomorphic and four antiholomorphic fermions.
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Chapter 3

Free Fermionic Superstrings

Having reviewed some of the key aspects of string theory in Chapter 2 we are ready
to describe some superstring theories. To do this we can introduce the free fermionic
formulation (FFF), which provides us with a general framework in which to describe
consistent perturbative superstrings. We will focus on heterotic strings in 10D and then
4D, as well as a brief description of the Type IIA/B and Type 0A/B superstrings.

3.1 The Heterotic String

In Section 2.2 we described a classical fermionic string in which we introduced a
Majorana-Weyl fermion Ψµ(z, z̄) that generated the action (2.54). This theory possessed
(1, 1) worldsheet supersymmetry with an underlying N = 1 superconformal algebra
for both the holomorphic (or ‘Left’, as we will often refer to it as) and antiholomorphic
(‘Right’) side. We wish now to consider a modified approach in which there is, say, only
a holomorphic Majorana fermion Ψµ(z) such that the local worldsheet supersymmetry
is (1, 0). This theory will then have an antiholomorphic sector equivalent to the bosonic
string defined through the Virasoro algebra and have a SCFT on the holomorphic side.
The resultant theory is called the heterotic string, first uncovered in refs. [23, 24, 25].
Since all of the string models explored in this thesis derive from the heterotic string, it
will be our main focus.

We have already seen that the absence of a Weyl anomaly for the system of fields
Xµ, Ψµ, b, c, β, γ in the holomorphic SCFT requires critical dimension ĉ = D = 10. On
the antiholomorphic side we have the bosonic fields Xµ(z̄) and the ghosts b and c,
which altogether contribute a c̄ = −16, necessitating some additional antiholomorphic
fields with c̄ = 16. This can be achieved with 32 Majorana-Weyl fermionic fields, λ̄A,
producing a flat gauge action in D = 10 of:

S ∼
∫

d2z

[
∂zXµ∂z̄Xµ − 2iΨµ(z)∂zΨµ(z)− 2i

32

∑
A=1

λ̄A∂̄z̄λ̄A

]
, (3.1)
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Note the λ̄A do not carry a spacetime index and so are considered as purely internal.
Through bosonisation we could have also chosen 16 chiral bosons X̄ I to generate the
c̄ = 16 internal, compact CFT. From (2.128) we can write the partition function contri-
bution for these compact chiral bosons in terms of their momenta P̄I that take discrete
values on a 16D lattice Γ̄16

ZX̄ I =
1

η̄16 ∑
P̄I∈Γ̄

e
1
2 (P̄I)2

=
Γ̄16

η̄16 . (3.2)

The full partition function of the 10D heterotic string can be written as

Zhet = ZXµ Zψµ ZX̄ I (3.3)

=
1

τ4
2 η8η̄8

1
η4

(
∑

a,b=0,1
(−)a+b+abθ[ a

b ]
4

)
Γ̄16

η̄16 , (3.4)

where we employ results from Section 2.5. Modular invariance now constrains the
possible Γ̄16. The transformation T : τ → τ + 1 on Zhet necessitates that P̄I ∈ 2Z and
S : τ → − 1

τ requires that
S : Γ̄16 → τ̄8Γ̄16 , (3.5)

is true. These two conditions impose that Γ̄16 is an even and self-dual (Γ = Γ∗) lattice. In
16 dimensions there are just two such lattices formed from the root lattices of the groups
SO(32) and E8 × E8

1. We can now write the one-loop vacuum to vacuum amplitude
for the heterotic string as

Λ =
iV10

(4π2α′)5

∫
F

d2τ

τ2
2

∑a,b=0,1(−1)1+b+abθ[ a
b ]

4

τ4
2 (ηη̄)8η4

Γ̄16

η̄16 , (3.6)

where Γ̄16 is one of these two consistent root lattices.

In terms of the Majorana-Weyl fermionic formulation of the heterotic string
the SO(32) corresponds to choosing the same boundary conditions for the 32 (real)
Majorana-Weyl fermions. We can then write the partition function for the SO(32) the-
ory as

Zλ̄
SO(32) =

1
η̄16

(
∑

a,b=0,1
θ̄[ a

b ]
16

)
, (3.7)

whereas E8× E8 corresponds to splitting the fermions into two groups of 16 and choos-
ing independent boundary conditions for the two groups

Zλ̄
E8×E8

=
1

η̄16

(
∑

a,b=0,1
θ̄[ a

b ]
8

)2

. (3.8)

1Further details on the E8 and Spin(32)/Z2 root lattices, and root lattices in general, can be found in ref.
[13], for example.
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We note that the 32 antiholomorphic Majorana-Weyl fermions form a current alge-
bra of the type discussed in Section 2.3. In particular, we have the currents

Jij =: λ̄i(z)λ̄j(z) :, i > j. (3.9)

Taking NS boundary conditions for all 32 fermions, for example, generates the affine
algebra of SO(32) and the results of Section 2.3 apply.

3.2 10D Heterotic Model Building in the Free Fermionic

Formalism

Having discussed modular invariance of the one-loop partition function in Section
2.5, we now turn our attention to building modular invariant models within the free
fermionic realisation of the heterotic string. In addition to the bosonic coordinates
Xµ(z), Xµ(z̄) we have the holomorphic spacetime fermion Ψµ(z), which in the light-
cone gauge has 8 transverse polarisations as degrees of freedom.

From now on, we will complexify the 32 Majorana free fermions into 16 complexi-
fied fermionic degrees of freedom through applying

f =
1√
2
( f1 + i f2). (3.10)

We will label these 16 complexified fields as:

Φ̄a : ψ̄1,...,5, η̄1,2,3, φ̄1,...,8. (3.11)

These groupings are introduced with an eye towards future GUT model building,
where we will see the φ̄1,...,8 as relating to the rank 8 hidden degrees of freedom, the
ψ̄1,...,5 as generating an SO(10) GUT and the η̄1,2,3 as generating three U(1) currents
in this sense discussed in Section 2.3 and in eq. (3.9). Indeed, each fermion generates
a worldsheet current, which, in turn, produce the Cartan generators of the relevant
gauge group. Each fermion is endowed with a charge with respect to the group given
in terms of its boundary condition in the sector and its fermion number

Q( f ) =
1
2

α( f ) + F( f ), (3.12)

where the action of the fermion number operator is

F :



f |0〉NS = +1

f ∗ |0〉NS = −1

|+〉 = 0

|−〉 = −1

, (3.13)
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where we simplify the notation for the different chiralities of the Ramond vacuum to
|±〉.

In order to group together boundary condition choices for the fermions, a key in-
gredient of models are vectors of boundary conditions

α = {α(Ψ1), ..., α(Ψ8) | α(ψ̄1), ..., α(ψ̄5), α(η̄1), α(η̄2), α(η̄3), α(φ̄1), ..., α(φ̄8)}, (3.14)

which defines a sector in free fermionic models. The boundary conditions of the com-
plex fermions as they propagate around one of the two non-contractable loops of the
torus in this notation are given through

f → −e−iπα( f ) f , f → −e+iπα( f ) f . (3.15)

Real boundary conditions simply implies α(ψ) ∈ {0, 1}, but other values in the range
(−1,+1] can be considered, which allows for generating complex phase factors so long
as modular invariance rules (to be defined shortly) are obeyed. By convention, we
omit those fermions with antiperiodic (NS) boundary conditions in the sectors and
only write explicitly the periodic (R) fermions, as well as specifying any more general
boundary conditions.

Such sectors in the FFF arise through the definition of basis vectors vi ∈ B as
linear combinations spanning an additive group Ξ. A complete spin structure can then
be defined for two of these sectors through[

α

β

]
(3.16)

and to these spin structure we can then associate a partition function using eq. (2.119).
The full partition function can be written as

Z =
∫
F

d2τ

τ2
2

ZB ∑
α,β∈Ξ

C
[
α

β

]
∏

f
Z
[

α( f )
β( f )

]
(3.17)

=
∫
F

d2τ

τ2
2

ZB ∑
α,β∈Ξ

C
[
α

β

]
∏

f

 θ

[
α( f )
β( f )

]
η


1/2

∏̄
f


θ̄

[
α( f̄ )
β( f̄ )

]
η̄


1/2

, (3.18)

where we have the modular invariant measure and bosonic partition function

ZB =
1
τ4

2

1
η8η̄8 , (3.19)

as discussed in Section 2.5. The fermionic part of the partition function we see is simply
products of Jacobi-Theta functions. As also noted in Section 2.5, the modular transfor-
mations S and T will transform one theta function product to another and motivate
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the introduction of the coefficients C[αβ], which weight spin structures related by these
transformations equally. These GGSO phases relate to discrete torsions in the orbifold
formalism [26, 27, 28].

We will focus on the fermionic part of the partition function

Z f = ∑
α,β∈Ξ

C
[
α

β

]
∏

f
Z
[

α( f )
β( f )

]
, (3.20)

in order to derive modular invariance constraints on the basis vectors and C[αβ], which
we call the Generalised GSO (GGSO) phases. A free fermionic model can be thought of
as a choice of specific choice for these basis vectors and GGSO phases consistent with
modular invariance.

The modular invariance constraints we call the ABK rules worked out in refs. [29,
30]2 and we will reproduce them below.

The first condition is simply that the possibility of both antiperiodic and periodic
boundary conditions for the fermions is necessary for modular invariance which means
starting a consistent basis with the vector 1, where all fermions are periodic. The NS
sector then automatically belongs in Ξ since NS = 21.

The choice of other basis vectors have the further modular invariance constraints

Nivi · vi = 0 mod 8 (3.21)

Nijvi · vj = 0 mod 4 (3.22)

∏
f
vi( f )vj( f )vk( f )vl( f ) = 0 mod 2, (3.23)

where the (Lorentzian) dot product is defined as

vi · vj =
{(

∑
cx. Left

+
1
2 ∑

real Left

)
−
(

∑
cx. Right

+
1
2 ∑

real Right

)}
vi( f )vj( f ) (3.24)

and where Ni is the smallest positive integer for which Nivi = 0 and Nij is the least
common multiple of Ni and Nj.

2These rules were worked out in a slightly different notation at the same time in ref. [31]
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The ABK rules on the GGSO phases are

C
[
vi
vj

]
= δvie

2πi n
Nj = δvj e2πi m

Ni eiπ
vi ·vj

2 (3.25)

C
[
vi
vi

]
= −eiπ vi ·vi4 C

[
vi
1

]
(3.26)

C
[
vi
vj

]
= eiπ

vi ·vj
2 C

[
vj
vi

]∗
(3.27)

C
[

vi
vj + vk

]
= δviC

[
vi
vj

]
C
[
vi
vk

]
, (3.28)

where we have introduced the spin statistics operator

δα =

+1 if α(ψµ) = 0

−1 if α(ψµ) = 1.
(3.29)

Additionally, a general GGSO phase between sectors α = mivi and β = njvj can be
decomposed into the GGSO phases between basis vectors, vi, through the equation

C
[
α

β

]
= Γ(α,β)∏

i,j
C
[
vi
vj

]mini

, (3.30)

where the prefactor is

Γ(α,β) = δ
∑j nj−1
α δ∑i mi−1

β e−πir(α)·β (3.31)

such that we have made use of the ‘reduced representation’

2r(α) := α− [α], (3.32)

where [α] is the sector with entries in the range (−1,+1].

We note that for all α ∈ Ξ there is a Hilbert space obtained by acting on the NS
vacuum or the (doubly-degenerate) Ramond vacua. All states in each sector, α, are
subject to the generalised GSO projection

eiπvi·Fα |Sα〉 = δαC
[
α

vi

]∗
|Sα〉 , (3.33)

which can be seen to arise also through demanding modular invariance. The full
Hilbert space of models can now be constructed by direct summing over the sector
Hilbert spaces subject to the GGSO projection

H =
⊕
α∈Ξ

k

∏
i=1

{
eiπvi·Fα |Sα〉 = δαC

[
α

vi

]∗
|Sα〉

}
, (3.34)
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The sectors in the model can be characterised according to the left and right moving
vacuum separately

M2
L = −1

2
+
αL ·αL

8
+ NL (3.35)

M2
R = −1 +

αR ·αR
8

+ NR,

where NL and NR are sums over holomorphic (L) and antiholomorphic (R) oscillator
frequencies, respectively

NL = ∑
f

ν f + ∑
f ∗

ν f ∗ (3.36)

NR = ∑̄
f

ν f̄ + ∑̄
f ∗

ν f̄ ∗ , (3.37)

where f is a holomophic oscillator and f̄ is an antiholomorphic oscillator and the fre-
quency is defined through the boundary condition in the sector α. For real fermions, f
we have

ν f =
1 + α( f )

2
, ν f̄ =

1 + α( f )
2

, (3.38)

whilst for complex fermions, λ̄, and their complex conjugates we have

νλ̄ =
1 + α(λ̄)

2
, νλ̄∗ =

1− α(λ̄)

2
. (3.39)

Physical states must then additionally satisfy the Virasoro matching condition: M2
L =

M2
R, states not satisfying this correspond to off-shell states. It will often be useful to

define the vacuum energy of a sector as

αV =

(
−1

2
+
αL ·αL

8
,−1 +

αR ·αR
8

)
. (3.40)

3.3 Some 10D Heterotic Models

We are now ready to show some examples of how 10D heterotic string models look in
the free fermionic formulation.

Tachyonic SO(32) Model, B = {1}

The simplest basis we can choose consistent with modular invariance is B = {1}. This
model has just two sectors: the Ramond sector, 1, and the NS sector 1+ 1 = |0〉NS.
Since the vacuum energy of 1 is αV = (0, 1) it only gives rise to massive states. On the
other hand the NS sector has αV = (− 1

2 ,−1) and so we can consider on-shell states
arising from it for M2 ≤ 0.
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At mass level M2 = − 1
2 we can consider an oscillator contributing NR = − 1

2 to
give the on-shell tachyonic states

Φ̄a |0〉NS . (3.41)

Next we can consider the massless level such that NL = 1
2 and NR = 1. This gives us

the following states:

• First of all we have
Ψi∂X̄ j |0〉NS , (3.42)

where i labels the 8 transverse fermionic excitations and j the 8 transverse bosonic
excitations. These states are gravitational and model-independent. They decom-
pose into the irreducible representations of the transverse rotation group SO(8)
to give the graviton, antisymmetric tensor and dilaton as we would expect to see
from earlier discussion in Chapter 2.

• Then we have gauge bosons of the form

ΨiΦ̄aΦ̄b |0〉NS , (3.43)

with a, b ∈ {1, ..., 16}. The Φ̄a anticommute so that a 6= b and we then associate
these states to the 496 adjoint representation of SO(32).

We note that all these sectors survive the GGSO projection (3.33) since C[NS
1 ] = −1,

from the rule of eq. (3.25).

We will finally note the appearance of the following off-shell tachyonic state from
the NS sector

Ψi |0〉NS , (3.44)

at mass level (0,−1). This state was first discussed in [32] and given the name the ‘pro-
tograviton’. It appears in a model-independent way in non-supersymmetric models.
Its presence in the string spectrum can be understood at the CFT level by noting that it
appears in the same Verma module as the graviton state which is always present in the
massless NS sector.

Supersymmetric SO(32) Model, B = {1,S}

In addition to 1, we will now add the basis vector

S = {Ψi}, (3.45)

which we call, with foresight, the SUSY generator. Now we can consider the sectors
that can generate massless states. Along with the NS sector, we note that the sector S
has αV = (0,−1) and so generates massless states of the form

∂X̄ j |S〉 , (3.46)
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and
Φ̄aΦ̄b |S〉 , (3.47)

where the |S〉 means the Ramond vacua for the 8 real transverse fermionic degrees of
freedom Ψi, which can be thought of as 4 complexified degrees of freedom. The GGSO
phase C[1S] = ±1 then fixes whether we have the spinor or conjugate representation.
We can observe that the states (3.46) are spin 3

2 and identify as one gravitino so that this
model enjoys N = 1 spacetime supersymmetry. We then further note that the states
(3.47) are spin 1

2 and, as such, identify as the superpartners of the gauge bosons from
the NS Sector (3.43) and so are the gaugini of SO(32).

In this model, we further note that the NS tachyon (3.41) will automatically be
GGSO projected by S since C[ SNS] = −1. It is now clear why we called S the SUSY gen-
erator, although we can illustrate this still further by considering the partition function.
First, we recall from Chapter 2 the theta functions (2.121) and that the Ramond-Ramond
theta function, θ1, vanishes. There are then 9 non-zero terms in the B = {1,S} partition
function

C
[
1

NS

]
Z
[
1

NS

]
, C

[
S

NS

]
Z
[
S

NS

]
, C

[
S

1+S

]
Z
[
S

1+S

]
, (3.48)

C
[

NS
NS

]
Z
[

NS
NS

]
, C

[
NS

1+S

]
Z
[

NS
1+S

]
, C

[
1+S

NS

]
Z
[
1+S

NS

]
, (3.49)

C
[

NS
S

]
Z
[

NS
S

]
, C

[
1+S

S

]
Z
[
1+S

S

]
, C

[
NS
1

]
Z
[

NS
1

]
. (3.50)

Using the ABK rules (3.25-3.28) to calculate the GGSO phases3 we can write the contri-
bution of the first 3 terms (3.48) as

∝ θ4
2

(
−θ̄16

2 − θ̄16
3 − θ̄16

4

)
(3.51)

then the second 3 terms (3.49)

∝ θ4
3

(
θ̄16

2 + θ̄16
3 + θ̄16

4

)
(3.52)

and the final 3 terms (3.50)

∝ θ4
4

(
−θ̄16

2 − θ̄16
3 − θ̄16

4

)
. (3.53)

Putting this all together we can write the fermionic partition function in factorised form
is

Z{1,S} =
1

η4η̄16

(
θ4

3 − θ4
2 − θ4

4

) [
θ̄16

2 + θ̄16
3 + θ̄16

4

]
, (3.54)

and we see the emergence of the ’Abstrusa’ identity for Jacobi-theta functions which
ensures this partition function vanishes as expected from supersymmetry.

3Modular invariance dictates that the only free phase is C[S1 ] which then fixes the other GGSO phases.
This choice, however, we can easily see does not impact on this analysis of the partition function.
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The E8×E8 and SO(16)×SO(16) Models

In Section 3.1 we introduced the E8 × E8 heterotic string in ten dimensions so now let’s
see how it looks in the free fermionic formulation. This will allow us to inspect its
massless spectrum as promised. We start with the basis vectors

1 = {Ψi, | η1,2,3, ψ
1,...,5, φ

1,...,8},

x = {ψ1,...,5, η1,2,3},

H = {φ1,...,8},

We observe that now the supersymmetry generator arises from the combination

S = 1+ x+H . (3.55)

Firstly, we can observe that the possible tachyons in this model coming from the NS
sector (3.41) will again be GGSO projected by S automatically. Next we turn to the
massless spectrum. The possible states, prior to considering GGSO projections, are
summarised in Table 3.1

Sector αV Possible States Interpretation

NS (−1/2,−1)

Ψi∂X̄ j |0〉NS Graviton, Antisymmetric tensor and Dilaton

ΨiΦ̄aΦ̄b |0〉NS

Gauge bosons giving the SO(16)× SO(16) representations:
(120, 1) for a, b = 1, ..., 8
(1, 120) for a, b = 9, ..., 16

(16, 16) for a = 1, ..., 8, b = 9, ..., 16

S (0,−1)
∂X̄ j |S〉 Gravitino

Φ̄aΦ̄b |S〉, Gaugini of gauge bosons from NS

x (−1/2, 0) Ψi |x〉 Gauge bosons in (128, 1) spinorial of SO(16)× SO(16)

H (−1/2, 0) Ψi |H〉 Gauge bosons in (1, 128)

S +x (0, 0) |S +x〉 Gaugini of the (128, 1)

S +H (0, 0) |S +H〉 Gaugini of the (1, 128)

Table 3.1: Possible massless states of the B = {1,x,H} model.

There are just 3 independent GGSO phases in this basis, which are

C
[
1

x

]
, C

[
1

H

]
and C

[
x

H

]
. (3.56)

giving us, a priori4, 8 possibilities. However, we can observe that the phase C[ xH] = ±1
is what counts for the charateristics of the spectrum.

4At this point we can note that distinct GGSO configurations can, and often do, correspond to models with
the same partition function. Although not ideal, we often will say ‘model’ when it would be more accurate
to say ‘GGSO configuration’ and reserve ‘model’ to be defined by a distinct partition function.
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In the case C[ xH] = +1, the GGSO projections ensure that the gravitino is retained
as well as the additional gauge bosons Ψi |x〉 and Ψi |H〉 that provide the (128, 1) and
(1, 128) representations that induce the enhancement SO(16) × SO(16) → E8 × E8.
However, C[ xH] = −1 projects the gravitino and projects out these additional gauge
bosons. Therefore we see how the supersymmetric E8 × E8 heterotic string and non-
supersymmetric, tachyon-free SO(16)× SO(16) are distinguished solely by a choice of
GGSO phase. This was originally shown in refs. [33, 34]. Further it was shown in [35]
that these vacua can be connected via interpolation.

The S̃-Map and a tachyonic 10D Heterotic String

We can now construct additional 10D heterotic strings that come with tachyons from
the NS sector by taking a basis such as

B = {1, S̃}, (3.57)

where we introduce the vector

S̃ = {Ψi | φ̄1,...,4}, (3.58)

which takes the SUSY generator S and augments it by 4 periodic antiholomorphic
fermions. This was introduced in refs. [36, 37] to explore tachyonic 10D vacua and
their descendent 4D models.

By taking the GGSO projection with S̃ on the NS tachyon (3.41) we have the surviving
tachyons

φ̄1,...,4 |0〉NS , (3.59)

and we note that there is no gravitino state since S is absent from the basis. The gauge
bosons from the NS sector areΨiφ̄1,...,4φ̄1,...,4 |0〉NS ,

ΨiΦ̄aΦ̄b |0〉NS , Φ̄a, Φ̄b /∈ {φ̄1,...4},
(3.60)

generating the gauge group SO(24) × SO(8). Such a non-supersymmetric, tachyonic
vacua with this gauge group is one of the original modular invariant heterotic strings
found first in [33]. In ref. [38] all these possibilities are summarised in Table 1 with
the other tachyonic, non-supersymmetric heterotics strings having the gauge groups:
O(16)× E8, (E7 × SU(2))2, U(16) and E8.

3.4 Type II Superstrings from Free Fermions

So far, we have limited our discussion to heterotic superstrings but now let’s install
supersymmetry on both sides of the theory with the fermionic field Ψi(z, z̄) with
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i = 1, ..., 8 labelling the transverse degrees of freedom. In the free fermionic language
things are simpler than in the heterotic case as our basis vectors specify the boundary
conditions of 8 real holomorphic and 8 real antiholomorphic fermions, or just 4 on each
side once we complexify. We have just 4 sectors to consider in this case

α1 = {Ψi | Ψ̄i} (3.61)

α2 = {Ψi} (3.62)

α3 = {Ψ̄i} (3.63)

α4 = {}, (3.64)

generating the R-R, R-NS, NS-R and NS-NS sectors of the theory. We can create a free
fermionic model with these sectors using the basis

1 = {Ψi | Ψ̄i}

S = {Ψi}.
(3.65)

The modular invariance constraints will work as for the heterotic case but the spacetime
statistics operator will be modified to δα = eiπ(α(Ψi)+α(Ψ̄i)) in the GGSO projection and
the mass formula (3.35) will take the supersymmetric form on both sides. For this
model we first note that the NS tachyon, which has no oscillators since αV = (− 1

2 ,− 1
2 ),

will be automatically projected by S. We have the massless states from NS

ΨiΨj |0〉NS , (3.66)

which gives the gravitational states. Next we can consider the sector S which, as usual,
gives the gravitino

Ψ̄i |S〉 , (3.67)

with the chirality determined by the GGSO phase C[1S]. Similarly the sector 1+S gives
another gravitino

Ψi |1+S〉 (3.68)

and again the chirality is determined by the phase C[1S] and is the same as that of the S
gravitino. The final massless sector is 1 which gives massless states of the form∣∣∣Ψi

〉
⊗
∣∣∣Ψj
〉

(3.69)

and this time the C[1S] determines whether the two sides have the same or opposite
chirality.

This choice of the phase C[1S] gives rise, then, to two superstrings with N = 2
spacetime supersymmetry: Type IIA and Type IIB. We can note that a perfectly modular
invariant theory is given by just the basis B = {1}. In this case the S sector is not
present to generate the gravitinos or project the NS tachyon. The states from the sector
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1 (3.69) are still subject to a chirality projection from C[11] = ±1 and so, again, we have
two distinct models. Both are without supersymmetry and are called the Type 0A and
Type 0B strings, alluded to already in Section 2.4 on the GSO projection.

More details on Type II string models can be found in ref. [39] where 4D N = 2
Type II strings from Z2 ×Z2 orbifolds are classified.

3.5 4D Heterotic Strings

After having discussed a range of 10D superstrings in the previous section, we can now
discuss the construction of models in four dimensions. In 10D, we saw that to cancel
the Weyl anomaly for the heterotic string we chose the holomorphic central charge
matter contribution of c = 15, in order to cancel the ghost contributions. However, this
is just one choice where we privilege the spacetime degrees of freedom over internal
fermions. For D = 4 we can take the 4D spacetime fields Xµ(z, z̄), ψµ(z), with µ = 1, 2
for the lightcone gauge. These contribute c = 6 on the supersymmetric side and c̄ = 4
to the bosonic CFT. The additional c = 9 on the holomorphic side can be generated by
introducing 18 free real fermions

χ1,...,6, y1,...,6, w1,...,6(z), (3.70)

and the required c̄ = 6 can be generated by the antiholomorphic real free fermions

ȳ1,...,6, w̄1,...,6(z̄). (3.71)

Model building then follows the same modular invariance rules as the 10D case except
the basis vectors also include boundary conditions for these additional free fermions.

In order to maintain the N = 1 SCFT algebra on the worldsheet required to elim-
inate unphysical states we must ensure that the supercurrent TF(z) can be realised in
terms of our free fermionic fields. The choice

TF(z) = iψµ∂Xµ(z) + i
6

∑
I=1

χIyIwI(z), (3.72)

realises local worldsheet supersymmetry non-linearly and corresponds to choosing the
18 holomorphic free fermions to transform under the Lie Group SU(2)6 as explained
in [40].

Having constructed this 4D heterotic construction we can note that the term ‘crit-
ical dimension’ for D = 10 is somewhat misleading. In fact, this 4D heterotic string
is the same heterotic string as the 10D case just expanded around a different back-
ground given by a 4D Minkowski spacetime and some internal 6D torus generated
by the fermionic degrees of freedom {yI , wI |ȳI , w̄I} introduced above. We note that
these fermionic degrees of freedom describe a torus where the radii are all fixed at the
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special self-dual point in which bosonisation/fermionisation is possible, as discussed
in Section 2.5. We can make contact with the bosonic coordinates through the boson-
isation i∂Xi

L = yiwi, and similarly on the antiholomorphic side. From this, we can
observe that the way we assign boundary conditions to the internal fermionic coordi-
nates {yI , wI |ȳI , w̄I} will determine the geometry of this internal 6D space and with
these fermions we can naturally realise non-geometric spaces by asymmetric pairings.
We will return to this in Chapter 8 where asymmetric orbifold models are classified.
One restriction of the free fermionic construction is that we are fixed at this particular
point in the moduli space. We can however move away from this point by turning
on Thirring interactions in terms of the free worldsheet fermions along the lines of ref.
[41]. Another approach is to translate the free fermionic models to the bosonic orbifold
formalism using the tools of refs. [26, 42, 43, 44], where the incorporation of moduli is
manifest and phenomenological features such as SUSY breaking can be studied.
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Chapter 4

Overview of the Classification
Program for Z2×Z2 Orbifold
Heterotic String Vacua

The classification of Z2 ×Z2 orbifold [26, 45, 46, 47, 48] heterotic string vacua in the
free fermionic formulation is an ongoing endeavour after its origins over two decades
ago in ref. [49] for the heterotic string and in ref. [39] for Type II. In this chapter we will
review the classification program with a focus on recent developments extended in the
rest of this thesis.

4.1 N = 1 Symmetric Z2×Z2 Orbifold Classification

The classification methodology was first constructed in the context of symmetric Z2 ×
Z2 orbifolds with N = 1 supersymmetry and unbroken SO(10) gauge symmetry in
[50, 51]. The starting point of this construction is the basis set

1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6 | y1,...,6, ω1,...,6, η1,2,3, ψ
1,...,5, φ

1,...,8},

S = {ψµ, χ1,...,6},

ei = {yi, wi | yi, wi}, i = 1, . . . , 6,

b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ
1,...,5}, (4.1)

b2 = {χ12, χ56, y12, y56 | y12, y56, η2, ψ
1,...,5},

z1 = {φ1,...,4},

z2 = {φ5,...,8}.

The untwisted vector bosons present due to this choice of basis vectors generate the
gauge group

SO(10)×U(1)3 × SO(8)2 (4.2)



44
Chapter 4. Overview of the Classification Program for Z2 ×Z2 Orbifold Heterotic

String Vacua

in the adjoint representation. The observable GUT SO(10) group here is associated to
the ψ̄1,..,5 complex fermions, while the U(1)’s are generated from the currents : η̄ jη̄∗j :
and gauge bosons associated to φ̄1,...,8 generate the hidden SO(8)2 group.

A key role is played by the vectors b1 and b2 in these models as they define the
SO(10) gauge symmetry and correspond to Z2 ×Z2 orbifold twists which break the
N = 4 supersymmetry, obeyed by the other 10 vectors, to N = 1. Meanwhile the ei
vectors generate all symmetric shifts of the internal Γ6,6 lattice given by the six inter-
nal bosonic coordinates, which are bosonised through the equation i∂X I

L = yIwI . We
note that this basis imposes symmetric pairings of the internal fermionised coordinates
{yI , wI | ȳI , w̄I} generating 12 Ising operators and giving the minimal rank gauge group
of the heterotic string since no antiholomorphic currents are generated from asymmet-
rically pairings of the ȳI , w̄I .

The 12 basis vectors of (4.1) generate a 12× 12 matrix of GGSO phases C[vivj ], which

we can consider as having just 212(11)/2 ∼ 7.4× 1019 indepedent phases from the upper
triangle; with the rest fixed by modular invariance rules (3.25-3.28). In order to specif-
ically classify N = 1 string vacua, the following GGSO phases must be fixed in order
to retain the gravitino from the state ∂Xµ |S〉

C
[
S

ei

]
= C

[
S

z1

]
= C

[
S

z2

]
= −1 (4.3)

and the additional following choices ensure the presence of the gravitino and fix its
chirality consistently

C
[
1

S

]
= C

[
S

S

]
= C

[
S

b1

]
= C

[
S

b2

]
= −1. (4.4)

Considering these constraints, we can deduce that the space of independent N = 1
GGSO configurations is 255 ∼ 3.6× 1016.

The idea of the classification methodology is to scan over this space of independent
phases and collect data for each configuration as we do so. This data can be written in
the form of a set of classification numbers relating to the representations of states in
the spectrum of each model. In the N = 1 SO(10) case we consider here, the impor-
tant data will relate to the observational representations in which the content of the
Standard Model ought to arise, in particular the spinorial 16, 16 and vectorial 10. The
details of how these representations arise are detailed in the following subsection. Fur-
ther important data to collect as we scan GGSO configurations is whether there are
additional gauge bosons that enhance the untwisted gauge group (4.2).
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4.1.1 Observable SO(10) Sectors

The fermion generations of the Standard Model reside within the spinorial states from
the 16/16 of SO(10), which in this construction are given by

F 1
pqrs =S + b1 + pe3 + qe4 + re5 + se6

={ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,...,5}

F 2
pqrs =S + b2 + pe1 + qe2 + re5 + se6

F 3
pqrs =S + b3 + pe1 + qe2 + re3 + se4,

(4.5)

where b3 = b1 + b2 + x such that the x vector is the important combination:

x = 1+S +
6

∑
i=1
ei +

2

∑
k=1

zk = {η̄123, ψ̄12345}. (4.6)

We note that the orbifold action of Z2 from bk on each T2 has four fixed points.
Therefore, when considering Z2 ×Z2 twists on two of the two-tori, i.e. T4 = T2 × T2

there are 4× 4 = 16 fixed points. These sixteen fixed points are represented in the free
fermionic formulation by the choices p, q, r, s = 0, 1 appearing in the twisted sectors.

In order to determine whether a particular sector survives the GGSO projections
and remains in the massless spectrum we can construct a projector. For example,
taking a sector with no oscillators |α〉 and employing the notation of [44], the sur-
vival/projection condition is encapsulated in the generalised projector

Pα = ∏
ξ∈Υ(α)

1
2

(
1 + δαC

[
α

ξ

])
, (4.7)

where

δα =

+1 if α(ψµ) = 0 ⇐⇒ sector is bosonic

−1 if α(ψµ) = 1 ⇐⇒ sector is fermionic.
(4.8)

The Υ(α) is defined as a minimal linearly independent set of vectors ξ such that ξ∩α =

∅. To check whether the sector α is projected simply amounts to checking Pα = 0.

Accounting for oscillators in the projectors can be done by additional operators
relating to the oscillator. For example, in the presence of a single right-moving oscillator
λ̄ with ν f =

1
2 , this generalised projector is modified to

Pα = ∏
ξ∈Υ(α)

1
2

(
1 + δαδλ̄

ξC
[
α

ξ

])
, (4.9)
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such that

δλ̄
β =

+1 if λ̄ ∈ β

−1 if λ̄ /∈ β
(4.10)

and there would be an analogous insertion of δλ
β for a left-moving oscillator with fre-

quency νλ = 1
2 .

We can now apply this to the observable spinorial sectors (4.5), to find the projec-
tors PF kpqrs

, which will have the form of (4.7) with the sets

Υ(F 1
pqrs) = {z1, z2, e1, e2}

Υ(F 2
pqrs) = {z1, z2, e3, e4}

Υ(F 3
pqrs) = {z1, z2, e5, e6}.

(4.11)

These projectors only tell us whether the sector remains in the massless spectrum or
not. In order to determine whether a particular F k

pqrs produces a 16 or 16 we must
construct the chirality phases

X1
pqrs = −ch(ψµ)C

[
F 1

pqrs

S + b2 + (1− r)e5 + (1− s)e6

]∗
X2

pqrs = −ch(ψµ)C
[

F 2
pqrs

S + b1 + (1− r)e5 + (1− s)e6

]∗
X3

pqrs = −ch(ψµ)C
[

F 3
pqrs

S + b1 + (1− p)e3 + (1− q)e4

]∗
,

(4.12)

where ch(ψµ) = ±1 is the spacetime chirality, which we will take as +1 for the states
and −1 for their CPT conjugates.

We can now define the classification numbers N16, N16 as

N16 =
1
2 ∑

k=1,2,3
p,q,r,s=0,1

PF k
pqrs

(
1 +Xk

pqrs

)
(4.13)

N16 =
1
2 ∑

k=1,2,3
p,q,r,s=0,1

PF k
pqrs

(
1−Xk

pqrs

)
.

The other key classification number for the SO(10) models is that concerning the vec-
torial representations, which are of great importance in this class of symmetric Z2×Z2

orbifolds since they accommodate the light Standard Model Higgs doublets. In the
class of models under consideration, massless SO(10) vectorial states arise from the
sectors

V k
pqrs = S +F k

pqrs + x, (4.14)
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which contain four periodic antiholomorphic complex fermions and consequently they
admit one Neveu-Schwarz fermionic oscillator, which for the 10 is given by ψ

a
1/2/ψ

∗a
1/2,

a = 1, ...5. In order to determine which of these sectors survive the GGSO projections
we can write the projector of the form given in eq. (4.9)

P{ψ(∗)a}V k
pqrs

= ∏
ξ∈Υ(V k

pqrs)

1
2

(
1 + δ

ψ̄a

ξ C
[
V k

pqrs

ξ

])
, (4.15)

such that, as in eq. (4.11) we have

Υ(V 1
pqrs) = {z1, z2, e1, e2}

Υ(V 2
pqrs) = {z1, z2, e3, e4}

Υ(V 3
pqrs) = {z1, z2, e5, e6}.

(4.16)

The number of such vectorial 10 representations gives the number of Higgs doublets
and is of the simple form

N10 = ∑
k=1,2,3

p,q,r,s=0,1

P{ψ(∗)a}V k
pqrs

. (4.17)

At the SO(10) level the classification numbers are simply (N16, N16, N10) and a statis-
tical analysis of these numbers in this construction uncovered the fascinating Spinor-
Vector Duality (SVD) [52, 53, 54, 55, 56] relating vacua under the exchange (16 + 16)↔
10.

4.1.2 N = 1 SO(10) Subgroup Classification

This SO(10) construction was extended to N = 1 models in which the SO(10) GUT is
broken directly at the string scale to various subgroups1:

• Pati-Salam, SO(6)× SO(4) (PS) [58]

• Flipped SU(5), SU(5)×U(1) (FSU5) [59]

• Standard-like Models, SU(3)× SU(2)×U(1)2 (SLM) [60]

• Left-Right Symmetric, SU(3)× SU(2)2 ×U(1) (LRS) [61].

These subgroups are generated through the addition of SO(10) breaking vector(s), in
which the boundary conditions of ψ̄1,...,5 are

• α(ψ̄1,...,5) = {11100} (PS)

• α(ψ̄1,...,5) = { 1
2

1
2

1
2

1
2

1
2} (FSU5)

1Another possibility than those listed is the subgroup SU(4)×U(1), which was investigated in ref. [57]
and shown to not give rise to three generation models.
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•

α(ψ̄1,...,5) = {11100}

β(ψ̄1,...,5) = { 1
2

1
2

1
2

1
2

1
2}

(SLM)

• α(ψ̄1,...,5) = { 1
2

1
2

1
2 00} (LRS).

Of course, once the SO(10) is broken to these subgroups we now need to collect classi-
fication data relating to the representations under the subgroup. An additional compli-
cation is the emergence of exotic sectors, i.e. those transforming under both the observ-
able and the hidden groups, which arise through combinations of the SO(10) breaking
vector(s) and are generic in string compactifications [62, 63, 64, 65, 66]. If such frac-
tionally charged states are present and chiral under some gauge factor then the model
is phenomenologically untenable. If exotic states are present then they are required to
form vector-like representations so they may be pushed to higher mass scales. It has
been shown in [67, 68, 69] that in supersymmetric Pati-Salam models, GGSO phase
configurations exist such that these massless fractionally charged states are projected
out. Such models are termed exophobic. In the FSU5 classification of [59] exophobic
vacua were only found for even number of fermion generations. In the SLM and LRS
cases no such configurations can be found. In fact, in these cases since there are in fact
two breaking vectors (note the LRS vector multiplied by two gives the PS breaking vec-
tor) the number of exotic sectors appearing in the massless spectra tend to proliferate.
This results in there being a general scarcity of phenomenologically viable SLM and
LRS string vacua once the absence of chiral exotics (along with other phenomenolog-
ical constraints) is imposed. In the LRS case for example, in a sample of 1011 GGSO
configurations classified in [61], just 4 vacua were found to satisfy the phenomenolog-
ical criteria imposed. Since scanning through samples of 1011 for longwinded criteria
such as the absence of chiral exotics can take large amounts of computating time, this
scarcity is somewhat prohibitive to landscape studies and this was a strong motivating
factor for the application of new computational techniques, which we discuss further
in Section 4.3.

4.2 N = 0 Classification Overview

The absence of evidence from particle colliders of supersymmetry motivates the study
of non-supersymmetric string theories. In the context of free fermionic classification,
two distinct routes towardN = 0 classification from symmetric Z2×Z2 orbfiolds have
been studied. The first, and most obvious, is to keep the basis (4.1) as a starting point
and break SUSY by projecting the gravitino through a GGSO phase by breaking the
condition (4.3). Such models still contain the SUSY generating vector S and, as such,
we dub ‘S-models’. These can be viewed as descending from the 10D non-tachyonic
SO(16)× SO(16) non-supersymmetric heterotic string discussed in Section 3.3.

The second route to N = 0 is less well travelled in the literature and involves the
S̃-map discussed in Section 3.3. The essential point is that we modify S from the basis
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(4.1) by augmenting it with 4 antiholomorphic hidden fermions such as

S̃ = {ψµ, χ1,...,6 | φ̄3,4,5,6} (4.18)

this vector ensures the absence of massless gravitinos and, additionally, the untwisted
tachyonic states

|0〉L ⊗ φ̄3,··· , 6|0〉R (4.19)

are invariant under the S̃–vector projection. These untwisted tachyons are those that
descend from the ten dimensional vacuum, hence confirming that the model can be
regarded as a compactification of a ten dimensional tachyonic vacuum. A first example
of a notable tachyon-free model resulting from the S̃ setup was given in [37] which
obtained as the S̃-map of a well-studied semi-realistic N = 1 model given in [70].

We can observe that the S̃-map is reminiscent of the map used to induce SVD in ref.
[52, 56], in the sense that both utilise a block of four periodic right–moving worldsheet
fermions. We may term these sorts of maps as modular maps, in the sense that they
involve a block of four periodic complex worldsheet fermions. We therefore have an-
other instance where such a modular map is reflected in the symmetry structure of the
string vacua. Be it the spacetime supersymmetry in the models in which the S–basis
vector is the supersymmetry spectral flow operator, or in the SVD models in which
a similar spectral flow operator operates in the observable E8 sector and induces the
spinor-vector duality map [52, 53, 56]. Here, a similar operation is at play in the four
dimensional models inducing the transformation from the supersymmetric (and non-
supersymmetric) models that contain the S basis vector, to the non–supersymmetric
models that contain the S̃ basis vector. As discussed in refs. [71, 72], this may be a
reflection of a larger symmetry structure that underlies these models and string com-
pactifications in general.

Although in general non-SUSY strings introduce a range of new issues compared
to SUSY models, from the classification perspective the primary issue to address is
the possible appearance of (on-shell) tachyonic sectors in the Fock space of the string
vacua in both the case of S and S̃-models. In the next chapter we will classify the space
of SO(10) S̃-models, where we will demonstrate how to project tachyonic sectors in
this setup. A couple of notable additional features to the analysis of N = 0 vacua
are introduced: the calculation of the one-loop cosmological constant for samples of
models and the ‘super no-scale’ property N0

b = N0
f . There has been significant interest

in ‘super no-scale’ models in the literature [73, 74] where it has been conjectured that
such models in which SUSY is broken via a stringy version [75, 76, 77, 78, 79] of the
Scherk-Schwarz mechanism [80, 81] will have the leading (massless) contribution to
the one-loop cosmological constant exponentially suppressed.

A further step in the classification program for N = 0 models was taken in [82]
where both S and S̃-models were classified with PS subgroup. In this setup it was
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noted that the presence of a ‘Heavy Higgs’ to break the PS subgroup was impacted by
the S̃-map. From this analysis, the SLM S̃ models are the only ones not suffering from
this absence of an intermediate GUT breaking mechanism- at least in these classes of S̃
models.

So far all classifications discussed, both N = 0 and N = 1, have been constructed
for symmetric Z2 ×Z2 orbifolds. However, the heterotic string in general, and the free
fermionic models in particular, allow for more general assignments of boundary con-
ditions, which are asymmetric between the holomorphic and antiholomorphic world-
sheet fermions. These can be complicated assignments that realise the non-Abelian
gauge symmetries at higher level Kac–Moody algebra [83, 84, 85], or more mundane
assignments that leave the gauge symmetries at level k = 1. These asymmetric as-
signments produce asymmetric orbifold models, which amount to non-geometric com-
pactifications, a review of which is given by [86]. Completing a first step towards the
extension of the classification methodology to such asymmetric orbifolds is tackled in
Chapter 8.

4.3 Computational Analysis of the Z2 × Z2 Orbifold

Landscape

As discussed above, the SLM and LRS classifications brought to light the need for the
introduction of more sophisticated techniques than random classification into the clas-
sification methodology, in order to deal with the scarcity of phenomenologically viable
models. This inspired the implementation of fertility conditions at the SO(10) level in
the SLM [60] and LRS [87] constructions. The idea of these fertility conditions is that, al-
though exact knowledge of the observable particle content of a model will require anal-
ysis at the subgroup level, there are necessary conditions that can be imposed on the
SO(10) classification numbers (N16, N16, N10) in order for a model to be phenomeno-
logically viable at the subgroup level. Restricting classification to the SO(10) level is
more computationally manageable and only models satisfying the fertility conditions
can be collected for further exhaustive analysis at the subgroup level. In the LRS fer-
tility analysis [87], the probability of finding phenomenologically viable models was
increased by some nine orders of magnitude compared with the random classification
method.

In theN = 0 SO(10) S̃-classification, we will find in the next chapter that tachyon-
free configurations arise with probability of just 5× 10−3. This, again, motivates the use
of sophisticated classification methods such as the fertility analysis. In [88], the machine
learning (ML) technique of genetic algorithms were introduced into the classification
program for the case of Pati-Salam models. It was shown that the genetic algorithm
is especially efficient in fishing out good models, although is not suited to classifying
large spaces of vacua. In recent years, there has been a flurry of interest in the general
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area of applying machine learning techniques to the string landscape. For a general
overview of such ML applications see [4] and for a book on Machine learning in the
Calabi-Yau landscape see [89].

In the free fermionic classification, advanced SAT/SMT algorithms have surfaced
as an extremely effective tool in various aspects of investigating the landscape of
Z2 ×Z2 orbifolds. In Chapter 7 we retrace the work of [10], where we will see that
such an SAT/SMT algorithm improves efficiency within a certain class of models by
3 orders of magnitude. Although promising as an efficient way to scan large spaces
of models, the SAT/SMT algorithms are especially good as fishing tools, similar to
the case of genetic algorithms, and, perhaps even more exciting as a tools to demon-
strate no-go theorems in classes of string vacua. In particular, it has been a common
feature of all Z2 ×Z2 orbifold classes that certain phenomenological constraints can
be in contradiction. For example, the aforementioned absence of exophobic vacua in
odd generation FSU5 models uncovered in [59] or that the presence of spinorial 16’s
for tachyon-free Type 0̄ models uncovered in [10] that we will see in Chapter 7. In
the language of SAT/SMTs these no-go results are equivalent to the unsatisfiability of
constraints inputted into some SAT/SMT solver program, such as Microsoft’s Z3 [90],
which will be utilised throughout this work.

The fact that free fermionic models take GGSO phases as their primary inputs,
which are essentially binary inputs, makes them readily amenable to translation into
Boolean language and we will see expicitly in Chapters 7 and 8 how phenomenolog-
ical constraints can easily be recast into standard Boolean expressions. It is not nec-
essary to form only Boolean expressions, since SMT solvers allow for operations over
non-Boolean types such as integers, reals, bitvectors, and arrays. However, there is a
well-known trade off between efficiency and expressibility, with a Boolean encoding
of a problem drastically increasing efficiency compared with even a simple encoding
in terms of integers. This too is demonstrated for the free fermionic constraints in [10]
that we discuss further in Chapter 7.

The scope of problems that SMT solvers may be of use in tackling within string
phenomenology is potentially vast. For decades computer scientists have worked on
various tools and optimisations that make solvers such as Z3 extremely powerful in
solving a wide range of problems efficiently. It will certainly be exciting to see future
applications such as finding no-go theorems from constraints on geometric data from
different string compactification constructions, which will certainly be feasible for cases
where input variables can be taken as integers.

Having now given this overview of the classification program up to the present
day, we will move towards the central work in this thesis which is the classification of
non-SUSY models, starting with the study of S̃ models with unbroken SO(10) sym-
metric in the next chapter and finishing with the extension of the classification method-
ology to S-models endowed with asymmetric shifts in Chapter 8.
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Chapter 5

Classification of Tachyon-Free
Heterotic String Orbifolds from
the 10D Tachyonic Heterotic
String

In this chapter a systematic classification of 4D string vacua descending from a 10D
tachyonic heterotic string called S̃-Models is presented. This is work taken from the
paper [7] with some minor notational adjustments for consistency.

5.1 Ten Dimensional Vacua and the S̃ - Map

Following the discussion of Section 3.3, we can observe that, in the free fermionic for-
mulation, four dimensional models that descend from the ten dimensional tachyonic
vacua arise from the absence of the SUSY generating vector S in the basis. We can
naturally extend the discussion of models from Section 3.3 with basis {1,x,H} to four
spacetime dimensions. Constructing models in which the gravitini fromS are projected
allows us to consider non-supersymmetric models that we can think of as ‘descending’
from the SO(16)× SO(16) heterotic string. We will refer to such models as S-models.
Another route to non-supersymmetric models is through the S̃-map á la eq. (3.58) in
place of a supersymmetric construction with S. For this chapter we will take this vector
to be of the form

S̃ = {ψ1,2, χ1,2, χ3,4, χ5,6 | φ̄3,..., 6} (5.1)

Models descending from bases with S̃ we will label as S̃-models and we can think of
them as corresponding to compactifications of a tachyonic 10D vacuum. Supersym-
metry is explictly broken such that models will have no massless gravitinos. As in eq.
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(3.59) the untwisted tachyonic states will be

|0〉L ⊗ φ̄3,··· , 6|0〉R, (5.2)

since they are invariant under the S̃-vector projection.

We note that this S̃-map was discussed and used in the construction of the NAHE-
based model in ref. [37] and that it is reminiscent of the map used to induce the spinor-
vector duality in ref. [52, 53, 56], in the sense that both utilise a block of four periodic
right-moving worldsheet fermions. We may term such maps as modular maps and we
therefore have another instance where such a modular map is reflected in the symmetry
structure of the string vacua. In the case of spinor-vector dual models a spectral flow
operator operates in the observable E8 sector and induces the spinor-vector duality map
[52, 53, 56]. Here, a similar operation is at play in the four dimensional models inducing
the transformation from the supersymmetric (and non-supersymmetric) models that
contain the S-basis vector, to the non-supersymmetric models that contain the S̃-basis
vector. As discussed in ref. [71, 72], this may be a reflection of a larger symmetry
structure that underlies these models and string compactifications in general.

5.2 Non-Supersymmetric SO(10) Models in 4D

Let us now define the classification structure for the SO(10) models we consider, which
employ the S̃-map. The first ingredient we need is a set of basis vectors that generate
the space of SO(10) S̃-models. We can choose the set

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

ei = {yi, wi | yi, wi}, i = 1, ..., 6

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (5.3)

b2 = {ψµ, χ34, y12, y56 | y12, y56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, y12, y34 | y12, y34, η3, ψ
1,...,5},

z1 = {φ1,...,4},

which is a similar basis set to NAHE={1, S̃, b1, b2, b3} employed in [37], except with
the inclusion of z1 to break the hidden gauge group and of ei to obtain all symmetric
shifts of the internal Γ6,6 lattice. We note that the vector b3, which spans the third
twisted plane and facilitates the analysis of the obervable spinorial representations, is
typically formed as a linear combination in previous supersymmetric classifications
[50, 51, 59, 60, 61, 67, 87]. Furthermore we note the existence of a vector combination

z2 = 1+
6

∑
i=1
ei +

3

∑
k=1

bk + z1 = {φ̄5,6,7,8} (5.4)
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in our models, which is typically its own basis vector.

Models may then be defined through the specification of GGSO phases C[vivj ],
which for our SO(10) models are 66 free phases with all others specified by modu-
lar invariance. Hence, the full space of models is of size 266 ∼ 1019.9 models. This is
a notably enlarged space compared with the supersymmetric SO(10) case where the
requirement that the spectrum is supersymmetric fixes some GGSO phases.

The untwisted sector gauge vector bosons for this choice of basis vectors give rise
to a gauge group

SO(10)×U(1)1 ×U(1)2 ×U(1)3 × SO(4)4, (5.5)

where our desired GUT SO(10) is generated by the spacetime vector bosons
ψµψ̄aψ̄b |0〉, the U(1)k=1,2,3 are those generated by the worldsheet currents : η̄kη̄k∗ : and
the SO(4)4 is the hidden sector generated by spacetime vector bosons from the pairs of
φ̄a with common boundary conditions for each basis vector: {φ̄1,2, φ̄3,4, φ̄5,6, φ̄7,8}.

The gauge group of a model may be enhanced by additional gauge bosons arising
from the z1, z2 and z1 + z2 sectors with appropriate oscillators, i.e.

ψµ |z1〉L ⊗ λ̄i |z1〉R
ψµ |z2〉L ⊗ λ̄i |z2〉R

ψµ |z1 + z2〉L ⊗ |z1 + z2〉R

 , (5.6)

where λ̄i are all possible right moving Neveu-Schwarz oscillators.

Whether these gauge bosons appear is model-dependent since it depends on their
survival under the GGSO projections. These enhancement sectors are also present
in the familiar supersymmetric classification set-ups used in [50, 59, 60, 61, 67, 87].
However in those cases there is also an observable enhancement from the vector
x = {ψ1,...,5, η1,2,3}, which arises as a linear combination in these models. If present,
this vector induces the enhancement SO(10)×U(1) → E6, where the U(1) = U(1)1 +

U(1)2 + U(1)3 combination is typically anomalous [91], unless such an enhancement
is present. This result was first discussed in the context of the NAHE models, where
including x in the basis was shown to similarly produce E6 GUT models [92]. We
therefore can see that one effect of our S̃-models with the basis (5.3) is to preclude the
possibility of an E6 enhancement in these models.

From (5.6) we can deduce that enhancements of the observable SO(10) gauge
group may arise from ψµ{ψ̄a} |z1〉 , ψµ{ψ̄a} |z2〉, a = 1, ..., 5. Interestingly, the sec-
tors: |z1〉 , |z2〉 (with no oscillators) produce level-matched tachyons with conformal
weight (−1/2,−1/2) and so the appearance of these enhancements is correlated with
the projection of level-matched tachyons. The full analysis of the level-matched tachy-
onic sectors is presented in the following section.
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5.3 Tachyonic Sectors Analysis

Due to the absence of the supersymmetry generating vector S in our construction,
analysing whether on-shell tachyons arise in the spectrum of our models becomes
paramount. On-shell tachyons will arise when

M2
L = M2

R < 0, (5.7)

which corresponds to left and right products of αL · αL ≤ 3 and αR · αR ≤ 7. The
presence of such tachyonic sectors in the physical spectrum indicates the instability of
the string vacuum. There are 126 of these sectors in our models which are summarised
compactly in Table 1. We will find that models in which all 126 on-shell tachyons are

Mass Level Vectorials Spinorials
(−1/2,−1/2) {λ̄m} |0〉 z1, z2
(−3/8,−3/8) {λ̄m}ei ei + z1, ei + z2
(−1/4,−1/4) {λ̄m}ei + ej ei + ej + z1, ei + ej + z2
(−1/8,−1/8) {λ̄m}ei + ej + ek ei + ej + ek + z1, ei + ej + ek + z2

Table 5.1: Level-matched tachyonic sectors and their mass level, where i 6= j 6= k = 1, ..., 6
and λ̄m is any right-moving complex fermion with NS boundary condition for the rel-
evant tachyonic sector.

projected by the GGSO projections appear with probability ∼ 0.0054 and so in our
classification we will throw away all but around 1 in 185 models.

In ref. [43] a basis was chosen such that, rather than having the six internal shift
vectors ei, the combinations T1 = e1 + e2, T2 = e3 + e4 and T3 = e5 + e6 were
employed. Such a grouping does not allow for sectors to arise for all shifts in the inter-
nal space and, for example, means that spinorial 16/16 sectors have a degeneracy of 4
making 3 particle generations impossible once the SO(10) group is broken. However,
choosing Ti=1,2,3 did have the advantage of restricting the number of tachyonic sectors
and allowing for a more simplified set-up to perform an analysis of the structure of the
1-loop potential in these models.

Since finding models in which all on-shell tachyons are projected is of utmost im-
portance for all questions of stability of our string vacua we will delineate the method-
ology used in our analysis. In order to perform this analysis an efficient computer
algorithm had to be developed which could scan samples of O(109) models or more
for on-shell tachyons within a reasonable computing time. The code we developed in
Python when running in parallel across 64 cores could check a sample of 109 models for
tachyons in approximately 12 hours. A more detailed analysis of how to check whether
our on-shell tachyons are projected is presented in the next section.
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5.3.1 Tachyons of conformal weight (−1
2 ,−1

2)

The first on-shell tachyons we will inspect are those with conformal weight (− 1
2 ,− 1

2 ).
Firstly, we have the aforementioned untwisted tachyons (5.2), which are always pro-
jected since C[z1NS] = C[z2NS] = −C[ biNS] = 1. Then there are two spinorial tachyonic
sectors at this mass level: z1 and z2. The conditions for their survival are displayed in
Tables 5.2 and 5.3.

Sector C[z1
e1
] C[z1

e2
] C[z1

e3
] C[z1

e4
] C[z1

e5
] C[z1

e6
] C[z1

b1
] C[z1

b2
] C[z1

b3
] C[z1

z2
]

z1 + + + + + + + + + +

Table 5.2: Conditions on GGSO coefficients for survival of the on-shell tachyons |z1〉

Sector C[z2
e1
] C[z2

e2
] C[z2

e3
] C[z2

e4
] C[z2

e5
] C[z2

e6
] C[z2

b1
] C[z2

b2
] C[z2

b3
] C[z2

z1
]

z2 + + + + + + + + + +

Table 5.3: Conditions on GGSO coefficients for survival of the on-shell tachyons |z2〉

These tables tell us that only when all 10 of the column phases are +1 do the sec-
tors remain in the spectrum. Interestingly, this has a bearing on the existence of the
gauge group enhancements mentioned in the previous section. In particular, the only
observable enhancements: ψµ |z1〉L ⊗ ψ̄a |z1〉R and ψµ |z2〉L ⊗ ψ̄a |z2〉R have the same
survival conditions as the z1, z2 tachyonic sectors. Therefore we find that for our con-
struction, there are no tachyon-free models in which the SO(10) is enhanced. This is
evident in the classification results shown in Table 5.15 of Section 5.6.

5.3.2 Tachyons of conformal weight (−3
8 ,−3

8)

Now moving up the mass levels to (− 3
8 ,− 3

8 ), we have vectorial tachyons from the 6
sectors: {λ̄i} |ei〉, i = 1, ..., 6 and spinorial tachyons from 12 sectors: |ei + z1〉 and
|ei + z2〉. To demonstrate how to check the survival of these sectors we take the case
of {λ̄i} |e1〉, |e1 + z1〉 and |e1 + z2〉, which we show in the Tables 5.4, 5.5 and 5.6.
The other cases with e2,...,6 are much the same except for a simple permutation of the
projection phases.
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|e1〉 Oscillator C[e1

S̃
] C[e1

e2
] C[e1

e3
] C[e1

e4
] C[e1

e5
] C[e1

e6
] C[e1

b1
] C[e1

x̃ ] C[e1
z1
] C[e1

z2
]

{ȳ2} + - + + + + - + + +
{w̄2} + - + + + + + + + +
{ȳ3} + + - + + + - + + +
{w̄3} + + - + + + + + + +
{ȳ4} + + + - + + - + + +
{w̄4} + + + - + + + + + +
{ȳ5} + + + + - + - + + +
{w̄5} + + + + - + + + + +
{ȳ6} + + + + + - - + + +
{w̄6} + + + + + - + + + +

{ψ̄1/2/3/4/5(∗)} + + + + + + - - + +
/{η̄1(∗)}
{η̄2,3(∗)} + + + + + + + - + +
{φ̄1,2(∗)} + + + + + + + + - +
{φ̄3,4(∗)} - + + + + + + + - +
{φ̄5,6(∗)} - + + + + + + + + -
{φ̄7,8(∗)} + + + + + + + + + -

Table 5.4: Conditions on GGSO coefficients for survival of the on-shell vectorial
tachyons {λ̄i} |e1〉. We have made use of the combination x̃ = b1 + b2 + b3 =
{ψµ, χ1,...,6 | ψ̄1,2,3,4,5, η̄1,2,3}, which will be discussed more in the next section.

Sector C[e1+z1
e2

] C[e1+z1
e3

] C[e1+z1
e4

] C[e1+z1
e5

] C[e1+z1
e6

] C[e1+z1
b1

] C[e1+z1
x̃ ] C[e1+z1

z2
]

|e1 + z1〉 + + + + + + + +

Table 5.5: Conditions on GGSO coefficients for survival of the on-shell tachyons |e1 + z1〉

Sector C[e1+z2
e2

] C[e1+z2
e3

] C[e1+z2
e4

] C[e1+z2
e5

] C[e1+z2
e6

] C[e1+z2
b1

] C[e1+z2
x̃ ] C[e1+z2

z1
]

|e1 + z2〉 + + + + + + + +

Table 5.6: Conditions on GGSO coefficients for survival of the on-shell tachyons |e1 + z2〉

5.3.3 Tachyons of conformal weight (−1
4 ,−1

4)

Carrying on up the mass levels we have (− 1
4 ,− 1

4 ), in which vectorial tachyons arise
from 15 sectors: {λ̄i}

∣∣ei + ej〉, i 6= j = 1, ..., 6 and spinorial tachyons arise from 30
sectors:

∣∣ei + ej + z1〉 and
∣∣ei + ej + z2〉. Again, we will present the conditions on the

survival of {λ̄i} |e1 + e2〉, |e1 + e2 + z1〉 and |e1 + e2 + z2〉 in Tables 5.7, 5.8 and 5.9
below and note that the other sectors with other ei combinations are easily obtainable
from these.
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|e1 + e2〉 C[e1+e2
S̃

] C[e1+e2e3
] C[e1+e2e4

] C[e1+e2e5
] C[e1+e2e6

] C[e1+e2b1
] C[e1+e2x̃ ] C[e1+e2z1

] C[e1+e2z2
]

Oscillators
{ȳ3} + - + + + - + + +
{w̄3} + - + + + + + + +
{ȳ4} + + - + + - + + +
{w̄4} + + - + + + + + +
{ȳ5} + + + - + - + + +
{w̄5} + + + - + + + + +
{ȳ6} + + + + - - + + +
{w̄6} + + + + - + + + +

{ψ̄1/.../5(∗)} + + + + + - - + +
/{η̄1(∗)}
{η̄2,3(∗)} + + + + + + - + +
{φ̄1,2(∗)} + + + + + + + - +
{φ̄3,4(∗)} - + + + + + + - +
{φ̄5,6(∗)} - + + + + + + + -
{φ̄7,8(∗)} + + + + + + + + -

Table 5.7: Conditions on GGSO coefficients for survival of the on-shell vectorial tachyons
{λ̄i} |e1 + e2〉. We have made use of the combination x̃ = b1 + b2 + b3 =
{ψµ, χ1,...,6 | ψ̄1,2,3,4,5, η̄1,2,3}, which will be discussed more in the next section.

Sector C[e1+e2+z1e3
] C[e1+e2+z1e4

] C[e1+e2+z1e5
] C[e1+e2+z1e6

] C[e1+e2+z1b1
] C[e1+e2+z1x̃ ] C[e1+e2+z1z2

]

|e1 + e2 + z1〉 + + + + + + +

Table 5.8: Conditions on GGSO coefficients for survival of the on-shell tachyons
|e1 + e2 + z1〉.

Sector C[e1+e2+z2e3
] C[e1+e2+z2e4

] C[e1+e2+z2e5
] C[e1+e2+z2e6

] C[e1+e2+z2b1
] C[e1+e2+z2x̃ ] C[e1+e2+z2z1

]

|e1 + e2 + z2〉 + + + + + + +

Table 5.9: Conditions on GGSO coefficients for survival of the on-shell tachyons
|e1 + e2 + z2〉.

5.3.4 Tachyons of conformal weight (−1
8 ,−1

8)

The final mass level we obtain on-shell tachyons from is (− 1
8 ,− 1

8 ), where vectorial
tachyons arise from 20 sectors: {λ̄i}

∣∣ei + ej + ek〉, i 6= j 6= k = 1, ..., 6 and spino-
rial tachyons arise from 40 sectors:

∣∣ei + ej + ek + z1〉 and
∣∣ei + ej + ek + z2〉. We

present the conditions on the survival of {λ̄i} |e1 + e2 + e3〉, |e1 + e2 + e3 + z1〉 and
|e1 + e2 + e3 + z2〉 in the Tables 5.10, 5.11 and 5.12 below and note again that the con-
ditions for other sectors with other ei combinations are easily obtainable from these.
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|e1 + e2 + e3〉C[e1+e2+e3
S̃

] C[e1+e2+e3e4
] C[e1+e2+e3e5

] C[e1+e2+e3e6
] C[e1+e2+e3x̃ ] C[e1+e2+e3z1

] C[e1+e2+e3z2
]

Oscillator
{ȳ4/w̄4} + - + + + + +
{ȳ5/w̄5} + + - + + + +
{ȳ6/w̄6} + + + - + + +
{ψ̄1/.../5} + + + + - + +

/{η̄1/2/3(∗)}
{φ̄1,2(∗)} + + + + + - +
{φ̄3,4(∗)} - + + + + - +
{φ̄5,6(∗)} - + + + + + -
{φ̄7,8(∗)} + + + + + + -

Table 5.10: Conditions on GGSO coefficients for survival of the on-shell vectorial tachyons
{λ̄i} |e1 + e2 + e3〉.

Sector C[e1+e2+e3+z1e4
] C[e1+e2+e3+z1e5

] C[e1+e2+e3+z1e6
] C[e1+e2+e3+z1x̃ ] C[e1+e2+e3+z1z2

]

|e1 + e2 + e3 + z1〉 + + + + +

Table 5.11: Conditions on GGSO coefficients for survival of the on-shell tachyons
|e1 + e2 + e3 + z1〉.

Sector C[e1+e2+e3+z2e4
] C[e1+e2+e3+z2e5

] C[e1+e2+e3+z2e6
] C[e1+e2+e3+z2x̃ ] C[e1+e2+e3+z2z1

]

|e1 + e2 + e3 + z2〉 + + + + +

Table 5.12: Conditions on GGSO coefficients for survival of the on-shell tachyons
|e1 + e2 + e3 + z2〉.

Using this structure of the conditions on the GGSO phases for the survival of
tachyonic sectors at each mass level our computer algorithm runs through and checks
whether any configuration of the phases that leaves the tachyon in the spectrum is
satisfied. If none are satisfied then all 126 are projected and the model is retained for
further analysis.

Having dealt now with the M2
L = M2

R < 0 level-matched sectors we turn our
attention to the more familiar discussion of the structure of the massless sectors M2

L =

M2
R = 0 in the following section where we can discern the phenomenological features

of our models.

5.4 Massless Sectors

Now that we have a way to generate models free of on-shell tachyons, we can turn our
attention to the massless sectors and their representations. Although some aspects of
the massless spectrum look similar to the supersymmetric case, the structure of our S̃-
models is very different. In particular, we can contrast our models with those in which
supersymmetry is spontaneously broken (by a GGSO phase) where in general some
parts of the spectrum remain supersymmetric. This was, for example, demonstrated in
[93] in terms of invariant orbits of the partition function for orbifold models with spon-
taneously broken supersymmetry. Similarly, our models are very different than those
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of the broken supersymmetry models discussed in [94] where observable spinorial sec-
tors of the models still exhibit a supersymmetric-like structure, i.e. in these sectors the
bosonic and fermionic states only differ by their charges under some U(1) symmetries
that are broken at a high scale.

As we explore this new structure in the massless spectrum we will see that the
role of the S̃-map is of central importance. Further to this, we will also uncover the
importance of a vector combination x̃which induces another interesting map. Without
the presence of the supersymmetry generator S we must also handle a number of extra
massless sectors which would not arise in supersymmetric setups due to the GGSO
projections induced by S.

5.4.1 The Observable Sectors and the S̃ and x̃ -maps

The chiral spinorial 16/16 representations are very similar to those given in Section
4.1.1, arising from the 48 sectors (16 from each orbifold plane)

F 1
pqrs = b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ1,2, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄1, ψ̄1,...,5} (5.8)

F 2
pqrs = b2 + pe1 + qe2 + re5 + se6

F 3
pqrs = b3 + pe1 + qe2 + re3 + se4,

where p, q, r, s = 0, 1 account for all combinations of shift vectors of the internal
fermions {yI , wI | ȳI , w̄I}. As in previous classifications, we can now write down
generic algebraic equations to determine the number 16 and 16, of N16 and N16, as
a function of the GGSO coefficients. To do this, we first utilize the projectors defined
through eqs (4.7) and (4.11) to determine which of the 48 spinorial sectors survive. Then
we define the chirality phases as in eq. (4.12) such that

X1
pqrs = −C

[
F 1

pqrs

b2 + (1− r)e5 + (1− s)e6

]∗
X2

pqrs = −C
[

F 2
pqrs

b1 + (1− r)e5 + (1− s)e6

]∗
(5.9)

X3
pqrs = −C

[
F 3

pqrs

b1 + (1− r)e3 + (1− s)e4

]∗
to determine whether a sector will give rise to a 16 or a 16. With these definitions we
can write compact expressions for N16 and N16 as given by eq. (4.13). As we see, up
until here, these equations are familiar from previous supersymmetric classifications.
However there is a fundamental difference from the supersymmetric case where F 1,2,3,
along with all model sectors, appear in supermultiplets with superpartners obtained
through the addition of S, which exchanges spacetime bosons with spacetime fermions
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but leaves the gauge group representations unchanged. In our set-up, the fermionic
F 1,2,3 sectors have no such bosonic sector counterparts. Indeed, the addition of our
basis vector S̃ would give rise to massive states with non-trivial representations under
the hidden sector gauge group. As mentioned above, we can also compare with the
broken supersymmetry models of [94] where the bosonic counterparts of F 1,2,3 only
differ from their fermionic superpartners by their charges under some U(1) symmetries
that are broken at a high scale.

A further new important feature of our construction is the inclusion of the vector

x̃ = b1 + b2 + b3, (5.10)

which we name in analogy to the x-vector from previous work in free fermionic mod-
els [51, 59, 61, 67, 87, 92]. We note that x̃ is the same as the vector S + x which arises
in supersymmetric models. In these models the states from the x-sector enhance the
observable gauge symmetry from SO(10) to E6, so S+x arises when such an enhance-
ment is present as their gauginos. The vector x̃ is important in our models since it plays
the role of mapping between the observable spinorial and vectorial representations of
SO(10), as well as generally being a map between bosonic and fermionic states. More
specifically, the x̃-vector maps sectors that produce spacetime fermions in the spinorial
representation of SO(10), from which the Standard Model matter states are obtained,
to sectors that produce spacetime bosons in its vectorial representation, from which the
Standard Model Higgs state is obtained. Thus, the x̃-map induces simultaneously the
fermion-boson map of the S-vector, as well as the spinor-vector map of the x-vector.
Without S to provide the simple symmetry at each mass level between bosons and
fermions the question of the relationship between bosons and fermions is unclear. It
appears that the structure is controlled in some sense by the S̃-map and the x̃-map tak-
ing us between mass levels as both these maps often change the mass level of the sector
they act on. We also note that the x̃-sector also affects the observable spectrum since its
presence in the Hilbert space results in an extra 4 16’s and 16’s of SO(10).

5.4.2 Vectorial Sectors

As mentioned above, the vector x̃ in (5.10) maps between the spinorial sectors F 1,2,3
pqrs

and vectorial sectors:

V
(1)

pqrs = F
(1)
pqrs + x̃

= b2 + b3 + pe3 + qe4 + re5 + se6

= {χ3,4,5,6, (1− p)y3ȳ3, pw3w̄3, (1− q)y4ȳ4, qw4w̄4,

(1− r)y5ȳ5, rw5w̄5, (1− s)y6ȳ6, sw6w̄6, η̄2,3} (5.11)

V
(2)

pqrs = F
(2)
pqrs + x̃

V
(3)

pqrs = F
(3)
pqrs + x̃,



5.4. Massless Sectors 63

The observable vectorial 10 representations of SO(10) then arise when the right-
moving oscillator is a ψ

a(∗), a = 1, ..., 5. To determine the number of such observable
vectorial sectors we use projectors given through eqs. (4.9) and (4.16). Using these we
can write the number of vectorial 10’s arising from these sectors as in eq. (4.17). Further
to these observable vectorials arising from V 1,2,3 there are the additional states arising
for the other choices of oscillator ȳi

NS, w̄i
NS, φ̄1,2, φ̄3,4, φ̄5,6, φ̄7,8, which, we observe, only

transform under the hidden group.

Our models come with additional vectorial sectors not present in the supersym-
metric classifications, which can give rise to states transforming under the observable
gauge group as well as the hidden. Firstly, we observe 4 additional sectors that can
give rise to vectorial states transforming under both the observable and the hidden or
solely the hidden. These sectors are

Ṽ = {{λ̄i}
∣∣S̃〉 , {λ̄i}

∣∣S̃ + z1
〉

, {λ̄i}
∣∣S̃ + z2

〉
, {λ̄i}

∣∣S̃ + z1 + z2
〉
}, (5.12)

which are spacetime fermions. There are two cases to distinguish when one of these
sectors is present:

• {ȳi/w̄i}
∣∣Ṽ〉 which are charged under the hidden sector only.

• {ψ̄1,...,5, η̄1,2,3, φ̄NS}
∣∣Ṽ〉 with φ̄NS being the four Neveu-Schwarz oscillators such

that φ̄NS ∩ Ṽ = ∅. These transform in mixed representations of the observable
and hidden sectors which means we should analyse them further. We realise that
the condition for one of these to remain in the spectrum is:

C
[

Ṽ
ei

]
= −1, ∀ i ∈ {1, 2, 3, 4, 5, 6}, (5.13)

for one of the Ṽ. In ref. [37] it was suggested that such states appearing in these
models may be instrumental in implementing electroweak symmetry breaking
by hidden sector condensates.

Further to these sectors, there are vectorials that may be observable or hidden aris-
ing from the 15 sectors

γk=1,...,15 = {λ̄i}
∣∣ei + ej + ek + el〉 , (5.14)

for i 6= j 6= k 6= l = 1, ..., 6.

We note that these sectors can give rise to vectorial 10’s when the oscillators ψ̄a,
a = 1, ..., 5, are present. In this case the projector is of the form (4.9) but also can be
written as

Pγk =
1
25 ∏

i=m,n

(
1 + C

[
γk

ei

])
∏

a=1,2

(
1 + C

[
γk

za

])(
1− C

[
γk

x̃

])
, (5.15)
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where m 6= n 6= i 6= j 6= k 6= l. We can count the number of such sectors through the
expression

N{ψ̄,η̄}
γ =

15

∑
k=1

Pγk . (5.16)

These additional vectorials can evidently play a role in the phenomenology of our mod-
els, so their couplings and charge contributions must be considered carefully for spe-
cific models. We can note that γk will not couple at leading order to the observable
spinorial representations due to their additional charges, and so at leading order the
only vectorial 10 representations to generate realistic Standard Model fermion mass
spectrum remain those from V 1,2,3.

5.4.3 Hidden Sectors

We find that there are a large number of hidden massless sectors in our models, which
is another effect of the S̃-map we have chosen.

Firstly, we can identify 96 spinorial sectors that give rise to spacetime bosons aris-
ing through the addition of z1 or z2 onto the vectorial sectors V 1,2,3

H
(k)
pqrs = V

(k)
pqrs + z1

H
(3+k)
pqrs = V

(k)
pqrs + z2, (5.17)

for k = 1, 2, 3, which evidently transform under the hidden SO(4)4 only. A further four
groups of 48 sectors are generated through the addition of the combinations {S̃, S̃ +

z1, S̃ + z2, S̃ + z1 + z2} which give rise to spacetime fermionic hidden sectors:

H
(6+k)
pqrs = S̃ + V

(k)
pqrs

H
(9+k)
pqrs = S̃ + V

(k)
pqrs + z1

H
(12+k)
pqrs = S̃ + V

(k)
pqrs + z2 (5.18)

H
(15+k)
pqrs = S̃ + V

(k)
pqrs + z1 + z2.

Essentially we see that by adding on the combinations: {z1, z2, S̃, S̃ + z1, S̃ + z2, S̃ +

z1+ z2}we generate the 6 ways of having 2 doublet representations of the four hidden
SO(4) groups. Knowing the number of hidden sectors will mainly be useful when
looking at the size of massless coefficient in the q-expansion of the partition function,
which is equivalent to a counting of the number of massless states. We will return to
this in Section 5.5.

There are additional hidden sectors, on top of those counted by NH , that do not
live on the orbifold planes. These 30 sectors are:

δ1,...,30 =

ei + ej + ek + el + z1ei + ej + ek + el + z2
, (5.19)
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for i 6= j 6= k 6= l = 1, ..., 6. Similar to (5.12), (5.14) these are examples of sectors which
are not found in supersymmetric models since the S-vector would project them out.
Again, in order to evaluate the massless contribution to the q-expansion we will need
to count the states arising from these sectors.

5.5 Partition Function and Cosmological Constant

Having detailed the construction of the partition function in free fermionic models in
Section 3.2 we can recall eq. (3.17) and write the full partition function for models in
our construction as the integral

Z =
∫
F

d2τ

τ2
2

ZB ∑
α,β∈Ξ

C
[
α

β

]
∏

f
Z
[

α( f )
β( f )

]
, (5.20)

where the bosonic contribution in four dimensions is

ZB =
1
τ2

1
η2η̄2 . (5.21)

The expression (5.20) specifically represents the one-loop vacuum energy of our theory,
which we will refer to as the cosmological constant Λ.

The practical way to perform this integral is as presented in [32] using the expan-
sion of the η and θ functions in terms of the modular parameter, or more conveniently
in terms of the nomes q ≡ e2πiτ and q̄ ≡ qe−2πiτ̄ . This leads to a series expansion of
the one-loop partition function which converges quickly as demonstrated in Figure 5.1.
As in eq. (2.106), we can observe that all terms in the partition function sum (5.20) are
modular functions of the variable τ and so we can rewrite the expression in terms of a
q-expansion as

Z = ∑
n.m

amn

∫
F

d2τ

τ3
2

qm q̄n = ∑
n.m

amn

∫
F

d2τ

τ3
2

e−2πτ2(m+n)e2πiτ1(n−m). (5.22)

where the amn physically represent the difference between bosonic and fermionic de-
grees of freedom at each mass level, i.e. amn = Nb−N f . Since the fundamental domain
F is symmetric with respect to τ1, only the even part of the τ1 exponential will con-
tribute giving

Z = ∑
n.m

amn

∫
F

d2τ

τ3
2

e−2πτ2(m+n) cos(2πτ1(m− n)) =: ∑
m,n

amn Imn. (5.23)
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Figure 5.1: The convergence of Λ order-by-order in the q-expansion, where ∆Λ is the difference
between Λ at a specific order and Λ at 4th order. The dots represent the average over a sample
of 2000 tachyon-free models and the bars give the maximum deviation from this average.

The integral over τ1 can be done analytically while the τ2 integral has to be done nu-
merically. The analytic integral is calculated by splitting F into the two regionsF1 = {τ ∈ C | τ2 ≥ 1 ∧ |τ1| < 1/2}

F2 = {τ ∈ C | |τ|2 > 1 ∧ τ2 < 1 ∧ |τ1| < 1/2},

such thatF = F1 ∪F2. Performing the integration over τ2 in this way also gives insight
into what terms can and cannot contribute to the partition function. The integral over
F2 is always finite however, the integral over F1 diverges for specific values of m, n.
We specifically find that the following cases arise:

Imn =

∞ if m + n < 0 ∧ m− n /∈ Z\{0}

Finite Otherwise.
(5.24)

The numerical values of the integrals Imn can be found in Table 5.13.

We learn that, as expected, on-shell tachyonic states, i.e. states with m = n < 0,
have an infinite contribution. On the other hand, it is important to note that some off-
shell tachyonic states may contribute a finite value to the partition function. The above
result also shows that not only on-shell tachyonic states can cause a divergence, but
some off-shell tachyonic states as well. These states, however, do not arise due to the
modular invariance constraints on the coefficients C[αβ], which only allows states with
m− n ∈ Z.
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Figure 5.2: A comparison of different contributions to Λ for a model with Λ = 0.03 arranged
as in (5.25). We see that the large positive contributions of the on-shell states are compensated
by the negative contributions of the off-shell states.

The modular invariance constraint m− n ∈ Z means that the q-expansion of the
partition function (5.22) neatly arranges into the form

amn =



0 0 a− 1
2−

1
2

0 0 0 a− 1
2

1
2

0 0 0

0 0 0 a− 1
4−

1
4

0 0 0 a− 1
4

3
4

0 0

a0−1 0 0 0 a00 0 0 0 a01 0

0 a 1
4−

3
4

0 0 0 a 1
4

1
4

0 0 0
. . .

0 0 a 1
2−

1
2

0 0 0 a 1
2

1
2

0 0 0

0 0 0 a 3
4−

1
4

0 0 0 a 3
4

3
4

0 0

a1−1 0 0 0 a10 0 0 0 a11 0

0
. . . 0 0 0

. . . 0 0 0
. . .



(5.25)

i.e. into series of states with n−m = p ∈ Z. This gives a convenient way to examine
the different contributions to the cosmological constant (5.23) and compare the effect
of on and off-shell states. As an example we consider a model with a small value for
the cosmological constant as shown in Figure 5.2. We see that the suppressed value of
Λ is due to the cancellation between the large positive contributions from the on-shell
states and the negative contributions from the off-shell states. Indeed, in general we
find that for our set of models, the only positive contributions to Λ come from on-shell
states and so these states can give us a handle on the expected value of the cosmological
constant.
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Figure 5.3: The boson-fermion oscillation of misaligned supersymmetry for the on-shell states
of one of our models to 8th order in the q-expansion. The overall sign of± log(| amn |) is chosen
according to the sign of amn.

As we have seen in Figure 5.1, for our tachyon-free models, Λ always converges
and does so rapidly starting from 2nd order in q. It is often stated that the finiteness
of string theory is due to supersymmetry, which in our case is not present, thus one
may wonder how the partition function of non-supersymmetric theories manages to
remain finite. For supersymmetric free fermionic theories the S-vector ensures that the
bosonic and fermionic degrees of freedom are exactly matched at each mass level. That
is, for a supersymmetric theory we necessarily have that amn = 0 for all m and n, which
in turn causes the vanishing of the cosmological constant as one expects. For our non-
supersymmetric models, the lack of an S-vector means that such cancellations are not
ensured and so such theories in general produce a non-zero value for Λ. It is, however,
not obviously clear that they should produce finite partition functions. Such finiteness
is achieved through a mechanism called misaligned supersymmetry as uncovered in
[95, 96] and whose mathematical and conceptual footing is extended in [97, 98, 99].

The Hagedorn phenomena [100] tells us that the degeneracy of states grows
rapidly going up the infinite tower of massive states. This growth, in theory, could
counteract the suppression received from the decreasing contributions from the inte-
grals in Table 5.13 and cause divergences. The mechanism of misaligned supersymme-
try, however, causes the states in the massive tower to oscillate between an excess of
bosons and an excess of fermions. This behaviour is referred to as boson-fermion os-
cillation. Our models indeed present this behaviour as shown in Figure 5.3. Instead of
cancelling level-by-level as in the supersymmetric case, the cancellation is misaligned
causing the oscillation to give a large positive contribution followed by an even larger
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negative contribution and so on. This mechanism ensures that the partition function of
our non-supersymmetric models remains finite.

5.5.1 Nb = Nf at the Massless Level

The discussion above shows that, while for non-supersymmetric theories there is no
mechanism which ensures the vanishing of amn at any allowed level, there is, how-
ever, nothing preventing it from happening. It is indeed possible to find models within
our classification set-up detailed in Section 5.2 which have a00 = 0, i.e. N0

b = N0
f .

Such models have been dubbed ‘super no-scale’ models [73, 74] when SUSY is broken
via Scherk-Schwarz [75, 76, 77, 78, 79, 80] it has been argued that their leading order
cosmological constant is exponentially suppressed.

In the analysis of the one-loop potential in [43, 44], no models are found which
exhibit N0

b = N0
f at the free fermionic point in the sample explored. Instead they use

techniques developed in [42] to move away from the free fermionic point by translating
to an analogous Zn

2 orbifold and rewriting the partition function at a generic point to
find models with N0

b = N0
f . In our analysis we stay at the free fermionic point and it

turns out that we do find models with N0
b = N0

f and an example model is presented in
Section 5.6.3.

It is convenient to summarise the various contributions to a00 in the form of Table
5.14. We use the notation for sectors laid out in Section 5.4. For simplicity, and since we
restrict our classification to models with no enhancements, the contributions of vector
bosons from sectors z1, z2, z1 + z2 are ignored.

Sector Nb − N f Sector Nb − N f

NS 304 ȳi, w̄i
∣∣Ṽ 〉 -8∣∣F 1,2,3〉 −32 δ1,...,30 16

|x̃〉 -256 ψ̄a(∗), η̄b(∗) ∣∣γ1,...,15〉 64

ψ̄a(∗) ∣∣V 1,2,3〉 32 {ȳi, w̄i}
∣∣γ1,...,15〉 4

φ̄{1,2},{3,4},{5,6},{7,8}(∗) ∣∣V 1,2,3〉 8 φ̄{1,2},{3,4},{5,6},{7,8}(∗) ∣∣γ1,...,15〉 8

ȳi, w̄i
∣∣V 1,2,3〉 4 {yi, wi}{ȳj, w̄j} |z1,2〉 8∣∣H1,...,6〉 16 {yi, wi}η̄b(∗) |z1,2〉 32∣∣H7,...,18〉 -8 {yi, wi}{φ̄{5,6,7,8},{1,2,3,4}(∗)} |z1,2〉 16

ψ̄a(∗), η̄b(∗), φ̄
(∗)
NS

∣∣Ṽ 〉 -192 {yi, wi} |z1 + z2〉 8

Table 5.14: Contributions of massless sectors to a00 when present in Hilbert space of a model.
As noted a00 = N0

b − N0
f , so bosonic contributions are positive and fermionic are negative. The

superscripts used here are i 6= j = 1, ..., 6, a = 1, ..., 5 and b = 1, 2, 3. The NS subscript means
that the oscillator has Neveu-Schwarz boundary conditions in the sector.
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5.6 Results of Classification

Having discussed how to determine key features of the massless spectrum and how
to calculate the partition function and cosmological constant for our S̃-models we can
now present some statistics derived from a sample in the space of models. As men-
tioned in Section 5.2, the space of all models is 266 ∼ 1019.9 and so a complete classifica-
tion is far beyond the computing power at our disposal. Instead, we explore a sample
of 2× 109 models of which only around 1 in 185 are tachyon-free that we take forward
for further analysis. We will start with some results of key aspects of the massless spec-
trum.

5.6.1 Results from Massless Spectrum

From our sample of 2 × 109 models we choose 107 tachyon-free models and display
the results for their SO(10) observable representations. In Figure 5.4 the net chirality,
N16−N16, distribution is displayed and in Figure 5.5 the distribution of their number of
vectorial 10 representations is displayed. The familiar normal distribution also found
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Figure 5.4: Number of models versus net chiral generations from a random sample of 107

tachyon free SO(10) models.

in all other classifications for the supersymmetric cases is uncovered, which is hardly
surprising since the structure of the fermionic 16/16 is unchanged. From Figure 5.5 we
see that the large majority of models contain at least 1 vectorial 10 which may be used
to generate a bidoublet Higgs representation when the SO(10) is broken.
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Figure 5.5: Number of models versus number of vectorial 10 sectors from a random sample of
107 tachyon free SO(10) models.

In order to see more clearly the statistics from our 2× 109 sample we display the
frequency of SO(10) models as several phenomenological constraints are considered in
Table 5.15.

Constraints
Total models in
sample Probability

No Constraints 2× 109 1
(1) + Tachyon-Free 10741667 5.37× 10−3

(2) + No Observable Enhancements 10741667 5.37× 10−3

(3) + No Hidden Enhancements 9921843 4.96× 10−3

(4) + N16 − N16 ≥ 6 69209 3.46× 10−5

(5) + N10 ≥ 1 69013 3.45× 10−5

(6) + a00 = N0
b − N0

f = 0 3304 1.65× 10−6

Table 5.15: Phenomenological statistics from sample of 2× 109 SO(10) S̃ -models.

These results confirm the observation made in previous sections that there are no
tachyon-free models in our construction which have observable enhancements. In phe-
nomenological terms, we do not need to worry about enhancements of the hidden sec-
tor gauge group, but they are included in the table for completeness. The next con-
straints we add are much like the so-called ‘fertility constraints’ implemented in [60,
87]. The constraint on the net chirality N16 − N16 ≥ 6 is a necessary, but not sufficient,
condition for the existence of 3 or more chiral generations at the level of the standard
model. The condition N10 ≥ 1 ensures at least one state exists that can produce a Stan-
dard Model Higgs doublet and can be used to break the electroweak symmetry. Finally,
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we implement a condition on the q-expansion coefficient a00 = 0 which corresponds to
finding models with Nb = N f at the massless level as discussed in Section 5.5.

The 3304 models satisfying all these constraints are notable, particularly in regard
to this final condition of N0

b = N0
f . Inspecting the patterns in the spectra of these 3304

models revealed that ∼ 58% contain the vector x̃ in their spectrum. In these cases the
large negative contribution of−256 that x̃ contributes to a00 is helpful in ensuring N0

b =

N f
0 since the large positive NS contribution can often dominate. Of those models not

containing x̃ approximately 70% obtained the large negative contribution of−192 from
one of the additional vectorials Ṽ = S̃, S̃+ z1, S̃+ z2, S̃+ z1 + z2 with mixed charges
under the observable and hidden groups, i.e. the sectors {ψ̄1,...,5, η̄1,2,3, φ̄NS}

∣∣Ṽ〉. Again
this large negative contribution helps in matching the number of massless fermions to
massless bosons.

5.6.2 Results for Cosmological Constant andNb−Nf

As the value of the constant term a00 = N0
b − N0

f and the cosmological constant Λ
vary from model-to-model, it is interesting to see what range of values these non-
supersymmetric models can produce.

The distribution of the cosmological constant Λ is shown in Figure 5.6, for a sam-
ple of 104 non-tachyonic and 104 fertile models. By non-tachyonic we mean that only
condition (1) of Table 5.15 is satisfied, while fertile models satisfy all conditions (1)-
(5). It is important to note that values presented in Figure 5.6 are at the special free
fermionic point in moduli space. This means that moving away from this point will
change these values and if there are unfixed moduli, there is nothing preventing this
from happening. This is indeed the case for our class of models.

As discussed in Section 5.5, the on-shell states provide the majority of positive con-
tributions to the partition function, the largest of which is the massless term. Thus the
value of a00 gives a dominant contribution on the value of the cosmological constant.
It is also, of course, interesting for the discussion of phenomenological features and
stability as explained in Section 5.5.1. The distribution of values of a00 = N0

b − N0
f for a

sample of 104 non-tachyonic and 104 fertile models is shown in Figure 5.7.

From Figures 5.6 and 5.7 we see that the fertility conditions have a measurable
effect on the distribution of Λ and a00, that is, they slightly shift the values of both to
the negative. This is an interesting effect and is likely due to condition (4) in Table 5.15.
Even though the fertility condition (4) is directed at ensuring the difference N16 − N16
is greater than 6, in doing this it also results in fertile models having a larger average
total N16 + N16 compared to non-fertile models. As specified in Table 5.14, these sectors
contribute a value of−32 to a00 and thus appear to cause the shift toward smaller values
for a00 and as a consequence also for Λ.



74
Chapter 5. Classification of Tachyon-Free Heterotic String Orbifolds from the 10D

Tachyonic Heterotic String

−600 −400 −200 0 200 400
Λ

0

250

500

750

1000

1250

1500

1750

2000

Nu
m
be

r o
f M

od
el
s

Non-Tachyonic
Fertile

Figure 5.6: The distribution of the cosmological constant for a sample of 104 non-tachyonic and
104 fertile models models.

5.6.3 A Model withNb = Nf

From the 3304 fertile models with N0
b = N0

f we present an analysis of the key features
of the massless spectrum for one example model, as well as presenting its partition
function and cosmological constant. The model we choose has the GGSO matrix

C
[
vi
vj

]
=

1 S̃ e1 e2 e3 e4 e5 e6 b1 b2 b3 z1



1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 −1
S̃ −1 1 −1 −1 −1 1 1 1 1 −1 −1 1
e1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1
e2 −1 −1 −1 1 −1 1 1 −1 1 −1 1 −1
e3 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 −1
e4 −1 1 −1 1 −1 1 1 1 1 −1 1 1
e5 1 1 −1 1 −1 1 −1 1 −1 1 1 −1
e6 1 1 −1 −1 1 1 1 −1 −1 1 1 1
b1 1 −1 −1 1 1 1 −1 −1 1 −1 1 1
b2 1 1 −1 −1 1 −1 1 1 −1 1 −1 1
b3 −1 1 −1 1 −1 1 1 1 1 −1 −1 −1
z1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −1

(5.26)

This model has N16 = 7, N16 = 1 and N10 = 8 and thus satisfies the constraints im-
posed in Table 5.15. Furthermore, in this model the x̃-sector produces massless states,
which in the supersymmetric models would correspond to the presence of the S + x
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Figure 5.7: The distribution of the constant term a00 = N0
b − N0

f for a sample of 104 non-

tachyonic and 104 fertile models.

sector when x enhances the SO(10) symmetry to E6. In that case, the S +x include the
superpartners of the gauge vector bosons of the sector x, i.e. the gauginos. So in this
case, we have the gauginos but not the vector bosons.

Our model also contains 6 bosonic hidden states from the sectors H1,...,6 and 48
fermionic hidden states from the H7,...,18. There are additional vectorials from the sec-
tors e3 + e4 + e5 + e6, e1 + e2 + e3 + e6 and e1 + e2 + e3 + e4 with observable
oscillators {ψ̄a, η̄b}, a = 1, ..., 5, b = 1, 2, 3 which cannot couple with observable states
from F 1,2,3 since it cannot conserve the charges of the U(1)1,2,3 in particular. However,
these three sectors may provide couplings at higher order.

The partition function is calculated in terms of its q-expansion and so it can be
specified by a matrix of coefficients amn as in (5.25). For our example model these values
are presented in Table 5.16. We see that indeed this model has a00 = N0

b − N0
f = 0 as

advertised and the series of states arrange according to (5.25). The absence of on-shell
tachyons is explicit and the contribution from off-shell tachyonic states is non-zero as
expected. We also find that the consistency condition a0−1 = 2 for the proto-graviton
(3.44) as described in [32, 101] is also satisfied.

The cosmological constant can also be calculated according to (5.23) with the mod-
ular integral quickly converging after 2nd order in q. In this case it takes the value

Λ = ∑
m,n

amn Imn = −149.77 (5.27)
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-1 -7/8 -3/4 -5/8 -1/2 -3/8 -1/4 -1/8 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

-1/2 0 0 0 0 0 0 0 0 0 0 0 0 320 0 0 0
-3/8 0 0 0 0 0 0 0 0 0 0 0 0 0 896 0 0
-1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5696 0
-1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29312

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/8 0 0 0 0 0 0 0 0 0 -288 0 0 0 0 0 0
1/4 0 0 0 0 0 0 0 0 0 0 -4512 0 0 0 0 0
3/8 0 0 0 16 0 0 0 0 0 0 0 -9808 0 0 0 0
1/2 0 0 0 0 224 0 0 0 0 0 0 0 1344 0 0 0
5/8 0 0 0 0 0 416 0 0 0 0 0 0 0 36640 0 0
3/4 0 0 0 0 0 0 576 0 0 0 0 0 0 0 78080 0
7/8 0 0 0 0 0 0 0 -320 0 0 0 0 0 0 0 212928

1 32 0 0 0 0 0 0 0 -1440 0 0 0 0 0 0 0

Table 5.16: The q-expansion of the partition function for our example model. Each entry in the
table represents the coefficient amn in the partition function sum (5.22), with the first column
and row being the mass levels for the left and right moving sectors respectively.

at the free fermionic point. As we see it is negative which is the case for most models
with N0

b = N0
f . This is due to the fact that the largest positive contributions to the par-

tition function come from the light on-shell states and in particular from the massless
states. If N0

b − N0
f = 0, this is zero and the negative contributions from the light off-

shell tachyons produce a negative value for Λ. This is indeed the case for all 3304 such
models in our scan.

5.7 Discussion and Conclusion

In this chapter we have developed systematic computerised tools to classify large
spaces of free fermionic heterotic string vacua that correspond to compactifications of
ten dimensional tachyonic vacua. From the point of view of the four dimensional con-
structions this is achieved by the general S̃-map. Our previous NAHE-based model
[37] was similarly constructed from the model published in [70], which raises the ques-
tion: what are the consequences of applying the map to generic models? That is to say,
what are the relations between the spectra of the two mapped models, and what are
the general patterns? Through the connection to modular maps, it appears to be of the
same nature as the spinor-vector duality map, and the two may in fact be manifesta-
tions of a much larger symmetry structure [71].

We have seen that adopting the classification methodology developed for super-
symmetric free fermionic models entails the proliferation of tachyon producing sectors
in the S̃-mapped models. The systematic classification therefore requires detailed anal-
ysis of these sectors that was discussed in Section 5.3. In the analysis of the massless
sectors, separate attention to bosonic and fermionic sectors is required and was dis-
cussed in Section 5.4. In Section 5.5 we discussed the general analysis of the partition
function and its q-expansion in left and right-moving energy modes. The analysis of the
partition function is particularly illuminating in the case of non-supersymmetric string
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vacua as it gives a direct handle on the physical states at different mass levels. Of
particular interest in the q-expansion is the a00 = N0

b − N0
f term, which counts the dif-

ference between massless bosons and fermions in the spectrum of the string vacuum.
In supersymmetric models the number of fermionic and bosonic degrees of freedom
are matched at all mass levels, and hence the partition function and the vacuum en-
ergy are identically zero. In non-supersymmetric models there is a generic mismatch
at different mass levels, which is partially compensated by the so-called misaligned
supersymmetry [95, 96, 97, 98, 99].

These results in Section 5.6 reveal that extracting interesting phenomenological
models motivates the development of more sophisticated computerised methods than
the random generation method due to tachyon-free models occurring with ∼ 5× 10−3

probability. This is particularly true in light of the fact that generating viable symme-
try breaking pattern may necessitate breaking the SO(10) symmetry to the Standard
Model subgroup direct because the S̃-map entails that scalar degrees of freedom in the
spinorial sixteen representation of SO(10) are shifted to the massive spectrum. The
consequence of this is that the spectrum does not contain the neutral component in
the 16 of SO(10) required to break the remnant unbroken gauge symmetry down to
the Standard Model gauge group. The only available states are exotic states that carry
fractional U(1)Z′ charge and appear in the heterotic Standard-like Models (SLMs) [65,
102, 103]. This assertion is made more concrete in the classification of S̃ and S models
with Pati Salam subgroup in [82]. The lesson may be that quasi-realistic models in this
class may only be possible for a very restricted and narrow set of models, rather than
the more generic set, which is the prevalent experience with supersymmetric construc-
tions. In forthcoming work these questions are investigated in tachyon-free Pati Salam
models, including the inclusion of fertility conditions. The increased space of vacua,
in particular in the case of LRS and SLMs, requires adaptation of novel computational
techniques [60, 87].

Following from our previous paper [37] the analysis and results presented in this
work open up new vistas in string phenomenology. It reveals the potential relevance
of string vacua that have been previously considered irrelevant. One avenue to explore
is the interpolation between the supersymmetric vacua and our tachyon-free construc-
tions, as well as with the two dimensional MSDS constructions [104, 105, 106], that
may shed some light on the problem of supersymmetry breaking and vacuum energy
in string theory. Another question of interest is the question of stability of the tachyon-
free models. This question is necessarily tied up with the non-vanishing one-loop vac-
uum energy in these models. In this respect it will be interesting to analyse the one-loop
diagram that arises in these models due to the existence of an anomalous U(1) symme-
try [107] and to examine whether two diagrams can be cancelled against each other.
Finally, further understanding of the symmetries that underlie the partition function at
all mass levels will be interesting to understand, especially with respect to the S̃ and x̃
maps.
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Chapter 6

Novel 4D String Vacua: Type 0
and Type 0̄

In this chapter two extremes of the Z2×Z2 heterotic string landscape are studied: Type
0 and Type 0̄ vacua. These are models that at the massless level are free of fermions and
free of twisted bosons, respectively. This is work taken from the papers [8] and [9] with
some minor notational adjustments. We will start with the Type 0 case.

6.1 Type 0

Our interest here is in the existence of models that do not contain massless fermions.
Such models are known in the literature as Type 0 models and have been of interest in
other string theory limits [108, 109, 110, 111, 112, 113, 114, 115, 116], although the term
generally refers to models free from fermions at all mass levels. Such models are of par-
ticular interest in regard to exploring the boundaries of the space of Z2 ×Z2 orbifold
compactifications. It is plausible that progress on some of the phenomenological issues
in string theory, in particular in relation to the cosmological evolution and vacuum se-
lection, will be obtained by improved understanding of these vacua. Moreover, it is
likely that further insight can be achieved by exploring some of the features of these
vacua in connection with the phenomenological string vacua. We therefore pursue this
line of investigation. We present several Type 0 models in this Class. We further adapt
the systematic classification methodology discussed in Chapter 4 and developed in refs.
[7, 39, 50, 51, 59, 60, 61, 67, 87] to this Class of models. This requires careful analysis
of tachyonic states that proliferate in these configurations. While we do not find any
models completely free of tachyonic states, we present a model with a minimal set of
tachyonic states. Although we won’t explore this further here, these tachyonic states
do not render these models irrelevant since techniques such as tachyon condensation
may connect these theories to lower dimensional vacua. Additionally, the analysis of
ref. [43, 44] suggest that tachyonic states may become massive when we move away
from the free fermionic point in the moduli space. An issue that we analyse in detail
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is the calculation of the vacuum energy and the finiteness properties of the string one-
loop amplitude. Naturally, these are divergent due to the existence of tachyonic states.
However, once the tachyonic states are removed by hand the amplitudes are finite and
exhibit a form of misaligned supersymmetry.

6.1.1 Example Type 0 Z2 ×Z2 Heterotic String Orbifold Model

The first model that we present uses the NAHE-set that was introduced in [36, 37]. The
set of basis vectors is given by

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.1)

b2 = {χ12, χ56, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {χ12, χ34, w12, w34 | w12, w34, η3, ψ
1,...,5},

z1 = {φ1,...,4},

x = {ψ1,...,5, η1,2,3}.

A model may then be specified through the assignment of modular invariant GGSO
phases C[vivj ] between the basis vectors. One Type 0 configuration arises from the as-
signment

C
[
vi
vj

]
=

1 S̃ b1 b2 b3 z1 x



1 1 1 −1 −1 −1 −1 −1
S̃ 1 −1 −1 −1 −1 1 1
b1 −1 1 −1 −1 −1 1 1
b2 −1 1 −1 −1 −1 1 1
b3 −1 1 −1 −1 −1 1 1
z1 −1 −1 1 1 1 −1 1
x −1 1 −1 −1 −1 1 1

. (6.2)

All models in this basis will have gauge bosons arising from the NS sector that
produce the vector bosons of a

SO(10)×U(1)3 × SO(4)3 × SU(2)8 (6.3)

gauge symmetry. Additional vector bosons may arise from the sectors z1, z3 = 1+

S̃ + b1 + b2 + b3 = {φ̄1,2,7,8} and z4 = 1+ S̃ + b1 + b2 + b3 + z1 = {φ̄3,4,7,8}, which
can affect the observable if the right moving oscillator is ψ̄a or solely the hidden gauge
group factors otherwise. A solely observable gauge enhancement may also arise from
the sector x. In the above model, the hidden SU(2)8 gauge symmetry is enhanced to
SO(16) by vector bosons arising in z1, z3 and z4. The four dimensional gauge group
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is therefore
SO(10)×U(1)3 × SO(4)3 × SO(16).

The NS-sector and the three sectors, z1, z3 and z4, that produce enhancements at the
massless level also help to generate sixteen tachyonic states at mass level (− 1

2 ,− 1
2 ) that

transform in the 16 representation of the hidden SO(16) gauge symmetry.

The vectorial fermionic sectors in the model are

S̃;

S̃ + z1; (6.4)

S̃ + z4 ∼ S + z2,

while the massless fermionic spinorial sectors are

S̃ + b1,2,3 + x;

S̃ + b1,2,3 + x+ z1; (6.5)

S̃ + b1,2,3 + x+ z4;

S̃ + z3 ∼ S + z1 + z2;

where we defined z2 = {φ̄5,··· ,8} and S = {ψ1,2, χ1,··· ,6}, neither of which are basis vec-
tor combinations in the additive group. These definitions comply with the terminology
used in the classification of the supersymmetric free fermionic heterotic string models.

The massless states from all the fermionic sectors are projected out from the phys-
ical spectrum by the choice of GGSO phases in eq. (6.2). In addition to the NS-sector,
additional spacetime massless bosonic states arise from the sectors

x;

z1,3,4;

b1,2,3;

b1,2,3 + x; (6.6)

b1,2,3 + x+ z1;

b1,2,3 + x+ z3;

b1,2,3 + x+ z1 + z3.

These give rise to scalar spacetime bosons and we do not require further details for our
analysis here.

In Section 6.1.3 and 6.1.4 we perform a more general search for similar Type 0 het-
erotic string models using the free fermionic classification methodology. In particular,
we search for Type 0 models without tachyons. Our search is conducted using the S̃
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based models as well as models that use S. First, however, it is interesting to study a bit
more closely the basis (6.1), and what additional constraints Type 0 vacua may satisfy.

6.1.2 Analytic conditions on Type 0 vacua

Since we are interested in the construction and analysis of Type 0 vacua, we focus on
the massless fermionic sectors and will seek to project them out, leaving only bosonic
states at the massless level.

Therefore we can seek choices of GGSO phases for which the fermionic sectors
may be projected out to leave Type 0 vacua and it turns out for this relatively simple
basis we can find explicit analytic conditions on their projection. Another important
part of the analysis will be to consider the presence of tachyonic sectors in our models
which we turn to in Section 6.1.2.

By constructing projectors for the massless fermionic sectors and ensuring they all
equal zero we find the following necessary and sufficient conditions on the projection
of massless fermions within models derived from the basis (6.1)

C
[
S̃

x

]
= 1, C

[
z1
x

]
= 1, C

[
z1
b1

]
= C

[
z1
b2

]
= C

[
z1
b3

]
= 1

C
[
S̃

b1

]
= −C

[
S̃

b2

]
C
[
S̃

b3

]
C
[
x

1

]
= C

[
x

b1

]
C
[
x

b2

]
C
[
x

b3

]
(6.7)

C
[
b2
b3

]
= −C

[
S̃

b2

]
C
[
b1
b2

]
C
[
b3
b1

]
= −C

[
S̃

b2

]
C
[
S̃

b3

]
C
[
b1
b2

]
.

These conditions mean that 9 of the 21 GGSO phases are fixed in order to obtain Type
0 vacua. Hence, the number of possible Type 0 models is reduced to 212 = 4096.

We can now inspect the projection conditions on the massless bosonic sectors (6.6),
subject to these Type 0 conditions (6.7). In particular, taking the sectors bk, for k =

1, 2, 3, we get

bk survives ⇐⇒ C
[

bk
S̃ + bj + bk

]
= 1 and C

[
bk
z1

]
= 1 (6.8)

these conditions are necessitated by the Type 0 conditions and so these sectors must
survive and similarly can easily be found for the other spinorial bosonic sectors: bk +

x+ z1, bk + x+ z3 and bk + x+ z4.
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For the bosonic vectorial sectors: bk + xwe have the conditions

{ȳ, w̄, ψ̄1,...,5, η̄i, φ̄5,6} |bk + x〉 survives =⇒ 1
4

(
1 + C

[
bk + x

z3

])(
1 + C

[
bk + x

z1

])
= 1

(6.9)

{φ̄1,2} |bk + x〉 survives =⇒ 1
4

(
1− C

[
bk + x

z3

])(
1− C

[
bk + x

z1

])
= 1

(6.10)

{φ̄3,4} |bk + x〉 survives =⇒ 1
4

(
1 + C

[
bk + x

z3

])(
1− C

[
bk + x

z1

])
= 1

(6.11)

{φ̄7,8} |bk + x〉 survives =⇒ 1
4

(
1− C

[
bk + x

z3

])(
1 + C

[
bk + x

z1

])
= 1

(6.12)

the Type 0 conditions (6.7) guarantee that C[bk+xz3
] = 1 and C[bk+xz1

] = 1 and thus the
first case survives.

Finally, let us show that the bosonic sector x survives. In order to make this sector
massless there must be a left moving oscillator, which could make it a gauge boson if
this oscillator is ψµ. However, since for Type 0 models C[xS̃] = 1 only the states of the
type {yi/wi}1/2 |x〉 can survive, which they must do due to C[ xz1] = C[ xz3] = 1.

For the z1 massless sector the conditions for Type 0 models necessitate that states
of the type {y/w}{ȳ/w̄} |z1〉 and extra gauge bosons of the type {ψµ}{φ̄5,6,7,8} |z1〉
survive. Similarly for the z3 massless sector Type 0 models must have states of the type
{y/w}{ȳ/w̄} |z3〉 and extra gauge bosons of the type {ψµ}{φ̄3,4,5,6} |z3〉. Finally, for
the z4 massless sector Type 0 models must have states of the type {y/w}{ȳ/w̄} |z4〉
and extra gauge bosons of the type {ψµ}{φ̄1,2,5,6} |z4〉. Therefore, all Type 0 models
derived from this basis (6.1) have a hidden sector enhancement of SU(2)4 → SO(16).

Therefore, this analysis tells us that all 4096 possible Type 0 models contain all
bosonic sectors 6.6 with the specific set of oscillators given above. In other words,
their massless spectra are identical. Doing the counting of all the bosonic states can be
shown to give 4264, which is thus the constant term in the q-expansion of the partition
function in all 4096 cases. Having seen how restrictive the Type 0 conditions 6.7 are at
the massless level it makes sense to analyse what happens with the tachyonic sectors.

Tachyon analysis for Type 0 vacua

The tachyonic sectors for models derived from the basis (6.1) come from the sectors
|z1〉 , |z3〉 and |z4〉 as well as the untwisted tachyon of the NS sector. We can imme-
diately see that all vacua in this basis will contain an untwisted tachyon {φ̄5,6} |0〉NS.
This can be seen as being related to the absence of z2 = {φ̄5,6,7,8} in the basis which
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would allow for the projection of this tachyon since we would be equipped with the
GGSO projection with the phase C[NS

z2
] = 1.

In regard to the tachyons from the sectors |z1〉 , |z3〉 and |z4〉, we see that the
Type 0 conditions (6.7) necessitate their presence. For example, all phases that could
project the z1 tachyon: C[z1b1], C[z1b2], C[z1b3], C[z1x ] are all equal to +1 and thus leave it in
the Hilbert space. Therefore, we conclude that all Type 0 in this construction contain
the tachyons from the sectors |z1〉 , |z3〉 and |z4〉, along with the model-independent
untwisted tachyon φ̄5,6 |0〉NS.

Equivalence of Type 0 models

Having shown that the massless spectrum and tachyonic sectors are identical for all
the 4096 choices of GGSO phases consistent with the Type 0 conditions (6.7), we might
wonder whether these models are in fact identical at all mass levels. Calculating the
partition function for all 4096 Type 0 models proved that they indeed all have the same
partition function

Z = 2q̄−1 + 16q−1/2q̄−1/2 + 4264 + 45056q1/4q̄1/4 + · · · (6.13)

and thus there is only one Type 0 model in our construction with degeneracy 4096. This
is a good example of the non-uniqueness of models in the free fermionic construction
mentioned in Section 3.3. In this case we see that the partition function is invariant
under the 12 phases: C[1S̃], C[ 1b1], C[ 1b2], C[ 1b3], C[ 1z1], C[ S̃b2], C[ S̃b3], C[ S̃z1], C[b1b2], C[ xb1],
C[ xb2], C[ xb3]. This result will ultimately be related to the many symmetries underlying
models defined by the basis (6.1).

6.1.3 Classification of Type 0 S̃-Models

Having found that Type 0, tachyonic models exist for the simple basis (6.1), we can
consider a more general basis

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

T1 = {y1,2, w1,2 | y1,2, w1,2},

T2 = {y3,4, w3,4 | y3,4, w3,4},

T3 = {y5,6, w5,6 | y5,6, w5,6},

b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.14)

b2 = {χ12, χ56, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {χ12, χ34, w12, w34 | w12, w34, η3, ψ
1,...,5},

z1 = {φ1,...,4},
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where the Ti, i = 1, 2, 3 allow for internal symmetric shifts in the compactified coordi-
nates around the 3 tori. The only other difference to the basis (6.1) is that x is now a
linear combination:

x = b1 + b2 + b3 + T1 + T2 + T3 (6.15)

and we have the same combinations z3 = 1+ S̃ + b1 + b2 + b3 and z4 = z3 + z1.
We can further note that the space of independent GGSO phase configuration is now
236 ∼ 6× 1010 for this basis.

The addition of the Ti’s has some key consequences in relation to finding tachyon-
free Type 0 vacua. It multiplies the number of massless fermionic sectors and also
increases the number of ways to project the (fermionic) sectors. Furthermore, we now
have 15 tachyonic sectors: z1, z3, z4,Ti, z1 + Ti, z3 + Ti and z4 + Ti, i = 1, 2, 3 rather
than just the 3 for basis (6.1). We can notice that the model-independent NS tachyon
{φ̄5,6} |0〉NS remains in this construction so the minimal number of tachyons is to only
have this tachyon.

Fermionic sector analysis

Using a similar methodology to Section 6.1.2, we wish to analyse the conditions on
the projection of all fermionic sectors from these models. Due to the increased size of
the space of models from the added complexity of having of Ti=1,2,3 in the basis, we
developed a computer algorithm to scan efficiently over the space of vacua and check
for the absence of fermionic massless states. We note that massless fermionic vectorials
in these models arise from the sectors

S̃;

S̃ + z1; (6.16)

S̃ + z4

and the massless fermionic spinorial sectors from

S̃ + bk + bj + Tk + pTi + qTj ;

S̃ + bk + bj + z1 + Tk + pTi + qTj ; (6.17)

S̃ + b1,2,3 + x+ z4;

S̃ + z3.

Our computer algorithm can then be further applied to analyse the tachyonic sectors
arising in Type 0 models. The results of this computerised scan are presented in the
following section.
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S̃ Classification Results

By implementing the projection conditions on the massless fermionic sectors (6.16) and
(6.17) in a computer scan we can collect data for the number of fermionic states remain-
ing in the Hilbert space of a model and see how many are Type 0. The distribution
of the number of fermionic states for a scan of 107 is displayed in Figure 6.1. In this
sample we find a total of 24508 which are free of fermionic states.
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Figure 6.1: Frequency plot for the number of fermionic states in a model from a sample of 107

randomly generated GGSO configurations.

In order to gather a slightly larger sample of Type 0 models in this basis we take
a larger sample of 108 models which still does not take much computing time. From
this sample, we find 245685 Type 0 models which gives a probability ∼ 2.46× 10−3 for
Type 0 vacua in the total space. We now wish to classify these Type 0 configurations
according to which tachyonic sectors remain in their spectra (along with the model-
independent untwisted tachyon), as shown in Table 6.1.
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zk Tachyon zk + Ti Tachyon {λ̄a} |Ti〉 Tachyon Frequency

0 2 2 42773

1 2 1 33513

1 2 2 19402

1 0 2 17405

1 0 1 17140

1 1 2 12056

0 3 1 11996

3 0 1 7141

0 1 3 6044

3 0 2 5708

1 2 3 5575

1 2 0 5175

1 1 1 5170

1 4 2 5071

0 4 2 5017

0 0 2 4262

0 2 3 4253

1 4 1 4226

3 0 0 3827

0 3 2 3405

0 1 1 3389

1 4 0 3322

1 1 3 2625

1 3 3 2179

0 3 3 1774

0 4 3 1724

3 3 2 1713

1 3 2 1631

3 0 3 1529

3 3 3 1168

1 5 2 913

1 5 3 888

0 4 1 854

1 0 3 840

1 4 3 795

1 6 3 583

0 0 3 308

3 6 3 291

Table 6.1: Number of tachyonic sectors for 245685 Type 0 S̃-models, where k = 1, 3, 4,
i = 1, 2, 3 and λ̄a is any right-moving oscillator with NS boundary condition.
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These results clearly show that all Type 0 models have both the model-independent
untwisted tachyon and some combination of at least 2 twisted tachyonic sectors. One
might wonder how general this result is since our sample size of 108 only covers about
1 : 687 models in the total space of GGSO phase configurations. Recalling the 4096
degeneracy factor from the analysis of models in the basis (6.1), we can reasonably
suppose that Type 0 models are highly constrained and degenerate also in the current
construction where the Ti=1,2,3 are incorporated in the basis.

To see this, we took 104 Type 0 models out from the 245685 total sample and cal-
culated their partition functions and found a total of 109 distinct ones. In Figure 6.2 a
comparison between the degeneracy of these 104 Type 0 models and those of a random
sample of 104 models is shown and the number of different Type 0 models are seen to
converge fast to just over 100. This shows, just as in the earlier case, that the subspace
of Type 0 vacua is highly symmetric. This result strongly justifies the generality of our
results from the 108 sample for the tachyonic analysis and makes it highly likely that
our 245685 Type 0 models from the 108 sample captures all such unique models. In Sec-
tion 6.1.5, we will further discuss the structure of these Type 0 models from the point
of view of the partition function and one-loop vacuum energy.
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Figure 6.2: The degeneracy of models for a random sample of models versus Type 0 models for
a sample of 104 models each. We see that the space of Type 0 models is indeed highly degenerate.
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6.1.4 Classification of Type 0 S-Models

Having explored a space of S̃-models in the previous section we now wish to do the
same analysis for models deriving from the ten-dimensional SO(16) × SO(16) non-
supersymmetric heterotic string, which we will refer to as S-models since their basis
contains the SUSY-generating vector S. The precise basis we use is

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6},

T1 = {y1,2, w1,2 | y1,2, w1,2},

T2 = {y3,4, w3,4 | y3,4, w3,4},

T3 = {y5,6, w5,6 | y5,6, w5,6},

b1 = {χ34, χ56, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.18)

b2 = {χ12, χ56, y12, y56 | y12, y56, η2, ψ
1,...,5},

z1 = {φ1,...,4},

z2 = {φ5,...,8},

which is in fact identical to that used in ref. [43] and the same as that used in the su-
persymmetric SO(10) classification of [50, 51] up to the swap T1,2,3 → e1,...,6. As noted
previously, we will make regular use of the important linear combination x, which
appears as the combination

x = 1+S +
3

∑
i=1
Ti + z1 + z2 (6.19)

in this basis and we further have the combination b3 = b1 + b2 + x to give the genera-
tor of the third orbifold plane.

The untwisted gauge bosons in this construction generate a gauge group of
U(1)6 × SO(10)×U(1)3 × SO(8)2 and the full space of models is again given by the
combinations of modular invariant GGSO phase configurations 236 ∼ 6× 1010.

An important difference from the S̃-construction is that we do not have a model-
independent tachyon as the NS tachyon is automatically projected. This leaves the door
open for possible tachyon-free Type 0 models.

Now we turn to the massless fermionic vectorial sectors which for our S-models arise
from

S

S + z1; (6.20)

S + z2

S + bk + x+ pTj + qTk
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and the massless fermionic spinorial sectors from

S + x

S + z1 + z2

S + bk + pTj + qTk; (6.21)

S + bk + z1 + x+ pTj + qTk;

S + bk + z2 + x+ pTj + qTk;

where i 6= j 6= k ∈ {1, 2, 3} and p, q ∈ {0, 1}. We note that there are more fermionic
sectors in this construction than in the S̃ case. In particular, the familiar 16/16 of
SO(10) from the sectorsS+ bk+ pTj + qTk and vectorial 10 of SO(10) from the sectors
(S+)bk + x+ pTj + qTk appear. However, for the S̃-models they were deliberately
chosen to be absent and there are in fact no spinorial fermionic sectors with non-trivial
representation under the SO(10) observable gauge group factor.

As in the case of the S̃-models we use a computer algorithm to scan for Type 0 con-
figurations where these fermionic sectors are projected out. The results are presented
in the following section.

Results of classification

As in the case of the S̃-models we generate a distribution for the number of fermionic
states across a sample of 107 randomly generated GGSO phase configurations. This is
shown in Figure 6.3. Comparing this to Figure 6.1 for the S̃ case we see a more dense
distribution with more possible values for the fermionic states.
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Figure 6.3: Frequency plot for the number of fermionic states for S-models from a random
sample of 107 GGSO configurations.
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As in the S̃ case we generate a larger sample of Type 0 models by taking a scan
of 108 GGSO configurations. From this scan we find 54590 Type 0 models which is
probability ∼ 5.46× 10−4 which makes them approximately 5 times rarer than in the
S̃ case. The likely reason for this and main difference in general between the S case
and S̃ case is the already mentioned fact that in the S-models we have more fermionic
massless sectors to project.

Despite being rarer, we already noted that we do not have any model-independent
tachyons for these S-models which leaves the possibility of tachyon-free Type 0 vacua
open. The data for the numbers of tachyons is shown in Table 6.2 and we see again
that no tachyon-free models exist and that the minimal number of tachyonic sectors is
2, which always includes at least 1 vectorial tachyon of the type {λ̄a} |Ti〉.

zk Tachyon zk + Ti Tachyon {λ̄a} |Ti〉 Tachyon Frequency

1 1 2 11605
1 0 2 10471
1 1 1 4431
1 0 3 4388
2 0 2 4066
2 0 1 3749
1 0 1 3363
1 1 3 2384
1 2 2 1870
2 0 3 1509
1 2 3 1318
1 2 1 1080
2 2 1 871
2 2 2 538
0 1 3 488
0 1 2 454
0 2 1 299
1 3 1 291
1 3 2 290
0 0 2 236
1 3 3 189
0 4 3 151
0 2 3 151
0 2 2 135
0 0 3 135
2 4 1 128

Table 6.2: Number of tachyonic sectors for 54860 Type 0 S-models, where k = 1, 2 and
i = 1, 2, 3.

As in the case of the S̃-models, we observe a degeneracy in the space of Type 0
models and from the sample of 54590 Type 0 S-models, we found just 89 independent
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partition functions and the same convergence pattern as shown in Figure 6.2, therefore
we can confidently claim that the lack of tachyon-free Type 0 models is a generic result
in this class of vacua. It is however worth remembering that our models are defined at
a free fermionic point in moduli space and so it may be that such tachyonic instabilities
may disappear when a model is defined away from the fermionic point.

6.1.5 Misaligned Supersymmetry in Type 0 Models

As discussed in Section 5.5, in non-supersymmetric models, the level-by-level Bose-
Fermi cancellation guaranteed from SUSY is not ensured and so such theories in gen-
eral produce a, often large, non-zero value for the one-loop cosmological constant, Λ.
The finiteness of such calculations from the partition function in non-supersymmetric
models however traces back to modular invariance and the fascinating phenomenon of
misaligned supersymmetry [95, 96, 97, 98, 99]. This mechanism causes the states in the
massive tower to oscillate between an excess of bosons and an excess of fermions. This
behaviour is referred to as boson-fermion oscillation.

In the case of Type 0 models presented above, due to the presence of on-shell
tachyonic states, the partition function diverges. However, this divergence is contained
purely in the tachyonic mode, i.e. the degeneracy of states amn for m, n > 0 still behaves
in a similar fashion to any other non-tachyonic heterotic theory. This is also emphasised
by the presence of misaligned supersymmetry in the massive spectrum of our models.
We find that, indeed, both sets of Type 0 models generated by (6.1) and (6.14) exhibit
such misalignment of their on-shell massive tower of states. The misalignment pattern
appears to have no correlation to whether a specific model has massless fermions or
not.

It was proved in [96] that non-SUSY heterotic strings without physical tachyons
should always produce such misalignment of their massive spectra. In our case, due
to the presence of on-shell tachyons the emergence of misaligned supersymmetry may
seem somewhat unexpected and of unknown origin. The analysis presented in the
proof of misaligned supersymmetry in [95, 96, 97] relies on modular invariance to-
gether with the stated lack of physical tachyons. Since our theory is of course still
modular invariant, we can speculate that the emergence of the misalignment should be
a consequence of this, however, rigorous analysis is still lacking under these conditions.
For the time being, we only present this as an observation for the theories under con-
sideration in this chapter, but further investigation may lead to a deeper understanding
of the relationship between on-shell tachyons and misaligned SUSY.

As an example, for the S̃-models of Section 6.1.3 we observe the two general pat-
terns shown in Figure 6.4, or in general a combination of these two.
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Figure 6.4: The boson-fermion oscillation of misaligned supersymmetry for the on-shell states
of two S̃ models to 8th order in the q-expansion. The overall sign of ± log(| amn |) is chosen
according to the sign of amn.

This is true whether or not the choice of GGSO coefficients project all massless
fermions. The only observable difference we find for Type 0 models from the partition
function point of view is the larger value of a00. This is of course fully expected due to
the lack of fermions at the massless level. The misalignment pattern is mostly similar
for the S-models of Section 6.1.4. It is important to note that, unlike for tachyon-free
non-supersymmetric theories, this oscillatory behaviour does not result in a finite value
for the cosmological constant due to the presence of the physical tachyons described in
Sections 6.1.3 and 6.1.4.

6.2 Type 0

Having discussed the case of vacua free of massless fermions, we now extend the anal-
ysis to the other extreme: tachyon-free heterotic string models that do not contain any
twisted bosonic degrees of freedom. In analogy with Type 0 models, we refer to such
configurations as Type 0̄ models. It is apparent that such models contain untwisted
bosonic degrees of freedom that correspond to the gravitational, gauge and untwisted
scalar fields. However, in the Type 0̄ configurations that we present all the bosonic de-
grees of freedom from the twisted sectors of the Z2×Z2 orbifold are projected out. As a
consequence, one would expect an excess of fermionic over bosonic degrees of freedom
at the massless level to potentially generate a positive cosmological constant. Further-
more, in contrast to the Type 0 models that necessarily contains some tachyonic degrees
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of freedom, we find that most cases of Type 0̄ models are free of tachyonic states. We
present Type 0̄ models that belong to the class of S̃-models as well as the class of S-
models. We also note the existence of a supersymmetric vacuum that does not contain
massless twisted bosons that has indeed appeared in previous classifications [50, 51,
59, 67]. In these cases the partition function is vanishing, whereas the Type 0̄ of interest
are those that are not supersymmetric. Though such models are unstable they may still
serve as laboratories to explore the possible string dynamics in the early universe. We
also remark that in all the Type 0̄ models that we find there are no spinorial or anti-
spinorial representations of the SO(10) GUT group, which is necessarily the case in the
supersymmetric 0̄ configurations.

6.2.1 Type Z2 ×Z2 Heterotic String Orbifold

As in the Type 0 case, the first Type 0̄ model we found is built off the NAHE-set through
the basis

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.22)

b2 = {ψµ, χ34, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, w12, w34 | w12, w34, η3, ψ
1,...,5},

z1 = {φ1,...,4},

G = {y1,...,6, w1,...,6 | y1,...,6, w1,...,6},

and we further define the familiar linear combination

z2 = 1+ b1 + b2 + b3 + z1 = {φ̄5,6,7,8}. (6.23)

A model may then be specified through the assignment of modular invariant GGSO
phases C[vivj ] between the basis vectors. An example Type 0̄ configuration arises for the
GGSO assignment

C
[
vi
vj

]
=

1 S̃ b1 b2 b3 z1 G



1 1 1 −1 −1 1 1 1
S̃ 1 −1 1 −1 1 −1 −1
b1 −1 −1 −1 1 1 1 −1
b2 −1 1 1 −1 1 1 −1
b3 1 −1 1 1 1 1 1
z1 1 1 1 1 1 1 −1
G 1 −1 −1 −1 1 −1 −1

(6.24)
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The model is free of (on-shell) tachyons and the gauge group is given by the
model-independent contribution from the NS (untwisted) sector giving the vector
bosons of SO(10) × U(1)3 × SO(4)3 × SU(2)8, as well as additional scalars from the
{λa}{λ̄b} |zk〉, k = 1, 2 and λa is some left-moving oscillator not equal to ψµ and λ̄b

is any right-moving oscillator with NS boundary conditions in zk. These additional
scalars arise in the untwisted sector necessarily to give the scalar moduli degrees of
freedom. There are additional gauge bosons arising from the presence of ψµ |z1 + z2〉
in the massless spectrum, which induces a gauge enhancement leaving the full gauge
group of the model

SO(10)×U(1)3 × SO(4)3 × SO(8)2. (6.25)

Apart from these untwisted sector gauge bosons and scalars though, the massless spec-
trum contains exclusively fermionic states, as advertised for a Type 0̄ configuration.
These fermionic sectors are

S̃, S̃ + z1, S̃ + z1 + z2, S̃ + z2,

b1 + b2 + b3 +G,

S̃ + bi + bj +G,

S̃ + bi + bj + z1 +G,

1+ S̃ + bi +G,

1+ S̃ + bi + z1 +G,

(6.26)

where i 6= j ∈ {1, 2, 3}. This is notably all the possible fermionic massless sectors except
b1,2,3 which generate the 16/16 of SO(10).

Within the class of models with the minimal basis (6.22), possible twisted bosons
may arise from the vectorial sectors

V 1 = b2 + b3 +G,

V 2 = b1 + b3 +G,

V 3 = b1 + b2 +G,

(6.27)

which come with a right-moving oscillator, and the fermionic spinorial sectors

B1 = b2 + b3 + z1 +G,

B2 = b1 + b3 + z1 +G,

B3 = b1 + b2 + z1 +G,

B4 = 1+ b1 + z1 +G,

B5 = 1+ b2 + z1 +G,

B6 = 1+ b3 + z1 +G.

(6.28)
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As we did in the Type 0 case we can use the GGSO projections to derive the condi-
tions on the GGSO phases in order to realise Type 0̄ configurations. Doing these trivial
calculations gives the following conditions for the Type 0̄ string vacua

C
[
z1
b1

]
= C

[
z1
b2

]
= C

[
z1
b3

]
= 1, C

[
z1
G

]
= −1, (6.29)

C
[
b1
b2

]
= C

[
b1
b3

]
, C

[
b2
b3

]
= C

[
b1
b3

]
, (6.30)

C
[
1

G

]
= C

[
b1
G

]
C
[
b2
G

]
C
[
b3
G

]
. (6.31)

Therefore we see that 7 GGSO phases are fixed and we have 14 free phases. In the Type
0 case in Section 6.1.2 we saw there were 12 free phases giving 212 = 4096 versions
of a single unique Type 0 partition function. To check whether we have 214 versions
of a unique partition function or not in our Type 0̄ case we can analyse the partition
function. Calculating this partition function for the 214 = 16384 Type 0̄ configurations
we find that they all share the partition function

Z = 2 q0q̄−1− 728 q0q̄0 + 288 q1/2q̄−1/2 + 1088 q−1/2q̄1/2 + 38400 q1/2q̄1/2 + · · · , (6.32)

and so are, indeed, the same model. We note that there are no on-shell tachyons and
the absence of twisted bosons ensures a large negative contribution at the massless
level N0

b − N0
f = −728. We can calculate the cosmological constant now for this unique

case. Due to the abundance of fermionic states compared to bosonic ones, we expect
a positive cosmological constant, and performing the modular integral using standard
techniques we, indeed, find

Λ = 238.38×M4. (6.33)

As we discussed for Type 0 models, all Type 0̄ models we present exhibit a form
of misaligned supersymmetry, meaning that the boson-fermion degeneracies oscillate
while ascending through the massive states.
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6.2.2 Generalised Type 0̄ S̃-models

In order to do a more general search for Type 0̄ models we can generalise from the basis
(6.22) to

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

T1 = {y1,2, w1,2 | y1,2, w1,2},

T2 = {y3,4, w3,4 | y3,4, w3,4},

T3 = {y5,6, w5,6 | y5,6, w5,6},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.34)

b2 = {ψµ, χ34, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, w12, w34 | w12, w34, η3, ψ
1,...,5},

z1 = {φ1,...,4},

where introducing Ti, i = 1, 2, 3 allows for internal symmetric shifts around the 3 in-
ternal T2 tori. Since we have 9 basis vectors there are 29(9−1)/2 = 236 ∼ 6.87× 1010

independent GGSO phase configurations.

The bosonic sectors that need projecting in this basis are similar to (6.27), up to
allowing for the shifts induced by Ti. Explicitly, there are 15 vectorial bosonic sectors

V 1
pq = b2 + b3 + T1 + pT2 + qT3,

V 2
pq = b1 + b3 + T2 + pT1 + qT3,

V 3
pq = b1 + b2 + T3 + pT1 + qT2,

V 4 = T1 + T2,

V 5 = T1 + T3,

V 6 = T2 + T3,

(6.35)
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which come with a right-moving oscillator and p, q = 0, 1. Additionally, there are 30
fermionic spinorial sectors

F 1
pq = b2 + b3 + z1 + T1 + pT2 + qT3,

F 2
pq = b1 + b3 + z1 + T2 + pT1 + qT3,

F 3
pq = b1 + b2 + z1 + T3 + pT1 + qT2,

F 4
pq = 1+ b1 + z1 + T1 + pT2 + qT3,

F 5
pq = 1+ b2 + z1 + T2 + pT1 + qT3,

F 6
pq = 1+ b3 + z1 + T3 + pT1 + qT2,

F 7 = T1 + T2 + z1,

F 8 = T1 + T3 + z1,

F 9 = T2 + T3 + z1,

F 10 = T1 + T2 + z2,

F 11 = T1 + T3 + z2,

F 12 = T2 + T3 + z2.

(6.36)

Implementing the GGSO projection conditions on all the sectors and scanning over 108

random GGSO phase configurations results in uncovering 5676 Type 0̄ configurations
that correspond to just two distinct tachyon-free models and two distinct tachyonic
models. The first tachyon-free model has partition function

Z = 2 q0q̄−1 − 440 q0q̄0 + 32 q1/4q̄−3/4 − 6080 q1/4q̄1/4 + · · · , (6.37)

and cosmological constant
Λ = 213.27×M4. (6.38)

Whereas the second tachyon-free model has partition function

Z = 2 q0q̄−1 − 504 q0q̄0 + 48 q1/4q̄−3/4 − 12192 q1/4q̄1/4 + · · · , (6.39)

and cosmological constant
Λ = 278.60×M4. (6.40)

Both models contain the same gauge boson enhancement and additional scalars from
the sectors z1, z2 and z1 + z2 as in case with minimal basis (6.22). Other than these un-
twisted bosons the two models contain only twisted fermionic states in their massless
spectra, as required for Type 0̄ configurations.

Regarding the two tachyonic models, we have one model with partition function

Z = 2 q0q̄−1 + 32q−1/4q̄−1/4 − 1016 q0q̄0 + 4096 q1/4q̄1/4 + · · · , (6.41)
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which has 32 tachyonic states and one with partition function

Z = 2 q0q̄−1 + 48 q−1/4q̄−1/4 − 1272 q0q̄0 + 5120 q1/4q̄1/4 + · · · , (6.42)

which has 48 tachyonic states.

6.2.3 Generalised Type 0̄ S-models

We can now do a similar exploration of Type 0̄ models within a class of models which
include the SUSY generating basis vector S. We employ a very familiar choice of
SO(10) basis

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6},

T1 = {y1,2, w1,2 | y1,2, w1,2},

T2 = {y3,4, w3,4 | y3,4, w3,4},

T3 = {y5,6, w5,6 | y5,6, w5,6},

b1 = {χ3,4,5,6, y34, y56 | y34, y56, η1, ψ
1,...,5}, (6.43)

b2 = {χ1,2,5,6, y12, y56 | y12, y56, η2, ψ
1,...,5},

z1 = {φ1,...,4},

z2 = {φ5,...,8},

which is exactly the same as that used to classify non-SUSY string models in ref. [43].
We will note the important linear combination in this basis

x = 1+S + ∑
i=1,2,3

Ti + ∑
k=1,2

zk, (6.44)

and then have the combination b3 = b1 + b2 + x. As in the S̃-models we have 9 basis
vectors and so the number of independent GGSO phase configurations is 29(9−1)/2 =

236 ∼ 6.87× 1010.

A key difference between this basis and the basis (6.34) is that there exists a super-
symmetric subspace of the full space for certain choices of GGSO phase. In particular,
the S sector generates supersymmetry

C
[
S

1

]
= C

[
S

Ti

]
= C

[
S

bj

]
= C

[
S

zk

]
= −1, i = 1, 2, 3 and j, k = 1, 2 (6.45)

which, furthermore, automatically ensures the projection of tachyonic sectors through
the S GGSO projection.
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Now we turn to the massless bosonic vectorial sectors that arise from

bi + x+ pTj + qTk,

T1 + T2,

T1 + T3,

T2 + T3,

(6.46)

and the massless bosonic spinorial sectors from

bi + pTj + qTk,

bi + x+ z1 + pTj + qTk,

bi + x+ z2 + pTj + qTk,

T1 + T2 + z1,

T1 + T3 + z1,

T2 + T3 + z1,

T1 + T2 + z2,

T1 + T3 + z2,

T2 + T3 + z2,

(6.47)

where i 6= j 6= k ∈ {1, 2, 3} and p, q ∈ {0, 1}.

We can now search for Type 0̄ GGSO configurations by implementing the condi-
tions for the GGSO projection of all these massless twisted bosonic sectors.

In a random scan of 108 independent GGSO phase configurations we found one
supersymmetric model which contains a very simple massless spectrum containing the
untwisted gauge bosons from the NS sector and its gauginos from the S sector, along
with gauge enhancements and additional scalars of some form from z1, z2, z1+ z2 and
x and their superpartners fromS+z1,S+z2,S+z1+z2 andS+x, respectively. The
other Type 0̄ models arising in our 108 scan are non-supersymmetric.

All the Type 0̄ models are summarised in Table 6.3 with their partition functions,
key characteristics and frequency within the sample delineated. We note that the fre-
quency refers to the number of different GGSO phase configurations corresponding to
the same partition function. The projected total number is simply how many we expect
in the full space of 236 independent GGSO phase configurations. In principle, the exact
constraints on the GGSO phases for each model could be derived and the exact number
of each model in the total space deduced.
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Partition Function Λ [M4] Tachyons? SUSY?
# Models Total #
in Sample Projected

Z = 0 0 No Yes 562 3.86× 105

Z = 2q̄−1 − 632 + 48q1/4q̄−3/4
293.8 No No 389 2.67× 105

−8096q1/4q̄1/4 + · · ·
Z = 2q̄−1 − 120 + 32q1/4q̄−3/4

125.6 No No 284 1.95× 105
−6080q1/4q̄1/4 + · · ·

Z = 2q̄−1 − 568 + 32q1/4q̄−3/4
223.97 No No 1163 7.99× 105

−1984q1/4q̄1/4 + · · ·
Z = 2q̄−1 − 504 + 32q1/4q̄−3/4

158.64 No No 715 3.91× 105
+4128q1/4q̄1/4 + · · ·

Z = 2q̄−1 + 32q−1/4q̄−1/4 − 664
∞ Yes No 287 1.97× 105

+6144q1/4q̄1/4 + · · ·
Z = 2q̄−1 + 32q−1/4q̄−1/4 − 1272

∞ Yes No 290 1.99× 105
+58881/4q̄1/4 + · · ·

Z = 2q̄−1 + 32q−1/4q̄−1/4 − 632
∞ Yes No 301 2.07× 105

−512q1/4q̄1/4 + · · ·
Z = 2q̄−1 + 32q−1/4q̄−1/4 − 1528

∞ Yes No 429 2.95× 105
+4608q1/4q̄1/4 + · · ·

Z = 2q̄−1 + 32q−1/4q̄−1/4 − 1528
∞ Yes No 395 2.71× 105

+11008q1/4q̄1/4 + · · ·
Z = 2q̄−1 + 48q−1/4q̄−1/4 − 1016

∞ Yes No 155 1.07× 105
−1792q1/4q̄1/4 + · · ·

Z = 2q̄−1 + 144q−1/4q̄−1/4 − 504
∞ Yes No 153 1.05× 105

+94721/4q̄1/4 + · · ·

Table 6.3: Summary of Type 0̄ models arising from the basis (6.43). The cosmological constant
Λ is expressed in units ofM4.

6.3 Discussion

In this chapter we explored the existence of two contrasting novel vacua. The case
of Type 0 models have been of interest in other string theory limits, e.g. the issue of
tree level stability has been studied in the framework of Type II orientifolds, whereas
other authors have advocated that there is holographic duality of the Type 0B string
theory and four dimensional non-supersymmetric Yang-Mills theory [117, 118]. In our
framework we demonstrated the existence of Type 0 Z2 ×Z2 heterotic string orbifolds
with a large degree of redundancy in the space of GGSO projection coefficients. We
showed that these Type 0 models all contain physical tachyons at the free fermionic
point in the moduli space. These vacua are therefore necessarily unstable. We further
demonstrated the existence of misaligned supersymmetry in the Type 0 models that
guarantee the finiteness of the one-loop amplitude, aside from the divergence due to
the tachyonic states.

The second novel vacua we studied were the Type 0̄. While our findings at this
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stage should be regarded as mere curiosities, it is plausible that they may have some
relevance to studying string dynamics in the early universe. We have also found that
in all the Type 0̄ models, there are no spinorial or anti-spinorial representations of the
SO(10) GUT group. The non-supersymmetric 0̄ configurations may therefore be inter-
preted as supersymmetric 0̄ models, in which supersymmetry is maximally violated.
A feature that may be explored by studying the interpolations between the two cases.
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Chapter 7

Satisfiability Modulo Theories
and an Application to Free
Fermionic Model Building

In this chapter we introduce the powerful SAT/SMT solvers into the analysis of free
fermionic string vacua from the Z2 ×Z2 orbifold. The work in this chapter is taken
from ref. [10].

We will begin by explaining the background of SAT and SMT solvers and demon-
strate how to implement constraints from the free fermionic classification into a form
optimised for SAT/SMT methods. To this end, the classes of Type 0 and Type 0̄ vacua
studied in Chapter 6 will be an excellent testing ground for these sophisticated comput-
ing methods. Not only were these constructions relatively simple (few basis vectors),
we also saw how certain characteristics of models were often correlated or in contra-
diction. For example, in the Type 0 case we saw how these models necessarily con-
tained tachyons, meanwhile in the Type 0̄ case we saw how the presence of observable
spinorial sectors contradicted the Type 0̄ condition. In this chapter we will focus on
this latter issue and test the efficiency of reducing the problem of finding tachyon-free
Type 0̄ models, of the sort found in Chapter 6, to SAT or SMT. This setting will allow
the SAT/SMT solver to essentially produce a no-go theorem for Type 0̄ models with
fermion generations by returning an unsatisfiable constraint system with a proof.

7.1 SMT and SAT

Satisfiability Modulo Theories (SMTs) are powerful algorithms used for deciding
whether a set of constraints describing a problem is satisfiable. In other words, SMTs
determine whether there exists a ‘satisfying assignment’ of a set of input variables to
a system of constraints. These constraint formulae are constructed by defining opera-
tions over, what are referred to as, theory variables, and combining them with logical
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connectives. SMT problems are more expressive and powerful than the Boolean Sat-
isfiability (SAT) problems that restrict all variables to be true or false and operators to
be logical connectives. This is to say that SMTs allow for operations over non-Boolean
types such as integers, reals, bitvectors, and arrays. Both SMT and SAT are canonical
NP-complete problems [119, 120], which is a class of computational problems for which
checking whether a given variable assignment satisfies the constraints can be done in
polynomial time, but finding such an assignment is believed to be hard. Despite a lot
of effort, no polynomial time algorithm was shown for any NP-complete problem since
the class was defined in 1971. More than that, a widely believed conjecture [121] states
that in the worst-case one cannot significantly improve over an exhaustive search of all
possible assignments. Nevertheless, there has been tremendous progress over the last
decades in efficiency of algorithms solving these problems in practice, solving instances
with hundreds and even thousands of variables, which shows that truly hard instances
are few and far between.

A key aspect of how SMT-solvers work so effectively is through following the
DPLL or conflict-driven clause learning (CDCL) class of algorithms. These algorithms
implement a decision procedure for each theory by adding or subtracting constraints
and querying for satisfiability as it goes. More detail on DPLL(T) and other decision
procedures may be found in ref. [122], for example.

One of the most efficient and easy to use SMT solvers is Z31. Z3 was developed by
Microsoft primarily for software verification purposes. It also implements an efficient
SAT solver that we use for the Boolean encoding of our problem. It has bindings for
most common programming languages and in our case we used the Python front-end
as a means of interfacing with Z3.

7.2 SMTs and Free Fermionic Classification

It is a great advantage of the free fermionic construction that phenomenological con-
straints reduce to elementary algebraic expressions in terms of the GGSO phases C[vivj ],
which are binary inputs. Therefore the reduction to Boolean expressions is almost im-
mediate but it is worthwhile giving some details on how to perform this reduction
before we go on to a specific application.

7.2.1 Boolean Reduction

In the classification program of free fermionic models outlined in Chapter 4, phe-
nomenological criteria are typically constructed through selection rules on certain sec-
tors. Typically these are massless sectors or, for non-supersymmetric models, the on-
shell tachyonic sectors when ensuring that the models are tachyon-free. Depending on
the mass formulae (3.35), the level-matching condition may necessitate that there are

1This can be accessed open source on Github at https://github.com/Z3Prover/Z3
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left-moving oscillators, λ, or right-moving oscillators, λ̄, acting on the ket vector of the
sector α, which is given by the combined degenerate Ramond vacua of all fermions
with α( f ) = 1 in α.

Given a basis, to determine whether a particular sector α survives for a model
depends solely on the GGSO phase configuration. In particular, we employ the gener-
alised projectors given through eqs (4.7) and (4.9). The translation of these generalised
projector equations that build up to form our phenomenological criteria into a Boolean
language ripe for a SAT or SMT solver is immediate. For example, taking a sector with
no oscillator with projector of the form (4.7), the condition Pα = 0 can be translated
into a Boolean constraint by taking the set

C =

{
δαC

[
α

ξ1

]
, ..., δαC

[
α

ξn

]}
, (7.1)

where ξ ∈ Υ(α) with n = |Υ(α)|. Using eq. (3.30) we can rewrite the phases C[αξi
] in

terms of a product of basis GGSO phases C[vivj ]. We then associate to each of these a
Boolean. In the case of a real GGSO phase this can be taken to be

Bij =

True if C[vivj ] = −1

False if C[vivj ] = +1,
(7.2)

where i, j = 1, ..., N such that N = |B| is the number of basis vectors. Then the product
of such basis GGSO phases can be rewritten in Boolean language as an exclusive or, ∨̄,
that returns True if there is an odd number of True C[vivj ]’s in the product, and False if
even. In this way, each entry δαC[αξi

] of C can be recast as a Boolean clause constructed
through the ∨̄ of basis GGSO phases. There is then the complication of dealing with
any imaginary basis GGSO phases. This is easy to resolve by consistently taking ±i
as the binary to assign Boolean values to. Then the set C can be redefined as a set of
Boolean clauses.

Once this reduction to Booleans is complete, the constraint Pα = 0 from (4.7) is
equivalent to imposing

¬(C1 ∧ ...∧ Cn). (7.3)

where Ci ∈ C, i = 1, ..., n. It is precisely this kind of constraint that can be added to a
constraint system for an SAT/SMT solver.

In the application studied in this chapter, we search for the absence of twisted
bosons at the massless level, which is just a repeated application of this constraint for
all massless bosonic sectors.

We note that a phenomenological constraint such as checking for three generations
requires a couple of additional steps that need encoding into SMT language. Once
again, sectors giving rise to the fermion generations need checking for survival via
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Pα 6= 0, then additional GGSO projection determining the chirality of the sectors un-
der the relevant observable gauge factors need encoding. This can be done as a natural
extension of the projections done in Pα. Then, checking for 3 generations can be han-
dled easily through the implementation of a Boolean adder.

7.3 Minimal Tachyon-free SO(10) S̃-models

We will use the basis explored in Section 6.2.2 given by eq. (6.34). For clarity we rewrite
this basis here

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},

T1 = {y1,2, w1,2 | y1,2, w1,2},

T2 = {y3,4, w3,4 | y3,4, w3,4},

T3 = {y5,6, w5,6 | y5,6, w5,6},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (7.4)

b2 = {ψµ, χ34, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, w12, w34 | w12, w34, η3, ψ
1,...,5},

z1 = {φ1,...,4}.

We recall that the NS sector vector gauge bosons in these models give rise to a gauge
group

SO(10)×U(1)3 × SO(4)3 × SU(2)8, (7.5)

and may receive additional vector boson enhancements from the sectors
ψµ |z1〉L ⊗ {λ̄i} |z1〉R
ψµ |z2〉L ⊗ {λ̄i} |z2〉R

ψµ |z1 + z2〉L ⊗ |z1 + z2〉R

 , (7.6)

where λ̄i are all possible right moving Neveu-Schwarz oscillators and z2 is the impor-
tant linear combination

z2 = 1+ b1 + b2 + b3 + z1 = {φ̄5,6,7,8}. (7.7)

In order to impose the Type 0̄ conditions into the SAT/SMT solver we remind
ourselves of the bosonic sectors in this set-up given in Section 6.2.2. There are the 15
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vectorial bosonic sectors of the form

V 1
pq = b2 + b3 + T1 + pT2 + qT3

V 2
pq = b1 + b3 + T2 + pT1 + qT3

V 3
pq = b1 + b2 + T3 + pT1 + qT2

V 4 = T1 + T2

V 5 = T1 + T3

V 6 = T2 + T3

(7.8)

where p, q = 0, 1 and these sectors all come with a right-moving NS oscillator. Addi-
tionally, there are 30 sectors with no oscillators

B1
pq = b2 + b3 + z1 + T1 + pT2 + qT3

B2
pq = b1 + b3 + z1 + T2 + pT1 + qT3

B3
pq = b1 + b2 + z1 + T3 + pT1 + qT2

B4
pq = 1+ b1 + z1 + T1 + pT2 + qT3

B5
pq = 1+ b2 + z1 + T2 + pT1 + qT3

B6
pq = 1+ b3 + z1 + T3 + pT1 + qT2.

B7 = T1 + T2 + z1

B8 = T1 + T3 + z1

B9 = T2 + T3 + z1

B10 = T1 + T2 + z2

B11 = T1 + T3 + z2

B12 = T2 + T3 + z2

(7.9)

A Type 0̄ model then requires that all these sectors are projected for an assignment of
GGSO phases.

Tachyon Sector Analysis

The next constraint to impose after the projection of massless bosonic sectors, is the ab-
sence of tachyonic sectors. Since our models are non-supersymmetric this is an impor-
tant check for determining the stability of our models for a 4D Minkowski background.
The same procedure of encoding the GGSO projections applies to the tachyonic sec-
tors. The tachyonic sectors in this construction are: {λ̄}Ti, z1, z2, z1 + Ti and z2 + Ti,
i = 1, 2, 3, where i = 1, 2, 3 and λ̄ is some right-moving NS oscillator and we note that
the untwisted tachyon from |0〉L ⊗ {λ̄} |0〉R is projected regardless of the GGSO phase
choices in this basis.
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As an example, we can delineate the condition for the projection of the {λ̄}T1
tachyonic sector

∀λ̄ : P{λ̄}T1
= ∏
ξ∈Υ(T1)

1
2

(
1 + C

[
T1
ξ

])
= 0 (7.10)

where
Υ(T1) = {T2,T3, z1, z2,x}. (7.11)

Spinorial 16/16 Sectors

The fermion generations transforming in the spinorial 16/16 of SO(10) arise from the
twisted sectors

F 1
pq = b1 + pT2 + qT3

F 2
pq = b2 + pT1 + qT3 (7.12)

F 3
pq = b3 + pT1 + qT2.

The projectors of which can be used to tell us #(16 + 16) for any model. Knowing this
is sufficient for our purposes here with the SMT solver analysis, we will not implement
the chirality projection distinguishing the 16 and 16.

7.4 Application of SMT

Now we turn our attention to the analysis of these model characteristics with an SMT
written using Z3 in Python. We recall eq. (7.2) defines a Boolean encoding of the GGSO
phase inputs. For reasons of comparison and to make use of SMT solver expressibility
we also define the integer encoding through

C
[
vi
vj

]
= exp

{
iπ(vi|vj)

}
(7.13)

and use the 36 independent phases (vi|vj) ∈ {0, 1} as the input variables for our SMT
solver. We will see this integer encoding comes at the expense of performance com-
pared with the Boolean case because the SMT solver needs to include reasoning for
mathematical theories (such as integer arithmetic).

It turns out that the conditions for the projection of massless twisted bosons and
tachyonic sectors do not involve the following 9 of the 36 (vi|vj) phases:

(1|S̃), (1|b1), (1|b2), (1|b3), (1|z1), (S̃|b1), (S̃|b2), (S̃|b3), (S̃|z1) (7.14)

and so our space of models to explore is reduced to 227 (ca. 1.34× 108). This is well
within the reach of a complete enumeration of possible GGSO configurations but our
purpose here is testing the features and efficiency of the SMT solver within this simple
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class of models. Moreover, as it does not adversely effect performance, we have re-
introduced these 9 variables as input to our Boolean encoding with the expectation that
it will not significantly impact the running time (in fact, it actually cuts the running time
by 4%).

For both representations we can schematically write the steps for the construction
of the Z3 solver in the case of finding tachyon-free Type 0̄ string models2

1: Define the 27 input variables c0, ..., c26
2: Add constraints on input variable domain (ci = 0∨ ci = 1) ∀i = 0, ..., 26.
3: Add constraints for GGSO projection of all twisted massless bosons:
∀B : PB = 0.

4: Add constraints for GGSO projection of all tachyonic sectors, T : ∀t ∈ T : Pt = 0.
5: Check satisfiability
6: if unsat print proof
7: if sat find satisfying assignments (print all solutions)

7.5 Results of SMT search for tachyon-free Type 0̄ models

Enumerating all tachyon-free Type 0̄ models within the class of models under consider-
ation is a good testing ground for the efficiency of the SMT/SAT solver. As mentioned
earlier, the space of models is 227 (ca. 1.34× 108), which is within the grasp of a com-
plete enumeration approach. We have run a random search in comparison, which is
able to analyse ca. 16,000 sample points per second. An exhaustive enumeration of the
model space thus takes around 2 hours 20 minutes, and a random search (with repeti-
tions) needs on average around 19 hours to find all solutions and 4 seconds to find the
first model.

Within the integer representation, Z3’s SMT solver determines satisfiability in 12
seconds and finds all 2048 solutions in the full 227 space in 2405 seconds (ca. 40 min-
utes). A random search found just under a quarter of these models in the same amount
of time (500 models). While this is a useful speed up, it is not that impressive. This is
expected since, in this representation, the SMT solver deals with mathematical theories
that create a significant overhead. Figure 7.1 depicts the accumulation of solutions over
time for the SMT solver within the integer representation.

The performance is significantly improved when implementing a Boolean encod-
ing. In this case, Z3’s SAT solver determines satisfiablitiy in 0.04 seconds. It can find
and print all 2048 solutions in 19 seconds. This is 126 times faster than for the inte-
ger representation, and 450 times faster than exhaustively enumerating and checking
the statespace. Figure 7.2 depicts the accumulation of solutions over time for the SAT

2Both the integer and Boolean Z3 codes are available at https://github.com/BenjaminPercival/
SMTsType0bar.

https://github.com/BenjaminPercival/SMTsType0bar
https://github.com/BenjaminPercival/SMTsType0bar
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Figure 7.1: Rate at which the Integer representation finds all tachyon-free Type 0̄ models.

Figure 7.2: Rate at which the Boolean representation finds all tachyon-free Type 0̄ models,
depicting the number of compact solutions found; the 1850 compact solutions contain all 2048
explicit solutions (exactly once).

solver, where we see that the solver is not slowed down by the creation of new lem-
mas as solutions are enumerated. It can be seen that only 1850 compact solutions are
recorded on the graph in Figure 7.2. This is because some of the compact solutions
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include variables labelled with None, meaning that these variables can be set to True

or False; they can be trivially expanded to the 2048 solutions (without omissions and
without multiple occurrences of individual solutions).

We have repeated the experiment using all 36 original input variables. Our ex-
pectation was that the SAT solver would essentially ignore them, as they do not enter
into the reasoning at any point, though it will need to output a few additional None in
the compact representation. We expected an insignificant increase in the overall run-
ning time. We found that the solver worked 4% faster, which is likely due to different
decisions made by the heuristics. But it shows an interesting effect: overlooking the
variables that do not matter did not slow the SAT solver down, whereas an exhaustive
search would have taken 6 orders of magnitude longer.

7.5.1 Identifying Chiral, Tachyon-free Type 0̄ Vacua

In the analysis from Chapter 6 it was found that no Type 0̄ vacua include the fermion
generations from the spinorial 16/16 sectors (7.12). Since these sectors are phenomeno-
logically desirable, we aim to ensure at least one remains in the Hilbert space after
GGSO projections.

With the addition of this condition the SMT structure summary can be updated to

1: Define the 27 input variables c0, ..., c26
2: Add constraint on input variable domain (ci = 0∨ ci = 1) ∀i = 0, ..., 26.
3: Add constraints for GGSO projection of all twisted massless bosons
4: Add constraints for GGSO projection of all tachyonic sectors.
5: Add constraint on presence of at least 1 16/16 sector
6: Check satisfiability
7: if unsat print proof
8: if sat find satisfying assignments (print all solutions)

As expected from the findings of ref. [9], with this added constraint on the spino-
rial 16/16 the Z3 solver returns unsat. This takes only 0.06 seconds in the Boolean
encoding (163 seconds in the integer encoding), underlining the feasibility of combing
large parameter spaces.

In such cases where constraint systems are unsatisfiable, there are several tools
within Z3 that are helpful to understand and isolate where the inconsistency arises
from. Using its proof() method, Z3 will output a proof of inconsistency. Unsatisfi-
ability proofs can be long and tedious because, while satisfiability can be shown by
providing a model, unsatisfiability needs to make a mathematical argument that es-
tablishes the contradiction. Such proofs thus do not provide much accessible further
insight but are certainly preferable than trying to distill the contradiction by hand.
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Model Building

There are, however, several other helpful tools that can be used to isolate incon-
sistencies. In particular, a minimal ‘unsatisfiable core’ of constraints can be returned
by most SMT solvers [123], which isolates where the contradiction arises by giving a
(locally) minimal subset of constraints such that dropping either of them results in a
satisfiable constraint system. From this, it is straightforward to apply Optimisation
Modulo Theory (OMT), offered by many SMT solvers. Additionally, a more manual
approach of using push and pop methods on constraints allows for pinning down the
source of an inconsistency. Using this approach, the presence of the spinorial 16/16’s
from F i

pq is found to contradict the projection of the vectorial V i
pq (under the presence

of the remaining constraints). Since the Higgs bidoublet representation would reside
within the vectorial 10 of SO(10) coming from the V i

pq, i = 1, 2, 3, there is physical
motivation to keep at least one of these twisted bosonic sectors in the Hilbert space.
Demanding that at least one sector from F 1

pq remains, and at least one of V 1
pq makes the

SMT return sat, takes 0.03 seconds for the Boolean constraint system and 8.4 seconds
for the integer encoding. Creating all 640 satisfying assignments takes 7.5 seconds for
the Boolean constraint system (1661 seconds for the integer encoding) of the 27 input
variables with these conditions. One such model is defined by

C
[
vi
vj

]
=

1 S̃ T1 T2 T3 b1 b2 b3 z1



1 1 1 1 −1 1 1 −1 −1 1
S̃ 1 −1 −1 −1 −1 1 1 1 1
T1 1 −1 −1 1 1 −1 1 −1 1
T2 −1 −1 1 1 1 −1 1 1 1
T3 1 −1 1 1 −1 1 1 1 1
b1 1 −1 −1 −1 1 1 −1 −1 −1
b2 −1 −1 1 1 1 −1 −1 −1 1
b3 −1 −1 −1 1 1 −1 −1 −1 1
z1 1 −1 1 1 1 −1 1 1 1

(7.15)

which has partition function

Z = 2q̄−1 + 1280q−1/2q̄1/4 + 48q1/4q̄−3/4 − 1016− 16288q1/4q̄1/4 + · · · (7.16)

where we can see that N0
b − N0

f = −1016, which is a large abundance of massless
fermions as expected. This model generates a worldsheet cosmological constant of
Λ = −886.43 which corresponds to a large positive cosmological constant, λ, via the
rescaling λ = − 1

2M4Λ, whereM = MString/2π.

7.6 Discussion

The application of Machine Learning techniques within the string landscape is already
a burgeoning field [4]. In this chapter, we open the door to the application of SAT
and SMT solvers within this context and have demonstrated their power and efficiency
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within a simplified class of string models and expect their benefits to only increase as
more generalised and (quasi-)realistic classes of vacua are studied.

We have demonstrated how SAT and SMT solvers can be used to help isolate in-
consistent constraints and be used to optimise desired characteristics. This method was
then employed to find string vacua with positive cosmological constant and desirable
SO(10) representations. Furthermore, this approach essentially meant minimising the
number of massless twisted bosons, which is generally enough to ensure a large abun-
dance of massless fermions resulting in the largest contribution to cosmological con-
stant (the massless level) being positive. Although the massive and off-shell contribu-
tions also need accounting for, a large abundance of massless fermions can effectively
guarantee a positive cosmological constant. Such vacua are then ripe for analysis away
from the free fermionic point in the moduli space by exploring the one-loop potential
in terms of the moduli fields as was pursued in [43, 44], where models with N f > Nb

at the free fermionic point and Nb = N f at a generic point in the moduli space resulted
in guaranteeing a positivity of the one-loop potential. Using the SAT and SMT solvers
described in the current work makes it very quick and easy to find string models at
the free fermionic point with desired properties at the massless level, even when the
models are rare in the full space.

There are a couple of obvious limitations, from a phenomenological perspective,
in the class of models that we have examined in this chapter. First of all, a F 1

pq and
V 1

pq could not give rise to desired coupling as they reside on the same orbifold plane.
Secondly, due to only employing the Ti, i = 1, 2, 3, in the basis we do not allow for shifts
around the 6 circles of the internal T6 and there is a multiplicity factor of 4 attached to
each sector, making 3 generation models impossible. However, our focus here is on
the introduction of SAT and SMT solving and the illustration of its application. An
application of SAT and SMT solving to the more realistic constructions of asymmetric
orbifolds is presented in the following chapter.

It is already evident however, even at this stage, that as we seek to construct sat-
isfiability criteria for more detailed phenomenological string models, these algorithmic
approaches are of immense interest and utility.
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Chapter 8

Towards the Classification of
Asymmetric Orbifolds

In this chapter we explore some asymmetric orbifold constructions with Flipped SU(5)
(FSU5) subgroup with help from our SAT/SMT solver. This work is based on that of
ref. [11]. The classification methodology so far discussed has solely been developed
for models with symmetric boundary conditions. The heterotic string in general, and
the free fermionic models in particular, allow for more general assignments of bound-
ary conditions, which are asymmetric between the left and the right-moving world-
sheet fermions. These can be complicated assignments that realise the non-Abelian
gauge symmetries at higher level Kac-Moody algebra [83, 84, 85], or more mundane
assignments that leave the gauge symmetries at level k = 1. Although symmetric in
the Z2 ×Z2 twists, these asymmetric assignments produce asymmetric shift orbifold
models, which amount to non-geometric compactifications, a review of which is given
in ref. [86]. Completing a first step towards the extension of the classification method-
ology to such asymmetric orbifolds is our objective here. We choose to study models
with Flipped SU(5) (FSU5) gauge symmetry for both the N = 0 and N = 1 cases.

There are several profound phenomenological implications of choosing such
asymmetric boundary condition assignments rather than symmetric ones. Of crucial
importance to us is how they help to realise moduli fixing [124], top-quark Yukawa
couplings from the untwisted sector [125] and doublet-triplet splitting [126]. Further-
more, we note that the early free fermionic constructions [127, 128] do utilise asymmet-
ric boundary conditions, which gave rise to a stringy explanation of the hierarchical
top-bottom quark mass splitting [129, 130].

The fixing of some of the three complex and Kähler structures that comprise the
moduli space of the Z2 ×Z2 orbifold is of particular significance in the context of in-
vestigating the one-loop potential generating the (leading order) vacuum energy of a
string model. This is of key interest in this work since we classify non-supersymmetric
configurations. Various works on non-supersymmetric string vacua have attempted to
use Scherk-Schwarz supersymmetry breaking [75, 80, 81, 77, 79] and a so-called ‘super
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no-scale’ condition [73, 74, 101] to argue for a suppression of the one-loop cosmolog-
ical constant. Florakis and Rizos demonstrated the existence of free fermion models
with positive vacuum energy at the minimum of the potential for one of the radii [43,
44]. However, in order to argue for stability of the vacua one needs to incorporate all
moduli into the analysis, which is far too cumbersome in the symmetric orbifold case
to be performed. This is where asymmetric orbifolds come into their own, as they give
some control over the fixing of certain moduli. To this end, we will classify different
asymmetric pairings according to their moduli fixing and then explore two classes of
FSU5 models, one of which has no fixed moduli and the other in which only the moduli
of the 1st internal torus are unfixed.

The fermionisation of the worldsheet degrees of freedom employed in the free
fermionic construction demands that the heterotic string is constructed at the self-dual
point in the moduli space where the radii are fixed to R =

√
α′/2. At this point the

theory is consistent and, as was shown in [29, 30, 31], the modular invariance con-
straints for one-loop and higher-loop amplitudes can be completely solved. A key
advantage of the free fermionic formulation is that non-geometric constructions [86],
such as the asymmetric orbifolds studied in this chapter, may be realised naturally.
However, as mentioned in Section 3.5, being fixed at the self-dual point in the moduli
space becomes restrictive when we wish to study stability issues that arise for non-
supersymmetric string models. For example, it becomes essential to introduce moduli
dependence when investigating the non-trivial one-loop potential arising in the ab-
sence of supersymmetry or to understand the type of supersymmetry breaking within
the string model. One approach to tackling these issues is a translation of the free
fermionic theory into a bosonic orbifold construction using the tools reviewed in [42]
and employed in [43, 44].

However, for the purposes of initiating a systematic classification of asymmetric
orbifolds, the free fermionic construction is the perfect starting point since it provides
great computational power through the simplicity of representation for worldsheet
boundary conditions. As explained in Chapter 7, the sophisticated SAT/SMT solvers
can easily be employed to aid in our classification and will be used throughout our
analysis.
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8.1 Asymmetric Orbifold Classification Set-up

We can take the NAHE-set [131, 132] as the starting point for classifying large spaces of
asymmetric orbifolds, which is the set:

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6 }

b1 = {ψµ, χ12, y34, y56 | y34, y56, ψ
1,...,5, η1},

b2 = {ψµ, χ34, y12, w56 | y12, w56, ψ
1,...,5, η2},

b3 = {ψµ, χ56, w12, w34 | w12, w34, ψ
1,...,5, η3},

(8.1)

which gives rise to an SO(10) symmetric GUT and, due to the S vector, can realise
N = 1 supersymmetry for appropriate choices of GGSO phases. We will then choose
to add the additional basis vectors:

x = {ψ̄1,...,5, η̄1,2,3}

z1 = {φ̄1,...,4},
(8.2)

such that z1 reduces the dimension of the hidden gauge group and the x vector in-
duces the enhancement SO(10)×U(1)→ E6 for certain choices of GGSO phases. This
enhancement can be seen as taking us from the space of vacua with (2, 0) worldsheet
supersymmetry to those with (2, 2).

The untwisted gauge group is

SO(10)× SO(4)3 ×U(1)3 × SO(8)× SO(8), (8.3)

at this level, with the three SO(4) factors arising from the three groups of internal
fermions in bk, k = 1, 2, 3, such that the NS sector gauge bosons can be written

ψµ{ȳ3,4,5,6}{ȳ3,4,5,6} |0〉NS ,

ψµ{ȳ1,2, w̄5,6}{ȳ1,2, w̄5,6} |0〉NS , (8.4)

ψµ{w̄1,2,3,4}{w̄1,2,3,4} |0〉NS .

The NAHE-set naturally implements a Z2 ×Z2 orbifolding through the twist vectors
bk that leave an untwisted moduli space of

(
SO(2, 2)

SO(2)× SO(2)

)3

, (8.5)
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where each of the three factors is parameterised by the moduli scalar fields from the
NS sector

hij =
∣∣∣χi
〉

L
⊗
∣∣∣ȳjw̄j

〉
R
=


(i, j = 1, 2)

(i, j = 3, 4)

(i, j = 5, 6)

. (8.6)

In free fermionic models these untwisted moduli are in one to one correspondence with
marginal operators that generate Abelian Thirring Interactions. For the NAHE-set the
only such marginal operators left invariant are

Ji
L(z) J̄ j

R(z̄) =: yiwi :: ȳjw̄j :=


(i, j = 1, 2)

(i, j = 3, 4)

(i, j = 5, 6)

. (8.7)

From this, it is straightforward to observe that the projection or retention of mod-
uli is governed by the boundary conditions of the set of 12 internal real fermions
{yI , wI | ȳI , w̄I}. In particular, we note that if the basis remains left-right symmetric
in these internal fermions then all the untwisted moduli of the NAHE-set are retained.
This is a central reason for attempting to classify asymmetric orbifolds models where
the internal real fermions {yI , wI | ȳI , w̄I} are not left-right symmetric.

In order to make the connection between the fields hij and the familiar three Käh-
ler and three complex structure moduli of the Z2 ×Z2 orbifold, we can construct six
complex moduli from the six real ones of eq. (8.6). For the first complex plane we can
write

H(1)
1 =

1√
2
(h11 + ih21) =

1√
2

∣∣∣χ1 + iχ2
〉

L
⊗
∣∣∣ȳ1w̄1

〉
R

,

H(1)
2 =

1√
2
(h12 + ih22) =

1√
2

∣∣∣χ1 + iχ2
〉

L
⊗
∣∣∣ȳ2w̄2

〉
R

,
(8.8)

which can then be combined to define the Kähler and complex structure moduli for the
first complex plane

T1 =
1√
2
(H(1)

1 − iH(1)
2 ) =

1√
2

∣∣∣χ1 + iχ2
〉

L
⊗
∣∣∣ȳ1w̄1 − iȳ2w̄2

〉
R

,

U1 =
1√
2
(H(1)

1 + iH(1)
2 ) =

1√
2

∣∣∣χ1 + iχ2
〉

L
⊗
∣∣∣ȳ1w̄1 + iȳ2w̄2

〉
R

,
(8.9)

and similarly for T2,3 and U2,3.

We choose to classify Flipped SU(5) models such that a single basis vector both
breaks the SO(10) GUT and assigns asymmetric pairings to the internal fermions. This
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vector can be taken to be of the general form

γ = A+

{
ψ̄1,...,5 = η̄1,2,3 = φ̄1,2,6,7 =

1
2

}
+B, (8.10)

whereA ensures that the internal fermions are not symmetrically paired andB assigns
appropriate boundary conditions to the hidden complex fermions

B = {B(φ̄3), B(φ̄4), B(φ̄5), B(φ̄8)} (8.11)

where we choose real boundary conditions B(φ̄3,4,5,8) = 0, 1, so as to be consistent with
the modular invariance rules

Nγγ · γ = 0 mod 8. (8.12)

Nz1γz1 · γ = 0 mod 4, (8.13)

where Nγ is the smallest positive integer for which Nγγ = 0 and Nz1γ is the least
common multiple of Nz1 and Nγ.

The supercurrent constraint (3.72) imposes a different constraint on these bound-
ary conditions depending on whether γ is fermionic or bosonic. In the bosonic case we
can writeA as

A = {A(y1), ..., A(y6), A(w1), ..., A(w6) | A(ȳ1), ..., A(ȳ6), A(w̄1), ..., A(w̄6)} (8.14)

and (3.72) thus imposes that the boundary conditions of the holomorphic internal
fermions are

(yI , wI) = (1, 1) or (0, 0), I = 1, ..., 6, (8.15)

to ensure a consistent supercurrent. On the other hand, if γ is fermionic then we choose
A to be of the form

A = {ψµ, χ12, A(y1), ..., A(y6), A(w1), ..., A(w6) | A(ȳ1), ..., A(ȳ6), A(w̄1), ..., A(w̄6)}
(8.16)

and the supercurrent consistency imposes that

(yI , wI) =

(0, 0) or (1, 1), I = 1, 2

(1, 0) or (0, 1), I = 3, ..., 6,
(8.17)

and similar for the cases where A(χ34) = 1 or A(χ56) = 1 and A(χ12) = 0.

The next step towards classifying Flipped SU(5) asymmetric orbifolds is the addi-
tion of the symmetric shift vectors:

ei = {yi, wi | ȳi, w̄i}, i = 1, ..., 6, (8.18)
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so long as they are consistent with the choice of γ, in the sense that they satisfy the
modular invariance rule

Nγeiγ · ei = 0 mod 4. (8.19)

In the previous classifications of symmetric orbifolds, all six ei’s are present in the ba-
sis to impose the 12 symmetric pairings between {yI , wI} and {ȳI , w̄I} to form 12 Ising
model operators. One corollary of this symmetric pairing is that the rank of the un-
twisted gauge group from the holomorphic sector takes its minimal value of 16. How-
ever, asymmetric pairings will generate up to six additional U(1)’s from the pairing of
two antiholomophic internal fermions {ȳI , w̄I}.

Putting this all together, we can write the basis we take as a starting point for
exploring the space of asymmetric orbifolds as

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6 }

ei = {yi, wi | ȳi, w̄i}, i ⊂ {1, 2, 3, 4, 5, 6}

b1 = {ψµ, χ12, y34, y56 | y34, y56, ψ
1,...,5, η1},

b2 = {ψµ, χ34, y12, w56 | y12, w56, ψ
1,...,5, η2},

b3 = {ψµ, χ56, w12, w34 | w12, w34, ψ
1,...,5, η3}

z1 = {φ̄1,2,3,4}

x = {ψ̄1,...,5, η̄1,2,3}

γ = A+ {ψ̄1,...,5 = η̄1,2,3 = φ̄1,2,5,6 =
1
2
}+B.

(8.20)

We furthermore note the existence of the following important linear combination
of hidden fermions

z2 = 1+
3

∑
k=1

bk + z1 = {φ̄5,6,7,8} (8.21)

and the combination generating the internal fermions

G = S +
3

∑
k=1

bk + x = {yI , wI | ȳI , w̄I}, I = 1, 2, 3, 4, 5, 6. (8.22)

Our approach towards this classification will be two-fold. The first step is to clas-
sify the asymmetric pairings within γ given through the A vector in both the bosonic
case (8.14) and fermionic case (8.16), with respect to their impact on important charac-
teristics of the resultant models, such as the number of retained moduli. The details are
presented in the next section. This step is new to the classification program due to the
asymmetric shifts. The second step is to pick a particular pairing and perform a clas-
sification of the resultant space of vacua according to their phenomenological features,
such as the number of particle generations at the Flipped SU(5) level.
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8.2 Classification of Asymmetric Pairings

Due to the centrality of the pairings of the internal fermions {yI , wI | ȳI , w̄I} in de-
termining important features of the class of asymmetric orbifold models, a useful first
step towards classifying the asymmetric orbifolds is to classify their possible pairings
defined through the vector A. The key criteria we can classify these pairings accord-
ing to will be the untwisted moduli they retain and their number of possible chiral
generations.

A convenient tool for classifying these pairings is to use an SAT/SMT solver such
as Z3, as discussed in Section 7.2, where the input is a list of 24 Boolean variables deter-
mining the boundary conditions {A(y1,...,6, w1,...,6)|A(ȳ1,...,6, w̄1,...,6)} within A. This is
sufficient for both the bosonic case (8.14) and the fermionic case (8.16) with the respec-
tive boundary conditions (8.15) and (8.17) from the supercurrent condition. Imposing
the relevant supercurrent constraint, as well as ensuring the pairing is asymmetric and
consistent with the NAHE set allows us to generate all possible pairings as output from
the SAT/SMT solver.

8.2.1 Asymmetric Pairings and Three Generations

One key phenomenological feature impacted by the choice of pairings in A is on the
number of observable spinorial sectors that are required to give rise to the particle
generations. In order to explore this further, it will be helpful to define two quantities
which result from a choice of pairingsA. Firstly we have

E = (E1, E2, E3, E4, E5, E6) s.t.

Ei = 1 if A(yi) = A(wi) = A(ȳi) = A(w̄i) = 0

Ei = 0 else,

(8.23)

for i = 1, ..., 6. This simply quantifies which of the ei symmetric shift vectors remain
in the basis. We can note that any asymmetric pairing automatically makes two ei
incompatible with modular invariance constraints and therefore

max

(
∑

i
Ei

)
= 4. (8.24)

The second quantity we can define is

∆ = (∆1, ∆2, ∆3) s.t.

∆1 = 0 if A(y3456) = A(ȳ3456)

∆1 = 1 else
(8.25)

and similarly for ∆2 and ∆3. This notation has been employed, for example, in [124]
and [133]. With this notation defined, we can now consider the fermion generations.
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At the level of the NAHE-set {1,S, b1, b2, b3}, the sectors b1, b2 and
b3, if present in the massless spectrum, give rise to sixteen copies of the
16 or 16 of SO(10) due to the degeneracy of the sets of internal fermions
{y3,4,5,6 | ȳ3,4,5,6, η̄1}, {y1,2, w5,6 | ȳ1,2, w̄5,6, η̄2} and {w1,2,3,4 | w̄1,2,3,4, η̄3}, respectively.
The addition of x reduces the degeneracy to eight copies of 16 or 16 by separating out
the η̄k for each plane.

In the classification program for symmetric orbifolds, the basis contains all six sym-
metric shift ei vectors. These symmetric shifts completely remove the degeneracy on
the three orbifold planes and the sectors giving rise to observable spinorial states from
the 16/16 of SO(10) are

F 1
pqrs = b1 + pe3 + qe4 + re5 + se6

F 2
pqrs = b2 + pe1 + qe2 + re5 + se6

F 3
pqrs = b3 + pe1 + qe2 + re3 + se4,

(8.26)

such that any sector F k
pqrs, k = 1, 2, 3, in the massless spectrum produces exactly one 16

or 16.

This picture requires adjustment for the case of the Flipped SU(5) asymmetric orb-
ifolds generated by the basis of eq. (8.20). In particular, the number and degeneracy of
each group of sectors F k

pqrs will vary according to the pairing choice A. More specifi-
cally, we will see that the degeneracies of each plane can be written as a function of E
and ∆.

The impact of the inclusion of an ei vector in the basis (8.20) on the degeneracy of
each orbifold plane can be seen to reduce the degeneracy of the orbifold plane k = 1, 2, 3
by a factor two if ei ∩ bk 6= ∅. Similarly, an asymmetric pairing in one of the three
planes, i.e. ∆k = 1, will also reduce the degeneracy by a factor 2.

We can now write the degeneracies as a vector

D = (D1, D2, D3) (8.27)

for each orbifold plane such that

D1 =
8

2∆1+E3+E4+E5+E6

D2 =
8

2∆2+E1+E2+E5+E6

D3 =
8

2∆3+E1+E2+E3+E4
,

(8.28)

and we note that
min (Dk) =

1
2

, (8.29)
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which, when true, tells us that the sectors F k
pqrs will give rise to one component of

the FSU5 representations of the 16 or 16 and not the whole SO(10) representation. In
particular, since the decomposition under SU(5)×U(1) is

16 =

(
10,+

1
2

)
+

(
5̄,−3

2

)
+

(
1,

5
2

)
(8.30)

16 =

(
10,−1

2

)
+

(
5,+

3
2

)
+

(
1,−5

2

)
(8.31)

sectors F k
pqrs with Dk = 1

2 will generate either the states with representation
(

10,+ 1
2

)
or those transforming under

(
5̄,− 3

2
)
+
(
1, 5

2
)
, in the case of the sector being from 16.

Once we calculate the degeneracies (D1, D2, D3) fromAwe can immediately check
a necessary, but certainly not sufficient, condition for the presence of odd and, in par-
ticular, three generations, which is simply

∃ k ∈ {1, 2, 3} : Dk ≤ 1. (8.32)

A sufficient condition for the presence of three generations is presented in Section 8.3
but the condition (8.32) can be checked immediately from the pairing choice A so will
be tested for in this section.

8.2.2 Asymmetric Pairings and Retained Moduli

As mentioned in Section 8.1, the moduli scalar fields (8.6) are in one to one correspon-
dence with the marginal operators (8.7). From the form of these operators we can im-
mediately derive conditions on their retention/projection depending on the boundary
condition assignments fromA. The result is

Ji
L(z) J̄ j

R(z̄)

 retained if
[
A(yi) + A(wi) + A(ȳj) + A(w̄j)

]
mod 2 = 0

projected if
[
A(yi) + A(wi) + A(ȳj) + A(w̄j)

]
mod 2 = 1.

(8.33)

It will be useful when constructing the pairing classification Tables 8.1 and 8.2 to write
the number of retained moduli in each orbifold plane as a triple

M = (M1, M2, M3). (8.34)

8.2.3 Results for Classification of Pairings

The result of the classification of asymmetric pairings with a bosonicA are summarised
in Table 8.1 and with fermionic A in Table 8.2. The data most important to consider is
the number of untwisted moduli retained in each plane (8.34) and whether odd number
generations are possible through checking (8.32). The Z3 SMT classifies all the asym-
metric pairings in each case, bosonic and fermionic, in approximately 20 seconds.
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Untwisted Moduli in each Torus Odd Number Generations Possible Frequency
(2, 2, 0) No 992
(2, 0, 2) No 992
(0, 2, 2) No 992
(4, 2, 2) No 824
(2, 4, 2) No 824
(2, 2, 4) No 824
(0, 0, 0) No 256
(4, 0, 0) No 244
(0, 4, 0) No 244
(0, 0, 4) No 244
(4, 4, 0) No 200
(4, 2, 2) Yes 200
(4, 0, 4) No 200
(2, 4, 2) Yes 200
(2, 2, 4) Yes 200
(0, 4, 4) No 200
(4, 4, 4) No 146
(4, 4, 4) Yes 94
(4, 4, 0) Yes 56
(4, 0, 4) Yes 56
(0, 4, 4) Yes 56
(2, 2, 0) Yes 32
(2, 0, 2) Yes 32
(0, 2, 2) Yes 32
(4, 0, 0) Yes 12
(0, 4, 0) Yes 12
(0, 0, 4) Yes 12

Table 8.1: Possible moduli and whether odd number generations are possible for all bosonic
type asymmetric pairings of internal fermions.

Untwisted Moduli in each Torus Odd Number Generations Possible Frequency
(2, 4, 2) No 1024
(2, 2, 4) No 1024
(2, 2, 0) No 1024
(2, 0, 2) No 1024
(0, 2, 2) No 1024
(4, 2, 2) No 976
(0, 4, 4) No 256
(0, 4, 0) No 256
(0, 0, 4) No 256
(0, 0, 0) No 256
(4, 4, 0) No 244
(4, 0, 4) No 244
(4, 0, 0) No 244
(4, 4, 4) No 228
(4, 2, 2) Yes 48
(4, 4, 4) Yes 12
(4, 4, 0) Yes 12
(4, 0, 4) Yes 12
(4, 0, 0) Yes 12

Table 8.2: Possible moduli and whether odd number generations are possible for all fermionic
type asymmetric pairings of internal fermions.

Having classified the possible FSU5 pairings we can now move to the second step
of the asymmetric orbifold classification where we fix the pairing and, therefore, the
basis vectors and then classify the space of asymmetric orbifold models in reference to
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phenomenological characteristics.

8.3 Class-Independent Analysis

A class of Flipped SU(5) models is defined through the basis (8.20) with a specific
choice of A. This choice of A tells us a concomitant consistent B and number of ei
vectors quantified byE. Two such classes will be investigated in Section 8.4 and Section
8.5. Before inspecting a specific class, it is worth seeing what we can say about all
classes of models derived from the generic basis (8.20) since several features will be the
same for all models.

8.3.1 Supersymmetry Constraints and Class Parameter Space

We seek to classify both N = 0 and N = 1 models and so it is important to define
a necessary and sufficient condition for the presence of N = 1 supersymmetry. The
analysis is a simple extension of the symmetric SO(10) case delineated in Section 4.1.

We first note that the gravitini and gaugini arise from

∂Xµ |S〉 (8.35)

{λ̄a}{λ̄b} |S〉, (8.36)

respectively. Therefore the following GGSO phases are fixed as follows

C
[
S

ei

]
= C

[
S

z1

]
= C

[
S

x

]
= C

[
S

γ

]
= −1, (8.37)

in order to preserve one gravitino. Furthermore we note that the phases C[1S] and C[Sbk],
k = 1, 2, 3, determine the chirality of the degenerate Ramond vacuum |S〉 and the
gravitino is retained so long as

C
[
1

S

]
= C

[
S

b1

]
C
[
S

b2

]
C
[
S

b3

]
, (8.38)

which can, without loss of generality, be fixed to

C
[
1

S

]
= C

[
S

b1

]
= C

[
S

b2

]
= C

[
S

b3

]
= −1, (8.39)

for a scan of N = 1 vacua.

The number of independent GGSO phases for a class of models will be determined
from the number of basis vectors, N, which can be written as

N = 8 + ∑
i

Ei. (8.40)
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Taking into account the constraints (8.37) and (8.38) for N = 1 models there are

N(N − 1)
2

− 7−∑
i

Ei, (8.41)

independent GGSO phases1. The space of N = 0 vacua can be defined as the space of
models violating condition (8.37) or (8.38). In ref. [94] breaking supersymmetry with
different phases is discussed and it is noted how different breakings affect the spec-
tra. If desired, we can restrict the breaking to just shifts beyond the Z2 ×Z2 orbifold
sectors by preserving condition (8.38), such that b1, b2 and b3 still preserve supersym-
metry, then breaking would originate from the vectors beyond the NAHE-set through
violating condition (8.37).

8.3.2 Phenomenological Features

Observable Spinorial Representations

As discussed in Section 8.2.1, the twisted sectors such as those giving rise to the spino-
rial 16/16 representations of SO(10) are impacted by the choice of A. To write these
F k

pqrs for a particular A we must first note the presence of the following possible linear
combinations of the vector (8.22), arising for certain E

e3456 = G+ e1 + e2 = {y3456, w3456 | ȳ3456, w̄3456} for E = (1, 1, 0, 0, 0, 0)

e1256 = G+ e3 + e4 = {y1256, w1256 | ȳ1256, w̄1256} for E = (0, 0, 1, 1, 0, 0)

e1234 = G+ e5 + e6 = {y1234, w1234 | ȳ1234, w̄1234} for E = (0, 0, 0, 0, 1, 1).
(8.42)

Then we can write the sectors giving rise to the fermion generations as

F 1
pqrst =b1 + pE3e3 + qE4e4 + rE5e5 + sE6e6

+ tE1E2(1− E3)(1− E4)(1− E5)(1− E6)e3456

F 2
pqrst =b2 + pE1e1 + qE2e2 + rE5e5 + sE6e6

+ tE3E4(1− E1)(1− E2)(1− E5)(1− E6)e1256

F 3
pqrst =b3 + pE1e1 + qE2e2 + rE3e3 + sE4e4

+ tE5E6(1− E1)(1− E2)(1− E3)(1− E4)e1234,

(8.43)

where p, q, r, s, t ∈ {0, 1}.

In order to write down the number of 16 and 16, N16 and N16, as a function of the
GGSO coefficients we can construct the generalised projectors for these sectors PF k

pqrst
,

1We can fix C[11] = +1 without loss of generality and all other phases are determined from modular
invariance rules.
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k = 1, 2, 3, such that

Υ(F 1
pqrst) = {x+ 2γ, z1, z2, E1e1, E2e2}

Υ(F 2
pqrst) = {x+ 2γ, z1, z2, E3e3, E4e4}

Υ(F 3
pqrst) = {x+ 2γ, z1, z2, E5e5, E6e6},

(8.44)

where we recall that the vector z2 = {φ5,6,7,8} is the combination defined in eq. (8.21).

In order to determine whether a sector will give rise to a 16 or a 16 we can first
define the chirality phases

X1
pqrs0 = −ch(ψµ)C

[
F 1

pqrs0

b2 + rE5e5 + sE6e6

]∗
X2

pqrs0 = −ch(ψµ)C
[

F 2
pqrs0

b1 + rE5e5 + sE6e6

]∗
X3

pqrs0 = −ch(ψµ)C
[

F 3
pqrs0

b1 + pE3e3 + qE4e4

]∗
,

(8.45)

where ch(ψµ) is the spacetime fermion chirality and we note that the sectors F k
00001 do

not have a chirality and, instead, give rise to Dk/2 copies of both the 16 and the 16.

With these definitions we can write compact expressions for N16 and N16

N16 =
1
2 ∑

k=1,2,3
p,q,r,s=0,1

DkPF k
pqrs0

(
1 +Xk

pqrs0

)
+

Dk
2

PFk
00001

N16 =
1
2 ∑

k=1,2,3
p,q,r,s=0,1

DkPF k
pqrs0

(
1−Xk

pqrs0

)
+

Dk
2

PFk
00001

.
(8.46)

Since the SO(10) breaking projection γ decomposes the 16/16 representations into
those of SU(5)×U(1) according to eq. (8.30), we can write a compact expression for
each of the FSU5 quantum numbers. These of course depend on the degeneracies (8.28)
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and can be written

n10 = ∑
k=1,2,3

p,q,r,s=0,1

1
22−∆k

DkPF k
pqrs0

(
1 +Xk

pqrs0

)(
1 + (1− ∆k)C

[
F k

pqrs0
γ

])
+

Dk
2

PFk
00001

n5̄ = ∑
k=1,2,3

p,q,r,s=0,1

1
22−∆k

DkPF k
pqrs0

(
1 +Xk

pqrs0

)(
1− (1− ∆k)C

[
F k

pqrs0
γ

])
+

Dk
2

PFk
00001

n10 = ∑
k=1,2,3

p,q,r,s=0,1

1
22−∆k

PF k
pqrs0

(
1−Xk

pqrs0

)(
1 + (1− ∆k)C

[
F k

pqrs0
γ

])
+

Dk
2

PFk
00001

n5 = ∑
k=1,2,3

p,q,r,s=0,1

1
22−∆k

DkPF k
pqrs0

(
1−Xk

pqrs0

)(
1− (1− ∆k)C

[
F k

pqrs0
γ

])
+

Dk
2

PFk
00001

.

(8.47)

The number of generations for a model is then

ng = n10 − n10 = n5̄ − n5. (8.48)

From this we can construct a necessary condition for three generation models to exist
onceA is specified

∃ C
[
vi
vj

]
: ∑

k=1,2,3
p,q,r,s=0,1

1
21−∆k

DkPF k
pqrs0
Xk

pqrs0

(
1 + (1− ∆k)C

[
F k

pqrs0
γ

])
= 3 (8.49)

and ∑
k=1,2,3

p,q,r,s=0,1

2∆k DkPF k
pqrs0
Xk

pqrs0(1− ∆k)C
[
F k

pqrs0
γ

]
= 0. (8.50)

Checking that there exists a solution to this equation for a class of models and enumer-
ating such solutions can be done easily by inputting this constraint into an SMT solver,
such as Z3.

Heavy Higgs

Another key representation for phenomenology is the presence of a Higgs breaking
the SU(5) × U(1) that we call the Heavy Higgs. This arises from the representation(

10,+ 1
2

)
+
(

10,− 1
2

)
. The relevant sectors are

Bk
pqrst = S +F k

pqrst, k = 1, 2, 3, (8.51)

which in the case of N = 1 supersymmetric models are the (bosonic) superpartners
of the spinorials 16/16 sectors (8.43). We note that the generalised projectors for these
sectors PBk

pqrst
, k = 1, 2, 3, can be constructed such that Υ(Bk

pqrst) equals Υ(F k
pqrst) from
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eq. (8.44).

We note that with a Heavy Higgs the FSU5 GUT can be broken and the particles of
Standard Model arise from the decomposition of the FSU5 representations (8.30) under
SU(3)× SU(2)×U(1). From the 16 we have(

5̄,−3
2

)
=

(
3̄, 1,−2

3

)
uc
+

(
1, 2,−1

2

)
L

,(
10,+

1
2

)
=

(
3, 2,+

1
6

)
Q
+

(
3̄, 1,+

1
3

)
dc
+ (1, 1, 0)νc ,(

1,+
5
2

)
= (1, 1,+1)ec ,

(8.52)

where L is the lepton–doublet; Q is the quark–doublet; dc, uc, ec and νc are the quark
and lepton singlets.

Light Higgs

The light Higgs representations are electroweak Higgs doublets. In N = 1 supersym-
metric models, a pair is required to give masses to up and down-quark, respectively.
In models in which spacetime supersymmetry is broken entirely at the string level, this
may be relaxed. However, as the models descend from N = 1 supersymmetric mod-
els, they retain some of this underlying structure and mass terms at leading order are
generated for the respective Higgs doublets pairs. We therefore require the existence of
a pair of light Higgs multiplets also in N = 0 models. We further note the existence of
a doublet-triplet splitting mechanism in the untwisted sector of the asymmetric models
[126]. This mechanism is operational in asymmetric models with the breaking pattern
SO(10) → SO(6) × SO(4) and is therefore not relevant in the Flipped SU(5) models
that are of interest here. We note, however, that in Flipped SU(5) models the untwisted
sector produces three pairs in the 5 + 5̄ representation of SU(5), which contain elec-
troweak Higgs doublets that may serve as light Higgs multiplets. However, we note
that the generation of hierarchical fermion masses typically necessitates utilisation of
Higgs doublets that arise from twisted sectors [134, 135]. We therefore examine here
the conditions for obtaining vectorial representations in the twisted sectors.

Sectors giving rise to vectorial 10 representations, that include the twisted Light
Higgs, can be written

V k
pqrst = S +F k

pqrst + x, (8.53)

where the states are of the form {λ̄} 1
2

∣∣∣V k
pqrst

〉
, k = 1, 2, 3, meaning that they have a

single antiholomorphic oscillator of frequency 1
2 , as defined in eq. (3.39), accompanying

the degenerate Ramond vacuum. The SM Higgs will arise when this sector, with λ̄ =

ψ̄a, a ∈ {1, 2, 3, 4, 5}, is retained in the massless spectrum of a model. For these sectors
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the generalised projector P{ψ̄a}V k
pqrst

takes the general form of eq. (4.9) and Υ(V k
pqrst)

will be the same as Υ(F k
pqrst) from eq. (8.44).

We note that any surviving sector gives rise to a vectorial 10 decomposing under
SU(5)×U(1) according to

10 = (5,−1) + (5̄,+1). (8.54)

These two representations taken together can be identified as the SM Higgs breaking
the electroweak gauge group. Therefore the number of Light Higgses from the twisted
sectors is given by

n5h = # [(5,−1) + (5̄,+1)] . (8.55)

Tachyonic Sectors

Since we include non-supersymmetric models in our classification it is vital we check
for the absence of on-shell tachyons, in order to ensure the stability of our models for
a 4D Minkowski background. To do this, we encode the GGSO projections for all on-
shell tachyonic sectors. Many tachyonic sectors can arise due to ei vectors, certain γ
combinations and other class-dependent combinations and therefore depend on the
choice of A and require class-by-class analysis. However, we will always have the
untwisted tachyon

{λ̄} |0〉NS , (8.56)

that is projected for all models through the S projection. In addition, the following
on-shell tachyonic sectors arise for all classes of models

T =

{
|z1〉 |z2〉 |x+ 2γ〉

|z1 +x+ 2γ〉 |z2 +x+ 2γ〉 |z1 + z2 +x+ 2γ〉

}
. (8.57)

All of these sectors, t ∈ T, must be projected from the spectrum through appro-
priate definitions of their generalised projectors Pt = 0. Once we specify the vector A
we can then determine the further class-dependent tachyonic sectors and ensure their
projection.

Enhancements

Additional space-time vector bosons may arise in all models derived from the basis
(8.20). The following enhancements arise independent of the class{

ψµ{λ̄} 1
2

: |z1〉 |z2〉 |x+ 2γ〉 |z1 + x+ 2γ〉 |z2 + x+ 2γ〉
ψµ : |x〉 |z1 + z2〉

}
, (8.58)

with the following subset being enhancements to the observable gauge factors

H =


ψµ{ψ̄a} : |z1〉 |z2〉 |x+ 2γ〉
ψµ{ψ̄a} : |z1 + x+ 2γ〉 |z2 + x+ 2γ〉 |x+ 2γ + z1 + z2〉

ψµ : |x〉

 , (8.59)
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with a = 1, 2, 3, 4, 5. Therefore, from these sectors we can restrict our analysis to models
with observable gauge group SU(5)×U(1)×U(1)i=1,2,3 by imposing

∀ h ∈ H : Ph = 0. (8.60)

In this case, for these generalised projectors we have

Υ(z1) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x, b1, b2, z2}

Υ(z2) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x, b1, b2, z1}

Υ(x+ 2γ) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x,x+ 2γ + z1 + z2}

Υ(x+ 2γ + z1) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x,x+ 2γ + z2}

Υ(x+ 2γ + z2) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x,x+ 2γ + z1}

Υ(x+ 2γ + z1 + z2) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6,x,x+ 2γ}

Υ(x) = {S, E1e1, E2e2, E3e3, E4e4, E5e5, E6e6, z1, z2}.
(8.61)

Additional enhancements may arise depending on the specific form of γ which can be
analysed class-by-class.

Exotics

Another important consideration for ensuring reasonable phenomenology is the ab-
sence of chiral exotics. The exotics sectors in general depend on the class, in particular
on the exact form of γ since combinations of γ will be those that can generate exotics.

However, we can note here the following exotic sectors with (αL ·αL,αR ·αR) = (4, 4)

{ψ̄a} 1
2

:
{
|S + z1〉 |S + z2〉 |S + x+ 2γ〉 |S + z1 + x+ 2γ〉 |S + z2 + x+ 2γ〉

}
(8.62)

where a ∈ {1, ..., 5}. We note that these are the would-be gaugini of the enhancements
(8.58). These sectors will not contribute to a chiral anomaly as they are automatically
vector-like. It will then be necessary to analyse the other exotics at the level of a partic-
ular class of vacua.

8.3.3 Asymmetric Pairings, Up-Type Yukawa Couplings and Higgs
Doublet-Triplet Splitting

Top quark Yukawa couplings in the string models derived from the Z2 ×Z2 heterotic
orbifold take the general form

λtSQL SuR VHu . (8.63)

It can be demonstrated that this coupling can come either from a coupling of the type
TkTkUk, k = 1, 2, 3, or of the type TkTlTm, k 6= l 6= m = 1, 2, 3, where T indicates a
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twisted sector and U indicates the (untwisted) Neveu-Schwarz sector. The assignment
of asymmetric boundary conditions determines which of the two couplings can appear
at leading order in the string vacua [130].

The asymmetric boundary conditions for the internal worldsheet fermions
{yI , wI | ȳI , w̄I} induce a doublet–triplet splitting mechanism of the untwisted 5 and
5̄ representations [126]. The mechanism is induced by the basis vectors that break the
SO(10) symmetry to the Pati–Salam subgroup, with respect to the three pairs of un-
twisted vectorial 5 and 5̄ multiplets, where symmetric boundary conditions retain the
colour triplet pairs, and project the electroweak doublets, whereas asymmetric bound-
ary conditions project the triplets and retain the doublets. Thus, in the case of models
with solely symmetric boundary conditions, only Flipped SU(5) models can produce
cubic level couplings of the type TkTkUk, utilising the Higgs doublets from the NS sec-
tor.

Similar to the stringy doublet-triplet splitting mechanism that is determined by
the assignment of asymmetric versus symmetric boundary conditions, the asymmet-
ric/symmetric assignment selects between up/down-quark Yukawa couplings at lead-
ing order [125, 130, 133]. This Yukawa coupling selection mechanism operates in
the basis vector that breaks the SO(10) symmetry to the SU(5) × U(1) subgroup,
where symmetric boundary conditions select a down-quark type Yukawa coupling,
whereas asymmetric boundary conditions select an up-quark type Yukawa coupling.
Hence, this Yukawa coupling selection mechanism can be utilised in Flipped SU(5)
and standard-like string models.

Given that we consider Flipped SU(5) models, representations in the 5 and 5̄ of
SU(5) arise from the NS sector generically. These representations yield the electroweak
Higgs doublets and color Higgs triplets. Through asymmetric boundary condition as-
signments of the internal fermions under an extra Pati-Salam type breaking vector, the
doublets and triplets may be distinguished. However, in our case, we will get both
regardless of the GGSO configuration and boundary condition assignment from A.
Therefore top mass couplings of the form TkTkUk can arise in our models.

As is familiar from the symmetric orbifold classification, couplings TkTlTm can also
arise. In this case the Higgs doublet arises from the twisted sectors (8.53). Therefore,
both types of couplings can give rise to a realistic up-Type Yukawa coupling and both
will be analysed. Similar to the case of the couplings to the untwisted Higgs doublets,
selection conditions of up-type versus down-type quark Yukawa couplings can be for-
mulated [136].
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8.3.4 Partition Function and Cosmological Constant for Asymmetric
Orbifolds

The analysis of the partition function for our asymmetric orbifolds is largely similar
to the symmetric case presented in Section 5.5. However, there are some key differ-
ences and subtleties which are important to explicitly discuss. These arise for two main
reasons, namely the asymmetric pairings introduced by the basis vector γ and the ap-
pearance of half boundary conditions in the basis set (8.20).

From the point of view of the partition function, the asymmetric pairings introduce
imaginary GGSO phases, meaning that the fermionic partition function

Z = ∑
α,β

C
[
α

β

]
∏

f
Z
[
α( f )
β( f )

]
, (8.64)

will have imaginary terms which have to cancel. This cancellation is, however, en-
sured by modular invariance. In the case of symmetric orbifolds, since Z[ a

b ] =
√

ϑ[ a
b ],

the fermionic part of the partition function can be expressed using the four standard
Jacobi theta functions of eq. (2.120). In the presence of half boundary conditions
there will be sixteen such theta functions with a and b now taking values in the set
a, b ∈ {−1/2, 0, 1/2, 1}.

To express the partition function of the models under consideration in the classifi-
cation setup, it is beneficial to use the notation utilised in [42, 43, 44]. This makes many
properties immediately readable from the form of the partition function and allows us
to economically express all models used in this chapter in one compact form. Since the
classification of asymmetric shifts depends on the exact form of the vector γ it is instruc-
tive to first write down the partition function of the subset {1, ei,S, b1, b2, b3, z1,x},
without γ. In this case, all ei are compatible and so we have 13 basis vectors giving

Z =
1

η10η̄22
1
24 ∑

a,k,r,ρ
b,l,s,σ

1
26 ∑

Hi
Gi

1
23 ∑

h1,h2,H
g1,g2,G

(−1)
Φ
[

a k ρ r Hi h1 h2 H
b l s σ Gi g1 g2 G

]

× ϑ[ a
b ] ϑ

[
a+h1
b+g1

]
ϑ
[

a+h2
b+g2

]
ϑ
[

a−h1−h2
b−g1−g2

]
(8.65)

× Γ(6,6)

[
r Hi h1 h2
s Gi g1 g2

]
× ϑ̄
[

k
l

]5
ϑ̄
[

k+h1
l+g1

]
ϑ̄
[

k+h2
l+g2

]
ϑ̄
[

k−h1−h2
l−g1−g2

]
ϑ̄[ ρ

σ ]
4

ϑ̄
[

ρ+H
σ+G

]4
,

where all indices are summed over the set {0, 1}. The phase Φ, which is a polynomial
in the summation indices, is chosen such that the entire partition function is modular
invariant. The choice of this phase translates to a choice of GGSO matrix in the classifi-
cation setup. Indices k, l and ρ, σ represent the sixteen complex right-moving fermions
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giving the fermionic representation of the E8 × E8 lattice of the underlying 10D het-
erotic theory. The non-freely acting Z2 ×Z2 orbifold is represented by the parameters
hi and gi, where the hi give the various twists, while the gi implement the orbifold pro-
jections. The Hi and Gi correspond to the basis vectors ei and, hence, are responsible
for orbifold shifts along the six internal dimensions of the T6. Finally, H and G break
one of the E8 factors in the hidden sector by a Z2 twist.

The internal lattice, Γ(6,6), which corresponds to the T6 is given by

Γ(6,6)

[
r Hi h1 h2
s Gi g1 g2

]
=
∣∣∣ ϑyȳ1

[
r+h1+H1
s+g1+G1

]
ϑyȳ2

[
r+h1+H2
s+g1+G2

]
ϑyȳ3

[
r+h2+H3
s+g2+G3

]
× ϑyȳ4

[
r+h2+H4
s+g2+G4

]
ϑyȳ5

[
r+h2+H5
s+g2+G5

]
ϑyȳ6

[
r+h2+H6
s+g2+G6

]
× ϑww̄1

[
r−h1−h2+H1
s−g1−g2+G1

]
ϑww̄2

[
r−h1−h2+H2
s−g1−g2+G2

]
ϑww̄3

[
r−h1−h2+H3
s−g1−g2+G3

]
(8.66)

× ϑww̄4

[
r−h1−h2+H4
s−g1−g2+G4

]
ϑww̄5

[
r+h1+H5
s+g1+G5

]
ϑww̄6

[
r+h1+H6
s+g1+G6

] ∣∣∣,
where |ϑ[ a

b ]| =
√

ϑ[ a
b ] ϑ̄[ a

b ]. The subscript on the ϑ’s denotes which worldsheet
fermions the terms correspond to. We see that with this basis the internal lattice is
left-right symmetric.This is why the internal lattice can be written as a magnitude.

The introduction of asymmetric pairings via the vector γ introduces further com-
plexity to the above partition function. Recall the notation introduced in Section 8.1,
where the most general consistent form of γ is written as in (8.10)

γ = A+ {ψ̄1,...,5 = η̄1,2,3 = φ̄1,2,6,7 =
1
2
}+B, (8.67)

where

B = {B(φ̄3), B(φ̄4), B(φ̄5), B(φ̄8)},

A =

{A(y1), · · · , A(w6) |A(ȳ1), · · · , A(w̄6)} if γ bosonic;

{ψµ, χ12, A(y1), · · · , A(w6) | A(ȳ1), · · · , A(w̄6)} if γ fermionic.
(8.68)

Also recall the vector E = (E1, E2, E3, E4, E5, E6) of (8.23), which qualifies which of the
ei are compatible with a specific choice of γ and hence appears in the basis set. That is,
if Ei = 0 then ei /∈ B and vice-versa.

In terms of the above quantities, we can now examine the effect of γ on the parti-
tion function (8.65) within the frame of the general classification setup. For simplicity,
we consider the case where γ is bosonic and hence has no action on ψµ and χ1,...,6. The
antiholomorphic hidden worldsheet fermions are affected by the choice of B, while
the specific choice ofAwill only change how the internal lattice is structured. Thus the
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partition function takes the form

Z =
1

η10η̄22
1
24 ∑

a,k,r,ρ
b,l,s,σ

1
2∑i Ei

∑
Hi
Gi

1
23 ∑

h1,h2,H
g1,g2,G

1
4 ∑

H′
G′

(−1)
Φ
[

a k ρ r Hi h1 h2 H H′

b l s σ Gi g1 g2 G G′

]

× ϑ[ a
b ] ϑ
[

a+h1
b+g1

]
ϑ
[

a+h2
b+g2

]
ϑ
[

a−h1−h2
b−g1−g2

]
× Γγ

(6,6)

[
r Hi h1 h2 H′

s Gi g1 g2 G′

]
(8.69)

× ϑ̄
[

k+H′
l+G′

]5
ϑ̄
[

k+h1+H′

l+g1+G′

]
ϑ̄
[

k+h2+H′

l+g2+G′

]
ϑ̄
[

k−h1−h2+H′

l−g1−g2+G′

]
× ϑ̄
[

ρ+H′

σ+G′

]2
ϑ̄
[

ρ+H+H′

σ+G+G′

]2
ϑ̄
[

ρ+2B(φ̄3)H′

σ+2B(φ̄3)G′

]
ϑ̄
[

ρ+2B(φ̄4)H′

σ+2B(φ̄4)G′

]
× ϑ̄
[

ρ+H+2B(φ̄5)H′

σ+G+2B(φ̄5)G′

]
ϑ̄
[

ρ+H+2B(φ̄8)H′

σ+G+2B(φ̄8)G′

]
,

where the sum in the new indices H′ and G′ run over {−1/2, 0, 1/2, 1}, as opposed to
the other indices, which still take values in {0, 1}. This is because the half boundary
conditions in γ introduce a new Z4 orbifold to the picture. The factor of two in front
of some indices is a result of having both half and integer boundary conditions within
the same basis vector, and hence this factor ensures that integer boundary conditions
are correctly accounted for.

The form of the internal lattice Γγ
(6,6) depends on the choice of asymmetric shifts

in the internal degrees of freedom, i.e. A. Consequently, this determines which of the
symmetric Z2 shifts, ei, are compatible with this choice, which fixesE. The asymmetric
shifts introduced by γ break the left-right symmetry of the lattice (8.66). To examine this
further, we have to look at what happens to a set of internal fermions corresponding to
one of the orbifold planes. If we take the fist plane, i.e. the fermions {y3,4,5,6 | ȳ3,4,5,6},
the corresponding part of the lattice is

Γ1 = ϑy3

[
r+h2+H3
s+g2+G3

]1/2
ϑy4

[
r+h2+H4
s+g2+G4

]1/2
ϑy5

[
r+h2+H5
s+g2+G5

]1/2
ϑy6

[
r+h2+H6
s+g2+G6

]1/2

× ϑȳ3

[
r+h2+H3
s+g2+G3

]1/2
ϑ̄ȳ4

[
r+h2+H4
s+g2+G4

]1/2
ϑ̄ȳ5

[
r+h2+H5
s+g2+G5

]1/2
ϑ̄ȳ6

[
r+h2+H6
s+g2+G6

]1/2
. (8.70)

Since the asymmetric shifts cannot mix the orbifold planes, we either have 0, 1 or 2
such shifts affecting these fermions. As an example, we consider what happens when
A contains one such pairing, say y5y6. Firstly, this imposes that E = (1, 1, 1, 1, 0, 0),
i.e. e5,6 are no longer in the basis, so that H5,6 and G5,6 are not present. Secondly,
it breaks the left-right symmetry of the (y5ȳ5) and (y6ȳ6) pairings, which become
(y5ȳ5)(y6ȳ6) → (y5y6)(ȳ5ȳ6). Given the above factors, the internal lattice of the first
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orbifold plane becomes

Γγ
1 = ϑy3

[
r+h2+H3
s+g2+G3

]1/2
ϑy4

[
r+h2+H4
s+g2+G4

]1/2
ϑy5,6

[
r+h2+2H′

s+g2+2G′

]
× ϑȳ3

[
r+h2+H3
s+g2+G3

]1/2
ϑ̄ȳ4

[
r+h2+H4
s+g2+G4

]1/2
ϑ̄ȳ5,6

[
r+h2
s+g2

]
. (8.71)

If there are two such asymmetric holomorphic pairings in the first plane then, regard-
less of the specific pairing, the lattice simply becomes

Γγ
1 = ϑy3,4,5,6

[
r+h2+2H′

s+g2+2G′

]2
ϑ̄ȳ3,4,5,6

[
r+h2
s+g2

]2
. (8.72)

The construction of the partition function for the remaining two planes is equivalent
and can be straightforwardly done once a specific basis is taken.

Once a model is chosen and the partition function is fixed according to the above
considerations, the one-loop cosmological constant can be calculated according to
methods outlined in Section 5.5. Since we seek models free of physical tachyons, the
series expansion contains only finite terms and converges exponentially fast. It is also
interesting to note that all of the above models considered in the classification exhibit
a form of misaligned supersymmetry discovered in [95, 96]. This is not unexpected
as this phenomenon is a direct consequence of modular invariance [95, 96, 97], or a
smaller subgroup of the modular group in some cases [98, 99], and so heterotic asym-
metric orbifolds should also respect this mechanism.

8.4 Asymmetric Orbifold Class A

The first class of models we will choose is a pairing choice where all untwisted moduli
are retained, i.e. M = (4, 4, 4). The pairing we choose is inspired by that used in the
model of [127] and is given by A = {y3y6, y1w6, w1w3}. The basis for this class of
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models is then

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6},

e2 = {y2, w2 | y2, w2},

e4 = {y4, w4 | y4, w4},

e5 = {y5, w5 | y5, w5},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (8.73)

b2 = {ψµ, χ34, y12, w56 | y12, w56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, w1234 | w1234, η3, ψ
1,...,5},

z1 = {φ1,...,4},

x = {ψ1,...,5, η1,2,3},

γ = {y3y6, y1w6, w1w3 | ψ̄1,2,3,4,5 = η̄1,2,3 =
1
2

, φ̄1,2,6,7 =
1
2
}.

We can immediately note the following for this class

E = (0, 1, 0, 1, 1, 0)

∆ = (1, 1, 1)

D = (1, 1, 1),

(8.74)

which will help us easily determine the key characteristics of the models in this class.

The vector bosons from the untwisted sector of these models generate the gauge
symmetry group

Observable: SU(5)×U(1)×U(1)k=1,2,3 ×U(1)l=4,5,6 (8.75)

Hidden: SU(2)×U(1)H1 × SO(4)2 × SU(2)×U(1)H2 . (8.76)

where we note that U(1)k=1,2,3 are generated by the antiholomorphic currents η̄kη̄k∗

and the U(1)l=4,5,6 are horizontal symmetries arising from the asymmetric pairings:
ȳ3ȳ6, ȳ1w̄6 and w̄1w̄3. Another important note is that for this class of models we can
apply eq. (8.7) and see that all the untwisted moduli are, indeed, retained.

From the discussion in Section 8.3.1, we note that the space ofN = 1 vacua is 245 ∼
3.52× 1013. It is important to observe that there are two imaginary phases C[1γ] = ±i
and C[z1γ ] = ±i, consistent with modular invariance, and all other phases are real.
Furthermore, we note that the latter of these, C[z1γ ], and the following four phases do
not play a role in the phenomenological constraints

C
[
1

b1

]
, C
[
1

b2

]
, C
[
1

b3

]
, C
[
1

z1

]
. (8.77)
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This leaves a space of 240 ∼ 1.1× 1012 N = 1 GGSO phase configurations.

8.4.1 Class A Phenomenological Features

Observable Spinorial Representations

From eq. (8.43) we can write the sectors producing fermions generations

F 1
qr = b1 + qe4 + re5

F 2
qr = b2 + qe2 + re5

F 3
qs = b3 + qe2 + se4

(8.78)

and D = (1, 1, 1) means that any of these sectors will produce one copy of all states in
the 16 or 16 when present in the massless spectrum. Therefore, the number of genera-
tions (8.48) simplifies to

ng = N16 − N16. (8.79)

Encoding the condition for 3 generations (8.49) for this class of models into Z3
returns sat to confirm 3 generation models are present for this class. In order to see
the spread of generation number, ng, we can generate a bar graph of generations for a
random scan of Class A models. This graph is shown in Figure 8.1 for a sample of 107

vacua with N16 ≥ N16 so that models with ng ≥ 0 are plotted. From this sample we
find 3 generations models with probability of approximately 6× 10−3.

10
0

10
2

10
4

10
6

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

# of generations

#
 o

f 
m

o
d
e
ls

Figure 8.1: Frequency plot for number of generations from a sample of 107 Class A vacua.
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Heavy Higgs

From eq. (8.51) we can write the Heavy Higgs producing sectors for the Class A models
as

B1
qr = S + b1 + qe4 + re5

B2
qr = S + b2 + qe2 + re5

B3
qs = S + b3 + qe2 + se4

(8.80)

and note that each sector Bk
pqrs, k = 1, 2, 3, generates a 16 + 16, which correspond to

the would-be superpartners of the fermionic states in the 16/16 and their CPT conju-
gates. Therefore, any sector Bk

pq that survives generates one Heavy Higgs
(

10,+ 1
2

)
+(

10,− 1
2

)
, along with a further vector-like pair

(
5̄,+ 3

2
)
+
(
1, 5

2
)
+
(
5,− 3

2
)
+
(
1,− 5

2
)
.

We can thus write the number of Heavy Higgs for a specific model as equal to the
number of surviving sectorsBk

pqrs

n10H = ∑
k=1,2,3

q,r,s=0,1

PBk
qrs

. (8.81)

Top Quark Mass Couplings

We note that we have possible TQMC from untwisted type couplings of the general
form

F 1F 1h̄1, F 2F 2h̄2, F 3F 3h̄3 (8.82)

where h̄k, k = 1, 2, 3, are the Higgs representations from the Neveu-Schwarz sector. In
addition, there is also the possibility of twisted type couplings of the general form

F 1F 2V 3
{ψ̄a}, F 1V 2

{ψ̄a}F
3, V 1

{ψ̄a}F
2F 3 (8.83)

In classifying vacua from Class A we will account for all 6 possibilities to check for any
potentially viable TQMCs for a model.

In particular, the presence of twisted Light Higgs is not a necessary condition for
viable phenomenology in the FSU5 asymmetric models since with untwisted Higgs
doublets generating a TQMC of untwisted type (8.82) they are not necessary. How-
ever, the presence of such a coupling is not automatic a priori and so for the analysis of
whether a model contains a viable TQMC we will also have to check for TQMC from
twisted-type coupling (8.83).
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Applying eq. (8.53) we can write the sectors generating the Light Higgs represen-
tations as

V 1
qr = S + b1 + x+ qe4 + re5

V 2
qr = S + b2 + x+ qe2 + re5

V 3
qs = S + b3 + x+ qe2 + se4,

(8.84)

when accompanied by an antiholomorphic oscillator {ψ̄a}, a ∈ {1, 2, 3, 4, 5}.

The projectors can be written as follows for these sectors

P{ψ̄a}V 1
qr
=

1
24

(
1 + C

[
e2

V
(1)

qr

])(
1 + C

[
2γ+ x

V
(1)

qr

])
∏

a=1,2

(
1 + C

[
za

V
(1)

qr

])

P{ψ̄a}V 2
qr
=

1
24

(
1 + C

[
e4

V
(2)

qr

])(
1 + C

[
2γ+ x

V
(2)

qr

])
∏

a=1,2

(
1 + C

[
za

V
(2)

qr

])

P{ψ̄a}V 3
qs
=

1
24

(
1 + C

[
e5

V
(3)

qs

])(
1 + C

[
2γ+ x

V
(3)

qs

])
∏

a=1,2

(
1 + C

[
za

V
(3)

qs

])
.

(8.85)

Using these we can write the number of Light Higgs states for a specific model as equal
to the number of {ψ̄a}

∣∣∣V k
qrs

〉
in the massless spectrum

n5h = ∑
k=1,2,3

q,r,s=0,1

PV k
qrs

. (8.86)

Tachyonic Sector Analysis

When classifying theN = 0 models we must ensure the projection of all on-shell tachy-
onic sectors. In addition to the model-independent tachyonic sectors (8.57), we have
the following on-shell tachyonic sectors for Class A models that require an antiholo-
morphic oscillator

T1 =



{λ̄} 1
2

: |e2〉 |e4〉 |e5〉
{λ̄} 1

2
: |e2 + e4〉 |e2 + e5〉 |e4 + e5〉

{λ̄} 1
2

: |e2 + e4 + e5〉 |G+ e2 + e4 + e5〉
{λ̄} 1

2
: |(3)γ〉 |x+ (3)γ〉

{λ̄} 1
4

: |z1 + (3)γ〉 |z2 + (3)γ〉 |z1 +x+ (3)γ〉 |z2 +x+ (3)γ〉 .


(8.87)
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As well as the following on-shell tachyonic sectors which arise with no oscillator

T2 =



|z1〉 |z2〉
|ei + z1〉 |ei + z2〉

|ei + ej + z1〉 |ei + ej + z2〉
|ei + ej + ek + z1〉 |ei + ej + ek + z2〉

|G+ e2 + e4 + e5 + z1〉 |G+ e2 + e4 + e5 + z2〉

|x+ 2γ〉 |z1 +x+ 2γ〉
|ei +x+ 2γ〉 |ei + z1 +x+ 2γ〉

|ei + ej +x+ 2γ〉 |ei + ej + z1 +x+ 2γ〉
|e2 + e4 + e5 +x+ 2γ〉 |e2 + e4 + e5 + z1 +x+ 2γ〉

|G+ e2 + e4 + e5 +x+ 2γ〉 |G+ e2 + e4 + e5 + z1 +x+ 2γ〉

|z2 +x+ 2γ〉 |z1 + z2 +x+ 2γ〉
|ei + z2 +x+ 2γ〉 |ei + z1 + z2 +x+ 2γ〉

|ei + ej + z2 +x+ 2γ〉 |ei + ej + z1 + z2 +x+ 2γ〉
|e2 + e4 + e5 + z2 +x+ 2γ〉 |e2 + e4 + e5 + z1 + z2 +x+ 2γ〉

|G+ e2 + e4 + e5 + z2 +x+ 2γ〉 |G+ e2 + e4 + e5 + z1 + z2 +x+ 2γ〉

|z1 + z2 + (3)γ〉 |z1 + z2 +x+ (3)γ〉



, (8.88)

where i 6= j ∈ {2, 4, 5}.

All of these sectors, t ∈ T1 and t ∈ T2, must be projected from the spectrum
through appropriate definitions of their generalised projectors Pt = 0. Since there
are so many sectors this is generally the most computationally expensive aspect of the
classification methodology and is a key reason for introducing SMT methods into the
program.

For reasons of efficiency in projecting the tachyonic sectors we can split the pro-
jection into two steps. Firstly, since the SUSY generating vector S acts as a projector
on all tachyonic sectors, we can implement this projection on all tachyonic sectors and
see which sectors remain. Then we can construct and perform the projectors for the
remaining sectors.

Enhancements

In classifying the Class A models we should ensure the absence of enhancements to
the observable gauge factors coming from the class-Independent sectors given in eq.
(8.59) using the generalised projectors discussed in Section 8.3. We have further sectors
giving possible observable enhancements through combinations with γ. At the level
(αL ·αL,αR ·αR) = (0, 6) we have the following sectors

ψµ{λ̄} 1
4

|e136 + (3)γ〉 =: O1

|e136 + x+ (3)γ〉 =: O2

(8.89)
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and at level (0, 8) there are the sectors

ψµ



|e136 + z1 + (3)γ〉 =: O3

|e136 + z1 + x+ (3)γ〉 =: O4

|e136 + z2 + (3)γ〉 =: O5

|e136 + z2 + x+ (3)γ〉 =: O6,

(8.90)

which should be projected to ensure the absence of observable enhancements. In order
to construct the projectors we note that

Υ(O1,2) ={S, e2, e4, e5, z1 + z2 + x+ 2γ}

Υ(O3,4) ={S, e2, e4, e5, z2 + x+ 2γ}

Υ(O5,6) ={S, e2, e4, e5, z1 + x+ 2γ}

(8.91)

and the projectors have the form

PO1,2 = ∏
ξ∈Υ(O1,2)

1
2

(
1 + δO1,2 δ

ψµ

ξ δλ̄
ξC
[
O1,2

ξ

])
(8.92)

PO3,4,5,6 = ∏
ξ∈Υ(O3,4,5,6)

1
2

(
1 + δO3,4,5,6 δ

ψµ

ξ C
[
O3,4,5,6

ξ

])
, (8.93)

which gives three unique projectors from (8.91), on which we impose

∀ λ̄, ∀ i ∈ [1, 6] : POi = 0. (8.94)

Exotic Sectors

Another important consideration for ensuring reasonable phenomenology is the ab-
sence of chiral exotics.

Along with the sectors (8.62) there are 124 sectors at the level (4, 6) that can pro-
duce exotic massless states with a right moving oscillator such that ν f =

1
2 or ν f ∗ = − 1

2 .
These all arise in pairs with +γ and +3γ which contribute equal and opposite gauge
charges and therefore do not contribute to any chiral anomaly. Similarly for the 212
exotic sectors at level (4, 8). Therefore we conveniently do not need to implement a
condition on chiral exotics in the classification for this class of models.

8.4.2 Class A Results

Having defined the key phenomenological characteristics for models in Class A we
now seek to classify a large space of both N = 0 and N = 1 vacua with reference to
the following key classification criteria



8.4. Asymmetric Orbifold Class A 143

(1) No On-Shell Tachyons as discussed in Section 8.3.2 and 8.4.1

(2) No Observable Enhancements as given by eq. (8.60) and (8.94)

(3) Complete Generations: ng 6= 0 and n10 − n10 = n5̄ − n5

(4) Three generations: ng = 3 :

(5) Presence of Heavy Higgs: n10H ≥ 1

(6) Presence of viable TQMC as discussed in Section 8.3.3 and 8.83

(7) Super No-Scale Condition: a00 = N0
b − N0

f = 0.

(8.95)

We note again that determining whether a viable TQMC is present requires checking
for either an untwisted or twisted type coupling.

The results of a classification of 109 Class A models created through random gen-
eration is presented in Table 8.3.

Total models in sample: 109

SUSY or Non-SUSY: N = 1 Probability N = 0 Probability

Total 15624051 1.56× 10−2 984375949 0.984

(1) + Tachyon-Free 30779240 3.08× 10−2

(2) + No Observable Enhancements 15135704 1.51× 10−2 28581301 2.86× 10−2

(3) + Complete Generations 15135704 1.51× 10−2 28581301 2.86× 10−2

(4) + Three Generations 89930 8.99× 10−5 195716 1.96× 10−4

(5) + Heavy Higgs 89820 8.98× 10−5 129233 1.29× 10−4

(7) + TQMC 89820 8.98× 10−5 129233 1.29× 10−4

(8) + a00 = N0
b − N0

f = 0 388 3.88× 10−7

Table 8.3: Phenomenological statistics from sample of 108 Class A models. Note that the
number of a00 = 0 models is an estimate based on extrapolating from a sample of 2× 103 of the
129233 N = 0 models satisfying (1)-(7).

As mentioned in Section 7.2 we can employ our Z3 SMT Solver to efficiently find
models satisfying the phenomenological criteria as well as to inform us of when criteria
are in contradiction and no solutions can be found. As a test of efficiency we ran the
SMT for 1 hour to see how many models it finds satisfying the criteria (1)-(7) in Table
8.3 and compared it with the random generation method over the same time. The result
of this comparison is displayed in Figure 8.2. We find that the SMT is approximately
322 times faster than the random scan after 3 minutes but after 1 hour it levels out at
approximately 93 times faster. This demonstrates that the Z3 SMT tool is especially
effective as a fishing algorithm in finding pools of solutions very quickly, whereas its
efficiency in complete enumeration of solutions reduces. If we are interested in more
complete enumeration it may be instrumental to employ another SAT/SMT solver such
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Figure 8.2: Rate at which the Z3 SMT finds solutions satisfying constraints (1)-(7) compared
with a random generation approach over a 1 hour period.

as PicoSAT2, which is optimised for such complete enumeration.

We can also perform a statistical analysis at the level of the partition function. This
includes the calculation of the q-expanded partition function and the evaluation of the
one-loop cosmological constant. In Figure 8.3, we present the distribution of the cosmo-
logical constant for a sample of Class A models evaluated at the free fermionic point.
This shows that there is a tendency towards negative values, even though positive
values are not excluded. It is important to note that this is not guaranteed to be a sta-
ble point in moduli space as there may be flat directions, however, the analysis of the
potential is outside the scope of this chapter and is left for future work. It is also inter-
esting to compare the effectiveness of the SMT and random scan algorithms in finding
unique models from the point of view of the partition function. From Figure 8.4, we
see that the SMT algorithm has a tendency to find more degenerate solutions as com-
pared to a random scan. However, this does not conclude that random scans are more
efficient. Indeed, comparing this to Figure 8.2, we see that SMT algorithms still vastly
outperform random scans by more than 2 orders of magnitude.

2Program available on Github via: https://github.com/zimmski/picosat

https://github.com/zimmski/picosat
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Figure 8.3: The distribution of the cosmological constant ΛST for a sample off 103 Class A
models satisfying conditions (1)-(7) of Table 8.3. To gain the physical value, a factor ofM4 must
be reinstated. These values are evaluated at the free fermionic point using methods discussed in
Section 8.3.4.
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Figure 8.4: The degeneracy of models in a Random versus an SMT scan for Class A as seen
from the partition function.

8.4.3 Example Model Class A

Having classified a random sample of Class A vacua, we can provide an example model
satisfying criteria (1)-(7) of (8.95). Consider a model defined by the basis set (8.73) and
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choice of GGSO phases given by

C
[
vi
vj

]
=

1 S e2 e4 e5 b1 b2 b3 z1 x γ



1 1 1 −1 −1 −1 1 −1 1 1 1 i
S 1 1 −1 1 1 1 1 1 1 −1 1
e2 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1
e4 −1 1 1 1 −1 1 −1 1 −1 −1 −1
e5 −1 1 −1 −1 1 −1 −1 −1 −1 −1 1
b1 1 −1 −1 1 −1 1 −1 −1 1 1 1
b2 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1
b3 1 −1 −1 1 −1 −1 −1 1 1 −1 −1
z1 1 1 1 −1 −1 1 −1 1 1 −1 i
x 1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1
γ 1 1 −1 −1 1 −1 1 1 −1 −1 −1

(8.96)

This model has 3 fermion generations arising from b1 + e4, b2 + e2 and b3 + e2 + e4.
As for all models in this class, there are untwisted Higgs states from all 3 orbifold
planes. The top quark mass coupling arises on each plane from a coupling of the type
UkFkFk discussed in Section 8.3.3. The Heavy Higgs is provided by the sector S + b2 +

e5 to ensure that the SU(5)×U(1) can be broken to the SM.

The partition function for Class A models can be found using the methods dis-
cussed in Section 8.3.4. Specifically, the internal lattice can be constructed by noting
that the form of A introduces exactly one asymmetric pairing in each of the three orb-
ifold planes. Thus the internal lattice takes the form

Γγ
(6,6) = Γγ

1 × Γγ
2 × Γγ

3

= ϑy4

[
r+h2+H4
s+g2+G4

]1/2
ϑy5

[
r+h2+H5
s+g2+G5

]1/2
ϑy3,6

[
r+h2+2H′

s+g2+2G′

]
× ϑȳ4

[
r+h2+H4
s+g2+G4

]1/2
ϑ̄ȳ5

[
r+h2+H5
s+g2+G5

]1/2
ϑ̄ȳ3,6

[
r+h2
s+g2

]
× ϑy2

[
r+h2+H2
s+g2+G2

]1/2
ϑw5

[
r+h2+H5
s+g2+G5

]1/2
ϑy1w6

[
r+h2+2H′

s+g2+2G′

]
(8.97)

× ϑȳ2

[
r+h1+H2
s+g1+G2

]1/2
ϑ̄w̄5

[
r+h1+H5
s+g1+G5

]1/2
ϑ̄ȳ1w̄6

[
r+h1
s+g1

]
× ϑw2

[
r−h1−h2+H2
s−g1−g2+G2

]1/2
ϑw4

[
r−h1−h2+H4
s−g1−g2+G4

]1/2
ϑw1,3

[
r−h1−h2+2H′

s−g1−g2+2G′

]
× ϑw̄2

[
r−h1−h2+H2
s−g1−g2+G2

]1/2
ϑ̄w̄4

[
r−h1−h2+H4
s−g1−g2+G4

]1/2
ϑ̄w̄1,3

[
r−h1−h2
s−g1−g2

]
,

where Γγ
i denotes the part corresponding to the ith orbifold plane. We can then use this

expression to obtain the q-expanded partition function of this model

Z = 2 q0q̄−1 − 8 q1/4q̄−3/4 − 16 q1/2q̄−1/2 + 8 q−1/2q̄1/2

+ 176 q1/8q̄1/8 + 976 q1/4q̄1/4 + 2048 q3/8q̄3/8 + 2560 q1/2q̄1/2, (8.98)
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including all terms up to at most O(q1/2) and O(q̄1/2). The top line gives the off-
shell tachyonic states required by modular invariance, while the bottom line gives all
on-shell states. Note the presence of the off-shell model-independent term 2 q0q̄−1 ob-
tained from the so-called ‘proto-graviton’ resulting from the state ψµ |0〉L ⊗ |0〉R. This
provides a neat check to confirm correct normalisation of the partition function. We
also see that this model is indeed Bose-Fermi degenerate at the massless level, i.e.
a00 = N0

b − N0
f = 0. Integrating this expansion over the fundamental domain of the

modular group yields the spacetime cosmological constant

ΛST = 13.34×M4, (8.99)

which was calculated to 4th order q and q̄.

Whether the cosmological constant can indeed be suppressed requires more in-
depth analysis and in these Class A models all untwisted moduli being retained com-
plicates this analysis, which motivates the study of a different class of models where
some moduli are projected that we turn to in the next section. Through a translation
to an orbifold in the bosonic formulation, the dependence on some of these geometric
moduli can be reinstated and a systematic investigation of the one-loop potential can
be attempted as done in [43, 44] for symmetric orbifolds, however its implementation
for asymmetric models is left for future work.

8.5 Asymmetric Orbifold Class B

The second class of models we study is an example where all untwisted moduli on
the second and third tori are projected and only h11, h12, h21 and h22 are retained.
From Table 8.1 and 8.2 we can see there are 12 possible pairings in both the bosonic
and fermionic cases that give rise to just h11, h12, h21 and h22, whilst allowing for
odd number generations. These all have E = (1, 1, 0, 0, 0, 0). The possible pairings
can be grouped into 3 types according to their ∆ = (∆1, ∆2, ∆3) and degeneracies
D = (D1, D2, D3), which for the bosonic case are

A =



{w̄3456}, {y34, w34, ȳ34, w̄56}, ∆ = (0, 1, 1), D = (8, 1, 1)

{y3456, w3456, ȳ3456}, {y56, w56, ȳ56, w̄34}

{ȳ56, w̄34}, {y56, w56, w̄3456}, ∆ = (1, 0, 1), D = (4, 2, 1)

{y34, w34, ȳ3456}, {y3456, w3456, ȳ34, ȳ56}

{ȳ34, w̄56}, {y34, w34, ȳ34w̄56}, ∆ = (1, 1, 0), D = (4, 1, 2)

{y3456, w3456, ȳ3456}, {y56, w56, ȳ56, w̄34}

(8.100)

As mentioned in Section 8.3, the condition for odd number generations 8.32 is a nec-
essary, but not sufficient, condition for the possibility of having 3 generation models
within a class. We can check which of the 3 pairing possibilities in (8.100) can give
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rise to 3 generations by checking whether eq. (8.49) is satisfiable with our SMT solver
for each A. Doing this tells us that none of the pairings can give rise to 3 generation
models. Despite this, we will choose the pairing A = {w̄34, w̄56} with D = (4, 2, 1)
to classify systematically, and in Section 8.5.1 we will demonstrate the origin of the
absence of three generations.

The basis for this class of models will then be

1 = {ψµ, χ1,...,6, y1,...,6, w1,...,6 | y1,...,6, w1,...,6, ψ
1,...,5, η1,2,3, φ

1,...,8},

S = {ψµ, χ1,...,6},

e1 = {y1, w1 | y1, w1},

e2 = {y2, w2 | y2, w2},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5},

b2 = {ψµ, χ34, y12, w56 | y12, w56, η2, ψ
1,...,5}, (8.101)

b3 = {ψµ, χ56, w1234 | w1234, η3, ψ
1,...,5},

z1 = {φ1,...,4},

x = {ψ1,...,5, η1,2,3},

γ = {ȳ56, w̄34, ψ̄1,...,5 = η̄1,2,3 = φ̄1,2,6,7 =
1
2

, φ̄8},

where we have the same z2 combination as eq. (8.21) and the untwisted gauge group
is

Observable: SU(5)×U(1)×U(1)i=1,2,3 ×U(1)j=4,5 (8.102)

Hidden: SU(2)×U(1)H1 × SO(4)×U(1)H2 × SU(2)×U(1)H3 ×U(1)H4 .
(8.103)

There are two horizontal symmetries associated to the antiholomorphic currents from
the pairings ȳ5,6 and w̄3w̄4. Since there are 10 basis vectors we naively have 245 inde-
pendent GGSO configurations but the following 10 phases do not affect the projection
criteria for the phenomenological criteria we investigate

C
[
1

b1

]
, C
[
1

b2

]
, C
[
1

b3

]
, C
[
1

z1

]
, C
[
1

γ

]
, C
[
S

γ

]
, C
[
b1
γ

]
, C
[
b3
γ

]
, C
[
z1
γ

]
, C
[
x

γ

]
. (8.104)

This leaves just 35 free GGSO phases generating a space of 235 ∼ 3.4× 1010 indepen-
dent configurations to classify. The supersymmetric subspace of which is subject to
conditions (8.37) and (8.38).
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8.5.1 Class B Phenomenological Features

Observable Spinorials Representations and Absence of Three Generation

The following sectors give rise to the fermion generations

F 1
t = b1 + te3456 (8.105)

F 2
pq = b2 + pe1 + qe2 (8.106)

F 3
pq = b3 + pe1 + qe2, (8.107)

and the degeneracies D tell us that F 1
0 generate 4 copies of the 16 or 16, F 1

1 generate 2
copies of the 16 and 2 copies of the 16, whilst F 2

pq generate 2 copies of either
(

10,+ 1
2

)
,(

5̄,− 3
2
)
+
(
1, 5

2
)
,
(

10,− 1
2

)
or
(
5,+ 3

2
)
+
(
1,− 5

2
)
. Lastly, F 3

pq generates 1 copy of the 16

or 16.

As mentioned above, three generation models do not arise in this class, and to see
why it will be useful to write the projection equations for these spinorial sectors. We
can first construct the projectors for these sectors by utilising eq. (8.44)

PF 1
t
=

1
25 ∏

i=1,2

(
1− C

[
F

(1)
t
ei

])(
1− C

[
F

(1)
t

2γ+ x

])
∏

a=1,2

(
1− C

[
F

(1)
t
za

])
(8.108)

PF 2
pq
=

1
23

(
1− C

[
F 2

pq
2γ+ x

])
∏

a=1,2

(
1− C

[
F 2

pq
za

])
(8.109)

PF 3
pq
=

1
23

(
1− C

[
F 3

pq
2γ+ x

])
∏

a=1,2

(
1− C

[
F 3

pq
za

])
, (8.110)

Next we can apply eq. (8.45) to get the chirality phases

X1
t=0 = −C

[
F 1

0
b2

]∗
,

X2
pq = −C

[
F 2

pq

b1

]∗
X3

pq = −C
[
F 3

pq

b1

]∗
,

where we have chosen ch(ψµ) = +1 for the spacetime fermion chirality and note the
F 1

1 does not have a chirality operator as it gives rise to 2 copies of the 16 and the 16. By
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applying eq. (8.47), we can write the quantum numbers of the SU(5)×U(1) represen-
tations as

n10 = ∑
t=0,1

2PF 1
t

1
2

(
1 + t + (1− t)X1

t

)
+ ∑

p,q=0,1
2PF 2

pq

1
4

(
1 +X2

pq

)(
1 + C

[
F 2

pq
γ

])
+ ∑

p,q=0,1
PF 3

pq

1
2

(
1 +X3

pq

)
n5̄ = ∑

t=0,1
2PF 1

t

1
2

(
1 + t + (1− t)X1

t

)
+ ∑

p,q=0,1
2PF 2

pq

1
4

(
1 +X2

pq

)(
1− C

[
F 2

pq
γ

])
+ ∑

p,q=0,1
PF 3

pq

1
2

(
1 +X3

pq

)
n10 = ∑

t=0,1
2PF 1

t

1
2

(
1 + t− (1− t)X1

t

)
+ ∑

p,q=0,1
2PF 2

pq

1
4

(
1−X2

pq

)(
1 + C

[
F 2

pq
γ

])
+ ∑

p,q=0,1
PF 3

pq

1
2

(
1−X3

pq

)
n5 = ∑

t=0,1
2PF 1

t

1
2

(
1 + t− (1− t)X1

t

)
+ ∑

p,q=0,1
2PF 2

pq

1
4

(
1−X2

pq

)(
1− C

[
F 2

pq
γ

])
+ ∑

p,q=0,1
PF 3

pq

1
2

(
1−X3

pq

)
,

(8.111)

where we note the singlets have the same projection as 5 and 5̄. Imposing the condition
for complete generations n10 − n10 = n5 − n5 results in the condition

∑
p,q

PF 2
pq

C
[
F 2

pq
γ

]
X2

pq = 0, (8.112)

and n10 − n10 = 3 for three generations tells us

3 = ∑
t

2PF1
t

X1
t + ∑

p,q
2PF2

pq

1
2

(
1 + C

[
F 2

pq
γ

])
X2

pq + ∑
p,q

PF 3
pq

X3
pq, (8.113)

which is only possible if

∑
p,q

PF 3
pq

X3
pq ∈ {1, 3}, (8.114)

but ∑p,q PF 3
pq

X3
pq = 3 we can show is impossible by inspecting (8.110), which only

depends on nine phases

C
[
b3
z1

]
, C
[
b3
z2

]
, C
[
b3
x

]
, C
[
e1
z1

]
, C
[
e1
z2

]
, C
[
e1
x

]
, C
[
e2
z1

]
, C
[
e2
z2

]
, C
[
e2
x

]
, (8.115)

and if 3 of the 4 sectors, F 3
pq, have PF 3

pq
= 1 then all 9 phases are fixed and ensures the

fourth also has PF 3
pq
= 1.
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Therefore, the only way to satisfy (8.113) is if ∑p,q PF 3
pq

X3
pq = 1. This further im-

plies ∑p,q PF 2
pq

C[F
2
pq
γ ]X2

pq ∈ {2, 4}, from (8.112). If we assume ∑p,q PF 2
pq

C[F
2
pq
γ ]X2

pq = 2
then the constraints this imposes on the phases in PF 2

pq
necessitates

∑
p,q

PF 3
pq

X3
pq ∈ {0, 2}, (8.116)

making 3 generations impossible. Similarly if ∑p,q PF 2
pq

C[F
2
pq
γ ]X2

pq = 4 this imposes

∑
p,q

PF 3
pq

X3
pq ∈ {0, 4}, (8.117)

which again makes 3 generations impossible.

Not only does the Z3 SMT solver confirm the unsatisfiability of 3 generation con-
figurations, it also generates a proof written in computer language3. There are also
additional tools available in Z3 to explore unsatisfiability such as identifying a mini-
mal ‘unsatisfiable core’ [123], isolating the contradiction by giving a (locally) minimal
subset of constraints, where dropping either of them results in a satisfiable constraint
system. In Figure 8.5 the distribution of ng is plotted for a random sample of 107 Class
B models showing empirically the absence of ng = 3 models.
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Figure 8.5: Frequency plot for number of generations from a sample of 107 Class B vacua.

The origin of this contradiction can be traced to the projection of moduli in the 2nd
and 3rd tori which means there are no ei vectors to project F 2

pq and F 3
pq. This results in

constraining and correlating their presence in the massless spectrum.

3Available at https://github.com/BenjaminPercival/AsymmetricOrbifolds.git

https://github.com/BenjaminPercival/AsymmetricOrbifolds.git
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Heavy Higgs

As in Class A we will demand the presence of at least one heavy Higgs to break
the FSU5 gauge symmetry in our classification. The number of Heavy Higgs
#
[
(10, 1

2 ) + (10,− 1
2 )
]

can again be calculated through the projections of sectors S +

F k
pq.

Top Quark Mass Couplings

As in Class A, in classifying vacua from Class B we will account for all the three un-
twisted type TQMC and all 3 twisted type when checking whether a potentially viable
TQMC arises from a model.

To check the presence of a viable TQMC we, again, account for the twisted Light
Higgs sectors, which can be checked through analogous projection conditions for Class
B as in Class A. It is simply the number of [(5,−1) + (5̄,+1)] from the sectors V k

pq in
the massless spectrum.

Tachyonic Sector Analysis

Class A models have significantly fewer tachyonic sectors than Class B. Specifically,
there are 27 sectors producing on-shell tachyons for Class B, compared with the 78 of
Class A.

The following 3 sectors will produce on-shell tachyons with a right-moving oscil-
lator should they be present in the spectrum of a model

T1 =

{λ̄} 1
2

: |e1〉 |e2〉
{λ̄} 1

2
: |e1 + e2〉

 . (8.118)

Further to this, the following on-shell tachyonic sectors arise with no oscillator

T2 =



|z1〉 |z2〉 |x+ 2γ〉
|ei + z1〉 |ei + z2〉 |ei +x+ 2γ〉

|e1 + e2 + z1〉 |e1 + e2 + z2〉 |e1 + e2 +x+ 2γ〉

|z1 +x+ 2γ〉 |z2 +x+ 2γ〉 |z1 + z2 +x+ 2γ〉
|ei + z1 +x+ 2γ〉 |ei + z2 +x+ 2γ〉 |ei + z1 + z2 +x+ 2γ〉

|e1 + e2 + z1 +x+ 2γ〉 |e1 + e2 + z2 +x+ 2γ〉 |e1 + e2 + z1 + z2 +x+ 2γ〉


, (8.119)

where i ∈ {1, 2}.

The condition for the absence of such tachyonic sectors can be compactly written

∀ t ∈ T1 ∪ T2 : Pt = 0. (8.120)

Enhancements

As in Class A we will ensure the absence of enhancements to the observable gauge
factors given from sectors listed in eq. (8.59), as well as the model-dependent sectors
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ψµ{λ̄} 1
4



|z1 + (3)γ〉 =: O1

|z1 + x+ (3)γ〉 =: O2

|z1 + z2 + (3)γ〉 =: O3

|z1 + z2 + x+ (3)γ〉 =: O4,

(8.121)

and as in Class A we ensure the generalised projectors of these sectors are zero, which
can be written

∀ i ∈ [1, 4] : POi = 0. (8.122)

Exotics

Along with the (αL · αL,αR · αR) = (4, 4) exotic sectors (8.62), there are 112 sectors
at the level (4, 6) that can produce exotic massless states with a right-moving oscilla-
tor with ν f = 1

2 or ν f ∗ = − 1
2 . As in Model A, these all arise in pairs with +γ and

+3γ of equal and opposite gauge charges and therefore do not contribute to any chiral
anomaly. Similarly for 176 sectors at level (4, 8). Therefore, we conveniently do not
need to implement a condition on chiral exotics in the classification.

8.5.2 Class B Results

We wish to implement the constraints listed in (8.95) for the case of Class B. However,
the absence of 3 generation models in this class means all models break at constraint
(4). For completeness, we still present the reduced results in Table 8.4. In order to
do a complete scan, we choose to impose condition (8.39) such that SUSY is broken
by phases beyond the NAHE-set for the N = 0 models. This condition reduces the
parameter space to 231 ∼ 2.15× 109. We then enumerate all possible configurations of
these 31 phases that give both N = 1 and N = 0 models.

Total models in sample: 231 = 2147483648
SUSY or Non-SUSY: N = 1 Probability N = 0 Probability
Total 134217728 6.25× 10−2 2013265920 9.38× 10−1

(1) + Tachyon-Free 518921216 2.42× 10−1

(2) + No Obs. Enhancements 121896960 5.68× 10−2 478915840 2.23× 10−1

(3) + Complete Generations 74317824 3.46× 10−2 271702016 1.27× 10−1

(8) + a00 = N0
b − N0

f = 0 326042 1.51× 10−4

Table 8.4: Phenomenological statistics from a complete scan of 231 Class B models. Note that
the number of a00 = 0 models is an estimate based on extrapolating from a sample of 2.5× 103

of the 1245265024 N = 0 models satisfying (1)-(3).

In order to compare the efficiency of the SMT solver to that of a random scan we
can search for four generation models, rather than three, that satisfy criteria (1)-(3) and
(5)-(7) from (8.95). The results of this comparison are shown in Figure 8.6. We see that
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the efficiency gained from the SMT is lower for Class B than the Class A case, with effi-
ciency approximately 5.5 times higher compared to the random approach after 3 min-
utes, reducing to approximately 1.5 times after 1 hour. This reduced efficiency for Class
B seems to result from the fewer constraints imposed from the absence of tachyons, ev-
idenced by the probability 2.42× 10−1 for Table 8.4 compared to 3.08× 10−2 for Table
8.3, as well as the smaller space of models and higher degeneracy, meaning the SMT
algorithm’s search saturates more quickly than in Class A.
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Figure 8.6: Rate at which the Z3 SMT finds 4 generation models satisfying constraints (1)-(3)
and (5)-(7) compared with a random generation approach over a 1 hour period.

As in the case of Class A models, it is also interesting to perform a statistical anal-
ysis at the level of the partition function. Figure 8.7 shows the distribution of the cos-
mological constant for a batch of 1.5× 103 Class B models, satisfying conditions (1)-(3)
of Table 8.4. We again note the slight tendency to negative values even though positive
values are not excluded. In Figure 8.8, we see that the SMT algorithm finds relatively
more degenerate models as compared to the Class A case. This is mostly due to the
reduced number of constraints on the GGSO phases and the increased frequency of
solutions as discussed above.
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Figure 8.7: The distribution of the cosmological constant ΛST for a sample off 1.5× 103 Class B
models satisfying conditions (1)-(3) of Table 8.4. To gain the physical value, a factor ofM4 must
be reinstated. These values are evaluated at the free fermionic point using methods discussed in
Section 8.3.4.
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Figure 8.8: The degeneracy of models in a Random versus an SMT scan for Class B.

8.5.3 Class B Example Model with 4 Generations

Having discussed the absence of three generation models in this class, we give an ex-
ample four generation model and discuss its key characteristics. We emphasize that,
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although this class of models is not phenomenological, they are of particular interest
due to the fact that the untwisted moduli of the 2nd and 3rd tori are fixed. The chosen
model is defined by the basis (8.101) and the GGSO phases

C
[
vi
vj

]
=

1 S e1 e2 b1 b2 b3 z1 x γ



1 1 −1 1 1 −1 −1 −1 −1 1 −i
S −1 −1 1 1 −1 −1 −1 1 1 −1
e1 1 1 −1 1 −1 1 −1 −1 1 1
e2 1 1 1 −1 −1 1 1 1 1 1
b1 −1 1 −1 −1 −1 −1 −1 −1 −1 −1
b2 −1 1 1 1 −1 −1 1 1 −1 −i
b3 −1 1 −1 1 −1 1 −1 −1 1 −1
z1 −1 1 −1 1 −1 1 −1 −1 1 −i
x 1 1 1 1 1 1 −1 1 −1 −1
γ 1 −1 1 1 −1 −1 −1 1 −1 −i

, (8.123)

The states from sector b1 generate four copies of fermion generations in the 16. We
obtain a Heavy Higgs from the sector S + b3 + e1 + e2. There is an untwisted-type
TQMC from the first orbifold plane and we note the existence of an additional hidden
sector gauge boson from ψµ{ȳ1} |z1〉 which enhances the hidden gauge group

SU(2)×U(1)H1 × SO(4)×U(1)H2 × SU(2)×U(1)H3 ×U(1)H4

→ U(1)H1 × SO(5)× SU(2)×U(1)H2 × SU(2)×U(1)H3 ×U(1)H4 .
(8.124)

The partition function for this model can be calculated similarly to the Class A
model presented in Section 8.4.3. The main difference in this case is that the asymmetric
shifts introduced byA only explicitly include the anti-holomorphic part of the internal
lattice in the first and third orbifold plane. That is, the lattice becomes

Γγ
(6,6) = Γγ

1 × Γγ
2 × Γγ

3

= ϑy3,4

[
r+h2
s+g2

]
ϑy5,6

[
r+h2
s+g2

]
× ϑȳ3,4

[
r+h2
s+g2

]
ϑ̄ȳ5,6

[
r+h2+2H′

s+g2+2G′

]
× ϑy1

[
r+h1+H1
s+g1+G1

]1/2
ϑy2

[
r+h1+H2
s+g1+G2

]1/2
ϑw5,6

[
r+h1
s+g1

]
(8.125)

× ϑ̄ȳ1

[
r+h1+H1
s+g1+G1

]1/2
ϑ̄ȳ2

[
r+h1+H2
s+g1+G2

]1/2
ϑ̄w̄5,6

[
r+h1
s+g1

]
× ϑw1

[
r−h1−h2+H1
s−g1−g2+G1

]1/2
ϑw2

[
r−h1−h2+H2
s−g1−g2+G2

]1/2
ϑw3,4

[
r−h1−h2
s−g1−g2

]
× ϑw̄1

[
r−h1−h2+H1
s−g1−g2+G1

]1/2
ϑ̄w̄2

[
r−h1−h2+H2
s−g1−g2+G2

]1/2
ϑ̄w̄3,4

[
r−h1−h2+2H′

s−g1−g2+2G′

]
,

where Γγ
i again denotes the terms corresponding to the ith orbifold plane. We see that,

indeed, Γγ
2 remains left-right symmetric and the absence of e3,4,5,6 simplifies the lattice.
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Based on this lattice, we can gain the q-expansion of the model, which is now given by

Z = 2 q0q̄−1 + 56 q1/2q̄−1/2 + 208 q−1/2q̄1/2

+ 8 q0q̄0 − 192 q1/8q̄1/8 + 1280 q1/4q̄1/4 − 5632 q1/2q̄1/2, (8.126)

including all terms up to at most O(q1/2) and O(q̄1/2). We note again the presence of
the protograviton term with the correct factor and the presence of a constant term q0q̄0.
There was no model found with N0

b = N0
f in a sample of 2.5× 103 4 generation models.

Integrating this q-expansion over the fundamental domain of the modular group
gives the spacetime cosmological constant

ΛST = 31.86×M4, (8.127)

calculated to O(q4q̄4). As in the Class A case, this value is evaluated at the free
fermionic point in moduli space.

8.6 Discussion

In this chapter we initiated the extension of the fermionic Z2 × Z2 orbifold classifi-
cation method to string vacua with asymmetric boundary conditions. There are no-
table phenomenological advantages for string models with asymmetric boundary con-
ditions, among them the stringy Higgs doublet–triplet splitting mechanism [126] and
the top–bottom quark mass hierarchy [130]. Of particular interest is the fact that asym-
metric boundary conditions fix many of the untwisted moduli by projecting out moduli
fields from the massless spectrum [124]. In this respect, we note that there exist cases
in which all the untwisted moduli are projected out [124], as well as cases in which
it has been argued the string vacuum is entirely fixed, i.e. cases in which the twisted,
as well as the supersymmetric moduli , are fixed [70]. We note that from the point of
view of the free fermionic classification methodology, these cases are futile because it
entails that they are not compatible with any of the ei vectors discussed in Section 8.2.
Our purpose here was therefore to analyse configurations in which some, but not all, of
the moduli are fixed. This approach is particularly suited to the search for string vacua
with positive cosmological constant, á la [43, 44]. In these cases, the potential of some of
the remaining unfixed moduli is analysed away from the self-dual point with the aim
of finding a vacuum state with a positive vacuum energy at a stable minimum. Thus,
whereas in the case of [43, 44] the other moduli are unfixed, in the case of vacua with
asymmetric boundary conditions the possibility exists of finding such vacua in which
the other moduli are fixed.

In both Class A and Class B models we saw the incorporation of asymmetric
boundary conditions was done through a single basis vector, whereas the remaining
basic set, aside from the set of the ei basis vectors that are compatible with the given
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pairings, were identical in the two cases. We note that in principle this can be relaxed,
e.g. by not including the vector z1 in the basis. Such a variation may affect the possibil-
ity of three generations models in cases such as Class B, where they are impossible, but
we leave such variations for future work. We note, however, that the program initiated
herein opens the door to the systematic investigation of quasi-realistic vacua that are in-
trinsically non-geometric. We furthermore demonstrated effective applications of SMT
algorithms to the space of free fermionic models under investigation. Not only do they
provide significant efficiency increases, as demonstrated in Figure 8.2 and 8.6, but they
also allowed for immediate evaluation of unsatisfiable constraints, such as proving the
absence of three generation models in Class B.

Other than the systematic study of the one-loop potential for asymmetric mod-
els, mentioned as a key motivation for this work, future work classifying Standard-
like models (SLMs) with asymmetric boundary conditions is a natural extension of
this work. In that context, the role of asymmetric pairings in the (untwisted) Doublet-
Triplet splitting mechanism [126] will be evident, in a way it is not for the FSU5 models
studied here. The space of asymmetric SLMs will be larger and phenomenologically
viable models more sparsely distributed, thus the application of SMT algorithms could
prove instrumental in effective searches of this landscape. The analysis of Section 8.2,
can be extended so that the SMT can explicitly interpret phenomenological constraints
as a function of all asymmetric pairings and provide generic results, including no-go
theorems, over a varied space of models. It will furthermore be interesting to explore
different possibilities for how to implement the asymmetric boundary conditions, other
than solely through the SO(10) breaking vector as studied in this work.
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Chapter 9

Reflections

A central theme of this thesis is non-supersymmetric string vacua. As Ioannis Rizos
has remarked [137], life without SUSY seems like opening Pandora’s box and turning
your back on your only friend on the path towards reconciling some of the many mys-
teries of the Standard Model. For several decades, SUSY has been the most promising
route towards solutions to issues such as stabilising the Higgs mass, unifying gauge
couplings and being able to compute quantum corrections using holomorphy proper-
ties of BPS states. Not only this, SUSY has also given rise to beautiful mathematical
structures and concepts. At the worldsheet level, SUSY is even baked into the very
foundation of superstring theories.

It is not merely what you gain from having (spacetime) SUSY, but also what you
lose without it. The absence of SUSY introduces the threat of tachyonic modes in the
string spectrum introducing tree level instabilities into the theory. Although this issue
is discussed in various setups in this thesis at the free fermionic point, a more thorough
stability analysis of the classical vacuum is required for generic points in the moduli
space, see e.g. [138, 139, 140]. A further significant problem, not discussed in this
thesis, is the presence of a one-loop tadpole back-reacting on the classical vacuum [141,
142]. This issue has been analysed in certain non-supersymmetric setups, including the
SO(16) × SO(16) case, in [143]. A further obvious problem to address is the issue of
the smallness of the cosmological constant, discussed in various parts of this thesis.

With all these issues considered, we may worry that our situation is hopeless.
Apart from the obvious fact that we know the world is non-supersymmetric (below the
upper threshold of current LHC energies, at least), in recent years it has become increas-
ingly clear that the world of non-SUSY strings contains new and exciting mathematical
structures and hopeful avenues for resolving the big mysteries of particle physics. The
progress made in the analysis in the one-loop potentials of non-supersymmetric strings
[144, 145, 146, 147] and the possibility of finding models with suppressed cosmological
constant [43, 44, 73, 74, 148, 149, 150, 151], being just two examples discussed within this
thesis. We can add the uncovering of misaligned SUSY [95, 96] as another example, in
which refs [97, 99] have uncovered exciting mathematical relationships in the full string
spectrum. Further to this, the analysis of gauge thresholds in [152, 153], demonstrating
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how certain classes of models enjoy a universal structure to their gauge threshold cor-
rections, provides further evidence of deep structures in the non-SUSY string landscape
and new possibilities for making quantum correction calculations tractable.

In this work, I have presented steps towards how we can build and classify con-
crete non-SUSY models from the Z2 ×Z2 heterotic string in the free fermionic formu-
lation. I have helped introduce viable models descending from a tachyonic 10D string
and emphasized how asymmetric shifts may well be instrumental in providing realistic
models, ripe for productive analysis in regard to deeper issues of stability mentioned
above. There have, indeed, been several others who have suspected that asymmetric
orbifolds may play a key role in non-SUSY model building with regard to, for example,
suppressing the cosmological constant [154, 155, 156, 157, 158, 159]. However, their
role in constraining the moduli space has been of particular interest in this work. It will
certainly be interesting to further develop the analysis of asymmetric orbifold models
in future work.

I have also emphasized the use of sophisticated computational tools, in particular
the SAT/SMT solvers, in helping to solve and declare satisfiability for constraint sys-
tems such as those associated to various phenomenological characteristics. It is good to
see that ideas from big data and machine learning are making there way into the String
Phenomenology community. It is already clear that such approaches will be especially
helpful in understanding the string landscape in general, and the non-SUSY landscape
in particular.

It seems that researchers in non-SUSY strings are doomed to some (potentially mis-
aligned) oscillation between feeling overwhelmed by the Pandora’s box of problems
opened up in the absence of SUSY and feeling excited by the opportunities offered by
this very lightly explored terrain. There are certainly a wide range of new discoveries
to find in the world of non-SUSY strings, and this work can hopefully function as a
baby step towards starting to understand this world.
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