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ABSTRACT

In this thesis, we study models of new physics generically by extending the Standard Model

(SM) particle content with an arbitrary number of heavy fermions and bosons. Without addi-

tional constraints, such an extension does not describe a renormalisable quantum �eld theory

and cannot be used to derive predictions for physical processes. We use the constraints from

the Slavnov-Taylor Identities (STIs) that are derived from the vanishing Becchi-Rouet-Stora-

Tyutin (BRST) transformation of suitable vertex functions. Within this setup, we calculate

one-loop matching corrections for the �avour changing neutral current transitions with the

emission of virtual vector bosons. We present explicit results for the Wilson coe�cients

of the weak e�ective Lagrangian for leptonic, semileptonic and radiative meson decays in a

generic renormalisable model. We explicitly show that our results are �nite and independent

of the gauge-�xing parameters, and provide Mathematica code that implements our results

in an easily usable form. �e results of our calculations are published in Ref. [1].

Our generic one-loop results are not limited to �avour observables and they are applicable

to other new physics interactions as well, such as dark ma�er (DM) interactions with the

SM particles that are one-loop induced. We study these interactions where new vector-like

fermions and complex scalars mediate DM interactions with the SM sector at one-loop level.

For the sake of simplicity, we consider the phenomenology of tree-level DM interaction in the

last part of the thesis. We study the direct-detection rate for axial-vectorial DM sca�ering o�

nuclei in an SU(2)×U(1) invariant e�ective theory and compare it with the LHC reach. Cur-

rent constraints from direct detection experiments are already bounding the mediator mass

to be in the TeV range for WIMP-like scenarios. �is motivates a consistent and systematic

exploration of the parameter space to map out possible regions where the rates could be

suppressed. We do indeed �nd such regions and proceed to construct consistent UV models

that generate the relevant e�ective theory. We then discuss the corresponding constraints

from both collider and direct-detection experiments on the same parameter space. We �nd

a benchmark scenario, where even for future XENONnT experiment, LHC constraints will

have a greater sensitivity to the mediator mass Ref. [2].
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1 INTRODUCTION

A modern view of elementary particles and interactions between them is encapsulated in the

Standard Model (SM) of particle physics. �e particle content of the SM consists of fermions
that are quantas of ma�er �elds, and gauge bosons that mediate the fundamental forces. In

addition there is a single fundamental scalar, Higgs boson [3]. It is an experimental evidence

that the fermions exist in three families or generations [4].

It has been well established that the fundamental interactions can be formulated as gauge

theories. �e idea originates in studies of the gravitational and electromagnetic interactions

as gauge theories which are based on the Lorentz group SO(3, 1) and the compact ‘inter-

nal’ phase group U(1), respectively. Later, gauge theories for the strong and weak nuclear

interactions have been constructed successfully [5, 6]. In the gauge theory formulation, inter-

actions occur via the exchange of integer-spin particles, gauge bosons. �e gauge symmetry

of the standard model is SU(3)color×SU(2)L×U(1)Y, where SU(3)color is the symmetry group

of the strong interaction. �e SU(2)L × U(1)Y de�nes the symmetry group of the uni�ed

electroweak interaction which is expected to be spontaneously broken to give a physically

consistent description of the weak and electromagnetic forces.

Although, the standard model provides a successful description of most data in particle

physics experiments, there are hints of its incompleteness coming from astrophysics and

deviations from its predictions in �avour observables. �ese and other facts motivate to ex-

tend the SM with new particles and to construct models of new physics (NP) Beyond the SM

(BSM). In general, shortcomings of the SM can be viewed as theoretical, experimental. One

theoretical shortcoming of the SM is the so called �avour puzzle. �e SM only describes the

masses and mixing of the observed quarks and leptons in terms of fundamental parameters.

Models of NP can address this �avour puzzle by aiming to predict the associated parameters

in terms of fewer more fundamental ones. Also, assignments of quantum numbers (e.g., hy-

percharge) to particles can not be explained within the SM, even though we know that they

have to ful�l the anomaly cancellation condition. �e list can be extended by questions re-

garding the gauge structure of the SM, namely, the hierarchy problem (whymW �MPlanck?)

and uni�cation of the gauge couplings constants [7, 8]. �e experimental limitations of the

SM can be linked to the fact that the SM predictions in �avour observables depart from the

corresponding experimental results. �e recent experimental results on lepton �avour non-

universality in rare B-meson decays [9] and on the anomalous magnetic moment of the

muon [10] have rea�rmed and strengthened the pre-existing tensions with the correspond-

ing SM predictions. Furthermore, there are observational reasons for NP which come from
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astrophysical and cosmological studies. In the standard model, there is no suitable candidate

for Dark Ma�er (DM) whose existence is strongly con�rmed by measurements at the level of

clusters of galaxies [11]. In addition, the Standard Model is incapable to explain the nature

of dark energy and ma�er-antima�er asymmetry in the Universe [12, 13].

�e theoretical approaches to study new physics can be categorised into three groups:

- �e e�ective �eld theories (EFT), for example, the standard model e�ective �eld theory

(SMEFT), where e�ects of NP are included in higher-dimensional operators that are

constructed by the SM �elds. Even though EFT method allows to study the NP e�ects

in a model independent way, a number of interaction operators to be considered can

be signi�cantly large. For instance, following the Ref. [14], the SMEFT Lagrangian at

dimension-6 is

LSMEFT = LSM +
2499∑
i=1

Ci
Λ2
Oi,

where Λ is a dimensionful scale and Ci are the dimensionless Wilson coe�cients. �e

dimension-6 operators Oi in the Warsaw basis can be found in [15].

- �e explicit models such as supersymmetric extension of the SM or a composite Higgs

model. �ese ultraviolet-complete models have been proposed as possible solutions of

the hierarchy problem. Usually, explicit models contain a large amount of parameters.

- Simpli�ed models which cover a large set of model space, and are widely used for new

physics searches at colliders. �ey are speci�cally designed to involve only a few new

parameters directly related to collider physics observables: particle masses (and their

decay widths), production cross-sections, and branching fractions [16]. However, they

are o�en neither renormalisable nor unitary.

In this work, we propose an alternative approach to study NP which can be viewed as

renormalisable generalisation of simpli�ed models. Particularly, we consider a generic ex-

tension of the SM particle content into an arbitrary number of vectors, scalars, and fermions

whose masses are above the electroweak scale. In order to implement constraints on such

generic extensions, the perturbative unitarity property of the sca�ering amplitudes is utilised.

Speci�cally, the required cancellation of unbounded high-energy growth of amplitudes leads

to certain relations among the coupling constants that are common to all models. With the

help of these relations, one can understand and perform the renormalisation of the observ-

ables in a general way [17–19]. �ese relations can be derived by means of Slavnov-Taylor

identities [20], that are a generalised version of the Ward identities for the Becchi-Rouet-

Stora-Tyutin (BRST) symmetry [21–23].
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As a practical implementation of these relations, we perform an one-loop matching cal-

culation for generic models of new physics which are proposed as possible explanations of

�avour anomalies such as anomalies observed in B−meson decays. In the SM, this process

is loop-induced; hence, it is reasonable to expect that physics beyond the standard model to

also contribute from the one-loop level if present. �e SM contribution to B-meson decays

is well described by the weak e�ective Lagrangian [24]. �e same is true for many of the

SM extensions if they involve particles with masses above the electroweak scale. However,

matching onto the e�ective theory is tedious and generally has to be repeated for every new

model. �e tediousness is exacerbated if one wants to, additionally, check that the result is

gauge-independent and that all UV divergences properly cancel. In order to facilitate these

processes, we do the matching procedure generically, where the coupling constant sum rules

are used for the renormalisation of the one-loop diagrams, as well as to achieve gauge in-

variant results. In the result, the Wilson coe�cients depend on a minimal set of physical

parameters and are guaranteed to be �nite and gauge independent. Moreover, we provide

easy-to-use code to obtain the Wilson coe�cients in general perturbatively unitary models,

available at

https://wellput.github.io .

�e code can be integrated with other automated tools, which are designed for the evaluation

of di�erent experimental observables in �avour physics, such as flavio [25].

In fact, the derived one-loop results are not limited to �avour observables, and they are ap-

plicable to other NP models as well, such as DM models where DM interactions with the SM

particles are one-loop induced. Furthermore, for the sake of simplicity, we do a phenomeno-

logical analysis for DM models where DM couples with the SM particles at tree level. As a

DM candidate, we consider Weakly Interacting Massive Particles (WIMPs) that are theoreti-

cally a�ractive candidates for a particle explanation of the DM content of the Universe. �e

interactions of WIMPs with light SM particles can be tested experimentally via their elastic

sca�ering o� nuclei in ground-based direct detection experiments, in speci�c signatures at

the Large Hadron Collider (LHC) involving visible SM objects and missing energy [26], or

by observing their annihilation products with astrophysical experiments.

Up to date the leading liquid xenon based direct detection experiments LUX [27] and

XENON1T [28] have not detected DM, thereby severely constraining the interaction rates

between WIMPs and the SM. �is strongly constrains the possible parameter space of WIMP

quark interactions – and with it also the production mechanisms in collider experiments –

and requires a suppression mechanism for the direct detection rates. In this work, we focus

on axial vector DM interactions, where the direct detection rate is naturally suppressed [29].
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To study the impact of SM gauge invariance we use the e�ective theory above the elec-

troweak scale from Ref. [30] that couples SU(2)×U(1) invariant SM �elds with axial-vector

DM currents. Such a theory naturally arises in models where the DM candidate is a Ma-

jorana fermion and the coupling of the dark and visible sectors is mediated by a tree-level

neutral vector boson exchange, typically referred to as Z ′ and o�en related to an additional

U(1) gauge symmetry. In such models, the vectorial couplings between the DM candidate

and the Z ′ vanish because Majorana fermions are self-conjugate under charge conjugation

while the vector current is odd. In addition, the extra U(1) gauge symmetry in these mod-

els results in constraints from anomaly cancellation, similar to those studied in Ref. [31] for

Dirac dark ma�er. Experimentally, neutral gauge bosons that interact with the SM quark

current can be searched for at the LHC, for instance via dijet �nal states [32]. Null results

from these searches generally require mediator masses to be at the TeV scale. �e large sepa-

ration between the Z ′ mass and the momentum transfer in direct detection experiments jus-

ti�es an e�ective �eld theory description of the interaction between the DM and the baryons

and mesons. Matching the Z ′ exchange model to our e�ective �eld theory, we �nd that a

signi�cant suppression for the DM direct detection rate is only possible for very speci�c

combinations of the e�ective theory parameters.

�e structure of the thesis is as following: the �rst two chapters are dedicated to the back-

ground theory. Particularly, in Sec. 2, we brie�y overview some topics of the quantum �eld

theory which are relevant to our further discussions, and represent the form of the generic

Lagrangian in Sec. 2.6 along with sum rules in Sec. 2.6.1. �en, in Sec. 3 we discuss the ef-

fective theory approach that is relevant to the weak decays of hadrons. In addition, in this

chapter we review some mathematical tools used in the evaluation of one-loop amplitudes.

�e practical implementation of the sum rule relations in the calculation and renormalisa-

tion of transition amplitudes will be extensively discussed in Sec. 4. Also, in this chapter

we present applications of our one-loop matching results to the beyond the standard model

phenomenology, Sec. 4.4. Sec. 5 is about dark ma�er phenomenology, where we emphasise

the complementarity between dark ma�er direct detection and collider searches, Sec. 5.3.3.

�e summary and conclusions of the thesis are presented in Sec. 6. In addition, the work con-

tains appendices. Namely, in App. A the list of e�ective operators for the photon penguin

is given. Furthermore, explicit forms of one-loop functions are provided in App. B. Finally,

App. C contains some details of dark ma�er phenomenology.
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2 THEORETICAL FOUNDATION

�antum Field �eory (QFT) is the mathematical and conceptual framework for contempo-

rary elementary particle physics and it a synthesis of classical �eld theory, special relativity

and quantum mechanics. �e key point of QFT is that the �elds are fundamental and parti-

cles are derived concepts, emerging only a�er performing a proper quantisation.

�ere are persuasive arguments to support this idea: Firstly, at a distance shorter than the

Compton wavelength, λ = ~/(mc), a notion of single point-like particle breaks down, i.e.,
it is highly probable that a particle localised at this distance is surrounded by a swarm of

particle-antiparticle pairs. Hence, a relativistic form of the one-particle Schrödinger equa-

tion can not be used safely at short distances. Secondly, indistinguishability of particles from

the same species. For example, an electron produced in colliders on Earth is the same as

the electron captured from the cosmic rays, they are indistinguishable. �us, swapping two

particles of the same species leaves the state completely unchanged — apart from a possible

minus sign. �is minus sign determines the statistics of the particle, Bose statistics (no minus

sign) for integer spin particles, and Fermi statistics (with minus sign) for half-integer spin

particles. In quantum mechanics, these statistics are implemented by hand. On the other

hand, in QFT, this relationship between spin and statistics is a consequence of the frame-

work [33].

In this chapter, we discuss some concepts of the QFT starting from the construction of a

simple gauge theory, Sec. 2.1. Further, we discuss quantisation of classical �eld theories in

Sec. 2.2, particularly path-integral quantisation will be in focus, Sec. 2.2.1. �e gauge theories

necessitate the introduction of gauge-�xing terms in the e�ective Lagrangian which spoil the

gauge symmetry. A new symmetry of the theory can be de�ned that is known as Becchi-

Rouet-Stora-Tyutin symmetry, and �eld transformations under this symmetry are discussed

in Sec. 2.3. �e generalised Ward identities of this symmetry are given in Sec. 2.3.1. Further,

we will talk about the gauge invariant way to generate masses for fermions and gauge bosons

in Sec. 2.4 along with generalised Ward identities for broken theories, Sec. 2.4.1. �e chapter

is concluded by presenting the explicit form of the generically extended the standard model

Lagrangian, Sec. 2.6, and discussing its renormalisability which can be achieved with the help

of sum rules, Sec. 2.6.1. A simple application of these sum rules is demonstrated in Sec. 2.6.2.
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2.1 Gauge principle

�e fundamental interactions among elementary particles are well described by gauge theo-

ries where local/gauge symmetries are used to generate dynamics. �e prototype gauge the-

ory is quantum electrodynamics (QED) which describes an electron interacting with light.

QED is constructed by requiring that the Dirac’s free electron theory to be invariant under

the Abelian U(1) gauge symmetry.

�e Lagrangian for a free electron �eld ψ(x) is given as

L = ψ̄(x)(iγµ∂µ −m)ψ(x), (2.1)

and it is invariant under the phase change which corresponds to a global U(1) symmetry

ψ(x)→ ψ′(x) = e−iαψ(x), (2.2)

ψ̄(x)→ ψ̄′(x) = ψ̄(x)eiα, (2.3)

where α is space-time independent. However, the invariance of the Lagrangian is spoilt if α

is replaced by α(x), because the derivative term will have a non-trivial transformation,

ψ̄(x)∂µψ(x)→ ψ̄′(x)∂µψ
′(x) = ψ̄(x)eiα∂µ

(
e−iαψ(x)

)
= ψ̄(x)∂µψ(x)− iψ̄(x) (∂µα(x))ψ(x).

(2.4)

It is the second term that ruins the invariance. To restore the symmetry of the Lagrangian

the partial derivative ∂µ is replaced by a gauge covariant derivativeDµ, which transforms as

Dµψ(x)→ [Dµψ(x)]′ = e−iαDµψ(x). (2.5)

�ereby the term ψ̄(x)Dµψ(x) is gauge invariant, particularly the action of the covariant

derivative on the �eld leaves the transformation of the �eld unaltered. �e covariant deriva-

tive is de�ned as

Dµψ(x) = (∂µ + ieAµ)ψ(x), (2.6)

where e is a free parameter which will be associated with the electric charge. �e gauge �eld

Aµ has a transformation property

Aµ(x)→ A′µ(x) = Aµ(x) +
1

e
∂µα(x). (2.7)

In order to make the gauge �eld a proper dynamical variable, the Lagrangian should be sup-
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plemented with terms containing derivatives of Aµ and the straightforward gauge-invariant

choice is

LA = −1

4
FµνF

µν , (2.8)

where Fµν is gauge invariant by itself and has the following form

Fµν(x) = ∂µAν(x)− ∂νAµ(x). (2.9)

�erefore the total Lagrangian for QED can be wri�en as

LQED = −1

4
Fµν(x)F µν(x) + ψ̄(x)(iγµDµ −m)ψ(x). (2.10)

Some facts about this Lagrangian can be highlighted: i) It does not contain a mass term for the

photon, because AµA
µ

is gauge non-invariant. ii) In QED the electron-photon interaction is

encoded in the covariant derivativeDµψwhich can be built from the transformation property

of the electron �eld. Generally speaking, the coupling of the photon to any ma�er �eld is

determined by its transformation property under the symmetry group. �is is known as

universality. iii) �ere is no self-interaction of the gauge �eld, which means that the photon

does not carry U(1) charge and without a ma�er �eld, the theory is a free �eld theory [34].

In an analogous way to QED, the gauge theories for the weak and the strong interactions

can be formulated. �e local symmetries for constructing weak and strong gauge theories

are non-Abelian SU(2)isospin and SU(3)colour symmetries, respectively. Unlike QED, in these

theories self-interactions of the gauge �elds are present.
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2.2 Field quantisation

�e quantisation of a classical �eld can be done in alternative ways. �e �rst one is canonical
quantisationwhich is de�ned in the Hamiltonian formalism. In the canonical quantisation the

�eld φ(~x) and its momentum conjugate π(~x) are operator valued functions of space obeying

the equal time commutation relations,

[φ(~x), φ(~y)]∓ = [π(~x), π(~y)]∓ = 0,

[φ(~x), π(~y)]∓ = iδ(3)(~x− ~y),
(2.11)

where minus and plus signs for the commuting and anti-commuting �elds, respectively. Al-

though the mathematical formulation of this approach is more intuitive, the symmetries of

the underlying theory can not be seen explicitly in the Hamiltonian of a system. Moreover,

the quantisation of the gauge �elds is not straightforward in this formalism, because the

canonically conjugate variable to the gauge �eld Aµ,

Πµ ≡
∂L
∂Ȧµ

= −F0µ, (2.12)

has vanishing zeroth component, i.e. Π0 = 0. Consequently, the propagator of the gauge

�elds cannot be de�ned appropriately. �e problem can be solved by adding a gauge �x-

ing term to the Lagrangian and following the carefully de�ned procedure. Nevertheless, the

Feynman rules for calculating sca�ering amplitudes that involve gauge bosons are derived

more easily in the path-integral formulation. �e path-integral quantisation is based on the

Feynman’s path-integral formalism [35], which is a preferred method for relativistic �eld

theories, particularly the gauge theories. Since the fundamental quantity of the path inte-

gral quantisation is the Lagrangian, rather than the Hamiltonian, it explicitly illustrates all

symmetries of a theory. Moreover, the analogy between quantum �eld theory and statistical

mechanics is well revealed in this method. Despite these virtues, the path-integral formal-

ism cannot be accepted as a complete description of quantum �eld theories. �ere are some

shortcomings, namely Heisenberg operators and state vector space cannot be discussed di-

rectly. Also, in this framework the proof of ‘unitarity’ of the sca�ering matrix (S−matrix) is

not obvious because the customary physical in-state space is so restrictive that it is not an

invariant subspace of the S−matrix [36].
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2.2.1 Path-integral formalism

In the Feynman path-integral formalism the transition amplitude is de�ned as the sum (a

functional integral) over all possible paths between initial and �nal states, weighted by the

exponential of i times the action for the particular path [37]. Here we will focus on the part

of the S−matrix element that involves only gauge �elds,

〈out|in〉 ∼
∫
D[A]eiS[A], (2.13)

where A = (Aaµ). �e measure D[A] =
∏

x,µ,a dA
a
µ(x) involves at each space-time point a

product over all group and vector components of the �eld Aaµ(x) and the action functional

S[A] =
∫
d4xL. �e Lagrangian for non-Abelian gauge theories with a symmetry group G

of dimension dimG (=number of group parameters) is

Lgauge(x) = −1

4
F a
µν(x)F a,µν(x), F a

µν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.14)

where fabc are the group’s structure constants and g denotes a coupling constant, the group

indices are a, b, c ∈ {1, . . . , dimG}. �eLgauge(x) can be decomposed into two parts,Lgauge =

L0 +L1, where L0 consists of quadratic terms inAaµ and de�nes the propagator function. L1

includes trilinear and quartic self-interactions of gauge �elds.

Using the partial integration, the L0 part of the integral in Eq. (2.13) could be given as∫
D[A]ei

∫
d4x[ 12Aaµ(gµν�−∂µ∂ν)Aaν], (2.15)

where the operator Kµν(x) = (gµν�−∂µ∂ν) is not invertible, because it has an eigenvector

with the eigenvalue which is equal to zero. �erefore the required condition for the existence

of the Gaussian integral, (AµK
µνAν) > 0, is not satis�ed and the result is singular.

�e cause of the issue is that the above integration is taken over a continuous in�nity of

physically equivalent �eld con�gurations. �e problem can be solved by isolating the part of

the functional integral, which counts each physical con�guration only once and it can be ac-

complished following the procedure proposed by L.D. Faddeev and V.N. Popov [38]. Namely,

some local functions of the gauge �elds, C{A;x} = (Ca{A;x}), should be introduced with

the following constraint

C{A;x} = c(x) (2.16)

as a gauge-�xing condition. Here c(x) = (ca(x)) are arbitrary functions of x. For example,

Ca{A;x} = ∂µAaµ, ca(x) = 0 corresponds to the Lorentz gauge. With this gauge �xing
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condition the path integral must be performed on the restricted paths which satisfy (2.16).

�is constraint may be explicitly taken into account by using the functional ∆[A],

∆[A] ≡
∫

[Dgδ (C{Ag;x} − c(x))]−1 , (2.17)

whereDg is an invariant measure of a group element g of the gauge symmetry. Ag is a trans-

formed version of A under the group element g. ∆[A] is invariant under the transformation

g, ∆[A] = ∆[Ag]. Furthermore, Eq. (2.17) as an identity is inserted in (2.13),∫
Dg
∫
D[A]∆[A]δ (C{Ag;x} − c(x)) eiS[A]. (2.18)

Since the integrand in (2.18) does not depend on g and the integral over

∫
Dg can be factored

out which is an in�nite constant. By this factorisation one obtains a well-de�ned transition

amplitude. Using the gauge-�xing condition enforces the measure of the path integral to be

deformed resulting in an appearance of ∆[A].

In order to derive Feynman rules, the ∆[A] in (2.18) should be exponentiated and the

Lagrangian should be rede�ned. Considering the gauge �eld transformation Ag ∼ A +

θaδaA and assuming thatDg ' Dθ for g ' 1, Eq. (2.17) with the condition C{A;x} = c(x)

can be rewri�en as

∆[A] =

[∫
Dθδ

(
δa
(
Cb{A;x}

)
θa − cb(x)

)]−1

= det
(
δa
(
Cb{A;x}

))
. (2.19)

�erefore, ∆[A] in Eq. (2.18) is replaced by the functional determinant,

det
(
δa
(
Cb{A;x}

))
=

∫
D[u]D[ū]e−i

∫
d4x ūa(x)δa(Cb{A;x})ub(x). (2.20)

where auxiliary �elds u = (ua(x)) and ū = (ūa(x)) and they are known as Fadeev-Popov
(FP) ghost �elds. �ey transform as scalars under the Lorentz group and belong to the adjoint

representation of the gauge group. �ese �elds are anti-commuting (which is necessary to

obtain det instead of 1/ det) and they have the property of Grassmann numbers.

�e delta function δ (C{A;x} − c(x)) in Eq. (2.18) also can be exponentiated if one aver-

ages it over the parameter c with weight exp
[
−i (ca)2 /2ξ

]
,∫

D[c]δ
(
Ca{A;x} − ca(x)

)
e−i

∫
d4x(ca)2/2ξ =

∫
DBei

∫
d4x
[
BaCa{A;x}+ ξ

2
BaBa

]
, (2.21)
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where a new scalar �eld B is introduced to linearise the gauge term, and ξ is a gauge-�xing

parameter [39]. Finally, the transition amplitude can be wri�en as

〈out|in〉 ∼
∫
Dg
∫
D[A]D[ū]D[u]D[B]ei

∫
d4xL

e� , (2.22)

where the e�ective Lagrangian Le� for a quantised gauge theory reads

Le� = Lfermion + Lgauge + L�x + Lghost, (2.23)

where fermion, gauge and gauge-�xing parts are given as

Lfermion = ψ̄i(x)
(
/Dij −miδij

)
ψj(x), (2.24)

Lgauge = −1

4
F a
µν(x)F a,µν(x), (2.25)

L�x = BaCa{A;x}+
ξ

2
(Ba)2 , (2.26)

Lghost = −ūa(x)δa
(
Cb{A;x}

)
ub(x). (2.27)

In the covariant global symmetric gauge,

Ca{A;x} = ∂µAaµ and δa
(
Cb{A;x}

)
= ∂µDab

µ , (2.28)

where the covariant derivative is Dab
µ = δab∂µ + gfabcAcµ. Doing the integration by parts,

the Lagrangian for the ghost �elds is changed as Lghost = (∂µūa(x))Dab
µ u

b(x), and this La-

grangian is local as long as Ca{A;x} is local in the �elds.

�e path-integral framework is appropriate for perturbative calculations. �e Feynman

rules can be obtained directly from the e�ective Lagrangian (2.23). �e non-physical parts of

the Lagrangian, L�x and Lghost, cancel out in the �nal results for physical observables such

as S−matrix elements.
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2.3 BRST symmetry

�e introduction of the gauge-�xing term into the theory destroys its manifest gauge invari-

ance. However, a symmetry of the e�ective Lagrangian without a�ecting gauge invariance

of the physical quantities can be rede�ned by an extension of the gauge transformation to

the ghost �elds, which is known as Becchi-Rouet-Stora-Tyutin (BRST) symmetry [21–23].

�e BRST transformation for gauge bosons and fermions with transformation parameter

δθa(x) = gδλua(x) is a gauge transformation and it is given by

δBRSTA
a
µ(x) = δλDab

µ u
b(x) = δλ

(
∂µδ

ab − gfabcAcµ(x)
)
ub(x) ≡ δλsAaµ(x),

δBRSTψi(x) = δλua(x)ig (T aψ(x))i ≡ δλsψi(x),

δBRSTψ̄i(x) = −δλua(x)ig
(
ψ̄(x)T a

)
i
≡ δλsψ̄i(x),

(2.29)

where δλ is an in�nitesimal, Grassmann-valued constant that anticommutes with the ghost

�elds ua(x) and ūa(x). �e BRST operator s is de�ned as the le� derivative with respect to

δλ of the BRST transformed �elds. �e above transformations leave the fermionic and gauge

parts of the e�ective Lagrangian invariant, i.e.,

δBRSTLgauge = δBRSTLfermion = 0. (2.30)

�e BRST transformation of the ghost �elds should be selected in the way that it must satisfy

δBRST

(
L�x + Lghost

)
= 0, (2.31)

and the following choices for ghost and the scalar B �eld are consistent with this require-

ment,

δBRSTu
a(x) = −δλ1

2
gfabcub(x)uc(x) ≡ δλsua(x),

δBRSTū
a(x) = δλBa ≡ δλsūa(x),

δBRSTB
a = 0 ≡ δλsBa(x).

(2.32)

�e proof of the statement in Eq. (2.31) is more involved, since transformation behaviours of

gauge-�xing and ghost terms are complicated, this is well-explained in Ref. [37].

In fact, BRST symmetry is a global symmetry and according to Noether’s theorem [40],

the invariance of the e�ective Lagrangian (2.23) under the BRST transformations implies the

existence of a conserved current JBRST

µ . �us, the charge that generates the BRST transfor-
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mation is

QBRST =

∫
d3xJBRST

0 (x). (2.33)

An important property of the BRST charge QBRST is the nilpotency,

Q2
BRST

= 0. (2.34)

�e consequence of this property is re�ected in the proof of δBRSTLe� = 0. �e physical state
|phys〉 should be de�ned such that it must satisfy the following condition

QBRST|ψ〉phys = 0. (2.35)

With the help of the nilpotency of QBRST it is possible to show that the space spanned by

|phys〉 has the positive semide�nite norm [36].

�e physical state condition in Eq. (2.35) ensures the unitarity of the physical S− matrix,

the S− matrix restricted on the physical space.

Actually, in the physical space the ghost �elds ua, ūa and the auxiliary �eld Ba
(the scalar

component of Aaµ) appear only together with longitudinal component, AaL, of Aaµ and this

combination has zero norm. �us ua, ūa, Ba
and AaL e�ectively decouple from the phys-

ical states. �e mechanism in which four unphysical components of �elds may appear in

the physical space only as a combination of zero-norm states is called the quartet mecha-

nism [39].

2.3.1 Slavnov-Taylor identities

In the path-integral formulation of the gauge theories the invariance of the local action and

the integration measure under �eld transformations allows to derive a set of useful identities.

�ese identities can be wri�en in either functional form or as relations between Green’s

functions. For non-Abelian gauge theories, the BRST invariance of the theory generates a

generalised version of the Ward identites [41] known as Slavnov-Taylor identities (STIs) [42,

43].

�ese identities are crucial for the proof of renormalisability of the gauge theories, as well

as to show the unitarity and gauge-independence of the sca�ering matrix.

�e generating functional of Green’s functions including the source terms for di�erent

�elds is

Z{J ,Ju,J ū,Jψ,J ψ̄,K,Ku,Kψ,K ψ̄} =

∫
D[A]D[u]D[ū]D[ψ]D[ψ̄]ei

∫
d4xLtot , (2.36)
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where the BRST invariant total Lagrangian is

Ltot = Le� + Ja,µAaµ + Jauu
a − ūaJaū + J iψψi − ψ̄iJ iψ̄

+Ka,µsAaµ +Ka
usu

a +Ki
ψsψi + (sψ̄i)K

i
ψ̄.

(2.37)

�e sources Jaū , Jau , J i
ψ̄

, J iψ andKa
are Grassmann-valued variables. �e fact that Ltot should

have a vanishing ghost number assigns a ghost number -1 forKa, Ki
ψ andKi

ψ̄
and -2 forKa

u .

�e BRST invariance of the total Lagrangian and the integration measure with the nilpo-

tency of BRST operator, i.e., s2Aaµ = s2ψ = s2ψ̄ = s2ua = s2Ca = 0 and s3ūa = 0 gives the

following relation

0 =

∫
D[A]D[u]D[ū]D[ψ]D[ψ̄]ei

∫
d4xLtot

×
∫
d4x

[
Ja,µsAaµ − Jausua − (sūa)Jaū − J iψsψi − (sψ̄i)J

i
ψ̄

]
.

(2.38)

By writing the �elds in terms of derivatives with respect to the corresponding sources,

Slavnov-Taylor identities for the generating functional T can be obtained,

0 =

∫
d4x

[
Jaµ

δ

iδKa
µ

− Jau
δ

iδKa
u

+
1

ξ
Ca

{
δ

iδJx
;x

}
Jaū − J iψ

δ

iδKi
ψ

− δ

iδK i
ψ̄

J iψ̄

]
T{J ,Ju,J ū,Jψ,J ψ̄,K,Ku,Kψ,K ψ̄},

(2.39)

where, T{J} = Z{J}/Z{0} and for connected diagrams, this expression is modi�ed by

using Tc = log T .

In order to obtain STIs for Green’s functions, one can di�erentiate (2.39) with respect to the

external sources and a�er that equate the sources to zero. As a result the following relation

is obtained

δBRST

δλ

〈
T
∏
l

ΨIl

〉
= s

〈
T
∏
l

ΨIl

〉
= 0, (2.40)

where T denotes the time-ordered product of �elds and ΨIl is a general notation for all

kinds of �elds, {gauge, ghost, fermion,. . .}, the index I comprises all indices of the actual

�elds including the space-time ones.

A generic form of the Slavnov-Taylor identities in Eq. (2.40) can be applied for the case

when there are one anti-ghost �eld and an arbitrary number of other physical and on-shell

�elds. Using the BRST transformation behaviour of the anti-ghost �eld (2.32) and considering
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the connection between states and asymptotic �elds, the following identity can be derived

0 =

〈
TCa

∏
l

Ψas,phys

Il

〉
, (2.41)

where the gauge-�xing function Ca = Ca{A;x}. If there are additional gauge-�xing terms,

with the help of the equation of motion for the anti-ghost �elds,

i

〈
T

δ

δūa(x)
X

〉
= −〈T (sCa(x))X〉 ,

where X stands for any product of �elds, the above identity can be generalised as〈
T

1

ξa
Ca(x)

(∏
m

Cam(xm)

)∏
l

Ψas,phys

Il

〉
c

= 0. (2.42)

Here, the subindex cmeans the connected Green’s functions. �ere are other identities which

are extracted from the BRST invariance of the e�ective action, which are called Lee identi-
ties [37]. �ese identities are used to derive physical �elds and their properties in the quan-

tised gauge theories, in analogy to the classical case where physical �elds and their properties

are extracted from the Lagrangian.
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2.4 Spontaneous symmetry breaking

It is the experimental fact that the mediators of the weak interactions are massive particles.

However, the underlying theory of this interaction, the gauge theory of the weak interac-

tion, does not allow to add explicit mass terms to the Lagrangian, since it destroys gauge

invariance of the theory. Also fermion masses can not be added directly to the e�ective

Lagrangian, for example in the electroweak theory the mass term for fermions ψ̄LψR is a

doublet representation of the SU(2) symmetry group and it is gauge non-invariant.

Currently, the only way to introduce masses of �elds without violating gauge invariance

is via the Higgs mechanism which is based on the spontaneously symmetry breaking (SSB) [44,

45]. �e idea behind the SSB originates from the elementary particle physics where Nambu

and Jona-Lasinio �rst introduced the concept in connection with the chiral symmetry [46].

First, consider a Lagrangian that is invariant under a continuous symmetry group G. Ac-

cording to Noether theorem, there exists a conserved charge, Q, that generates this symme-

try and commutes with the Hamiltonian, H . In the case of quantum mechanics, there is one

unique ground state |0〉, a state with lowest energy, which is a simultaneous eigenstate of H

and Q. On the other hand, in quantum �eld theory, it is possible to have a set of degener-

ate ground states which transform into one another under the group G. Although all these

ground states are equivalent, each of them selects a direction in representation space. By

choosing one of them as the ground state of the theory, one breaks the symmetry G spon-

taneously. �erefore SSB is characteristic for theories involving in�nite degrees of freedom,

such as quantum �eld theory [39].

A classic example of the spontaneously breakdown of a symmetry is the linear σ model
described by the Lagrangian

Lσ =
1

2
(∂µφi) (∂µφi)− V (φ) , V (φ) =

λ

4

(
φiφi −

µ2

λ

)2

, (2.43)

where φ = (φi) denotes real scalar �elds which form N−component real vectors and self-

interactions of these �elds are given by the potential V (φ). �e Lagrangian is symmetric

under the global symmetry group G = SO(N), the rotation group in N dimensions. �e

potential V (φ) has a non-zero local minimum,

φi0φi0 = vivi =
µ2

λ
= v2 > 0. (2.44)

�is expression de�nes only the norm of the ground state that is v and its direction is arbi-
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trary which is typically chosen to be pointing to N th direction,

φ0 = v = (0, ..., 0, v) . (2.45)

Now, the ground state is invariant under the orthogonal transformations of the �rst N − 1

coordinates, i.e., under the subgroup H = SO(N − 1). �e dimensions of the original group

G and its subgroupH are dimG = N(N−1)/2 and dimH = (N−1)(N−2)/2, correspond-

ingly. In accordance to the Goldstone theorem [46] the di�erence of dimG-dimH = N − 1

de�nes the number of massless Goldstone bosons. Furthermore, the �eld vector with small

excitations from the ground state can be wri�en asφ = (π, σ + v) whereπ = (π1, ..., πN−1)

are Goldstone �elds and σ is a massive �eld. With this �eld vector, the Lagrangian is

Lσ =
1

2
(∂µσ) (∂µσ)− 1

2

(
2µ2
)
σ2 +

1

2
(∂µπ) (∂µπ) + Lint (σ,π) , (2.46)

where Lint (σ,π) is the interaction Lagrangian of the σ and π �elds, and the mass of σ is√
2µ.

When N = 4, the group SO(4) is locally isomorphic to the group SU(2) × SU(2) which

characterises the chiral symmetry. In the SSB of the chiral symmetry the three Goldstone

bosons are associated with π0, π± pions and the massive �eld with the σ meson [37].

In similar manner the spontaneous breakdown of local symmetries can be formulated,

which generates masses for gauge bosons. For instance, one can consider the gauged version

of the Lagrangian in Eq. (2.43) with added gauge dynamics. �e gauge �elds minimally couple

to the scalar �elds, i.e., ∂µ → Dµ = ∂µ − igAaµT a,

L = −1

4
F a
µνF

a,µν +
1

2
(Dµφi) (Dµφi)− V (φ) , (2.47)

where F a
µν is the gauge �eld-strength tensor and the T a are the generators of G. �e form

of the potential V (φ) will not change. �e gauge �elds transform according to the adjoint

representation of the gauge group G and the scalar multiplet φ transforms according to a

real representation with generators T a.

A�er the potential gets non-zero vacuum expectation value v, the mass terms for the gauge

bosons are derived from the gauge invariant kinetic term of the scalar �elds,

1

2
(Dµvi) (Dµvi) =

1

2
g2
(
iT̂ âijvj

)(
iT̂ b̂ikvk

)
AâµA

b̂,µ =
1

2
M2

âb̂
AâµA

b̂,µ, (2.48)

where T̂ â, â = dimH + 1, . . . , dimG are generators of the coset space G/H .
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In general, the Lagrangian of the spontaneously broken gauge theories contains the in-

teractions of gauge bosons with unphysical Goldstone �elds. �is mixing can be eliminated

by properly selecting the gauge-�xing term. For example, in a generalised renormalisable

gauge (Rξ-gauge) [47, 48] the gauge-�xing Lagrangian has the following form

L�x = −
∑
v

(2ξv)
−1Fv̄Fv , Fv = ∂µV

µ
v − σvξvMvφv. (2.49)

Here Vv denotes a gauge �eld which has a mass Mv and its associated would-be-Goldstone

boson is φv. A coe�cient σv is equal to ±1 for real �elds and ±i for complex �elds and the

notation ξv is for the gauge-�xing parameter. �e index v simply indicates gauge bosons of

a theory, for example in the electroweak theory v can be charged or neutral weak bosons, or

a photon.

�e value of the gauge-�xing parameter ξ in Eq. (2.49) is de�ned in the range from 0 to∞:

i) ξ →∞ corresponds to the Landau gauge in QED; ii) ξ = 1 is the ’t Hoo�-Feynman gauge

where the gauge boson propagator is proportional to gµν and the unphysical scalar boson

propagator has a pole at k2 = M2
v . �e advantage of the ’t Hoo�-Feynman gauge is the

low degree of divergence of individual Feynman diagrams and the simple form of the vector

boson propagators. �e slight disadvantage is the presence of unphysical scalars and ghosts

which increase the number of diagrams that must be considered; iii) the unitary gauge or

U -gauge is obtained in the limit ξ → 0. In this gauge the unphysical scalar bosons do not

exist.

�e choice of the gauge does not a�ect an expression for physical quantities such as

S−matrix elements since they are independent on the gauge-�xing parameter. �e gauge

invariance of the S−matrix elements is one of the consequences of the following two fun-

damental relations: i) the S−matrix element is gauge-independent, namely
∂S
∂ξ
≡ 0; ii) the

propagator of a gauge boson Dµν and the propagator of its associated would-be-Goldstone

boson D satis�es the identity
∂
∂ξ
Dµν(k) ≡ −kµkν

M2
v

∂
∂ξ
D(k) [49].

2.4.1 STIs for spontaneously broken gauge theories

For an arbitrary fundamental spontaneously broken gauge theory the Slavnov-Taylor iden-

tities discussed in Sec 2.3.1 can be used in two distinct ways. �e �rst one is the Goldstone-
boson equivalence theorem, which relates the amplitude of the gauge bosons to the amplitude

of their associated would-be-Goldstone bosons in the processes involving high energetic,

longitudinal vector bosons [50–52]. �e second application of the STIs is that they allow to

derive de�nite sum rules, i.e., relations between coupling constants of physical �elds [20].
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Furthermore, let us consider the Slavnov-Taylor identity encoded in Eq. (2.41) with the

gauge-�xing operator given in Eq. (2.49). To be more precise, V µ
v can be chosen to be the

mass eigenstate of the charged electroweak gauge bosons, W±
. In momentum space the

Eq. (2.41) is

0 =

〈
T
(
kµW∓

µ (k)± ξWMWφ∓(k)
)∏

l

Ψas,phys

Il
(kl)

〉
, (2.50)

where k and kl denote incoming momenta. According to the Lehmann-Symanzik-Zimmermann

reduction formula theS−matrix element is obtained from the truncated Green’s functions [53].

�erefore one has to truncate the external �elds, put them on-shell, and restrict to physical

�elds. Although the truncation of the physical legs can be done straightforwardly, the trun-

cation of the gauge-�xing leg is more involved, because the gauge boson is contracted with

a derivative. A complete form of the propagator for W and φ bosons is

G∓(µν) =

(
GW∓W±
µν GW∓φ±

µ

Gφ∓W±
ν Gφ∓φ±

)
=

(
gTµνG

WW
T + gLµνG

WW
L ±kµGWφ

L

±kνGWφ
L Gφφ

)
, (2.51)

where the projectors on transverse and longitudinal parts are

gTµν =

(
gµν −

kµkν
k2

)
, gLµν =

kµkν
k2

. (2.52)

Writing the propagators of the gauge-�xing legs explicitly, Eq. (2.50) can be rewri�en as

0 =

(
kµ

±ξWMW

)T
G∓(µν)

〈TW±,ν∏
l Ψ

as,phys

Il

〉〈
Tφ±

∏
l Ψ

as,phys

Il

〉 
=

kν (GWW
L + ξWMWG

Wφ
L

)
±
(
k2GWφ

L + ξWMWG
φφ
)T 〈TW±

ν

∏
l Ψ

as,phys

Il

〉〈
Tφ±

∏
l Ψ

as,phys

Il

〉  ,

(2.53)

where truncated �elds are denoted by underlines and this expression yields

kν

〈
TW±

ν

∏
l

Ψas,phys

Il

〉
= ±MWA

±(k2)

〈
Tφ±

∏
l

Ψas,phys

Il

〉
. (2.54)

�e proportionality factor A±(k2) is de�ned as

A±(k2) = − k2GWφ
L + ξWMWG

φφ

MW

(
GWW
L + ξWMWG

Wφ
L

) . (2.55)
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Taking into account the relation between the propagator matrix, G∓µν , and the matrix of the

corresponding vertex functions, Γ∓µν
1
,

G∓(µλ)Γ
±,(λν) = i

(
δνµ 0

0 1

)
, (2.56)

it is possible to write a simpler form for the factor A±(k2), i.e.,

A±(k2) =
k2/ξW + ΓWW

L

MW

(
MW + ΓWφ

L

) =
Γ̃WW
L

MW Γ̃Wφ
L

. (2.57)

It is obvious that the factorA± is gauge-dependent. At leading order it equals 1 and one-loop

corrections are given by self-energies,

A±(k2) = 1− ΣWW
L (k2)

M2
W

− ΣWφ(k2)

MW

, (2.58)

where the self energies ΣWW
L and ΣWφ

are de�ned by spli�ing o� the tree-level contributions,

Γ̃WW
L = M2

W − ΣWW
L and Γ̃Wφ = M2

W + ΣWφ
.

In the case of the Z boson the similar result can be obtained with carefully treating the

mixing of the Z with the photon [37].

1
A Legendre transformation of connected Green’s function Tc{J}, i.e., for a �eld a(x) = δTc{J}

iδJ(x) the generat-

ing functional of vertex functions is iΓ{a} = −i
∫
d4xJ(x)a(x) + Tc{J}.
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2.5 Anomalies

A quantum anomaly is a phenomenon where a symmetry of the classical theory is destroyed

or modi�ed by radiative corrections. In the case of global symmetries, the corresponding

anomalies may have physical meaning. For example, an anomaly associated with axial or

chiral currents of global symmetries determine the matrix element for the decay of the neu-

tral πmeson: π0 → γγ. On the other hand anomalies associated with local gauge symmetries

violate the validity of the classical Ward identities which are important to prove renormal-

isability and unitarity of a theory. �us, in the presence of anomalies, unitarity and gauge

invariance of the S−matrix are not preserved. �is means that anomalous theories are not

physically allowable.

In this section, we focus on the chiral or Adler, Bell and Jackiw (ABJ) [54, 55] anomaly

which states that the axial charge of a massless fermion is not conserved in the presence of

parallel electric and magnetic �elds. As a starting point, let us consider massless QED which

has both vector and axial symmetry. �e in�nitesimal action of the vector ψ → eiεψ and the

axial ψ → eiεγ5ψ rotations are

δψ = iεψ, δψ̄ = −iεψ̄, (2.59)

δψ = iεγ5ψ, δψ̄ = iεψ̄γ5 (2.60)

with corresponding currents

jµ = ψ̄γµψ, (2.61)

jµ5 = ψ̄γµγ5ψ, (2.62)

respectively. In the classical theory, according to Noether’s theorem both currents are con-

served, i.e., ∂µjµ = 0 and ∂µj
µ
5 = 0. However it is well-known that in the quantum theory

∂µj
µ
5 6= 0, instead

∂µj
µ
5 =

e2

16π2
εµνρσFµνFρσ, (2.63)

where Fµν is the electromagnetic �eld strength. �is is the expression for the chiral anomaly

and its derivation can be shown by either the perturbative method or the Fujikawamethod [56].

According to the Fujikawa approach, in the derivation of the Ward identity it is not enough

for the action to be invariant under a symmetry: the path integral measure must also be

invariant. Namely, for fermions the measure

∫
DψDψ̄ picks up a Jacobian factor when vari-

ables are changed, i.e., ψ → ψ′ and ψ̄ → ψ̄′. �e Jacobian of the vector transformation,
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Eq. (2.59), vanishes at the leading order in ε, because of the sign di�erence in the transforma-

tion behaviour of ψ and ψ̄ �elds. On the other hand, the Jacobian of the axial transformation,

Eq. (2.60), gives rise to the anomaly.

It can be noticed that the right-hand side of (2.63) is itself a total derivative, εµνρσFµνFρσ =

4∂µ (εµνρσAν∂ρAσ). Using this expression the result in Eq. (2.63) can be generalised straight-

forwardly for non-Abelian gauge theories with massless chiral fermions,

∂µj
µa
5 =

g2

8π2
εµνρσTr

[
T a
{
T b, T c

}](
∂µA

b
ν

)(
∂ρA

c
σ

)
, (2.64)

where g is a gauge coupling constant, T a−generators of the gauge group and the trace is

taken over group indices. In general, a chiral or Weyl fermion in a representation R con-

tributes a term to the anomaly proportional to the totally symmetric group factor

dabc(R) = Tr

[
T a
{
T b, T c

}]
. (2.65)

Furthermore, le� and right-handed fermions contribute to the anomaly with opposite signs.

�e requirement for anomaly cancellation is then

dabc(R) = 0. (2.66)

For example, in Sec. 5, we propose a dark ma�er model where we extend the SM gauge

group by an additional U(1)′ symmetry whose generator is denoted by Y ′. For this case, the

anomaly cancellation conditions read

SU(3)2
c × U(1)′ =⇒ Tr

[
{λa, λb}Y ′

]
= 0

SU(2)2
W × U(1)′ =⇒ Tr

[
{τa, τ b}Y ′

]
= 0

U(1)2
Y × U(1)′ =⇒ Tr

[
Y 2Y ′

]
= 0

U(1)Y × U(1)′2 =⇒ Tr

[
Y Y ′2

]
= 0

U(1)′3 =⇒ Tr

[
Y ′3
]

= 0

Gauge-gravity =⇒ Tr

[
Y
]

=
[
Y ′
]

= 0.

(2.67)

Here, Y is the usual hypercharge and generators of SU(3)c and SU(2)W groups are denoted

by λa and τa, respectively. In principle, there are two more conditions, SU(3)c × U(1)′2 and

SU(2)W ×U(1)′2, which are automatically satis�ed due to the traceless generators of SU(3)c

and SU(2)W groups.
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2.6 A generic extension of the standard model

In this section following Ref. [20] we discuss about a generic extension of the Standard Model

in an arbitrary number of heavy fermions (ψ), physical scalars (h), and vector bosons (Vµ)

whose masses are equal to or above the electroweak scale.

A part of the interaction Lagrangian comprising only heavy �elds is

Lint =
∑

f1f2s1σ

yσs1f̄1f2hs1ψ̄f1Pσψf2 +
∑

f1f2v1σ

gσv1f̄1f2Vv1,µψ̄f1γ
µPσψf2

+ i
6

∑
v1v2v3

gv1v2v3

(
Vv1,µVv2,ν ∂

[µV ν]
v3

+ Vv3,µVv1,ν ∂
[µV ν]

v2
+ Vv2,µVv3,ν ∂

[µV ν]
v1

)
+ 1

2

∑
v1v2s1

gv1v2s1 Vv1,µV
µ
v2
hs1 − i

2

∑
v1s1s2

gv1s1s2 V
µ
v1

(
hs1 ∂µhs2 −

(
∂µhs1

)
hs2

)
+ 1

6

∑
s1s2s3

gs1s2s3 hs1 hs2 hs3 + 1
24

∑
s1s2s3s4

gs1s2s3s4 hs1 hs2 hs3 hs4 .

(2.68)

Here the coe�cient σ ∈ {L,R} denotes the two chiralities of fermions, with chirality projec-

tion operators PL/R = (1∓ γ5)/2 and the indices fi, si, and vi denote the di�erent physical

fermion, scalar, and vector �elds, respectively, and run over all particles in a given multiplet

of the gauge group U(1)EM × SU(3)color. Spinor indices are suppressed in the notation. Note,

the three and four point interactions of scalars are not included in Ref. [20]. �e trilinear

couplings of scalars are relevant in the calculations of scalar mediated transition amplitudes

at one-loop level.

�e non-interacting part of the Lagrangian is given by the standard kinetic terms, an Rξ

gauge �xing term expressed in Eq. (2.49) for each massive vector, and a ’t Hoo�-Feynman

gauge-�xing term for the photon �eld. Particularly, the QED interaction follows from the

kinetic terms [57]:

Lkin ⊃ f̄ i /Dµf − 1
2
|Dµvν −Dνvµ|2 − 1

4
|Fµν + ieQv (v̄µvν − vµv̄ν)|2 + (Dµhs)

†(Dµhs) ,

(2.69)

where the covariant derivatives that act on a �eld f of charge Qf is

Dµf = (∂µ − ieQfAµ) f. (2.70)

With this choice the trilinear interactions with the photon �eld can be de�ned as

gσγf̄f = eQf , gvv̄γ = eQv and gγss̄ = eQs, (2.71)

where Qv and Qs denote the charge quantum numbers of the vector Vv,µ and the scalar hs,
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respectively, and the bar denotes the coupling with a charge conjugated �elds.

�e massive vectors Vµ in Eq. (2.68) are assumed to be gauge bosons of an arbitrary fun-

damental gauge symmetry and their masses are generated via the spontaneous symmetry

breaking. All coupling constants in the interaction Lagrangian are only the model-dependent

ones
2
; couplings of unphysical �elds such as the would-be Goldstone bosons associated with

the spontaneous symmetry breaking can be rede�ned in terms of other physical couplings

with the usage of the Slavnov-Taylor identities which will be discussed in the next section.

Owing to the U(1)EM× SU(3)color gauge invariance non-vanishing couplings can be given

only for index combinations which allow the �elds to form an uncharged singlet. For ex-

ample, a non-vanishing coe�cient yσ,abc
s1f̄1f2

implies the charge relation Qs1 +Qf2 = Qf1 , and

yσ,dbc
s1f̄1f2

T es1,da + yσ,abd
s1f̄1f2

T ef2,dc = T ef1,bdy
σ,adc

s1f̄1f2
. (2.72)

In addition, the hermiticity of the Lagrangian imposes restrictions on the couplings. For

example, one can express the couplings of negatively charged scalars and gauge bosons to

fermions through the couplings of the corresponding positively charged particles, particu-

larly

yσs1f̄2f1 =
(
yσ̄s̄1f̄1f2

)∗
, gσv1f̄2f1 =

(
gσv̄1f̄1f2

)∗
,

gv1v2s1 = (gv̄1v̄2s̄1)
∗ , gv1s1s2 = − (gv̄1s̄2s̄2)

∗ , gv1v2v3 = − (gv̄1v̄2v̄3)
∗ ,

(2.73)

Without additional constraints, the Lagrangian of Eq. (2.68) does not describe a renormalis-

able quantum �eld theory and cannot be used to derive predictions for physical processes

that are �nite and gauge independent. �e necessary constraints arise from using the Slavnov

Taylor Identities (STIs) derived in Ref. [20]. It is observed that these STIs are su�cient to con-

strain the relevant couplings for ∆F = 1 �avour changing transitions that are generated at

one-loop order. In addition, the STIs determine the unphysical Goldstone couplings in terms

of the physical couplings. For instance, the Feynman rule of the photon interactions can be

read of from the generic Lagrangian by replacing appropriate scalar �elds s by φ and noting

that the STIs derived in Ref. [20] imply gvv̄γ = gγφφ̄. �is allows us to express all contributions

of Goldstone bosons in terms of physical couplings.

2
�e couplings in (2.68) are de�ned such that the Feynman rules are given, a�er multiplication by a factor of

i, in terms of the usual Lorentz structures in the conventions of FeynArts [58].
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2.6.1 Sum rules

In order to derive sum rule relations between coupling constants we use the Slavnov-Taylor

identities for the truncated Green’s functions with one or more gauge-�xing functions [20].

When more than one gauge-�xing term is considered the truncation of the gauge-�xing

legs will not cause di�culties, because the A(k2) factor is equal to one at tree level as it is

discussed in Sec. 2.4.1.

Futhermore, we can use the STIs derived in Ref [20] for one, two and three gauge-�xing

operators, separately. �is allows to express all possible three point coupling constants in-

volving would-be-Goldstones bosons φi in terms of couplings between physical �elds,

gv1φ2φ3 = σv2σv3
M2

v2
+M2

v3
−M2

v1

2Mv2Mv3

gv1v2v3 , gφ1φ2s1 = −σv1σv2
M2

s1

2Mv1Mv2

gv1v2s1 ,

gv1v2φ3 = −iσv3
M2

v1
−M2

v2

Mv3

gv1v2v3 , gφ1s1s2 = iσv1
M2

s1
−M2

s2

Mv1

gv1s1s2 ,

gv1φ2s1 = −iσv2
1

2Mv2

gv1v2s1 , gφ1φ2φ3 = 0,

(2.74)

yσφ1f̄1f2 = −iσv1
1

Mv1

(mf1g
σ
v1f̄1f2

− gσ̄v1f̄1f2mf2),

where mfi , Mvi and Msi denote masses of fermions, vectors and scalars, respectively. �e

coe�cients σv can have the values ±i for complex �elds and ±1 for real �elds.

Next we consider the STIs for four-point vertices which has two di�erent consequences.

Firstly, if the diagram contains a four-point coupling, the resulting relation allows to write

this coupling in terms of three-point couplings. In this manner, all four-point couplings with

at least one Goldstone or vector boson can be derived. For example, a four-point vertex of

vectors can be de�ned as a product of trilinear vector boson couplings,

gv1v2v3v4 =
∑
v5

(gv1v4v5gv2v3v̄5 + gv1v3v5gv2v4v̄5) , (2.75)

or a vertex of two vectors and two scalars can be wri�en as

gv1v2s3s4 =
∑
v5

gv1v5s4gv2v̄5s3
1

4M2
v5

−
∑
s5

gv1s3s5gv2s4s̄5 + symm (v1, v2) . (2.76)

�e second consequence of the STIs for four-point vertices is that if the diagram does not con-

tain a four-point coupling, the STIs provide additional relations among three-point couplings.

For example, the Lie-algebra structure of the vector and fermion couplings is represented by
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the following two sum rules∑
v5

(gv1v2v5gv3v4v̄5 + gv2v3v5gv1v4v̄5 + gv3v1v5gv2v4v̄5) = 0, (2.77)∑
v3

gσv3f̄1f2gv1v2v̄3 =
∑
f3

(gσv1f̄1f3g
σ
v2f̄3f2

− gσv2f̄1f3g
σ
v1f̄3f2

), (2.78)

where the �rst equation re�ects the Jacobi identity. To show this, let us consider generators

of a compact Lie group G which satisfy

[
T a, T b

]
= ifabcT c,

where a, b, c = 1, . . . ,dimG and fabc are the fully antisymmetric structure constants. �e

factor of i is taken to ensure that the generators are Hermitian: (T a)† = T a. Above commu-

tation relation with the identity

[
T a,
[
T b, T c

]]
+
[
T b,
[
T c, T a

]]
+
[
T c,
[
T a, T b

]]
= 0

implies that the structure constants obey [53]

fadef bcd + f bdef cad + f cdefabd = 0. (2.79)

Eq. (2.78) relates the structure constants of fermion and vector representations. Moreover,

this relation implies the unitarity of the quark mixing matrix for an universal and diagonal

gauge boson couplings to fermions.

�ere are two more sum rules which provide non-trivial constraints,

∑
s1

gv1v2s̄1y
σ
s1f̄1f2

=
∑
v3

M2
v1
−M2

v2

M2
v3

gv1v2v̄3

(
mf1g

σ
v3f̄1f2

− gσ̄v3f̄1f2mf2

)
+
∑
f3

(
−mf1

(
gσv2f̄1f3g

σ
v1f̄3f2

+ gσv1f̄1f3g
σ
v2f̄3f2

)
−mf2

(
gσ̄v2f̄1f3g

σ̄
v1f̄3f2

+ gσ̄v1f̄1f3g
σ̄
v2f̄3f2

)
+ 2mf3

(
gσ̄v2f̄1f3g

σ
v1f̄3f2

+ gσ̄v1f̄1f3g
σ
v2f̄3f2

))
,

(2.80)
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∑
s1

gv1s2s̄1y
σ
s1f̄1f2

= −
∑
v3

1

2M2
v3

gv1v̄3s2

(
mf1g

σ
v3f̄1f2

− gσ̄v3f̄1f2mf2

)
+
∑
f3

(
gσ̄v1f̄1f3y

σ
s2f̄3f2

− yσs2f̄1f3g
σ
v1f̄3f2

)
.

(2.81)

�e full set of sum rules can be found in [20].

2.6.2 The sum rules for the electroweak theory

�e standard model electroweak theory is a non-Abelian gauge �eld theory based on the

local SU(2)L × U(1)Y symmetry [59–61]. �e independent parameters of the theory are: g

and g′ that are SU(2)L and U(1)Y gauge coupling constants, correspondingly, µ2
and λ that

are parameters in the Higgs potential and the fermion-scalar Yukawa coupling constant, yi.

Another important parameter is the vacuum expectation value of the Higgs �eld, v which

can be expressed in terms of other free parameters. To describe the physical world the gauge

symmetry SU(2)L × U(1)Y should be broken spontaneously to U(1)EM and this breaking

generates masses for gauge bosons and fermions. Consequently, the above mentioned inde-

pendent parameters can be translated into di�erent sets of physical parameters, one choice

is {e,MZ ,MW ,mfi ,Mh} where e is an elementary charge and MZ/W are masses of weak

force mediators, mfi is a fermion mass and Mh is the mass of the Higgs scalar.

In this section we hypothesise that we know nothing about the design of the electroweak

theory, except its particle content which may be discovered experimentally, and we would

like to show that all coupling constants of the theory can be derived using the sum rules enu-

merated in Sec. 2.6.1. �e boson sector consists of massive W and Z vectors and a massless

photon γ. Also, in order to obtain meaningful solutions of the STIs we need an electrically

neutral scalar boson, h. We also consider only two types of fermions denoted by f1 and

f2, and it is assumed that they are chiral fermions and W−boson talks only to le�-handed

fermions. �e electric charges of fermions and W boson are denoted by Qfi = eqfi and

QW = eqW , respectively, and in our convention qf1 = +1 and qW = +1. In addition the

masses of W and Z bosons are �xed by the following relation

c =
MW

MZ

, (2.82)

for now the nature of the constant ‘c’ is unknown. �e �rst observation is that there are no

three-point couplings of the same-type vector bosons such as gZZZ̄ . �is statement can be
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proved by using the Eq. (2.78) for the case v1 = v2 → V ∈ {γ, Z,W},∑
v3=V

gσv3f̄1f2gV V v̄3 = 0 =⇒ gV V V̄ = 0. (2.83)

�e same sum rule, (2.78) gives another four more relations by choosing di�erent combina-

tions of gauge bosons for vi,

gLW+f̄1f2
gγW+W− = gLγf̄1f1g

L
W+f̄1f2

− gLW+f̄1f2
gLγf̄2f2 and γ → Z, (2.84)∑

Z,γ

gLZf̄1f1gZW+W− = gLW+f̄1f2
gLW−f̄2f1 and f1 ↔ f2. (2.85)

�e conservation of the electric charge is expressed in (2.84), i.e., QW = Qf1 − Qf2 . Next,

we consider Eq. (2.80) for three di�erent cases. In the �rst case v1 will represent the neutral

vectors,

0 =
M2

Z −M2
W

M2
W

gZW+W−g
L
W+f̄1f2

− gLW+f̄1f2
gLZf̄2f2

−gLZf̄1f1g
L
W+f̄1f2

+ 2gRZf̄1f1g
L
W+f̄1f2

and (Z → γ) .

(2.86)

In the remaining two cases s1 is taken to be the physical scalar, h, that couples to fermions

only diagonally,

ghW+W−y
L
hf̄1f1

= −mf1g
L
W+f̄1f2

gLW−f̄2f1 and (f1 ↔ f2) , (2.87)

ghZZy
σ
hf̄1f1

= −2mf1

(
gσZf̄1f1 − g

σ̄
Zf̄1f1

)2

and (f1 ↔ f2) , (2.88)

where σ ∈ {L,R} and σ̄ denotes �ipped chirality. From Eq. (2.80) we can see that if s1 is the

SM Higgs, h, and f1/2 were vector-like fermions, which have interactions with vector bosons

as gσ
vf̄ifi

= gσ̄
vf̄ifi

(i = 1, 2), we get the following relation

ghv1v2y
σ
hf̄ifi

= 0

which implies either ghv1v2 = 0 or yσ
hf̄ifi

= 0, or both of them zero. �us, vector-like fermions

have Dirac masses straightforwardly, and no need to implement the Higgs mechanism.

Furthermore, we use Eq. (2.81) with the choice s2 = h and obtain the following relations,

0 = − mf1

2M2
W

ghW+W−g
L
W+f̄1f2

− yLhf̄1f1g
L
W+f̄1f2

, (2.89)
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0 = − mf1

2M2
Z

ghZZ

(
gσZf̄1f1 − g

σ̄
Zf̄1f1

)
− yσhf̄1f1

(
gσZf̄1f1 − g

σ̄
Zf̄1f1

)
and (f1 ↔ f2) . (2.90)

From these relations it is possible to see that the masses of vector bosons are proportional to

their interactions with the scalar h,

ghW+W−

ghZZ
∝ M2

W

M2
Z

≡ c2. (2.91)

Finally, we would like to use equations (2.75)-(2.76) to write four-point vector boson inter-

actions in terms of triple vector couplings,

gW+W+W−W− = g2
AW+W− + g2

ZW+W− , gW+W−ZZ = −g2
ZW+W− , (2.92)

gW+W−AZ = −gAW+W−gZW+W− , gW+W−AA = −g2
AW+W− . (2.93)

In a similar way, the vector-scalar couplings can be expressed as

gZZhh =
1

2M2
Z

g2
hZZ , gW+W−hh =

1

2M2
W

g2
hW+W− . (2.94)

Further, using the above relations between coupling constants, we would like to give explicit

forms of each coupling constant. Particularly, couplings in the fermion sector are

gLZf̄1f1 = − 1

c
√

1− c2

((
1− c2

)
Qf1 −

1

2
QW

)
, gRZf̄1f1 = −

√
1− c2

c
Qf1 , (2.95)

gLZf̄2f2 = − 1

c
√

1− c2

((
1− c2

)
Qf2 +

1

2
QW

)
, gRZf̄2f2 = −

√
1− c2

c
Qf2 , (2.96)

gLW+f̄1f2
gLW−f̄2f1 =

1

2 (1− c2)
Q2
W , (2.97)

yσhf̄1f1 = − QW

2
√

1− c2

mf1

MW

and (f1 → f2) , (2.98)

where le�- and right-handed Yukawa-type couplings are the same. �e le�-handedZ−boson

couplings to f1 and f2 fermions come with di�erent signs of
1
2
QW which indicates that the

f1/2 fermions might be the components of a certain multiplet.
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In the boson sector the scalar h coupling with massive vectors are

ghW+W− =
QW√
1− c2

MW , ghZZ =
QW

c2
√

1− c2
MW , (2.99)

and the three- and four-point vector couplings are

gZW+W− =
c√

1− c2
QW , (2.100)

gW+W+W−W− =
1

1− c2
Q2
W , gW+W−ZZ = − c2

1− c2
Q2
W , (2.101)

gW+W−AZ = − c√
1− c2

Q2
W , gW+W−AA = −Q2

W , (2.102)

and four-point scalar-vector couplings are

gZZhh =
1

2

Q2
W

c2(1− c2)
, gW+W−hh =

1

2

Q2
W

1− c2
. (2.103)

Comparing these coupling constants with the corresponding standard model couplings, it

is obvious to see that the constant de�ned in Eq.(2.82) is identi�ed as a cosine of the weak

mixing angle, c = cos θW .
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3 FLAVOUR VIOLATING EFFECTIVE INTERACTIONS

In particle physics a low-energy approximation of interactions can be formulated using the

e�ective �eld theory (EFT) approach. An intuitive idea behind the EFT is that one can calcu-

late experimentally measurable quantities at a certain energy scale without having detailed

knowledge about a more fundamental theory, o�en referred as ‘full theory’. In EFT all modes

above the scale of consideration can be excluded by means of the ‘integrating out’3 [62]. For

example, quantum electrodynamics is an e�ective theory obtained from the standard model,

where all standard model particles are integrated out except a photon and an electron.

Another classical example of an e�ective �eld theory is the Fermi theory for the β−decay

of a neutron, n→ peν̄e, which had been formulated even when the scales of weak interaction

mediators were unknown [63]. �e quark-level decay amplitude in the ‘t Hoo�-Feynman

gauge is

A =

(−ig√
2

)2

Vud (ūγµPLd) (ēγνPLνe)

( −igµν
p2 −M2

W

)
, (3.1)

where g/
√

2 is W− boson coupling constant and Vud is an element of the CKM matrix. In

this transition the maximum momentum transfer is much smaller than the mass ofW−boson

(MW = 80.425(38) GeV), because the mass di�erence between neutron and proton is mn −
mp ' 1.29 MeV.

�erefore, in the limit p � MW the W propagator can be Taylor expanded with an ex-

pansion parameter p/MW ,

1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
. (3.2)

At leading order the above amplitude is

A =
i

M2
W

(−ig√
2

)2

Vud (ūγµPLd) (ēγµPLνe) +O
(

1

M4
W

)
, (3.3)

which is the same amplitude that can be obtained from the following local Lagrangian

L = −4GF√
2
Vud (ūγµPLd) (ēγµPLνe) , where

GF√
2
≡ g2

8M2
W

=
1

2v2
. (3.4)

GF denotes the Fermi constant and v ∼ 246 GeV is the scale of electroweak symmetry

3
�e term ‘integrating out’ is used in the path integral language, alternatively in the canonical operator for-

malism it is said ‘contracted out’ through the application of Wick’s theorem.
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breaking. It is obvious that in this Lagrangian W boson is not a dynamical variable anymore

and it is integrated out. In general higher order terms in the expansion (3.2) can be included

which give higher dimensional e�ective operators containing derivative terms. However

they are suppressed by powers of 1/M2
W .

In this chapter we will discuss some key concepts and methods which will be used in the

calculations of amplitudes for �avour changing neutral current transitions. Particularly, we

give the weak e�ective Lagrangian and relevant operators in Sec. 3.1. A�er that we will

discuss the GIM mechanism in Sec. 3.2 and the procedure how to convert tensor integrals

into scalar integrals is outlined in Sec. 3.3. �e relevant mathematical prescriptions that deal

with in�nities arising in the evaluation of loop integrals are reviewed in the last two sections.

Namely, dimensional regularisation is overviewed in Sec. 3.4 and in Sec 3.5 we will discuss

fermion �eld renormalisation that has direct relevance to our one-loop calculations.

3.1 Weak e�ective theory

�e weak decays of particles with masses in the range between a few hundred MeV and a few

GeV, for example the muons, the pions, the kaons, the neutron, charmed mesons like theD0
,

etc., can be studied in the e�ective �eld theory framework. Similarly, the sca�ering processes

that occur via exchanges of weak bosons can be e�ectively approximated. For instance, the

electron-neutrino sca�ering e−νe → e−νe at centre of mass energies well below the mass of

W−boson.

In general processes mediated by heavy particles such as electroweak gauge bosons in the

low momentum transfer limit can be described by the e�ective Lagrangian
4

Le� =
∑
i

Ci (µ)Oi (µ) . (3.5)

Here Oi are the relevant local operators which govern the processes in question and Ci de-

note the Wilson coe�cients which describe the strength with which a given operator enters

the Lagrangian and summarise the physics contributions from scales higher than the scale

of the interest µ.

�e decay amplitude that is produced by the e�ective Lagrangian can be viewed as a

product of two distinct parts that are separated by the scale µ: the e�ects of the short-
distance/high-energy physics are given with e�ective couplings Ci(µ), while the matrix ele-

ments 〈Oi(µ)〉 comprise e�ects of the long-distance/low-energy physics. �e scale indepen-

4
Note that we use an e�ective Lagrangian, as opposed to an e�ective Hamiltonian as in Ref. [24].
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dence of the amplitude implies that the µ−dependence of the couplings Ci(µ) must cancel

the µ−dependence of the matrix elements [64].

�e evaluation of the matrix elements are theoretical challenging in the sense that they

involve low energy strong interactions where the perturbation theory cannot be applied.

�ereby non-perturbative methods such as la�ice calculations, the 1/N expansion (N is the

number of colours), QCD sum rules, hadronic sum rules, or chiral perturbation theory can

be used. In the case of certainB−meson decays the Heavy �ark E�ective �eory (HQEFT)

and Heavy �ark Expansion (HQE) also turn out to be useful tools. However, there are

some exceptions, such as semi-leptonic rare decays, K+ → π+νν̄, KL → π0νν̄, B → Xsνν̄,

where the relavant matrix elements can be obtained from well measured leading decays or

calculated perturbatively, or as in the case of Bs → µµ̄ expressed fully in terms of meson

decay constants [24].

In the study of e�ective decays of hadrons the theoretical calculations of the experimen-

tal observables such as branching ratios or decay rates can be proceeded using the so-called

spectator model. According to the spectator model a decay of the given meson can be approx-

imated by the decay of its constituting partons [64]. For instance, the branching fraction of

the (M → F ) transition can be modelled as

Br (M → F ) ' Br (qM → qF ) , (3.6)

where qM and qF denote constituent quarks of the initial and �nal state mesons, respectively.

Indeed this is a naive approximation, since the hadronic uncertainties can be signi�cant. In

order to obtain theoretically clean quantities, it is customary to take ratios of branching

fractions.

�e decays where the �nal states are speci�ed are known as exclusive decays. However,

decays of heavy mesons like B meson are realised to be easier to study as inclusive decays

where a �nal state is taken as a sum of all accessible �nal states. �e branching ratio of the

inclusive B−meson decay can be computed in the expansion in inverse powers of mb with

the leading term described by the spectator model in which the B−meson decay is oriented

by the decay of the b−quark, the HQE [65, 66],

Br (B → X) = Br (b→ q) +O
(

1

m2
b

)
. (3.7)
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3.1.1 Matching

Analytic expressions for Wilson coe�cients can be obtained by performing the matching
of the full theory onto the e�ective theory. Speci�cally, it is required that the amplitude

calculated in the full theory Afull to be reproduced by the corresponding amplitude in the

e�ective theory Aeff ,

Afull = Aeff ≡
∑
i

Ci〈Oi〉. (3.8)

�e matching procedure is conducted by following the three main steps: i) evaluation of

the Afull where all particles including the heavy ones appear as dynamical degrees of free-

dom; ii) calculation of matrix elements of e�ective operators 〈Oi〉; iii) extracting the Wilson

coe�cients in accordance with the relation (3.8).

In this work we consider decays of mesons mediated by neutral currents. Speci�cally, we

will focus on transitions of down-type quarks that occur by exchanges of the SM photon and

Z−boson. �e operators we will focus on are the magnetic moment of the photon,

Obs7 = mb s̄σ
µνPRb Fµν , (3.9)

where σµν = i/2 [γµ, γν ] and Fµν is electromagnetic �eld strength tensor, and four-fermion

operators

O`9 = (s̄γµPLb)(¯̀γµ`), (3.10)

O`10 = (s̄γµPLb)(¯̀γµγ5`). (3.11)

It is well known that the leading order diagrams for �avour changing neutral currents start

at one-loop order due to the GIM mechanism (see Sec. 3.2). In order to perform the matching

procedure we calculate one loop �avour-violating photon and Z−penguin amplitudes in the

full theory with extended particle content (2.68). For the evaluation of loop-integrals it is

assumed that the masses and momentas of the external particles are very small compared to

masses and momenta of the loop particles. �erefore, the Taylor expansion of propagators

in the external momenta is applied,

1

(q + p)2 −m2
=

1

q2 −m2
− p2 + 2q.p

(q2 −m2)2 + . . . , (3.12)

where q is the integration momentum and p denotes the momentum of the external particle

and m is the mass of the propagating particle. Expanding propagators in this way allows us
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to deal with only massive, one-scale tadpole integrals which are known up to the four-loop

level [67–70].

A�er Taylor expansion we are le� with massive tensor tadpole integrals. To clean the

integration momenta from indices we used tensor decomposition discussed in Sec. 3.3. �e

obtained scalar integrals are regularised dimensionally, Sec. 3.4, and to remove divergencies

renormalisation of the external fermion legs is conducted, Sec 3.5.
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3.2 GIM mechanism

In the decays of hadrons and leptons that are mediated by charged currents, the strength

of the interaction is almost the same in both cases, and is approximately equal to the uni-

versal Fermi coupling constant, GF . �is is known as the quark-lepton universality (QLU)

of the weak interaction. Historically, there were experimental indications for the violation

of the QLU, speci�cally it was observed that the strangeness conserving, ∆S = 0, hadronic

currents are slightly weaker than the purely leptonic currents. Also, it was noticed that the

strangeness changing, ∆S = 1 decays such as Λ0 → pe−ν̄e have weaker currents in com-

parison with ∆S = 0 processes, e.g., n→ pe−ν̄e [71].

In order to address the question of the QLU breakdown in 1963 Cabibbo suggested to

rede�ne the quark iso-doublets so that the weak eigenstates become linear superpositions of

the strong interaction eigenstates [72],(
u

d′

)
=

(
u

d× cos θC + s× sin θC

)
, (3.13)

where θC is Cabibbo angle. �us, the quark involved in the weak interactions is the Cabibbo

rotated quark d′, instead of d.

�is formalism enabled to interpret di�erences between ∆S = 0 and ∆S = 1 decays and

∆S = 0 and pure leptonic decays for speci�c values of θC . With the changed basis the decay

rates read

Γ
(
µ+ → e+ν̄µνe

)
∝ g4

purely leptonic, (3.14)

Γ
(
n→ pe−ν̄e

)
∝ g4 cos2 θC ∆S = 0 semi-leptonic, (3.15)

Γ
(
Λ→ pe−ν̄e

)
∝ g4 sin2 θC ∆S = 1 semi-leptonic. (3.16)

A drawback of the Cabibbo formalism was the experimental observation of the absence of the

∆S = 1 neutral currents. Namely, the measured branching fractions for Γ (K+ → µ+νµ) /Γ =

(63.51± 0.18)% and Γ (K0
L → µ+µ−) /Γ = (7.2± 0.5)× 10−9

[71]. �is issue was resolved

by Glashow, Iliopoulos and Maiani (GIM) who proposed the existence of an another quark

�avour, the c-quark, in 1970 [61]. In the GIM scheme there is a second quark doublet, consist-

ing of the le�-handed c quark and a linear combination of s and d quarks that is orthogonal

to d′. Particularly,(
u

d′

)
=

(
u

d× cos θC + s× sin θC

)
,

(
c

s′

)
=

(
c

s× cos θC − d× sin θC

)
. (3.17)

41



�e neutral currents are de�ned for d′ and s′ quarks, not for d and s ones and the matrix

elements for the two families that contribute are〈
d′
∣∣JNC

∣∣ d′〉+
〈
s′
∣∣JNC

∣∣ s′〉 =
〈
d
∣∣JNC

∣∣ d〉 (cos2 θC + sin2 θC
)

+ (d→ s)

+
〈
s
∣∣JNC

∣∣ d〉 (cos θC sin θC − cos θC sin θC) + (d↔ s)

=
〈
d
∣∣JNC

∣∣ d〉+
〈
s
∣∣JNC

∣∣ s〉 . (3.18)

�erefore, there are no leading order transitions involving down and strange quarks and

the neutral weak current couples only diagonally in the fermion types. Accordingly, �avour

changing neutral current transitions receive only loop contributions.

�ereby, it can be concluded that the electroweak interaction eigenstates d′ and s′ are

orthogonal combinations of the quark mass eigenstates of de�nite �avour, d and s. �e

mixing of quarks are characterized by a single parameter θC ,(
d′

s′

)
=

(
cos θC sin θC

− sin θC cos θC

)(
d

s

)
. (3.19)

In an analogous way, the mixing for the three generations of quarks can be presented by the

complex Cabibbo-Kobayashi-Maskawa (CKM) matrix whose elements link mass eigenstates,

d, with weak eigenstates, d′,d
′

s′

b′

 = UCKM

ds
b

 ≡
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (3.20)

�e CKM matrix is unitary, i.e., U †
CKM
UCKM = UCKMU

†
CKM

= 1 with U †
CKM

= U−1
CKM

. For an

n×n unitary matrix there are n(n−1)/2 real angles and (n−1)(n−2)/2 phases. �erefore,

the CKM matrix can be expressed by the three generalised Cabibbo angles θi with i = 1, 2, 3

and a phase factor δ. �e presence of a phase in the mixing matrix is related to CP violation.

�ere are several representations of the CKM matrix and the best-known one among them

is the Wolfenstein parametrisation [73].

�e practical application of the GIM mechanism in �avour-changing neutral current (FCNC)

processes is related with the unitarity of the CKM matrix and masses of particles in the loops.

�e CKM factors in any FCNC process can be expressed as

Ck ∝
∑
i=u,c,t

λiF (xi) or

∑
i,j=u,c,t

λiλjF̃ (xi, xj),
(3.21)
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where the loop functions F, F̃ can be de�ned as a function of the mass ratios xi = m2
i /M

2
W ,

and the λi are given in the case of K and B meson decays and particle-antiparticle mixing

as

λi =


V ∗isVid K-decays, K0 − K̄0,

V ∗ibVid B-decays, B0
d − B̄0

d ,

V ∗ibVis B-decays, B0
s − B̄0

s .

(3.22)

�e unitarity property of the CKM matrix gives a relation

λu + λc + λt = 0, (3.23)

and in the limit xu = xc = xt = 0 it implies Ck = 0, and consequently FCNC decays

and transitions are absent. However, it is experimentally known that in nature xi 6= 0,

i ∈ (u, c, t), thus the GIM mechanism is broken at the one-loop level generating FCNC

processes. �e size of this breakdown, and respectively the size of FCNC transitions, depends

on the disparity of masses and the behaviour of loop functions [64].

In general in the calculation of decay amplitudes the unitarity relation (3.23) can be used

to omit mass-independent terms when the sum over loop fermions is taken.
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3.3 Tensor decomposition

�e tadpole tensor integrals can be reduced to scalar integrals with the help of the D− di-

mensional metric tensor [74]. In our calculations, loop integrals contain propagators with

di�erent masses, but in this section we consider integrals with the same masses for the

demonstration purpose. A general form of one-loop tensor integrals can be wri�en as

T a1a2...aln1n2...nln11...n1l...nl−1l
=

m−l·D−
∑
ai+2

∑
niπ−lD/2

∫ ∏
i d

Dqiqiµi,1 . . . qiµi,ai∏
i (q

2
i +m2)

ni
∏

i<j

(
(qi − qj)2 +m2

)nij . (3.24)

�e integral is symmetric under an exchange of indices, µi,j ↔ µi,k, and it will be propor-

tional to a sum of symmetrised products of metric tensors. �is symmetrised product of

metric tensors can be denoted by the number of metric tensors which contain indices of two

given loop momenta. For instance, if two metric tensors have an index of the �rst and second

loop momenta, their symmetrised product can be expressed as

gµ1,1µ2,1gµ1,2µ2,2 + gµ1,1µ2,2gµ1,2µ2,1 ≡
g [b1 = 0, . . . , bl = 0, b12 = 2, . . . , b1l = 0, . . . , bl−1l] .

(3.25)

Consequently, the general tensor integral can be wri�en as a sum of the metric tensor prod-

ucts times some constant

T a1...aln1...nl−1l
=
∑
bi

Fbig [b1, . . . , bl−1l] . (3.26)

�e constant Fbi is determined by contracting (3.26) with all products of metric tensors. �e

same result can be obtained by a contraction with products of metric tensors which can be

related by µi,j ↔ µi,k. By denoting g(1) [c1, . . . , cl−1l] the �st term of the sum of the products

of the metric tensor as a representative of the corresponding symmetry, the following set of

equations is obtained,

T a1...aln1...nl−1l
g(1) [c1, . . . , cl−1l] =

m−l·D−2
∑
ci+2

∑
niπ−lD/2

∫ ∏
i d

Dqi
∏

i (qi, qi)
ci
∏

i<j (qi, qj)
cij∏

i (q
2
i +m2)

ni
∏

i<j

(
(qi − qj)2 +m2

)nij ≡
Sc1,...,cl−1l
n1...nl−1l

=
∑
bi

g(1) [c1, . . . , cl−1l] g [b1, . . . , bl−1l]Fbi .

(3.27)
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�us the constant Fbi can be expressed by the inverse of the matrix

Mai
ci,bi

= g(1) [c1, . . . , cl−1l] g [b1, . . . , bl−1l] , (3.28)

where the indices bi and ci should satisfy the following condition:

2bi +
∑
j>i

bij = 2ci +
∑
j>i

cij = ai. (3.29)

�e above discussed procedure is independent on the speci�c form of the denominator, there-

fore one can apply the tensor decomposition by the following replacement of loop momenta

in the numerator of (3.24),∏
i

qiµi,1 . . . qiµi,ai →
∑
bi,ci

∏
i

(qi, qi)
ci
∏
i<j

(qi, qj)
cij
(
Mai

ci,bi

)−1
g [b1, . . . , bl−1l] . (3.30)

3.4 Dimensional regularisation

In the evaluation of radiative corrections to Green’s functions, to deal with the divergent inte-

grals one must cut o�, or regularise, the momentum integration to have a precise parametri-

sation of the singularities. �e cut-o� scale Λ will then appear in the divergent part, while

the �nite part will be cut-o� independent in the limit Λ→∞. �e requirement for the choice

of the cut-o� procedure is that it should not destroy the Lorentz invariance and symmetry

of the theory. �ere are two mostly used regularisation schemes: the covariant cut-o� and

dimensional regularisation [34]. Here, we will discuss the dimensional regularisation which

is employed in our loop calculations.

�e Feynman integrals can be dealt with conveniently by the Wick rotation which trans-

forms the Minkowski momentum space to the Euclidean momentum space, i.e., the time

component of the momentum is q0 = iq4 with q4 ∈ R.

In order to demonstrate the dimensional regularisation technique, let us �rst consider the

following four-dimensional integral de�ned over the Euclidean momentum space

I(D = 4) =

∫
d4q

(2π)4

1

(q2 +m2)2 ,

which is logarithmically divergent when q2 → +∞, but the integral is �nite for D < 4.

�erefore by lowering the dimensionality of the space, it is possible to make the above inte-

gral convergent.

In general there are no restrictions on D being an integer number, and the dimensionality
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of space can be generalised asD = 4−ε. �e concept of analytic continuation in the number

of space-time dimensions is the central idea in the technique of dimensional regularisation.

A�er changing the dimension, the above integral is evaluated as

I(D) ≡ m−D+4π−
D
2

∫
dDq

1

(q2 +m2)2
=

Γ(2− D
2

)

Γ(2)
, (3.31)

where Γ is Euler’s Gamma function, Γ(z) =
∞∫
0

tz−1e−tdt. Returning back to four dimensions

D = 4− ε, divergences are identi�ed as poles at ε→ 0.

However an application of the dimensional regularisation for amplitudes containing γ5,

or, equivalently, the totally antisymmetric tensor εαβµν
(
γ5 = 1/4!εαβµνγ

αγβγµγν
)

is prob-

lematic, since the commutation and trace rules for γ5 cannot be de�ned properly inD dimen-

sions. �is algebraic inconsistency can be handled by adopting one of the properly de�ned

schemes discussed in Ref. [75]. For example, the naive dimensional regularisation (NDR)

scheme where theD−dimensional metric tensor gµν is introduced which satis�es gµν = gνµ,

gµρg
ρ
ν = gµν , and gµµ = D. Consequently, the anti-commutation rules for the Dirac matrices

γµ and γ5 are de�ned as

{γµ, γν} = 2gµν , {γµ, γ5} = 0. (3.32)

Although in the NDR scheme the trace Tr(γ5γµγνγργσ) is not evaluated unambiguously, it is

the most widely used scheme in computations, because it is easy to implement into computer

programs.

In order to absorb divergent terms in the regularised integrals, we need to de�ne a renor-
malisation program. Since renormalisation is a very broad subject, we discuss only the �eld

renormalisation of the external fermion legs that has direct relevance to our calculation.
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Figure 1:A general form of �avour-changing neutral current transitions. �e grey blobs contain
all possible one loop corrections and V and S stands for vector and scalar bosons, respectively.
�e diagram a is for proper vertex corrections, while b and c diagrams depict couplings of V
and S bosons with external fermion legs.

3.5 Renormalisation

A general form of penguin diagrams responsible for FCNC transitions of fermions (quarks)

can be visualised as in Fig. 1. In our case, the grey blobs correspond to one-loop corrections.

Since our framework is formulated for the spontaneously broken theories, the renormalisa-

tion of the above diagrams can be conveniently done in the on-shell renormalisation program,

where renormalised parameters of the physical particles are directly linked to the physical

quantities [37, 76]. In the on-shell renormalisation, there are no contributions from b and c

diagrams because they vanish when quarks are on the mass shell. Consequently, one needs

to renormalise diagrams corresponding to the proper vertex, diagram a.

By adapting the counter-term approach we will discuss the derivation of the three-point

e�ective vertex �avour-changing counter-term, which absorbs all in�nites arising in the cal-

culation of �avour-violating penguin diagrams.

Let us �rst write the renormalisation transformation of fermion wave functions in the �rst-

order

fσi,0 = Z
1/2,f,σ
ij fσj =

(
δij +

1

2
δZf,σ

ij

)
fσj , (3.33)

where σ ∈ {L,R} denotes the chirality of fermions, where the fermion �elds fσj are in mass

eigenstates. �e on-shell renormalisation conditions are imposed to �x the renormalisa-

tion constants, requiring that the renormalised mass parameters of the physical particles are

equal to the physical masses, i.e., to the real parts of the poles of the corresponding propaga-

tors. �erefore, renormalisation conditions for the two-point functions for on-shell external

physical �elds can be de�ned as

R̃eΓ̂ff̄ij (p)uj(p)
∣∣∣
p2=m2

f,j

= 0,

lim
p2→m2

f,i

/p+mf,i

p2 −m2
f,i

R̃eΓ̂ff̄ii (p)ui(p) = ui(p),
(3.34)
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where u(p) is a spinor of the external �elds, and the superscript ‘hat’ denotes the renor-

malised quantities. Here R̃e takes the real part of the loop integrals appearing in the self-

energies but not of the elements of the quark-mixing matrix appearing there. �e �rst

condition �xes o�-diagonal counter-terms, while the second condition is for the diagonal

counter-terms. �e two-point fermionic functions can be decomposed into covariants,

Γ̂ff̄ij (p) = /pPLΓf,Lij (p2) + /pPRΓf,Rij (p2) + PLΓf,lij (p2) + PRΓf,rij (p2), (3.35)

where PL/R = (1 ∓ γ5)/2 is a chiral projection operator and lowercase l, r le�ers de-

note le�- and right-chiral scalar parts of the two-point functions, respectively. As a con-

sequence of the hermiticity of the Lagrangian, the fermionic two-point functions must sat-

isfy the following symmetry Γ̂ff̄ij (p) = γ0Γ̂ff̄†ij (p)γ0
, which implies Γf,σij (p2) = Γf,σ∗ji (p2) and

Γf,lij (p2) = Γf,r∗ji (p2).

In general the renormalised two-point functions entering in Eq. (3.34) may be wri�en as

a sum of tree-level contributions, unrenormalised self-energies (Σ) and counter-terms (δZ).

At the one-loop level the renormalised two-point functions relevant to the o�-diagonal �eld

renormalisation are

Γ̂f,σij (p2) = δij + Σf,σ
ij (p2) +

1

2

(
δZf,σ

ij + δZf,σ†
ij

)
, (3.36)

where the Σf,σ
ij (p2) function describes the /p dependent part of the o�-diagonal self-energy.

�e explicit forms of renormalisation constants for i 6= j are obtained by inserting Eq. (3.36)

into the renormalisation conditions in Eq. (3.34),

δZf,σ
ij =

2

m2
f,i −m2

f,j

R̃e

[
m2
f,jΣ

f,σ
ij (m2

f,j) +mf,imf,jΣ
f,σ̄
ij (m2

f,j)

+mf,iΣ
f,ς
ij (m2

f,j) +mf,jΣ
f,ς̄
ij (m2

f,j)
]
,

(3.37)

where Σf,ς
ij (ς = l/r) corresponds to the scalar part of the self-energy and the lines over σ/ς

indicate opposite chirality. �e hermiticity of the Lagrangian implies that

δZ†ij = δZij
(
m2
i ↔ m2

j

)
. (3.38)

Finally, knowing the explicit form of the non-diagonal counter-terms, it is straightforward
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to write the three-point e�ective vertex counter-term for i 6= j in the following way

δZσ
V f̄ifj

=
1

2

(
gσV f̄ifi δZ

f,σ
ij + gσV f̄jfj δZ

f,σ †
ij

)
,

δZσ
Sf̄ifj

=
1

2

(
yσSf̄ifi δZ

f,σ
ij + yσSf̄jfj δZ

f,σ̄ †
ij

)
,

(3.39)

where the �rst line is relevant to vector-penguins such as a photon or Z−boson penguins,

and the second line for scalar penguins such as the SM Higgs, S−penguin.

Note that since extensions of the SM could generically contain new sources of chiral sym-

metry breaking interactions, we have allowed the fermion masses not be proportional to

the Yukawa couplings, i.e., yf /∝mf . Using the expressions for the o�-diagonal two-point

counter-terms in Eq. (3.37) the e�ective vertex counter-terms become

δZσ
V f̄ifj

=
1

m2
i −m2

j

R̃e

{(
m2
j g

σ
V f̄ifi

−m2
i g

σ
V f̄jfj

)
Σσ
ij(µ

2)

+
(
gσV f̄ifi − g

σ
V f̄jfj

) [
mimjΣ

σ̄
ij(µ

2) +miΣ
ς
ij(µ

2) +mjΣ
ς̄
ij(µ

2)
]}

,

δZσ
Sf̄ifj

=
1

m2
i −m2

j

R̃e

{(
mjy

σ
Sf̄ifi
−miy

σ
Sf̄jfj

) [
Σς̄
ij(µ

2) +mjΣ
σ
ij(µ

2) +miΣ
σ̄
ij(µ

2)
]

+
(
miy

σ
Sf̄ifi
−mjy

σ
Sf̄jfj

)
Σς
ij(µ

2)
}
.

(3.40)

�e universality of the vector boson couplings to the same-type quarks, i.e., gσ
V f̄ifi

= gσ
V f̄jfj

ensures that the e�ective vertex δZσ
V f̄ifj

receives contributions only from momentum slashed

terms of the o�-diagonal self-energy. Similarly, if Yukawa couplings are yi ∝ mi, the vertex

δZσ
Sf̄ifj

is expressed by the scalar part of the o�-diagonal self energy.
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4 1-LOOP RESULTS FOR GENERIC MODELS OF NP

Recent experimental results on lepton �avour non-universality in rare B-meson decays [9]

and on the anomalous magnetic moment of the muon [10] have rea�rmed and strengthened

the pre-existing tensions with the corresponding standard model (SM) predictions. In the SM,

both processes are loop-induced; hence, it is reasonable to expect that physics beyond the

standard model (BSM) to also contribute at the one-loop level if present. �e SM contribution

to B-meson decays is well described by the weak e�ective Lagrangian [24]. �e same is true

for many of the SM extensions if they involve particles with masses above the electroweak

scale. However, matching onto the e�ective theory is tedious and generally has to be repeated

for every new model. �e tediousness is exacerbated if one wants to, additionally, check that

the result is gauge-independent and that all UV divergences properly cancel.

In this chapter, we consider generic extensions of the SM (see Sec. 2.6) with vectors, scalars,

and fermions with the additional assumption that the theory is perturbatively unitary and,

thus, renormalisable [17–19]. Once the particle content is speci�ed, the resulting weak e�ec-

tive Lagrangian can immediately be read o�. �e Wilson coe�cients depend on a minimal

set of physical parameters and are guaranteed to be �nite and gauge independent. �ese

properties follow from coupling constant sum rules derived from Slavnov-Taylor identities

as outlined in Sec. 2.6.1.

As an example, consider the SM contribution to the Wilson coe�cient C9 that is C`
9 =

1/2(C23`
LL+C23`

LR) in Eq. (4.3). Generically, the minimal �eld content in the loop that is required

to obtain a non-zero, �nite, result consists of two massive vector bosons, one charged and

one neutral, two charged fermions, and one neutral fermion – see the le� panel in Table 1.

Once the couplings of these states are speci�ed, and the sum rules among them are applied,

Eq. (4.18) directly gives the �nite and gauge-independent result,

C9 =
e2GFV

∗
tsVtb√

2

[
1

s2
W

FL,BZ
V − 4F γZ

V

]
, (4.1)

where FL,BZ
V and F γZ

V are loop functions that, in the SM, only depend on m2
t/m

2
W , see

Eq. (4.45). Here, GF is the Fermi constant, e is the positron charge, sW ≡ sin θW is the

sine of the weak mixing angle, and Vij are the elements of the Cabibbo-Kobayashi-Maskawa

matrix. �e procedure is exactly the same for any extension of the SM.

�ere are two important points to note here. First, the unitarity of the quark-mixing matrix

is guaranteed by the sum rule in Eq. (4.6). Furthermore, in the absence of tree-level �avour-

changing neutral currents (FCNCs), at least two fermion generations in the loop are required
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Field Mass U(1)Q Charge

W mW +1
Z mZ 0
ν 0 0
{u, t} {0,mt} +2/3

Coupling Value

{W, t̄, b} −1/
√

2 g Utb
{W ∗, s̄, t} −1/

√
2 g U∗ts

{W, ν̄, µ} −1/
√

2 g

Table 1: �e loop �eld content (le� table) and the couplings of those �elds (right table). �e
matrix Uij is the two-generation quark-mixing matrix. Note that since we only consider two
fermion generations inside the loop, the charged vector couplings need to be speci�ed only for
one generation.

to give a non-zero contribution. Second, and more remarkable, the same sum rule, Eq. (4.6),

�xes the couplings of the Z boson to the internal and external fermions and, consequently,

it is not necessary to specify them in the �rst place. In this way, the Z penguin, photon

penguin, and boxes are combined into gauge-independent loop functions that generalise the

penguin-box expansion of Ref. [77]. �e penguin-box functions X , Y , and Z of Ref. [77] are

X(xt) = C(xt, ξ)− 4B
(
xt, ξ,

1

2

)
= C(xt)− 4B(xt),

Y (xt) = C(xt, ξ)−B
(
xt, ξ,−

1

2

)
= C(xt)−B(xt), (4.2)

Z(xt) = C(xt, ξ) +
1

4
D(xt, ξ) = C(xt) +

1

4
D(xt),

where C and D are Z and photon penguin loop functions, respectively, and box loop func-

tions are denoted byB whose last argument de�nes �nal lepton states with the third compo-

nent of the isospin. �e functions X , Y , and Z are directly related to our functions FL,B′Z
V ,

FL,BZ
V and F γZ

V in the SM limit. Apart from an overall normalisation, the only di�erence is

that F γZ
V also incorporates the light particle contribution in the matching procedure. Our

functions generalise X , Y , and Z to extensions of the SM with an arbitrary number of mas-

sive vectors, scalars, and fermions while remaining gauge independent.

General expressions for the photon dipole have already been presented in Refs. [78–81],

while contributions of heavy new scalars and fermions to the b→ s`` transition were consid-

ered in Refs. [82–84]. Here, we extend the discussion to the contributions of the photon and

Z−penguins to the semileptonic current-current operators, with a special focus on proving

gauge invariance in the presence of heavy vectors, and eliminating couplings to unphysical

scalars such as would-be Goldstone bosons. Moreover, we provide easy-to-use code to obtain

the Wilson coe�cients in general perturbatively unitary models, it is available at
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�e chapter is organized as follows. �e e�ective ∆F = 1 Lagrangian and relevant sum

rules are discussed in Sec. 4.1 along with the dipole and current-current Wilson coe�cients.

�ere, we also explain the cancellation of the gauge dependent terms. In Sec 4.2 we give the

e�ective Lagrangian for particle-antiparticle mixings. �e gauge invariance of the �avour

changing scalar current is outlined in Sec. 4.3. In Sec. 4.4, we apply our setup to di�erent

models taken from the literature to illustrate how the one-loop matching contributions can

be easily obtained. �e explicit expressions for the loop functions in App. B.

4.1 The e�ective ∆F = 1 Lagrangian

�is section provides the explicit form of the e�ective Lagrangian relevant for leptonic,

semileptonic, and radiative B, Bs, and K meson decays for a generic renormalisable model.

We write the �ve-�avour e�ective Lagrangian that describes the dj → di transition, obtained

by integrating out the W and Z bosons, the top quark, as well as all heavy new particles at

the electroweak scale, as

δL∆F=1 =
1

16π2

∑
`∈{e,µ,τ}
σ,σ′∈{L,R}

Cij`
σσ′

(
d̄iγ

µPσdj
) (

¯̀γµPσ′`
)

+
1

16π2

∑
σ∈{L,R}

Dij
σ d̄iσ

µνPσdjFµν + h.c. .

(4.3)

�e operators in the �rst sum have the form of a product of a leptonic current and a FCNC.

�e second sum contains the photon dipole operators. Here, di = d, s, b denote the down-

type quark �elds and ` the lepton �elds. PL ≡ (1−γ5)/2 andPR ≡ (1+γ5)/2 are the chirality

projection operators, and σ and σ′ denote the chiralities of the incoming quarks and leptons.

We neglect all operators with mass dimension larger than six. �e explicit results for the

Wilson coe�cients are given below in Eqs. (4.14) and (4.18) - (4.20).

�e Wilson coe�cients of the e�ective Lagrangian are functions of the couplings of the

generic Lagrangian and the associated masses. �ey are determined by calculating suitable

Green’s functions: �e photon penguin diagrams (Fig. 2) contribute in part to the dipole

coe�cients Dij
σ , and in part to the current-current coe�cients Cij`

σσ′ via the equations of

motion of the photon �eld which is given by the operator

O36 =
e

g2
s

d̄iγ
µPσdj∂

νFµν +
e2

g2
s

(
d̄iγ

µPσdj
)∑

f

Qf

(
f̄γµf

)
. (4.4)
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dj di

γ

f1 f1

v1
dj di

γ

v1 v1

f1

dj dif1

v1

dj di

γ

f1 f1

s1
dj di

γ

s1 s1

f1

dj dif1

s1

Figure 2: Diagrams for the o�-shell dj → diγ Green’s function. �e third column diagrams
correspond to the o�-diagonal self-energy corrections. Physical scalars are denoted by dashed
lines, while the contribution of massive vector bosons and their related Goldstone bosons are
denoted by a wavy line.

In order to extract expressions for the Dij
σ and Cij`

σσ′ coe�cients, the full set of operators

which vanish by the equation of motion of the photon �eld need to be considered in the

matching procedure. �ese operators can be found in App. A.

�e Z−penguin and box diagrams (Fig. 5) contribute to the current-current coe�cients

Cij`
σσ′ . In the remainder of this section, we spell out the details of this calculation, with a focus

on obtaining a �nite and gauge-independent result. We incorporate the constraints from the

STIs by repeatedly applying the sum rules on the one-loop amplitudes.

4.1.1 dj → diγ

�e relevant diagrams for the dj → diγ process is depicted in Fig. 2, where o�-diagonal

self-energy corrections are needed for the renormalisation (see Sec. 3.5). �ese diagrams and

transition amplitudes are generated using the MATHEMATICA package FeynArts [58] with

a model �le (.mod �le) that is adjusted for our generic model. Particularly, new particles

are added and coupling constants are de�ned generically. In addition all unphysical cou-

plings of would-be-Goldstone bosons associated with loop vectors are replaced by relations

in Eq. (2.74). �e amplitudes are generated in the Rξ gauge with arbitrary gauge-�xing pa-

rameter ξ. Propagators of the would-be-Goldstone bosons are decomposed as

1

q2 − ξm2
V

=
1

q2 −m2
V

− (1− ξ) m2
V

q2 −m2
V

1

q2 − ξm2
V

, (4.5)

where mV denotes mass of associated gauge bosons. �is decomposition allows us to sep-

arate gauge-dependent and gauge-independent parts of the amplitude conveniently. �e

gauge dependent part will vanish in the Feynman gauge where ξ = 1. Moreover, the loop

integrals are Taylor expanded (3.12) to the second order in the external momenta. Further-
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more, we used the “unitarity sum rule” in Eq. (2.78)∑
v3

gσv3d̄idjgv1v̄2v̄3 =
∑
f1

gσv1d̄if1g
σ
v̄2f̄1dj

−
∑
f1

gσv̄2d̄if1g
σ
v1f̄1dj

, (4.6)

where summation over v3 is taken over neutral vectors, while f1 summation runs over

fermions that satisfy the charge conservation conditions. Se�ing Qdi = Qdj ≡ Qd implies

Qv3 = 0 and Qv ≡ Qv1 = −Qv̄2 . (4.7)

Additionally, this implies that the charges of the fermions f1 can either be

Qf1 = Qd −Qv or Qf1 = Qd +Qv, (4.8)

which respectively contribute to the �rst or second sum on the right hand side. Since we

assume that there is no �avour changing neutral currents at the tree level, gv3d̄idj = 0 for

any neutral vector v3, we �nd the following generalisation of the Glashow-Iliopoulos-Maiani

(GIM) relation

gσv̄2d̄if0g
σ
v1f̄0dj

= −
∑
f1 6=f0

gσv̄2d̄if1g
σ
v1f̄1dj

+
∑
f1

gσv1d̄if1g
σ
v̄2f̄1dj

. (4.9)

�is relation can be used to eliminate the couplings of any one member of the set of fermions

of charge Qf1 that generate �avour changing neutral currents through charged vector inter-

actions. For de�niteness, we always choose to eliminate the lightest of such fermions. �is

choice is just a convention which may have some phenomenological signi�cance. For exam-

ple, in the b→ s transition, the CKM factor of up quark is usually wri�en in terms of CKM

factors of charm and top quarks, this can be due to the fact that the CKM matrix is very close

to a unit matrix with o� diagonal terms that are small.

We remark that we can project the o�-shell photon Green’s function onto the o�-shell ba-

sis, including physical, equation-of-motion-vanishing, and BRST-exact operators (see App. A),

only a�er applying the sum rule (4.9). However, if the photon is taken on-shell then it is pos-

sible to do the matching without doing the GIM mechanism and this allows to obtain only the

dipole coe�cients,Dij
σ . In this way we can simultaneously determine the Wilson coe�cients

of the dipole operators and the photon penguin contribution to the ∆F = 1 current-current

operators. �e Wilson coe�cients of the dipole operators are independent of the gauge �xing

parameters, while the photon penguin contribution is not.

�e Wilson coe�cients then depend on the mass of the lightest fermion that can contribute
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in the loop, denoted by the index f0. �is particle could be either a light standard-model

fermion, such as an up quark, or a heavy fermion, such as a chargino. Here, the notion of

light and heavy is de�ned via the characteristic scale of the matching calculation, which is

determined by the masses of the heavy degrees of freedom in the UV theory. In this work we

assume that this is the electroweak scale, even though the formalism could be easily applied

to a matching to a di�erent e�ective theory.

A fermion mass of f0 that is considerably smaller than the matching scale requires an

appropriate e�ective theory counterpart (second diagram in Fig 3) that will account for the

infrared logarithm generated in the limit mf0 → 0 or x0 → 0 where x0 ≡ m2
f0
/M2

v1
.

dj di

γ

f0 f0

v1
dj di

γ

f0 f0

Figure 3: Diagrams with internal heavy vectors and light fermions. �e second diagram is
obtained a�er integrating out the heavy vector.

In the matching equation for the dipole operators the scalar loop functions that multiplies

Yukawa couplings of the same chirality must contain an odd number of chirality �ips as

explained in Sec. 4.1.3. �is implies that the infrared logarithm

√
x0 log(x0) vanishes in the

limit x0 → 0. �us, the e�ective theory contribution is vanishing in this limit and we do not

have to consider the scalar functions further. �e vector contributions of the dipole operator

have no infrared logarithm in the limit of the lightest internal fermion mass tending to zero.

Since F d
V ′ is multiplied with the internal fermion mass we only need to consider the limit

x0 → 0 for the FV function.

On the other hand the combination ofZ and photon penguin loop functions (see Sec. 4.1.4)

exhibits an infrared logarithm log x0 in the limit of a light internal fermion. �is logarithm is

cancelled through the e�ective theory contribution of the light fermion. A tree-level match-

ing of the vector boson contributions will generate a four-fermion Wilson-coe�cient that has

a non-vanishing one-loop matrix element whose projection δrij`σσ′ onto the tree-level matrix

element of the neutral current operator of Eq. (4.3) reads

δrij`σσ′ =
∑
v1f1

gσ
v̄1d̄if1

gσ
v1f̄1dj

M2
v1

e2Q`Qf

16π2

(
2

3
− 2

3
log

µ2

m2

)
, (4.10)

if we keep the dependence on the light fermion mass to regularise the infrared divergence
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and include the operator mixing of the tree-level operator to renormalise the ultraviolet pole.

Subtracting this e�ective theory contribution from our full theory result, the light mass de-

pendence will cancel out and we obtain the matching corrections in the limit of light internal

fermion masses.

4.1.2 dj → diZ

�e calculation of the dj → diZ Green’s function in the ’t Hoo�-Feynman gauge is performed

in [20] and we recalculated it with arbitrary gauge-�xing parameter, ξ. �e results are in

agreement in the limit ξ → 1. Here, we just discuss about sum rules which are used for the

renormalisation. �e relevant diagrams are the ones depicted in Fig. 2, where the photon leg

is replaced by the Z−boson, plus non-diagonal diagrams in loop particles. In addition, there

are mixed diagrams involving internal scalars, vectors, and fermions, simultaneously which

are shown in Fig. 4.

dj di

Z

v1 s1

f1
dj di

Z

s1 v1

f1

Figure 4: Diagrams for the dj → diZ Green’s function which involve mixes of vectors and
scalars.

In order to deal with divergent parts, the sum rules in Eqs. (2.78), (2.80) and (2.81) are

utilised. Particularly, they are solved for the case when σ = L and particles are chosen such

that v1 = Z , f2 = dj and f1 being loop fermions. Also, the universality of the Z−boson

couplings to external fermions is supposed, i.e., gσ
Zd̄idi

= gσ
Zd̄jdj

.

With this choice, Z− boson couplings with right-handed loops fermions can be expressed

in terms of other couplings. First, we solve Eq. (2.80) for a product of gR
Zf̄1f1

gL
v1f̄1dj

,

∑
s1

gZv1s̄1y
L
s1f̄1dj

=
∑
v2

M2
Z −M2

v1

M2
v2

gZv1v̄2g
L
v2f̄1dj

mf1

−mf1

(
gLv1f̄1djg

L
Zd̄jdj

+ gLZf̄1f1g
L
v1f̄1dj

+
∑
f2

gLZf̄1f2g
L
v1f̄2dj

)
+ 2mf1g

R
Zf̄1f1

gLv1f̄1dj +
∑
f2

2mf2g
R
Zf̄1f2

gLv1f̄2dj .

(4.11)
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If there are no �avour-changing scalars in a theory, we will use only this relation with

Eq. (2.78). In that case the le�-hand side of the relation would be zero.

Since there are internal scalars in our generic model, we need to consider the Eq. (2.81) as

well. More precisely, this equation is solved for the product of gR
Zf̄1f1

yL
s1f̄1dj

couplings,

∑
s2

gZs1s̄2y
L
s2f̄1dj

= −
∑
v2

1

2M2
v2

gZv̄2s1g
L
v2f̄1dj

mf1

+ gRZf̄1f1y
L
s1f̄1dj

+
∑
f2

gRZf̄1f2y
L
s1f̄2dj

− yLs1f̄1djg
L
Zd̄jdj

.
(4.12)

Using these two relations we expressZ−boson couplings with right-handed diagonal fermions

by other couplings.

Furthermore, Eq. (2.78) is applied to combine self-energy diagrams with proper vertex

diagrams in the loops with vectors and fermions. Namely, it is solved for gσ
v1f̄1dj

gσ
Zd̄jdj

,

∑
v2

gσv2f̄1djgZv1v̄2 = gσZf̄1f1g
σ
v1f̄1dj

+
∑
f2

(
gσZf̄1f2g

σ
v1f̄2dj

)
− gσv1f̄1djg

σ
Zd̄jdj

. (4.13)

A�er using these three relations we are le� with only divergent parts which are mass inde-

pendent constants. �eir cancellation is realised by performing the generalised GIM mecha-

nism that is derived in Eq. (4.9).
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4.1.3 Dipole Operator Coe�icients

Here and in the following, we write the Wilson coe�cient of the �ve-�avour e�ective La-

grangian as a product of the coupling constants and gauge-independent loop functions that

depend on various mass ratios de�ned by xab ≡ m2
a/m

2
b . �e matching coe�cients of the

dipole operators are immediately gauge independent. We �nd

Dij
R =

∑
s1f1

yR
s̄1d̄if1

M2
s1

(
mf1y

R
s1f̄1dj

F d
S(xf1s1) +mdjy

L
s1f̄1dj

F d
S′(x

f1
s1

)
)

+
∑
v1f1

gL
v̄1d̄if1

M2
v1

(
mf1g

R
v1f̄1dj

F d
V ′(x

f1
v1

) +mdjg
L
v1f̄1dj

F d
V (xf0v1 , x

f1
v1

)
)
,

(4.14)

where here and in all analogous equations below the sums run over all combinations of

indices that are allowed by charge and colour conservation. �e explicit form of the loop

functions is given in App. B.1. �e �rst line represents the contribution of internal fermions

and scalars. �e appearance of two right-handed Yukawa couplings in the �rst term requires

an odd number of mass insertions in the fermion line, hence the loop functionF d
S is multiplied

with the internal fermion mass mf1 . �e mass factor in the second term is supplied by the

Dirac equation acting on the external dj spinor (we neglect the lightermdi mass). �e second

line represents the e�ects of internal charged massive vector bosons and fermions. Now, the

�rst term proportional to two vector couplings of opposite chirality requires an odd number

of mass insertions, resulting in the factormf1 . �e second term, proportional to the function

F d
V , involves two vector couplings of the same chirality and receives a factor mdj from the

Dirac equation. Moreover, we have used Eq. (4.9), generating the explicit dependence on the

mass of the fermion f0. If there are fermions of charge Qf ′1
= Qd −Qv we have to add their

contribution through the sum

Dij
R → Dij

R +
∑
v̄1f ′1

mdj

M2
v1

gLv1d̄if ′1
gLv̄1f̄ ′1dj

F d
V̄ (xf0v1 , x

f ′1
v̄1) (4.15)

if the generalised GIM mechanism of Eq. (4.9) has already been applied to the sum of fermions

of charge Qf1 = Qd +Qv. �e modi�ed loop function F d
V̄

is obtained from F d
V by the simple

replacementQv1 → −Qv1 . Finally, let us note that we could further simplify the functionF d
V ′

using the sum rule Eq. (2.80) if tree-level neutral current and scalar interactions are absent.
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dj di

Z

f1 f2

v1

` `

dj di

Z

v1 v2

f1

` `

dj f1 di

` f3 `

v1 v2

dj f1 di

` f3 `

v1 v2

Figure 5: Diagrams that directly match onto the ∆F = 1 current-current operators. Here only
contributions of internal massive vector bosons and fermions are shown. In addition, there is
a �nite contribution from the o�-diagonal fermion self-energy diagram. �e contribution of
massive vector bosons and their related Goldstone bosons are denoted by a wavy line.

In this limit we have

mf0g
R
v1f̄0dj

gLv̄2d̄if0 = −
∑
f1 6=f0

mf1g
R
v1f̄1dj

gLv̄2d̄if1 , (4.16)

when we set mdj = mdi = 0. Our results agree with Ref. [80] if we apply our generalised

GIM mechanism to their results. Here we note that it is only possible to project the o�-shell

Green’s function a�er using the GIM mechanism. �e coe�cientsDij
L can be recovered from

Dij
R by simply interchanging the chirality of all coupling constants, i.e., by replacing yL··· ↔ yR···

and gL··· ↔ gR··· in Eq. (4.14).

4.1.4 Neutral-Current Wilson Coe�icient

Both the photon penguin diagrams of Fig. 2 and the Z penguin and box diagrams of Fig. 5

contribute to the matching conditions for the current-current Wilson coe�cients. �e ana-

lytic expression of each of the three diagram classes depends on the gauge �xing parameters

of the massive vector bosons in the loop. A renormalised result for the Z−penguin was de-

rived in Ref. [20] in ’t Hoo�-Feynman gauge using sum-rules derived from Slavnov-Taylor

identities. Here we will show how to apply these same sum rules to combine the ampli-

tudes of all three diagram classes into a �nite and gauge-parameter independent result for

the Wilson coe�cients. To this end, we split our �nal expression into three parts,

C̃ij`
Lσ = vij`Lσ +mij`

Lσ + sij`Lσ , (4.17)

as a sum of diagrams that in the loop contain only massive vectors and fermions, denoted

by vij`Lσ, massive vectors, massive scalars and fermions, denoted by mij`
Lσ, and massive scalars

and fermions, denoted by sij`Lσ. �e index L denotes the le� chirality of the external quarks,

while σ = L,R stands for the chirality of the external �eld `. Again, the expressions for C̃ij`
Rσ
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can be recovered from C̃ij`
Lσ by simply swapping the chirality of all coupling constants, i.e.,

by replacing yL··· ↔ yR···, g
L
··· ↔ gR··· and σ ↔ σ̄, where L̄ = R and vice versa.

�e contribution of massive vectors and fermions,

vij`Lσ =
∑
v1v2f1

gL
v̄2d̄if1

gL
v1f̄1dj

M2
v1

[
e2Q`δv1v2F

γZ
V (xf0v1 , x

f1
v1

)

+
∑
f3

(
gσv̄1 ¯̀f3

gσv2f̄3`F
σ,BZ
V (xf0v1 , x

f1
v1
, xv1v2 , x

f3
v1

)

+ gσv2 ¯̀f3
gσv̄1f̄3`F

σ,B′Z
V (xf0v1 , x

f1
v1
, xv1v2 , x

f3
v1

)
)]

+
∑

Zv1v2f1f2

gσ
Z ¯̀̀ g

L
v1f̄1dj

gL
v̄2d̄if2

M2
Z

{
δf1f2gZv̄1v2F

Z
V ′′(x

f0
v1
, xf1v1 , x

v1
v2

)

+ δv1v2

[
gLZf̄2f1F

Z
V (xf1v1 , x

f2
v1

) + gRZf̄2f1F
Z
V ′(x

f1
v1
, xf2v1)

]}
,

(4.18)

contains several gauge-independent loop functions. �e functions F γZ
V and F σ,B(′)Z

V are

the gauge-independent combinations of the photon penguin with the Z−penguin and the

Z−penguin with the box-diagrams, correspondingly. While all of the above functions in-

volve contributions from the lightest fermionic particle in the loop through our generalised

GIM mechanism, only F γZ
V will contain an infrared logarithm in the limit xf0v1 → 0. �is loga-

rithm is reproduced by a light-quark loop involving f0 in the e�ective theory. In the standard

model this corresponds to the leading logarithm associated with the mixing of the operator

Q2 into Q9 of Ref. [77]. �e loop function F γZ
V reproduces this leading logarithm if the con-

sidered model of new physics has the same light-particle content as the standard model. It

will then drop out in the di�erence of the standard model and the new-physics contribution

and we can consider the resulting di�erence the leading new-physics contribution.

�ere are two gauge-independent combinations for the Z-penguin and box diagram that

are distinguished by their fermion �ow. Charge conservation implies that the le� box dia-

gram in Fig. 5 contributes if

Qf3 = Q` +Qdj −Qf1 ,

while the right box diagram contributes if

Qf3 = Q` −Qdj +Qf1 .

In the SM, F σ,BZ
V and F σ,B′Z

V will then contribute to b→ sµ+µ− and s→ dν̄ν, respectively.
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�e loop functions FZ
V (′/′′) are the MZ-independent parts of the functions evaluated in

Ref. [20] and are only non-zero in physics beyond the standard model. In particular, we note

that all contributions with diagonal Z couplings vanish since FZ
V (′)(x, x) = FZ

V ′′(x, y, 1) = 0.

Finally, we give the contributions involving internal scalars, vectors, and fermions,

mij`
Lσ =

∑
s1v1f1f3

1

M2
v1

(
gLv̄1d̄if1y

L
s1f̄1dj

+ yRs̄1d̄if1g
L
v1f̄1dj

)
×
(
yσ̄s̄1 ¯̀f3

gσv1f̄3` + gσv̄1 ¯̀f3
yσs1f̄3`

)
FB
V S(xf1s1 , x

s1
v1
, xf3s1)

+
∑

s1v1f1Z

gσ
Z ¯̀̀

M2
Z

[
gLv̄1d̄if1y

L
s1f̄1dj

gZv1s̄1F
Z
V S(xf1s1 , x

f1
v1

)

+ yRs̄1d̄if1g
L
v1f̄1dj

gZv̄1s1F
Z
V S′(x

f1
s1
, xf1v1)

]
,

(4.19)

and only scalars and fermions,

sij`Lσ =
∑
s1s2f1

1

M2
s1

yLs1f̄1djy
R
s̄2d̄if1

×
{
δs1s2e

2Q`F
γ
S (xf1s1) +

∑
f3

(
yσ̄s̄1 ¯̀f3

yσs2f̄3` − y
σ̄
s2 ¯̀f3

yσs̄1f̄3`

)
FB
S (xf1s1 , x

s1
s2
, xf3s1)

}

+
∑

s1s2f1Z

gσ
Z ¯̀̀

M2
Z

yLs2f̄1djy
R
s̄1d̄if1

(
δs1s2g

L
Zd̄jdj

+ gZs1s̄2

)
FZ
S (xf1s1 , x

f1
s2

)

+
∑

f1f2s1Z

gσ
Z ¯̀̀

M2
Z

yLs1f̄1djy
R
s̄1d̄if2

(
gLZf̄2f1F

Z
S′(x

f1
s1
, xf2s1) + gRZf̄2f1F

Z
S′′(x

f1
s1
, xf2s1)

)
,

(4.20)

where in both cases we have a single box function that covers both fermion �ow directions,

albeit with a sign di�erence.
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Derivation of the pure vector part

In the following we will show how the combination of the results of Ref. [20] with our cal-

culation of the photon penguin will lead to gauge independent results for the Wilson coe�-

cients. Denoting the contribution of the photon penguin that involves a photon coupling to

the internal fermion and vector boson by Fγ and Fγ′ , respectively, we write
5

vij`Lσ =
∑

Zf1f2v1v2

gL
v̄2d̄if2

gL
v1f̄1dj

gσ
Z ¯̀̀

M2
Z

{
δv1v2

[
gLZf̄2f1F

Z
V

(
xf1v1 , x

f2
v1

)
+ gRZf̄2f1F

Z
V ′

(
xf1v1 , x

f2
v1

)]
+ δf1f2gZv2v̄1

[
FZ
V ′′

(
xf0v1 , x

f1
v1
, xv1v2

)
+
M2

Z

M2
v1

F
(2)
V ′′

(
xf0v1 , x

f1
v1
, xv1v2 , ξ

)]}
+
∑
f1v1

gLv̄1d̄if1g
L
v1f̄1dj

gγ ¯̀̀
1

M2
v1

[
gγf̄1f1Fγ

(
xf0v1 , x

f1
v1

)
+ gγv1v̄1Fγ′

(
xf0v1 , x

f1
v1
, ξ
)]

+
∑

f1f3v1v2

gLv̄2d̄if1g
L
v1f̄1dj

1

M2
v1

[
gσv̄1 ¯̀f3

gσv2f̄3`F
Lσ
B

(
xf0v1 , x

f1
v1
, xv1v2 , x

f3
v1
, ξ
)

− gσv2 ¯̀f3
gσv̄1f̄3`F

Lσ
B′

(
xf0v1 , x

f1
v1
, xv1v2 , x

f3
v1
, ξ
)]

(4.21)

where all functions are independent of the masses MZ arising from one light particle ir-

reducible diagrams involving neutral massive vector-particle propagators. �e functions

FZ
V (′,′′) have already been combined with the terms that originate from the o�-diagonal �eld

renormalisation, as described in Ref. [20]. �is combination is essential to arrive at a gauge-

independent result. In this context it is interesting to note that we can further use the

sum rules to write FZ
V in a simpler and more symmetric form. �e combination FZ

V ′′ +

(M2
Z/M

2
v1

)F
(2)
V ′′ agrees with the FV ′′ of Ref. [20] in the limit of ’t Hoo�-Feynman gauge; here

the gauge-parameter dependent part has been split o� into the loop functionF
(2)
V ′′ . �e depen-

dence on the mass of the lightest fermion f0 originates from the application of the generalised

GIM mechanism, Eq. (4.9), to our result. It implies that the functions F
(2)
V ′′ approach zero in

the limit mf1 → mf0 . �e functions Fγ and Fγ′ have been calculated here for the �rst time,

while the box functions FLσ
B(′) and FLσ

B(′) are related to the expressions of Ref. [20] in the limit

ξv = 1 in the following manner:

FLL
B (·) = −fd(·)− fd̃(·) , FLL

B′ (·) = −fd(·)− 4fd̃(·) , (4.22)

FLR
B (·) = −fd(·)− 4fd̃(·) , FLR

B′ (·) = −fd(·)− fd̃(·) , (4.23)

5
�e additional function argument ξ indicates that the loop function is gauge dependent. In the actual calcu-

lation, we kept the full dependence on the gauge parameters ξv for each heavy vector boson, as de�ned in

Eq. (2.49).
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where

fd(x
f0
v1
, xf1v1 , x

v1
v2
, xf3v1 , ξ) =

m2
f1
m2
f3

M2
v2

{
1

4
D̃0

(
mf1 ,mf3 ,mv1 ,mv2

)
− (M2

v1
+M2

v2
)D0

(
mf1 ,mf3 ,mv1 ,mv2 , ξ

)}
− (mf1 → mf0) ,

fd̃(x
f0
v1
, xf1v1 , x

v1
v2
, xf3v1) =M2

v1
D̃0

(
mf1 ,mf3 ,mv1 ,mv2

)
− (mf1 → mf0) ,

(4.24)

where D0 and D̃0 functions are given in [20]. For an arbitrary gauge-�xing parameters ξv,

only the fd function contains ξv-dependent terms. To combine the penguin and box con-

tributions of (4.21) we specify the sum rule (4.6) to the interaction of leptons with vector

bosons, ∑
Z

gσZ ¯̀̀ gZv2v̄1 = −δv̄1v2gσγ ¯̀̀ gγv2v̄1 −
∑
f3

(
gσv̄1 ¯̀f3

gσv2f̄3` − g
σ
v2 ¯̀f3

gσv̄1f̄3`
)
, (4.25)

which allows us to identify

F γZ
V (xf1v1) = gγf̄1f1Fγ

(
xf1v1 , x

f2
v1

)
+ gγv1v̄1

[
Fγ′
(
xf0v1 , x

f1
v1
, ξ
)
− F (2)

V ′′

(
xf0v1 , x

f1
v1
, 1, ξ

)]
(4.26)

and

F σ,B(′)Z
V (xf0v1 , x

f1
v1
, xv1v2 , x

f3
v1

) = FLσ
B(′)(x

f0
v1
, xf1v1 , x

v1
v2
, xf3v1 , ξ)− F

(2)
V ′′ (x

f0
v1
, xf1v1 , x

v1
v2
, xf3v1 , ξ) . (4.27)

Using the explicit form of the loop functions, it can then be shown that the resulting expres-

sions are independent of the gauge-�xing parameter.
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dj f1 di

di f2 dj

v1 v2

dj f1 di

di f2 dj

v1 s1

dj f1 di

di f2 dj

s1 v1

dj f1 di

di f2 dj

s1 s2

Figure 6: Diagrams that correspond to ∆F = 2 current-current operators.

4.2 The e�ective ∆F = 2 Lagrangian

�e particle-antiparticle mixings of neutral mesons proceeds to an excellent approximation

only through box diagrams as depicted in Fig. 6. �ese diagrams are �nite by themselves

and in this section we do not use any sum rules. In general the e�ective Lagrangian for the

K − K̄ and B0
d − B̄0

d , B0
s − B̄0

s mixings in the weak e�ective �eld theory can be given by

δL∆F=2 =
1

16π2

∑
σ∈{L,R}

Cij
σσ

(
d̄jγ

µPσdi
) (
d̄jγµPσdi

)
+

1

16π2

∑
σ 6=σ′

σ,σ′∈{L,R}

Cij
σσ′

(
d̄jγ

µPσdi
) (
d̄jγµPσ′di

)
,

(4.28)

where the operator on the �rst line is for PL × PL or PR × PR structures, while the second

operator is for the mixed chiralities.

Following Ref. [20] we can write a generalised form of the Wilson coe�cient for a generic

renormalisable model as

Cij
σσ′ = vijσσ′ +mij

σσ′ + sijσσ′ , (4.29)

where vijσσ′ and sijσσ′ denote contributions coming from vectors and scalars, respectively. mij
σσ′

contains mixed contributions from both vectors and scalars. Each of these contributions

can be presented by products of gauge invariant loop functions with coupling constants.

Particularly, the part with vectors and fermions in the loop is

vijσσ′ =
∑

v1v2f1f2

1

M2
v1

{
FB
V ′(x

f1
v1
, xv1v2 , x

f2
v1

)gσv̄2d̄if1g
σ
v1f̄1dj

(
gσ
′

v̄1d̄if2
gσ
′

v2f̄2dj
− gσ′v̄1f̄2djg

σ′

v2d̄if2

)
+ FB

V ′′(x
f1
v1
, xv1v2 , x

f2
v1

)gσv̄2d̄if1g
σ
v1f̄1dj

(
gσ
′

v̄1d̄if2
gσ
′

v2f̄2dj
− 4gσ

′

v̄1f̄2dj
gσ
′

v2d̄if2

)}
.

(4.30)

For the case when σ = σ′, the function FB
V ′′ = −FB

V ′′ . �e mixed contributions of scalars
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and vectors with fermions are

mij
σσ′ =

∑
v1s1f1f2

1

M2
v1

FB
V S′(x

f1
s1
, xs1v1 , x

f2
s1

)×(
gσv̄1d̄if1y

σ
s1f̄1dj

+ gσv̄1f̄1djy
σ̄
s1d̄if1

)(
yσ̄
′

s̄1d̄if2
gσ
′

v1f̄2dj
+ yσ

′

s̄1f̄2dj
gσ
′

v1d̄if2

)
.

(4.31)

�e scalar part is

sijσσ′ =
∑

s1s2f1f2

1

M2
s1

FB
S′(x

f1
s1
, xs1s2 , x

f2
s1

)yσ̄s̄2d̄if1y
σ
s1f̄1dj

(
yσ̄
′

s̄1d̄if2
yσ
′

s2f̄2dj
− yσ′s̄1f̄2djy

σ̄′

s2d̄if1

)
. (4.32)

�e loop functions for Cij
σσ can be obtained by changing σ′ → σ in Cij

σσ′ and de�ning

f ijσσ =
1

2
f ijσσ′

∣∣∣
σ′→σ

, where f ∈ {v,m, s}. (4.33)

Here, the loop functions are given without performing the GIM mechanism. �e explicit

expressions for them can be found in App. B.2.

For example, in the SM only the PL × PL structure is present and the Wilson coe�cient

C23
LL for the Bs − B̄s mixing a�er the GIM subtraction can be expressed as

C23
LL =

g4

8M2
W

V 2
tbV
∗2
ts ×{

FB
V ′

(
xmtMW

, 1, xmtMW

)
− FB

V ′′

(
xmtMW

, 1, xmtMW

)
+ FB

V ′(0, 1, 0)− FB
V ′′(0, 1, 0)

−FB
V ′

(
0, 1, xmtMW

)
+ FB

V ′′

(
0, 1, xmtMW

)
− FB

V ′

(
xmtMW

, 1, 0
)

+ FB
V ′′

(
xmtMW

, 1, 0
)}
.

(4.34)

In this derivation the masses of up and charm quarks are assumed to be zero and only the

top quark contribution is considered. �is results agrees with the de�nition of the S0(xt)

function given in [64].
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dj di

h

f1 f2

v1
dj di

h

v1 v2

f1
dj di

h

s1 s2

f1
dj di

h

s1 v1

f1

Figure 7: Diagrams that contribute to the �avour changing neutral scalar current processes. In
addition, there is a diagram similar to the last one where internal vectors↔ scalars.

4.3 Gauge invariance of scalar-penguin diagrams

In this section we will discuss the gauge invariance of the �avour changing processes me-

diated by neutral scalars such as the SM Higgs. �e e�ective Lagrangian can be wri�en as

L∆F=1 =
1

16π2

∑
σ,σ′∈{L,R}

Cs,ij
σσ′

(
d̄iPσdj

) (
¯̀
kPσ′`l

)
, (4.35)

where the index s in the Wilson coe�cient stands for ‘scalar’. Here, we do not give explicit

expressions for the Cs,ij
σσ′ , because the renormalisation of the h−penguin diagrams has not

been completed yet. �e relevant diagrams are depicted in Fig. 7. Feynman amplitudes that

contain the gauge �xing parameter ξ when evaluated in an arbitrary Rξ gauge come from

the loops with internal vector-fermion and mixed vector-scalar-fermion diagrams.

First, we would like to discuss the GIM-like mechanism that is needed for the cancellation

of mass independent terms in the amplitude. Considering that there are no tree level �avour

changing neutral scalar vertices, i.e., yσ
hd̄idj

= 0, we can derive generalised unitarity relation

by solving Eq. (2.80) with the following choice of particles: s1 → h and f1,2 being the external

fermions di,j , respectively. �e sum over v3 in the �rst line of the expression vanishes since

by the conservation of the electric charge v3 can only be a neutral vector in the coupling

g
σ/σ̄

v3d̄idj
. But in our formalism there is no tree level FCNC. �e remaining part with non-zero

masses of external fermions mdi/dj reads

0 =
∑
f1

[
−mdi

(
gσv2d̄if1g

σ
v1f̄1dj

+ gσv1d̄if1g
σ
v2f̄1dj

)
−mdj

(
gσ̄v2d̄if1g

σ̄
v1f̄1dj

+ gσ̄v1d̄if1g
σ̄
v1f̄2dj

)
+2mf1

(
gσ̄v2d̄if1g

σ
v1f̄1dj

+ gσ̄v1d̄if1g
σ
v2f̄1dj

)]
,

(4.36)

where the sum over internal fermions is applied. �e �rst two lines in this equation corre-
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spond to the usual unitarity relation derived from the unitarity of the quark-mixing matrix in

the SM for σ/σ̄ = L. �e last line comes with a mass insertion of the loop fermion and it can

be used in theories where both L andR chiralities of the fermions are allowed. Furthermore,

with the same choice of �elds and following the same steps as above, it is possible to obtain

the following expression from Eq. (2.81),∑
f1

(
gσ̄v1d̄if1y

σ
s1f̄1dj

− yσs1d̄if1g
σ
v1f̄1dj

)
= 0, (4.37)

which could be used to remove mass independent terms from the amplitudes when both

vectors and scalars with fermions run in the loop.

In general, the gauge dependency of h−penguin diagrams can be decomposed into two

parts,

F (ξ, xij, . . . ) = g(ξ, xij, . . . ) +M2
h × f(ξ, xij . . . ), (4.38)

where xij denotes mass ratios of loop particles and dots for other mass parameters, and Mh

is the mass of the external scalar boson. Only diagrams that include triple boson vertices

contribute to the f(ξ, xij . . . ) function, while the g(ξ, xij, . . . ) function gets contributions

from all the h−penguin diagrams, including the self-energy corrections.

In order to achieve cancellation of g(ξ, xij, . . . ), we can utilise Eq. (2.81) for the case s2 → h

and f2 → dj , ∑
s1

ghv1s̄1y
σ
s1f̄1d̄j

=−
∑
v2

1

2M2
v2

ghv1v̄2

(
mf1g

σ
v2f̄1dj

−mdjg
σ̄
v2f̄1dj

)
+ gσ̄v1f̄1djy

σ
hdjdj

− yσhf̄1f1g
σ
v1f̄1dj

,

(4.39)

where the sums over internal scalars s1 and vectors v2 are taken. Or, analogously s2 →
h, f1 → di which involves yσhdidi coupling constants.

�e deletion of the f(ξ, xij . . . ) function occurs only a�er including the box diagrams such

as the last diagram in Fig. 5. Firstly, the function f(ξ, xij . . . ) should be multiplied by the

propagator of the h−boson, 1/M2
h , and by the h−coupling with the external lepton lines,

yσ
h ¯̀̀ . For the case when two vectors run in the loop Eq. (2.80) is utilised with s1 → h, f1/2 → `

and m` = 0, ∑
h

ghv1v̄2y
σ
h ¯̀̀ =

∑
f2

2mf2g
σ̄
v̄2 ¯̀f2

gσv1f̄2`. (4.40)

�e sum over h could be appropriate if a theory consists of more than one neutral scalar. On

the other hand, for diagrams with mixed bosons such as a vector-scalar-fermion mixture, the
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expression extracted from Eq. (2.81) is applied,∑
h

ghv1s̄1y
σ
h ¯̀̀ =

∑
f2

(
gσ̄v1 ¯̀f2

yσs̄1f̄2` − y
σ
s1 ¯̀f2

gσv̄1f̄2`

)
. (4.41)

To conclude, by using the above combination of coupling constants it is possible to achieve

full gauge invariance of the amplitudes for the �avour changing transitions mediated by

neutral scalars.
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4.4 Applications to Beyond the Standard Model Phenomenology

To exemplify our formalism we will apply it to models of new physics that address the current

rareB-decay anomalies. In this context, it is standard to write vector and axial-vector current

operators; the Wilson coe�cients of this e�ective Lagrangian,

Leff =
1

16π2

{
C`

9(s̄γµPLb)(¯̀γµ`) + C`
10(s̄γµPLb)(¯̀γµγ5`)

}
, (4.42)

are related to our coe�cients of Eq. (4.17) via the linear transformation

C`
9/10 =

1

2

(
C̃23`
LR ± C̃23`

LL

)
. (4.43)

�e relation for the operators involving right-handed quarks can be inferred from the above

relation by replacing C23`
Lσ → C23`

Rσ .

If we are interested in deviations from the standard model background, we have to subtract

the standard model one-loop contribution from our complete new-physics calculation; hence,

we de�ne

C`NP
9/10 = C`

9/10 − C` SM
9/10 . (4.44)

�e standard model contribution follows directly from the vector contribution of Eq. (4.18)

and reads

C` SM
9 =

e2GFV
∗
tsVtb√

2

{
1

s2
W

FL,BZ
V (0, xtW , 1, 0)− 4F γZ

V (0, xtW )

}
,

C` SM
10 = −e

2GFV
∗
tsVtb√

2s2
W

FL,BZ
V (0, xtW , 1, 0) ,

(4.45)

where we have used the fact that FZ
V (′)(x, x) = 0 = FZ

V ′′(x, y, 1).
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4.4.1 A Z ′-Model with flavour o�-diagonal couplings

To demonstrate the utility of the expressions derived in Sec. 4.1 we begin by applying them

to a simple model [85] developed to address the b → s`` lepton �avour non-universality

anomaly.

In this model the standard model gauge group is enlarged as SU(3)c × SU(2)L × U(1)Y ×
U(1)′, where a new U(1)′ gauge symmetry is spontaneously broken by the vacuum expecta-

tion value (VEV) of a scalar �eld Φ, transforming as Φ ∼ (1, 1, 0, q′) under the above gauge

symmetry. �e model consists of a vector-like, colored Dirac fermion T ′ ∼ (3, 1, 2/3, q′),

whose charge under the U(1)′ gauge group is denoted by q′.

�e part of the Lagrangian relevant to U(1)′ can be wri�en as

LU(1)′ = |(DµΦ)|2 −
m2
φ

2ṽ2

(
Φ2 − ṽ2

2

)2

+ T̄ ′
(
i /D −MT

)
T ′ − 1

4
F ′2µν , (4.46)

where the covariant derivative is Dµ = DSM

µ + ig̃q′Z ′µ and g̃ is the gauge coupling of the

U(1)′. �e �eld strength for the U(1)′ gauge boson Z ′ is F ′µν = ∂µZ
′
ν−∂νZ ′µ. �e scalar �eld

is Φ = (φ+ ṽ) /
√

2, where φ corresponds to the physical scalar boson that acquires mass

mφ a�er breaking of U(1)′ by the VEV ṽ. �e mass of the Z ′ boson can be derived from the

kinetic term for Φ, i.e.,mZ′ = g̃q′ṽ.

All the SM �elds are singlets under U(1)′. �ere are only three renormalisable interactions

between the SM and the U(1)′ sector: the SM Higgs H coupling with Φ; the kinetic mixing

between U(1)′ and SM hypercharge, Bµν ; the Yukawa-type coupling of T ′ and Φ with the

SM right-handed up quarks uiR,

Lmix = −λ′ |Φ|2 |H|2 − εBµνF ′µν −
(
yiT T̄

′ΦuiR + h.c.

)
, (4.47)

where i = 1, 2, 3 is a generation index. Considering the fact that the masses of up and charm

quarks are signi�cantly small in comparison with the top mass, the Yukawa couplings of T ′

with the up and charm quarks can be neglected. Moreover, in order to keep the model simple

|ytT | � λ′, ε is assumed.

A�er the electroweak symmetry breaking, by diagonalising the t − T ′ part of the mass

matrix the basis is changed from the interaction eigenstates t, T ′ to the mass eigenstates

t, T , respectively.
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�e relevant couplings of the mass eigenstates to the gauge bosons are given by

Lint ⊃−
e√
2sW

Vti

[(
cLt̄+ sLT̄

)
/W

+
PLdi

]
+ h.c.

− e

2cW sW

[(
cLt̄+ sLT̄

)
/ZPL (cLt+ sLT )− 4

3
s2
W

(
t̄ /Zt+ T̄ /ZT

)]
− g̃q′

[(
sLt̄− cLT̄

)
/Z
′
PL (sLt− cLT ) +

(
sRt̄− cRT̄

)
/Z
′
PR (sRt− cRT )

]
− g̃µ̄ /Z ′

(
q′µ,V + q′µ,Aγ5

)
µ ,

(4.48)

where sL/R and cL/R are the sine and cosine of the le�-/right-handed t−T mixing angles. �e

last line in Lint describes a coupling of Z ′ with the lepton sector, speci�cally vectorial/axial

couplings q′µ,V/A with muon. With these couplings, Eq. (4.18) directly gives the contribution

to the Wilson coe�cients which are

CµNP
9 = s2

L

(
Cµ SM

9 (xtW → xTW )− Cµ SM

9

)
− e2GFV

∗
tsVtb√

2
s2
Lc

2
L

{
1− 4s2

W

s2
W

FZ
V (xtW , x

T
W )

+ 2 g̃2q′q′µ,V
M2

W

M2
Z′

(
2FZ

V (xtW , x
T
W ) +

sRcR
sLcL

[
FZ
V ′(x

t
W , x

T
W ) + FZ

V ′(x
T
W , x

t
W )
] )}

(4.49)

and

CµNP
10 = s2

L

(
Cµ SM

10 (xtW → xTW )− Cµ SM

10

)
+
e2GFV

∗
tsVtb√

2
s2
Lc

2
L

{
1

s2
W

FZ
V (xtW , x

T
W )

− 2 g̃2q′q′µ,A
M2

W

M2
Z′

(
2FZ

V (xtW , x
T
W ) +

sRcR
sLcL

[
FZ
V ′(x

t
W , x

T
W ) + FZ

V ′(x
T
W , x

t
W )
] )}

,

(4.50)

where we have subtracted the SM contribution. To evade collider constraints, one further-

more assumes that mT � mt. In this limit we �nd:

Cµ,NP
9/10 =

s2
R

2
q′q′µ,V/A

m2
t

M2
Z′

g̃2

e2

{
1

2
log
(
xTW
)

+
1

c2
R

+
3

2(xt − 1)
− 1− 1

2

(
3

(xt − 1)2
+ 1

)
log(xtW )

}
(4.51)

where the log(xTW ) agrees with the result in Ref. [85], while the remaining terms are new

and reduce the contribution to both C9 and C10 by 13(7)% for mT = 1(10) TeV.
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4.4.2 A U(1)Lµ−Lτ model with Majorana fermions

�e gauged U(1)Lµ−Lτ model was originally proposed in Refs. [86, 87] and has been studied

extensively in the context of lepton universality violation. In the lepton sector, the second

(third) generation le�-handed doublet and right-handed singlet, `µL, µR (`τL, τR) are charged

under the local U(1)Lµ−Lτ symmetry with charge 1 (-1). Here we focus on the model of

Ref. [88] where an additional Dirac fermion N and a coloured SU(2)L-doublet scalar q̃ ≡
(ũ, d̃)T , a singlet-scalar S are introduced. �e transformation properties of the new �elds

under the (SM gauge group)×U(1)Lµ−Lτ are N ∼ (1, 1, 0, Q) and q̃ ∼ (3, 2, 1/6,−Q), S ∼
(1, 1, 0, 2Q), where Q is the charge of U(1)Lµ−Lτ .

�e Lagrangian in the interaction basis can be expressed as

L = LSM −
1

4
F ′µνF

′µν + N̄
(
i /D −MN

)
N +

(
Dµq̃

†)(Dµq̃
)
−m2

q̃ q̃
†q̃ +

(
DµS

†)(DµS
)

−
∑
i=s,b

(
yiLq̄

i
Lq̃N + h.c.

)
−
(
f

2
N cNS† + h.c.

)
− V (H,S, q̃) ,

(4.52)

where F ′µν ≡ ∂µZ
′
ν − ∂νZ

′
µ is the �eld strength tensor for the U(1)Lµ−Lτ gauge boson Z ′.

�e charge conjugate state of N is denoted by N c
. �e down-type quarks in the Lagrangian

are assumed to be in the mass eigenstates. �e scalar potential V (H,S, q̃) contains the SM

Higgs doublet H and new scalars of the model, q̃ and S, and mixing terms between these

scalar �elds.

When the scalar S gets a non-zero VEV (vs), it mixes N and N c
states which are not mass

eigenstates. By diagonalising the mass matrix of N and N c
, the mass eigenstates are de�ned

as admixture of N and N c
, i.e., N± = (N ±N c) /

√
2. �e N∓ are two Majorana fermions

with masses m∓ = MN ∓ fvs/
√

2. �e N− state has Majorana phase π so that N c
− = −N−,

but N c
+ = N+.

A�er spontaneous symmetry breaking the relevant interactions in terms of the mass eigen-

states read

Lint ⊃−
gXQ

2

(
N− +N+

)
/Z
′
(N− +N+)− 1√

2

[(
ybLb̄L + ysLs̄L

)
d̃ (N− +N+) + h.c.

]
− i
(
gXQZ

′
µ + g

3− 2s2
W

6cW
Zµ

)[
d̃∂µd̃

c −
(
∂µd̃
)
d̃ c
]
− gX µ̄ /Zµ ,

(4.53)

where gX is the U(1)Lµ−Lτ gauge coupling constant, and y
s/b
L are the Yukawa couplings of
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the SM bo�om and strange quarks to d̃.

�e Z ′−penguin does not involve any SM particles and is lepton universality violating by

construction. �e complete one-loop new physics contributions to Cµ
9 can be read o� from

Eq. (4.20). Noting that the charge conjugated scalar d̃ c contributes in the sum of (4.20), we

�nd

CµNP
9 =

g2
XQy

b
Ly

s
L

4M2
Z′

 ∑
f1,f2=N±

{
FZ
S′(x

f1
d̃
, xf2

d̃
) + FZ

S′′(x
f1
d̃
, xf2

d̃
)
}
− 2

∑
f1=N±

FZ
S (xf1

d̃
)


− e2ybLy

s
L

m2
d̃

∑
f1=N±

F γ
S (xf1

d̃
) ,

(4.54)

where the �rst line represents the Z ′−penguin contribution and agrees with the results of

Ref. [88]. �e terms in the second line represent the lepton �avour universal new physics

contribution to C9 from the photon penguin which is new. Note that the photon penguin

decouples faster than the Z ′−penguin in the limit of large scalar mass md̃. �e Z coupling

to the down quarks cancels with the Z couplings to d̃ c in (4.20) so that the Z-penguin con-

tribution cancels. �e contribution to CNP

7,bs can be calculated from the general formula (4.14)

and is given by

CNP

7,bs =
1

mb

ybLy
s
L

2m2
d̃

∑
f1=N±

FZ
S′(x

f1
d̃

) , (4.55)

where the operatorObs
7 is de�ned in Eq. (3.9). Note that only one of the terms is present since

N is electrically neutral and therefore only the charged scalar, d̃ c, contributes.

Moreover, this model can be studied to explain the dark ma�er physics. A�er breaking the

U(1)Lµ−Lτ symmetry via the vacuum expectation value of the singlet-scalar �eld S, vs, the

Lagrangian in Eq. (4.52) still has a discrete Z2 symmetry due to the

(
f
2
N cNS† + h.c.

)
terms.

�e Z2 symmetry stabilises the lightest neutral Z2 odd particle, which could be N− in this

case. �e stable N− fermion can be viewed as a candidate for dark ma�er and its interaction

with the SM particles can occur through the Higgs portal or Z ′ boson exchange.
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Q1 q1 Q2 q2 Q3 q3 L1 l1 L2 l2 L3 l3 ΨQ,(L,R) Ψ`,(L,R) Φ H χ
QF 3 -1 2 0 0 0 -4 1 2 1 -2 -2 2 4 -2 0 1

Table 2: U(1)F family symmetry charges for the quarks and leptons, where Qi/Li denotes
le�-handed quark/lepton isospin doublets, qi/li stands for right-handed quark/lepton isospin
singlets and the family index i = 1, 2, 3. H indicates the SM Higgs doublet.

4.4.3 A model with vector-like fermions and neutral scalars

To give another application of our results, we consider a model which is aimed to explain

anomalies in both neutral and charged current processes by introducing a family symme-
try [89]. �e idea behind the family symmetry is that the origin of fermion masses and

mixings is through a spontaneously broken family symmetry in which the order parameters

for family symmetry breaking are the vacuum expectation values (vevs) of scalar (familon)

�elds, φi, that transform non-trivially under the family symmetry. Since in the SM masses

and mixings of fermions are not universal, the violation of the lepton universality could be

related to the observed fermion mass pa�ern.

�e model introduces an abelian family symmetry, U(1)F under which the three families

of known fermions are charged as demonstrated in Table. 2. New particles of the model

are SU(2)L doublet vector-like quarks ΨQ and leptons Ψ`, with the SM quantum numbers

ΨQ,(L,R) ∼ (3, 2, 1/6) and Ψ`,(L,R) ∼ (1, 2,−1/2), respectively. Also there are additional

two complex scalars: Φ ∼ (1, 1, 0) and SM singlet scalar χ. �e la�er one gets a vev and is

responsible for generating the hierarchical structure of the quark and charged lepton masses

and mixings.

�e U(1)F symmetry dictates the masses and mixing parameters of the quarks and charged

leptons when the symmetry is spontaneously broken. Particularly, fermion masses are gen-

erated via the terms consistent with the charge assignments shown in the Table. 2. �e

e�ective Lagrangian for the second and third family quark/lepton masses and mixings is

Lmeff ∝ Q̄3,Lq3,RH + Q̄3,Lq2,RH + Q̄2,Lq2,RH

(
χ

Mq

)2

+ Q̄2,Lq3,RH

(
χ

Mq

)2

+ L̄3,Ll3,RH + L̄2,Ll2,RH
χ

Mq

+ L̄2,Ll3,RH

(
χ

Mq

)4

+ L̄3,Ll2,RH

(
χ†

Mq

)3

+ h.c.,

(4.56)

whereO(1) coupling constants are suppressed, andMq are mediator masses associated with

additional vector-like states associated with the Frogga�-Nielsen mechanism [90]. Similarly,

the masses of light quarks could be generated in accordance with the same U(1)F family
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symmetry.

Moreover, the model generates the �avour charge in the scalar sector in addition to the

quark sector where the �avour charge is originated by the quark mixing. In order to demon-

strate this, another SM singlet scalar Φ̃ is added to the model, thus the relevant interaction

Lagrangian can be given as

Lint = ΓbQ̄3PRΦQΦ + Γ̃sQ̄2PRΦQΦ̃ + ΓµL̄2PRΦ`Φ + h.c., (4.57)

where the indices of the interaction strength constants Γf/Γ̃f indicate the types of fermions.

Adding the scalar Φ̃ has no impact on fermion masses and mixings in the model.

�e scalar mass eigenstates used in our calculations come from the mixing of Φ̃ with Φ,

i.e., ΦL,H =
(

Φ± Φ̃
)
/
√

2, here H/L stands for ‘heavy/light’. �e mixing occurs via the

term ΦΦ̃χ2
in the scalar potential when χ acquires a vev.

�e interaction Lagrangian of interest reads

L ⊃ 1√
2

{[
yRΦLb̄ΨQ ΦL + yRΦH b̄ΨQ ΦH

]
b̄PRΨQ +

[
yRΦLs̄ΨQ ΦL + yRΦH s̄ΨQ ΦH

]
s̄PRΨQ

+
[
yRΦL ¯̀Ψ`

ΦL + yRΦH ¯̀ΨQ
ΦH

]
¯̀PRΨ`

}
+ h.c. .

(4.58)

Hermitian conjugation gives the le�-handed Yukawa couplings, yL, which are related to the

right-handed ones via

yLΦ̄Ψ̄f =
(
yRΦf̄Ψ

)∗
, (4.59)

where Φ ∈ {ΦL,ΦH}, Ψ ∈ {ΨQ,Ψ`}, and f ∈ {b, s, `} as applicable. �e expressions for

the Yukawa couplings can be read o� from Ref. [89] and we omit writing them explicitly. �e

NP contribution to C9 and C10 are, then,

Cµ,NP

9/10 =
1

2

(
s23µ
LR ± s23µ

LL

)
, (4.60)
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and, from Eq. (4.20), we have

s23µ
LR

∣∣
box

= 0 ,

s23µ
LL

∣∣
box

=
1

4M2
ΦL

yLΦ∗LΨ̄Qb
yRΦLs̄ΨQ

∣∣yRΦLµ̄Ψ`

∣∣2 FB
S (x

ΨQ
ΦH
, 1, xΨ`

ΦL
)

+
1

4M2
ΦL

yLΦ∗HΨ̄Qb
yRΦH s̄ΨQ

∣∣yRΦH µ̄Ψ`

∣∣2 FB
S (x

ΨQ
ΦH
, 1, xΨ`

ΦH
)

+
1

4M2
ΦL

yLΦ∗LΨ̄Qb
yRΦH s̄ΨQ

(
yRΦLµ̄Ψ`

yLΦ∗HΨ̄`µ

)
FB
S (x

ΨQ
ΦL
, xΦL

ΦH
, xΨ`

ΦL
)

+
1

4M2
ΦH

yLΦ∗HΨ̄Qb
yRΦLs̄ΨQ

(
yRΦH µ̄Ψ`

yLΦ∗LΨ̄`µ

)
FB
S (x

ΨQ
ΦH
, xΦH

ΦL
, xΨ`

ΦH
) .

(4.61)

Note that C`
9 receives a lepton-�avour-universal contribution from the photon penguin. �is

contribution breaks the relation C9 = −C10 but it is suppressed by fermion masses and is

therefore subleading in the limit where the scalars are lighter. Substituting the couplings

from Ref. [89] and translating the box functions, FB
S , into their G functions gives perfect

agreement with their result.
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4.4.4 A li�lest Higgs model with T -parity

�e ‘Li�le Higgs’ models [91] have been introduced in order to address the gauge hierarchy

problem, where the electroweak Higgs boson is a pseudo-Goldstone boson of a certain global

symmetry that is broken spontaneously. �e breaking scale Λ ∼ 4πf ∼ O(10 TeV) is

much higher than the vacuum expectation value of the standard model Higgs doublet. In

these models the Higgs as a Goldstone boson has light mass and the approximate global

symmetry protects its mass from the divergencies under radiative corrections that arise in

the SM through the top quark and heavy weak bosons running in the loop.

A simple version of these models is the ‘Li�lest Higgs’ (LH) model [92], where the number

of new heavy degrees of freedom is limited. Particularly, in this section we will focus on the

Li�lest Higgs model with a discrete symmetry, T−parity (LHT). �e LHT model is based on

a non-linear sigma model describing the spontaneously breaking of a a global G = SU(5)

to a global SO(5) via a vacuum expectation value of an SU(5) symmetric matrix Σ. �is

symmetry breakdown generates 14 pseudo-Goldstone bosons, which include the SM Higgs

doublet [93].

It is assumed that the group G contains a weakly gauged subgroup,

G ⊃ G1 ×G2 = [SU(2)× U(1)]1 × [SU(2)× U(1)]2

that will be broken to the diagonal GEW = [SU(2)× U(1)] subgroup which is identi�ed as

the electroweak gauge symmetry. �e gauge bosons of theG1/2 groups are symmetric under

the T−parity, i.e., W a
1 ↔ W a

2 and B1 ↔ B2. Hence, the gauge boson T−parity eigenstates

can be de�ned as

W a
L =

W a
1 +W a

2√
2

, BL =
B1 +B2√

2
(T-even) (4.62)

W a
H =

W a
1 −W a

2√
2

, BH =
B1 −B2√

2
(T-odd), (4.63)

where the subindex ‘H/L’ stands for ‘heavy/light’. �e breaking of the gauge symmetry of

the theory is G ⊃ G1 × G2
f→ GEW

v→ U(1)EM, where the electroweak symmetry breaking

occurs through the usual vacuum expectation value of the Higgs doublet, v. A�er these

breakings and changing the basis, there are three massive T−odd gauge bosons labeled as

WH , ZH and a massive photonAH . T−even gauge bosons,WL, ZL and massless photonAL,

correspond to the standard gauge �elds. �e implementation of the T−symmetry guarantees

that MWL
= MZL cos θW holds at tree level.
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In the fermion sector of the model, it is required to duplicate the SM isospin doublet �elds

due to the T−symmetry. For each SU(2)L doublet, a doublet under SU(2)1 and one un-

der SU(2)2 are introduced. �e T−even combination of these doublets is related to the SM

electroweak quark and lepton doublets, while the T−odd combination is known as mirror

fermions and they acquire a mass of order the breaking scale f via Yukawa interactions. In

this work the mass eigenstates of these T−odd fermions are denoted by capital le�ers in

accordance with their SM partner’s names (for leptons they are denoted as `H ).

Also, to eliminate the e�ect of the top quark to the Higgs mass an additional T−even heavy

quark, T+, is introduced. At the leading order in v/f , the T+ transforms as a singlet under

SU(2)L. �e T−odd partner of this new fermion T− is an exact singlet under SU(2)1×SU(2)2

and it has only sizeable ‘�avour changing’ couplings with the SM top quark mass eigenstate

and the AH .

Moreover, there are �avour mixing interactions between SM fermions and mirror fermions

mediated by the heavy gauge bosons WH , ZH and AH . �e mixing matrices satisfy the fol-

lowing conditions in the quark and lepton sectors, accordingly,

V †HuVHd = VCKM, V †HνVH` = VPMNS. (4.64)

In this section we demonstrate the usage of our results for the LHT model. Particularly,

we derive explicit expressions for three complex gauge invariant functions,

X = |X| eiθX , Y = |Y | eiθY , Z = |Z| eiθZ , (4.65)

which are used to describe the semi-leptonic decays of K,Bd and Bs mesons. �e �rst two

functions are combinations of one-loop functions resulting in ZL−penguin and box diagram

calculations. �ey contribute to decays with �nal state I3 = 1/2 and I3 = −1/2 lepton pairs,

respectively. �e last function is obtained by combiningZL−penguin diagrams with o�-shell

photon penguin diagrams. It contributes to decays with �nal state charged leptons. Note that

there are no ZH or AH mediated diagrams, because of T−symmetry their couplings to the

SM leptons are forbidden.

In order to parametrise e�ects of the new physics in the framework of LHT, the above

functions could be decomposed as

F = FSM + F̄even +
1

λt
F̄odd ≡ |F | eiθF , where F ∈ {X, Y, Z}, (4.66)

where λt = VtbV
∗
ts is the CKM factor. FSM are the SM contributions, and F̄even are the con-
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tributions from the T−even part, that is the contributions of T+ and t. �e function F̄odd

represents the T−odd sector of the LHT model with mirror fermions.

Before proceeding to derive explicit expressions for the above functions, we discuss brie�y

the normalisation and compact notations for mixing matrices. �e loop functions in our

setup, Eqs. (4.18), (4.19) and (4.20), are de�ned such that they come with a 1/M2
boson

factor,

where Mboson is the mass of the loop boson. In the LHT model there are three T−odd vec-

tor bosons which contribute to the functions of interest. In order to be consistent with the

normalisation used in the literature, we adopt the following normalisation factor,

NLHT =
g4

M2
WL

v2

64f 2
, (4.67)

where MWL
is the mass of the light T−even charged gauge boson. At the leading order the

relation between light and heavy boson masses can be de�ned as

MWH
≈MZH =

√
aMAH = 2MWL

f

v

(1− v2/(8f 2))

(1− v2/(12f 2))
≈ 2MWL

f

v
, (4.68)

where a =
M2
ZH

M2
AH

= 5g2

g′2
1−v2/(8f2)
1−5v2/(8f2)

, at the leading order a = 5/ tan2 θw which allows to write

g′ = g
√

5/a.

For mixing matrices the following short forms are used,

ξci = (VH`)iµ (VH`)
∗
iµ , λci = (VHd)ib (VHd)

∗
is , (4.69)

where ξi and λi denote mixings in the T−odd lepton and quark sectors, respectively. �e

index i in ξci denotes T−odd loop-leptons, and for λci , i = 1, 2, 3 corresponds to the gener-

ation index. �e upper index ‘c’ can be 0 or ± and indicates that what kind of loop bosons

are used. For example, for neutral vectors ξ0
i and λ0

i and for charged vectors ξ±i and λ±i .

In analogy to the SM CKM matrix, the unitarity of the mixing matrix of T−odd heavy

quarks is assumed and the GIM-like mechanism was performed via the following expression,

λc1 = −λc2 − λc3. (4.70)

First, we consider the T−even sector where the relevant Feynman rules are [93]

gL
W+
L t̄b

=
ig√

2
(VCKM)tj

(
1− xL

2

v2

f 2

)
, (4.71)
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gL
W+
L T̄+b

=
ig√

2
(VCKM)tj xL

v

f

(
1 +

v2

f 2
d2

)
, (4.72)

gZLT̄+t =
ig

cos θw

xL
2

v

f

[
1 +

v2

f 2

(
d2 −

x2
L

2

)]
, (4.73)

in addition to the usual SM couplings of leptons to W±
and Z bosons. For all coupling

constants we use bo�om b and strange s quarks. In the above rules xL = λ2
1/(λ

2
1 + λ2

2) and

d2 = −5/6+1/2x2
L+2xL(1−xL). In order to derive orderO(v2/f 2) corrections, one should

take into account that the mass of the T+ is of order f/v, particularly at the leading order

mT+ = f
v

mt√
xL(1−xL)

. In the derivation ofXeven or Yeven, we substituted this expression for the

mass ofmT+ and a�er performing the Taylor expansion in v/f at the second order, switched

back to mT+ . Below, we will consider the case for Xeven, for the Yeven function it can be done

with in a similar manner.

For simplicity we take masses of the leptons and masses of the �rst two generation of

quarks equal to zero. �us the Xeven function gets contributions from the following loop

functions

X̄even ∝ · · · ×
1

M2
WL

FL,B′Z
V

(
xtWL

, x
T+
WL
, 1, 0

)
+ . . .

1

M2
ZL

FZ
V

(
xtWL

, x
T+
WL

)
, (4.74)

where dots represent a product of coupling constants. At this stage we have not used the

explicit forms of couplings yet, because they contain a v/f dependence and are quite lengthy.

By using MZL = MWL
/ cos θW and performing the second order Taylor expansion in v/f

we found that

X̄even = 64NLHTx
2
L×(−2x2

t + 2xt − 3

8 (xt − 1)
− (2x2

t − xt − 4)xt
8 (xt − 1) 2

log (xt) +
1

8
(2xt + 3) log

(
xT+
)

+
xL
8
xt

)
,

(4.75)

where xi = xiWL
. �is result is in agreement with the one given in Ref. [93].

Next, we work with T−odd part of the LHT model, where loop fermions are heavy mirror

quarks Ui/Di and leptons `H . We adopt the following set of rules from the model

gLWH Ūib
=

ig√
2

(VHd)ib , (4.76)

gLAHD̄ib = i

(
− g

′

10
+
g

2
xH

v2

f 2

)
(VHd)ib , gLZHD̄ib = i

(
−g

2
− g′

10
xH

v2

f 2

)
(VHd)ib , (4.77)
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where xH = 5gg′/(4(5g2− g′2)). �e couplings for the leptons are similar, where (VHd)ij →
(VH`)ij and �elds are changed accordingly. Also, signs of gauge couplings constants, g and

g′, should be altered in the neutral boson couplings, i.e., for charged leptons the sign of

g′ → −g′ and for neutrinos g → −g. Since we consider loop functions at O(v2/f 2) order,

the correction terms in gLAH/ZH ... are redundant.

�e result for the Ȳodd function reads

Ȳodd = NLHT ×
{
ξ±νH ×

∑
i=2,3

4λ±i F
L,BZ
V

(
xU1
WH

, xUiWH
, 1, xνHWH

)
+ ξ0

µH
×
∑
i=2,3

λ0
i

[
FL,BZ
V

(
xD1
ZH
, xDiZH , 1, x

µH
ZH

)
− FL,B′Z

V

(
xD1
ZH
, xDiZH , 1, x

µH
ZH

)
+

1

25a

(
FL,BZ
V

(
xD1
AH
, xDiAH , 1, x

µH
AH

)
− FL,B′Z

V

(
xD1
AH
, xDiAH , 1, x

µH
AH

))
+

1

5a

(
FL,BZ
V

(
xD1
ZH
, xDiZH , x

ZH
AH
, xµHZH

)
− FL,B′Z

V

(
xD1
ZH
, xDiZH , x

ZH
AH
, xµHZH

))
+

1

5

(
FL,BZ
V

(
xD1
AH
, xDiAH , x

AH
ZH
, xµHZH

)
− FL,B′Z

V

(
xD1
AH
, xDiAH , x

AH
ZH
, xµHZH

)) ]}
,

(4.78)

where the argument 1 in functions means that xVV with V ∈ {WH , ZH , AH}. �e �rst three

lines come from the contributions whereWH , ZH andAH run in the loops, correspondingly.

�e last two lines are contributions from the diagrams where ZH and AH are included si-

multaneously in the loops. �e similar expression for Xodd can be derived by exchanging

external charged leptons for neutrinos.

Furthermore, our result for the Z̄odd function is given as

Z̄odd = −NLHT × sin θ2
w

{∑
i=2,3

8λ±i F
γZ
V

(
xU1
WH

, xUiWH

)
∑
i=2,3

λ0
i

(
4F γZ

V

(
xD1
ZH
, xDiZH

)
+

4

5
F γZ
V

(
xD1
AH
, xDiAH

))}
,

(4.79)

where the overall minus sign comes from the photon coupling with external lepton legs,

i.e., Q` = −1. �ese expressions are consistent with the results presented in Ref. [93] (with

corrections to some functions [94, 95]).
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�e result for the ∆F = 2 Wilson coe�cients in the T−odd sector is,

Cbs
LL = NLHT ×

∑
ij

{
λciλ

c
j

[
2FB

V ′

(
xUiWH

, 1, x
Uj
WH

)
− 2FB

V ′′

(
xUiWH

, 1, x
Uj
WH

)]
+ λ0

iλ
0
j

[ 3

50a
FB
V ′′

(
xDiAH , 1, x

Dj
AH

)
+

3

2
FB
V ′′

(
xDiZH , 1, x

Dj
ZH

)
+

3

10
FB
V ′′

(
xDiAH , x

AH
ZH
, x

Dj
AH

)
+

3

10a
FB
V ′′

(
xDiZH , x

ZH
AH
, x

Dj
ZH

)]}
,

(4.80)

and is in agreement with results calculated in Ref. [96]. In this result the unitarity relation

(4.70) has not been applied yet.
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4.4.5 A loop induced dark ma�er model

In this last example for an application of our results we consider a dark ma�er (DM) model

where the dark ma�er candidate is a singlet Dirac fermion and its interactions with the

standard model sector take place at loop level [97]. In analogy to the proton stability that is

guaranteed by an accidental global U(1) symmetry (baryon number), to maintain the stability

of the DM the model introduces an additional global U(1)D symmetry under which the DM

has non-zero charge.

In the model the Dirac fermion DM χ is composed of two Weyl fermions, ξχ and ηχ which

are singlets under the SM gauge group. �e U(1)D charges of these fermions are +1 and -1,

accordingly. All SM �elds are non-charged under the U(1)D symmetry.

Since the DM is neutral under the SM gauge symmetry, to generate renormalisable inter-

actions between DM and SM particles new mediators are necessitated. Particularly, in this

model additional vector-like fermions, ψfi , and complex scalars, f̃i, are introduced. �ese

new �elds participate in SM gauge interactions and they mediate DM couplings with the

SM particles through quantum corrections. �e new vector-like fermions have zero U(1)D

charges, while new scalars are U(1)D-charged and they are supposed to be heavier than the

DM to ensure the stability of DM particle.

�e relevant part of the interaction Lagrangian for the SM gauge boson couplings with

new �elds in the mass eigenbasis is

Lgauge = −eAµ
∑
f,i

Qf ψ̄fiγ
µψfi − gZZµ

∑
f,i,j

ψ̄fiγ
µ
(
Cij
fZLPL + Cij

fZRPR
)
ψfj

−ieAµ
∑
f,i

Qf f̃
∗
i

←→
∂µ f̃i − igZZµ

∑
f,i,j

C̃ij
fZ f̃

∗
i

←→
∂µ f̃j + . . . ,

(4.81)

with

Cij
fZL/R =

(
VfL/R

)∗
1i

(
VfL/R

)
1j
T3f −Qf sin2 θW δij, (4.82)

C̃ij
fZ =

(
Ṽf

)∗
1i

(
Ṽf

)
1j
T3f −Qf sin2 θW δij, (4.83)

where e denotes the elementary charge, gZ ≡
√
g′2 + g2

, g′ and g are the gauge coupling

constants of U(1)Y and SU(2)L, respectively. �e mixing matrices for new fermions and

scalars are VfL/R and Ṽf , correspondingly. �e le�-right derivative is de�ned as A
←→
∂µB ≡

A(∂µB)− (∂µA)B.
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�e interaction Lagrangian in the dark sector can be given by

Lχff̃ = χ̄
(
Cij
fχLPL + Cij

fχRPR
)
ψfi f̃

∗
j + h.c., (4.84)

with

Cij
fχL = e−

i
2
θχ
[
af
(
VfL
)

1i

(
Ṽf
)∗

1j
+ af̄

(
VfL
)

2i

(
Ṽf
)∗

2j

]
, (4.85)

Cij
fχR = e

i
2
θχ
[
b∗f
(
VfR
)

1i

(
Ṽf
)∗

1j
+ b∗f̄

(
VfR
)

2i

(
Ṽf
)∗

2j

]
, (4.86)

where θχ ≡ arg(µχ) that is in the DM mass term −mχχ̄χ with mχ ≡ |µχ|. �e coe�cients

af and bf are coupling constants for the ξχ and ηχ �elds, respectively.

�e proposed DM candidate can be detected in dark ma�er direct detection experiments.

In order to evaluate expected event rates one needs to calculate the relevant e�ective interac-

tions of the DM with the SM sector. Particularly, we consider only the part when DM couples

with the SM �elds via neutral vector currents, i.e., the SM photon and Z−boson mediated

one loop interactions.

�e e�ective interactions of DM with a photon, γ can be wri�en as

Le�-γ =
1

2
Cγ
M χ̄σ

µνχFµν −
i

2
Cγ
Eχ̄σ

µνγ5χFµν + Cγ
Rχ̄γ

µχ∂νFµν , (4.87)

where e�ective couplingsCγ
i denote the DM magnetic momentCγ

M , the DM electric moment

Cγ
E and the DM charge radius Cγ

R.

A�er integrating out the Z−boson, the e�ective Lagrangian for the DM couplings with

light quarks can be de�ned as

Le�-q = Cq
V (χ̄γµχ) (q̄γµq) . (4.88)

Furthermore, we derive analytic expressions for the above Wilson coe�cients using our

results presented in Sec. 4.1.3 and in Sec. 4.1.4. Particularly, the Cγ
M and Cγ

E coe�cients will

be obtained from Eq. (4.14) and forCγ
R andCq

V we use Eq. (4.20). For these couplings we need

to take the sum of C̃ij`
Lσ and its chirality �ipped version, C̃ij`

Rσ , in Eq. (4.17).

Another point to consider is that in order to be consistent with the de�nition of the

Yukawa-like couplings of the DM with internal scalars and fermions given in Ref. [97], we

need to use the correct charge conjugation property for the DM-ψ-f̃ couplings. �is is de-

�ned in Eq. (2.73),

yσ
f̃j ψ̄fiχ

=
(
yσ̄
f̃∗j χ̄ψfi

)∗
. (4.89)
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In order to recover results of [97] we work in the limit that the mass of the DM particle

is quite small in comparison with the masses of loop particles, mψfi
,mfi � mχ. Changing

the notations for the external fermions, di,j → χ and `→ q, the �nal results can be wri�en

in terms of our loop functions from Eq. (4.14) and the Eq. (4.20). Namely,

Cγ
M =

1

16π2

∑
f,i,j

Nc · eQf
1

M2
f̃j

{
mfi Re

[
Cij
fχLC

ij∗
fχR

]
F d
S

(
xfi
f̃j

)
+mχC

ij
fχSSF

d
S′

(
xfi
f̃j

)}
, (4.90)

Cγ
E =

1

16π2

∑
f,i,j

Nc · eQf
mfi

M2
f̃j

Im
[
Cij
fχLC

ij∗
fχR

]
F d
S

(
xfi
f̃j

)
, (4.91)

Cγ
R =

1

16π2

∑
f,i,j

Nc · eQf
1

M2
f̃j

Cij
fχSSF

γ
S

(
xfi
f̃j

)
, (4.92)

where

Cij
fχSS ≡

1

2

{∣∣Cij
fχL

∣∣2 +
∣∣Cij

fχR

∣∣2}
(4.93)

and Nc is the color factor relevant to the internal particles.

�e Wilson coe�cient for the Z−boson exchange can be wri�en in terms of the e�ective

DM-Z−vertex function, CχZ ,

Cq
V =

1

M2
Z

e2

sin2 θW cos2 θW

(
T3q − 2Qq sin2 θW

)
× CχZ , (4.94)

where

CχZ =
1

16π2

∑
j,i,j,k

Nc

{
Ckij
fZ1F

Z
S′

(
xfi
f̃k
, x

fj

f̃k

)
+ Ckij

fZ2F
Z
S′′

(
xfi
f̃k
, x

fj

f̃k

)
+ C̃jki

fZ1F
Z
S

(
xfi
f̃j
, xfi

f̃k

)}
.

(4.95)

�e explicit forms for the couplings are

Ckij
fZ1 = Cij

fZRC
ik
fχLC

jk∗
fχL + Cij

fZLC
ik
fχRC

jk∗
fχR, (4.96)

Ckij
fZ2 = Cij

fZRC
ik
fχRC

jk∗
fχR + Cij

fZLC
ik
fχLC

jk∗
fχL, (4.97)

C̃jki
fZ1 = C̃jk

fZ

(
Cik
fχLC

ij∗
fχL + Cik

fχRC
ij∗
fχR

)
. (4.98)

In Ref. [97] the functions multiplied by the Ckij
fZ1 and C̃jki

fZ1 couplings contain a divergent

constant part that will cancel in the sum in Eq. (4.95), since∑
i,j,k

Ckij
fZ1 =

∑
i,j,k

C̃jki
fZ1. (4.99)
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In our case all functions in Eq. (4.94) are �nite individually. �is is a consequence of using the

sum rule encoded in Eq. (2.81) when we renormalised the Z−penguin diagrams, Sec. 4.1.2.

In principle, the equality in Eq. (4.99) can be read from (2.81) when a theory contains only

�avour-changing scalars,

gZf̃if̃∗j
yσ
f̃j ψ̄fiχ

= gσ̄Zψ̄fiψfj
yσ
f̃j ψ̄fiχ

. (4.100)
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5 DARK MATTER PHENOMENOLOGY

Weakly Interacting Massive Particles (WIMPs) are theoretically a�ractive candidates for a

particle explanation of the Dark Ma�er (DM) content of the Universe. �e interactions of

WIMPs with light Standard Model (SM) particles can be tested experimentally via their elastic

sca�ering o� nuclei in ground-based direct detection experiments, in speci�c signatures at

the Large Hadron Collider (LHC) involving visible SM objects and missing energy [26], or

by observing their annihilation products with astrophysical experiments.

Up to date the leading liquid xenon based direct detection experiments LUX [27] and

XENON1T [28] have not detected the DM, thereby severely constraining the interaction

rates between WIMPs and the SM. �is strongly constrains the possible parameter space

of WIMP quark interactions – and with it also the production mechanisms in collider ex-

periments – and requires a suppression mechanism for the direct detection rates. Isospin

breaking interactions, where up and down quarks interact with di�erent strength, can can-

cel the coherent spin independent contributions of protons and neutrons in direct detection

experiments. �e resulting suppression for vectorial couplings to dark ma�er was studied,

for example, in Ref. [98]. �is mechanism allows one to cancel the interaction of DM with

a particular isotope and was used to reconcile the discrepancy between the claimed obser-

vation by DAMA/LIBRA [99] (using sodium iodide as a target material) and the null results

from liquid xenon based experiments
6
.

In this work, we focus on axial vector dark ma�er interactions, where the direct detection

rate is naturally suppressed, cf. e.g., Ref. [29]. �e continuously tightening constraints led by

XENON1T make this scenario phenomenologically relevant [29], and will require additional

suppression if the null results persist in the future. For these type of interactions, similar to

the discussion in Ref. [98], the DM could have suppressed couplings to speci�c isotopes, in

particular to xenon.

�e di�erence for axial vector dark ma�er interactions is, however, that both the axial

vector and vector contributions on the quark side contribute equally to the sca�ering cross

section [30]. Furthermore, the SU(2) × U(1) gauge invariance of the SM implies that the

V − A (vector minus axial) couplings of up and down quarks have equal strength, i.e., that

at dimension-6 e�ective interactions

(χ̄χ)A(ūu)V−A ↔ (χ̄χ)A(d̄d)V−A (5.1)

are directly related. Consequently, it is not clear if isospin suppression is even possible in the

6
Recent new results from the COSINE-100 experiment did not con�rm the DAMA result [100].
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case of axial vector coupling DM.

To study the impact of the SM gauge invariance we use the e�ective theory above the

electroweak scale from Ref. [30] that couples SU(2)×U(1) invariant SM �elds with axial-

vectorial DM currents. Such a theory naturally arises in models where the DM candidate

is a Majorana fermion and the coupling of the dark and visible sectors is mediated by a

tree-level neutral vector boson exchange, typically referred to as Z ′ and o�en related to an

additional U(1) gauge symmetry. In such models, the vectorial couplings between the DM

candidate and the Z ′ vanish because Majorana fermions are self-conjugate under charge

conjugation while the vector current is odd. In addition, the extra U(1) gauge symmetry in

these models results in constraints from anomaly cancellation, similar to those studied in

Refs. [31] for Dirac dark ma�er. Experimentally, neutral gauge bosons that interact with

the SM quark current can be searched for at the LHC, for instance via dijet �nal states [32].

Null results from these searches generally require mediator masses to be at the TeV scale.

�e large separation between the Z ′ mass and the momentum transfer in direct detection

experiments justi�es an e�ective �eld theory description of the interaction between the DM

and the baryons and mesons. Matching the Z ′ exchange model to our e�ective �eld theory,

we �nd that a signi�cant suppression for the DM direct detection rate is only possible for

very speci�c combinations of the e�ective theory parameters.

If we furthermore require the cancellation of gauge anomalies within one generation (see

Model-I ), we �nd that no suppression of the direct detection rate is possible. Yet, for gener-

ation dependent charges the direct detection rate can be suppressed by two orders of mag-

nitude compared to the naive expectation for axial-vectorial couplings of the quarks and the

dark ma�er candidate. We study this later case in benchmark scenario (Model-II ) and com-

pare current and future direct detection constraints with constraints coming from colliders.

�e chapter is organised in the following way, in Sec 5.1 we discuss the EFT approach

for DM direct detection experiments of axial-vectorial DM interactions along with suppres-

sion mechanism for the direct detection rate. Further, a possible UV completion of the EFT

setup will be discussed in Sec. 5.2 where explicit constructions of anomaly free, UV complete

models are considered. Sec. 5.3 is dedicated to the technical details for the experimental con-

straints. Particularly, in Sec. 5.3.1 we talk about the derivation of the exclusion curves for

dark ma�er direct detection experiments. �en, DM searches at colliders will be outlined in

Sec. 5.3.2. �e complementarity between collider and direct detection searches is presented

in Sec. 5.3.3.
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5.1 E�ective Field Theory for Direct Detection of Axial Vector DM

We consider a fermionic DM candidate coupled to the Standard Model (SM) via a spin-1

mediator arising from a gauged U(1)′ dark sector. �e gauge symmetry is spontaneously

broken at a scale M∗ � MW . A�er electroweak symmetry breaking (EWSB), the Z boson

is identi�ed with the lighter of the two massive neutral eigenstates of the mixing of the

electroweak (EW) and the U(1)′ gauge eigenstates. We denote the heavier mass eigenstate

by Z ′. Consequently the DM candidate, χ, will inherit couplings to the Z boson. �us, even

with mixing angles of O ∼ 10−3
[101], bounds set by direct-detection experiments rule out

vectorial couplings. �is scenario is naturally evaded if χ is a Majorana fermion, since a

vectorial coupling is not allowed, while an axial-vectorial one is.

�e dark ma�er e�ective �eld theory (DMEFT) Lagrangian can be wri�en as

Ldmeft =
∑
i,d

C
(d)
i Q

(d)
i ≡

ĉ
(d)
i

Λd−4
Q

(d)
i

EWSB−−−→
∑
i,d

C (d)
i Q(d)

i , (5.2)

where we used a curly script notation for the operators and their coe�cients below the

EW scale to distinguish them from the ones above it. �e lower case ha�ed coe�cients are

dimensionless while the uppercase un-ha�ed ones are dimensionful.

As a result of the pure axial-vectorial couplings on the dark-ma�er side, direct-detection

rates are suppressed either due to the absence of coherent enhancement or because the co-

herent enhancement is suppressed by the DM velocity in the galactic halo. To be concrete,

if χ is an SU(2)L-singlet Majorana fermion, the following three operators coupling χ to the

SM quarks will be generated above the EW scale (following [30]),

Q
(6)
6,i = (χ̄γµγ5χ)(Q̄i

Lγ
µQi

L) ,

Q
(6)
7,i = (χ̄γµγ5χ)(ūiRγ

µuiR) ,

Q
(6)
8,i = (χ̄γµγ5χ)(d̄iRγ

µdiR) ,

(5.3)

where i = 1, 2, 3 denotes the quark generation. A�er EWSB, these three operators match

onto the following two:

Q(6)
2,q = (χ̄γµγ5χ)(q̄γµq) , Q(6)

4,q = (χ̄γµγ5χ)(q̄γµγ5q) , (5.4)

where q ∈ {u, d, s, c, b}. �e operators involving the heavy quarks (c and b) are not relevant

to our analysis. For example, in direct detection experiments, the operator Q(6)
4,q leads to the

cross section that depends on the nuclei spin which is non-zero only for the isotopes with
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unpaired nucleons (nuclear shell model). �us, the matrix element evaluated at the scale Q

is 〈N |q̄γµγ5q|N〉Q ∝ ∆qN , where 〈N | and |N〉 denote nucleon states at rest and ∆qN is the

fraction of the nucleon spin carried by the quark q. For the proton, at Q = 2 GeV the values

of the ∆q with light quarks are [102],

∆u = 0.897(27) ∆d = −0.376(27) ∆s = −0.031(5),

while heavy quark contributions are negligible, ∆c ≈ −5 · 10−4
and ∆b ≈ −5 · 10−5

,

with probably at least a factor of two uncertainty on these estimates [30]. In the case of

the Q(6)
2,q operator, direct detection cross section is both momentum and velocity suppressed

for q = u, d, s. While for q = b, c, the leading contribution comes from closing the heavy

quark loop, exchanging a photon with the up- or down-quark vector current. �us, the cross

section is suppressed by an additional factor of (α/4π)2
[30].

�e matching correction onto operators involving �rst-generation quarks is,

(A⊗ V )u : C (6)
2,u = C

(6)
7,1 + C

(6)
6,1 , (A⊗ V )d : C (6)

2,d = C
(6)
8,1 + C

(6)
6,1 ,

(A⊗ A)u : C (6)
4,u = C

(6)
7,1 − C(6)

6,1 , (A⊗ A)d : C (6)
4,d = C

(6)
8,1 − C(6)

6,1 ,
(5.5)

where the shorthand notation on the le�-hand-side of the colon gives the Lorentz structure

of the operator as a product of dark ma�er and SM currents, respectively, where (A)V means

(axial-)vector current. �e subscript denotes the quark-�avour of the operator.

�e matching corrections in Eq. (5.5) present us with several possibilities:

1. We can entirely eliminate either the vectorial, V , or axial-vectorial, A, currents on the

SM side (i.e. for all �avours). �is can be accomplished via the choice

C
(6)
6,1 = ∓C(6)

7,1 = ∓C(6)
8,1 . (5.6)

�is automatically enforces isospin-symmetric coe�cients in the EFT.

2. If isospin breaking is desired, the vectorial or axial-vectorial couplings cannot be elim-

inated, and one is le� with a mixture of both.

Isospin breaking is typically invoked to suppress the direct detection rate especially for spin-

independent DM–SM sca�ering in order to reconcile results (null and positive) from exper-

iments with di�erent target nuclei [98].

Unlike in the spin-independent case, however, when the coupling to the DM is purely axial,

both theA⊗V andA⊗A operators can contribute equally to the direct-detection cross sec-
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tion. Consequently, it is not trivial to obtain a similar suppression as in the spin-independent

case. To investigate the parameter space where the spin-dependent cross-section can be sup-

pressed, it is useful to make the following transformation,

C
(6)
6,1 →

g′ 2

Λ2
cos θ ,

C
(6)
7,1 →

g′ 2

Λ2
sin θ cosφ ,

C
(6)
8,1 →

g′ 2

Λ2
sin θ sinφ ,

(5.7)

such that the sum of their squares equals g′ 4/Λ4
which removes one variable and allows us to

show the relevant parameter space in one plot. �is is shown in Fig. 8a where the contours

show the relative size of the direct-detection rate in arbitrary units. �e small solid gray

ellipses have a relative rate of 10−2
. However, for a ma�er-�eld content consisting of the SM

fermions and any number of dark Weyl fermions, the allowed regions or paths in the θ − φ
plane are strongly restricted by requiring that the mixed and pure U(1)′ anomalies cancel.

�is is discussed in more detail in Sec. 5.2 and Appendix C.1.

With only one dark Weyl fermion, di�erent U(1)′ charges of the SM fermions restrict the

parameters space to lie on the dashed, do�ed, and dash-do�ed gray lines in Fig. 8a. To study

isospin breaking, we de�ne the parameter,

r ≡ C (6)
2,d /C

(6)
2,u =

sin θ sinφ+ cos θ

sin θ cosφ+ cos θ
, (5.8)

which takes the value r = 1 in the isospin limit, i.e. when the up- and down-�avoured

coe�cients are equal. �is limit is realised on two horizontal lines in the θ − φ plane with

φ = π/4, 5π/4. �ese lines are shown in Fig. 8a as thick grey lines that are labelled ‘isospin

limit’. Fig. 8b shows the relative event rate using the same arbitrary normalization factor

as in Fig. 8a, for comparison, along the φ = π constraint which arises in the Model-II that is

discussed below. Similarly, the suppression curves of the event rate for theModel-I is depicted

in Fig. 8c, where θ = π/2. It can be easily seen that in the case of Model-I, the suppression

of the event rate is much weaker. �is is also true for θ = arctan [2/(sinφ+ cosφ)] where

the SU(3)2 × U(1)′ anomaly vanishes and is presented in Fig. 8d.

Note that SU(2)L×U(1)Y gauge invariance forbids departures from the total (grey) curve

in Figs. 8b, 8c, 8d. Furthermore, if isospin symmetry is respected, the relative rates cannot

vary by more than an O(1) factor.

91



0.0 0.2 0.4 0.6 0.8 1.0

θ/π

0.0

0.2

0.4

0.6

0.8

1.0

φ
/
2π

isospin limit

isospin limit

0.1

0.1

0.1

1

1

1

1.6 1.6

2
2

2

(a) Contours of the relative event rate [a.u.]

0.0 0.2 0.4 0.6 0.8 1.0

θ/π

10−3

10−2

0.1

1

10

R
a
te

[a
.u

.]

Xenon

φ = π r = −0.86

r = 0

A · V +A ·A
A · V only

A ·A only

(b) Relative event rate along φ = π

0.0 0.2 0.4 0.6 0.8 1.0

φ/2π

10−3

10−2

0.1

1

10

R
at

e
[a

.u
.]

Xenon

θ = π/2 r = −0.9

r = 0.14

A · V +A ·A
A · V only

A ·A only

(c) Relative event rate along θ = π/2

0.0 0.2 0.4 0.6 0.8 1.0

φ/2π

10−3

10−2

0.1

1

10

R
at

e
[a

.u
.]

Xenon

A · V +A ·A
A · V only

A ·A only

(d) Rel. event rate along tan θ = 2/(sinφ+ cosφ)

Figure 8:�e direct detection rate (arbitrary normalization) formχ = 100 GeV. In the panel a:
the dashed, do�ed, or dash-do�ed curves correspond to gauge anomaly freedom constraints.
�e thick horizontal lines correspond to the isospin limit where r = 1. In the panels b, c, d: the
vertical grey lines correspond to di�erent values of the isospin breaking ratio r as indicated.
�e solid grey curve shows the combined rate when both theA⊗V and theA⊗A contributions
are included while the dashed (blue) and do�ed (red) curves show the sole A⊗ V and A⊗A
respectively. �ey are plo�ed for the di�erent values of θ and φ.
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Unitarity issue of the axial-vector couplings

In our setup, the dark ma�er particle is a Majorana fermion which leads to consider only

the axial-vectorial current on the dark side. It is a well known fact that the purely axial-

vectorial interactions violate the perturbative unitarity at large energies, pointing towards

the presence of additional new physics to restore the unitarity. �e simplest way to restore

the unitarity is to assume that the spin-1 mediator is a gauge boson of an additional U(1)′

gauge symmetry, and its mass as well as the DM mass are generated by a new scalar �eld in

the dark sector. �e need to introduce this scalar �eld also can be seen from the sum rule in

Eq. (2.80). Namely, it can be solved for the case when v1 = v2 = v3 → Z ′ and f1 = f2 = χ,∑
s1

gZ′Z′s̄1y
σ
s1χ̄χ

= −2mχ

(
gσZχ̄χg

σ
Zχ̄χ + gσ̄Zχ̄χg

σ̄
Zχ̄χ

)
+ 4mχg

σ
Zχ̄χg

σ̄
Zχ̄χ. (5.9)

For the vector interactions, i.e., where le�- and right-handed fermion couplings to the Z ′ are

the same, gσZχ̄χ = gσ̄Zχ̄χ, the above equation gives

∑
s1
gZ′Z′s̄1y

σ
s1χ̄χ

= 0. Hence, in this case

no additional new physics is needed to guarantee perturbative unitarity and the mass of the

Z ′ can be generated via the Stueckelberg mechanism [103], for example.

On the other hand for the axial-vector interactions with the coupling gAχ = gσZχ̄χ − gσ̄Zχ̄χ,

Eq. (5.9) reduces to ∑
s1

gZ′Z′s̄1y
σ
s1χ̄χ

= −2(gAχ )2. (5.10)

�erefore, neither of gZ′Z′s̄1 nor yσs1χ̄χ couplings can be equal to zero.

In general, for the dark ma�er interactions with gAχ 6= 0, bounds on the dark ma�er and

scalar masses can be derived from unitarity, [104],

mχ .

√
π

2

mZ′

gAχ
, ms <

πm2
Z′

(gAχ )2mχ

. (5.11)
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Qc
L,i uR,i dR,i LcL,i `R,i χR dR,j or uR,j

a b c d e x z

Table 3:�e U(1)′ charge assignments of the DM candidate and the SM fermions. i and j denote
the generation index and the upper-index c means complex conjugation.

5.2 Considerations from a UV perspective

A conspicuous path to UV completing the EFT setup in Sec. 5.1 is to augment the SM gauge

group by a U(1)′ gauge sector which couples to SM fermions and a DM candidate via a heavy

Z ′, i.e. mZ′ � mZ . Requiring the Z ′ to couple axial-vectorially to the DM means that the

DM must be chiral under the U(1)′. Apart from the need to Higgs this gauge symmetry,

we must assign U(1)′ charges to the DM and SM fermions that make the pure and mixed

gauge anomalies cancel (see Sec. 2.5). In the following, we brie�y discuss this and other

general aspects that arise from considering possible UV completions of the EFT setup and

we relegate explicit construction of UV complete models.

Anomaly cancellation. Anomaly-free DM models were discussed in Ref. [31] where, how-

ever, the minimal models we consider were not discussed. �e general anomaly equations

that must be satis�ed are given in Eq. (2.67). We denote the charge of the U(1)′ symmetry

by Y ′. Arbitrary values of the Y ′ for the SM light fermions and the dark ma�er are given in

Table 3, where Qc
Li

and LcLi denote le�-handed quark and lepton doublets. As we see below,

to achieve the full anomaly cancelation it is enough to charge either the right-handed strange

or the right-handed charm quark. �e possible solutions of the system of equations in (2.67)

can be categorised as following:

1. Model-I, where we can charge only the �rst generation of fermions and the dark ma�er,

z = 0 , d =
1

2
(−e− x), a =

e+ x

6
, b =

1

3
(x− 2e) , c =

1

3
(e− 2x). (5.12)

For example, by se�ing e = −xwe can give non-zero charges only to the right-handed

�elds, while the le�-handed doublets remain neutral. �is scenario can be viewed

as a simpli�ed version of the model proposed in Ref. [105], where the right-handed

neutrinos are introduced and the U(1)′ is de�ned to be U(1)R under which only right-

handed SM �elds are charged.
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Qc
L,1 uR,1 dR,1 dR,2 LcL,3 `R,3 χR

Model-I 0 −1 +1 0 0 +1 −1

Model-II +1
2

+1 0 −2 −3
2

0 3

Table 4:�e U(1)′ charge assignments to the Model-I and Model-II.

2. Model-II corresponds to the solution with Y ′sR 6= 0 and Y ′cR = 0,

z 6= 0 , e = 2x+ 3z ,

d =
1

2
(−e− x) , a =

e+ x

6
, b =

1

3
(x− 2e) , c =

1

3
(e− 2x− 3z).

(5.13)

3. Model-III corresponds to the solution with Y ′sR = 0 and Y ′cR 6= 0,

z 6= 0 , e =
1

2
(x− 3z) ,

d =
1

2
(−e− x) , a =

e+ x

6
, b =

1

3
(−2e+ x− 3z) , c =

1

3
(e− 2x).

(5.14)

In our analysis, we consider onlyModel-I with e = −x and e = +1, andModel-II with z = −2

and x = 3. �e explicit U(1)′ charge assignments for these two models are represented in

Table 4. It can be noticed that the structure of the Model-I is quite simple and it is discussed

in App. C.1 in detail.

Couplings of theZ ′ to leptons. A feature of the mixed anomaly equations is that charges

of the SM fermions are, in general, a linear combination of their hypercharge Y and B − L
where B(L) are the baryon(lepton) numbers which are±1

3
(±1). �is general statement has

a big consequence, namely, that coupling the Z ′ to the SM leptons is unavoidable. We note

here that charging the right-handed electron under the U(1)′ leads to strong bounds from

dilepton resonance searches [106] which places a bound on the Z ′ mass of mZ′ & 4.5 TeV.

One way to alleviate this constraint is to charge the τ instead. In this case ditau searches [107]

put a bound of mZ′ & 2.1 TeV. �is bound was obtained with only 2.2 �
−1

and is expected

to be stronger given the full dataset, however, this analysis is not yet available at the time of

writing.

SM Yukawa couplings. �e U(1)′ gauge invariance forbids some SM Yukawa couplings.

If we only charge the right-handed fermions, then dimension-four Yukawa couplings are

forbidden. �is can be remedied by inserting powers of S/f and S∗/f , for example, where S
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is the dark Higgs and f is the scale where this non-renormalizable term is generated. Upon

spontaneous breaking of the U(1)′ symmetry, the factor of 〈S〉/f can be absorbed into the

rede�nition of the Yukawa couplings. Another option is to add Higgs doublets that also carry

a U(1)′ charge.

Loop-induced spin-independent cross-section. While spin-independent sca�ering is

absent at tree-level, it can be induced at one loop via two insertions of the axial-vector cou-

pling or by a potential tree-level exchange of a scalar that contributes to the extra U(1)′

symmetry breaking. A heavy scalar mass, which is naturally generated for our choice of

gauge coupling, will suppress the la�er spin-independent contribution. Furthermore, one

could tune the tree-level contribution of the scalar to zero, by extending the scalar sector,

such that no scalar couples to both the quarks and the dark ma�er sector. Loop contribu-

tions could mix the di�erent scalars, but the resulting loop suppression should be su�cient

to suppress the spin independent contributions to the cross-section for heavy scalar masses.

Since these corrections are highly model dependent, we neglecte them in our analysis.

In the following we estimate the rate here using naive dimensional analysis by taking the

ratio of spin independent (SI) and spin dependent (SD) cross-sections induced by the scalar-

scalar interaction, which is loop induced via internal vector bosons, and the current-current

one

σsi
σsd
∼ A2 g′ 4

(4π)4

m2
Nmχ

2

m4
Z′

∼ O(10−11) , (5.15)

where we used g′ = 0.1, mZ′ = 1 TeV, mχ = mZ′/2, and mN = 1 GeV is the nucleon

mass. We also took the mass number of the atomic nucleus (xenon, e.g.) to be A = 100.

�e dependence on the dark ma�er and nucleon masses arises from the required chirality

�ips in the scalar-scalar operator. Whether one should insert the nucleon mass or Λqcd is

irrelevant to the estimate, but we note that the respective form factors would suppress the

spin-independent contribution even further.
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5.3 Experimental constraints

5.3.1 Dark ma�er direct detection search

�e DM direct detection experiments search for signals from DM sca�ering o� a nucleus

in underground detectors. Since DM particles move in the Galactic halo with v/c ∼ 10−3
,

this sca�ering can be formulated in the non-relativistic e�ective theory (NREFT) framework.

�e momentum transfer of the sca�ering depends on the reduced mass of the DM-nucleus

system and on the range of recoil energies, ER, that the experiments are measuring. ER is

typically in the range of a few keV to a few tens of keV and the heaviest nuclei have masses

of mA ∼ 100 GeV and this implies that the maximum amount of the momentum exchange

qmax . 200 MeV.

�e inverse 1/qmax can be the same order as nuclear radii R ∼ A1/3
fm

7
. �is implies that

the nuclei are not point-like from the perspective of DM and DM-nucleus interactions can

not be considered as a contact interaction, and the interaction cross-section should involve

momentum dependent form factors [108]. Usually, DM-nucleus interactions are studied un-

der the assumption that a nucleus is just a collection of interacting nucleons, so that the

nuclear matrix element of any current operator can be obtained from its one-nucleon matrix

element and a nuclear wave function [109]. �e momentum exchanged between the con-

stituent nucleons bound inside the nucleus is the same order as the momentum transfer in

the DM-nucleus interactions which is much less than the masses of protons/neutrons. �us,

the nucleons remain non-relativistic also a�er sca�ering and the nucleus does not break

apart. �erefore, the theory of DM interacting with NR nucleons can be described by the

Lagrangian

LNR =
∑
i,N

cNi (q2)ONi , (5.16)

whereN = p, n denotes either proton or neutron. �e possible NR interaction operators can

be built by di�erent combinations of Galilean invariant hermitian quantities [110],

i~q, ~v⊥, ~Sχ, ~SN , (5.17)

where the relative velocity of DM-nucleus system ~v⊥ = ~v+~q/(2µAχ), and
~SN ,

~Sχ are spins of

nucleons and dark ma�er, respectively
8
. �e reduced mass is µAχ = mA×mχ/(mA +mχ).

7
femtometer (fm) 1 fm

−1 ≈ 200 MeV

8
Operators involving

~SN are named as spin-dependent operators.
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In principle each operator can have di�erent couplings to protons and neutrons. One could

factorise the space-spin and proton/neutron components of Eq. (5.16) by implementing the

isospin symmetry, and an equivalent form for the above Lagrangian can be wri�en as

LNR =
∑
i

(
c0
i1 + c1

i τ3

)
Oi =

∑
τ=0,1

∑
i

cτiOitτ , (5.18)

where the isospin state vectors |p〉 = (1, 0)T and |n〉 = (0, 1)T and couplings are

c0
i =

1

2
(cpi + cni ) , c1

i =
1

2
(cpi − cni ) . (5.19)

�e isospin operators are de�ned by t0 ≡ 1 and t1 ≡ τ3, where τ3 is third Pauli matrix.

In the NR limit, the DMEFT operators in Eq. (5.4) will match onto combinations of the fol-

lowing operators

O4 = ~Sχ · ~SN , O8 = ~Sχ · ~v⊥ ,
O6 =

(
~Sχ · ~q

)(
~SN · ~q

)
, O9 = i~Sχ ·

(
~SN × ~q

)
,

(5.20)

whereO4 andO6 are even under the parity P , whileO8 andO9 are P−odd operators. Since

~q is proportional to the velocity, the operators O6,O8,O9 are suppressed by the velocity.

UV→NRmatching. �e matching procedure fromLdmeft in Eq. (5.2) ontoLNR in Eq. (5.18)

can be done by using the chiral EFT (ChEFT) approach [111] with an expansion parameter

q/ΛChEFT ∼ mπ/ΛChEFT ∼ 0.3. In the ChEFT framework the hadronisation of the quark-level

currents to a single nucleonic current at the chirally leading order can be expressed as

〈N ′ |q̄γµq|N〉 = ū′N

[
F
q/N
1 (q2)γµ +

i

2mN

F
q/N
2 (q2)σµνqν

]
uN ,

〈N ′ |q̄γµγ5q|N〉 = ū′N

[
F
q/N
A (q2)γµγ5 +

i

2mN

F
q/N
P ′ (q2)γ5q

µ

]
uN ,

(5.21)

where nucleon states |N〉 and nucleon spinors uN depend on the incoming/outgoing mo-

menta of the nucleons. �e di�erent form factors F
q/N
i are de�ned according to the type

of quarks and nucleons. �e axial-vector current contains a pseudoscalar hadronic current

which corresponds to the light pseudoscalar meson exchanges, particularly the e�ects of
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pion and eta poles in F
q/N
P ′ (q2) is

F
q/N
P ′ (q2) =

m2
N

m2
π − q2

a
q/N
P ′,π +

m2
N

m2
η − q2

a
q/N
P ′,η + . . . , (5.22)

where the coe�cients a
q/N
P ′,m are momentum-independent constants. In most cases the form

factors are evaluated in the long-wavelength limit, q → 0, but the corrections due to non-

zero momentum can be signi�cant in some cases and e�ects of the light meson poles can not

be ignored [102].

Furthermore, in order to extract explicit expressions for the NR Wilson coe�cients cNi , one

should take non-relativistic limits of both DM currents and nucleonic currents. �is match-

ing procedure which gives explicit expressions of ci for protons and neutrons in terms of

momentum dependent form factors are implemented in the publicly available Mathematica

package DirectDM [112].

Direct detection constraints. Here, we will discuss derivation of the DD exclusion curves

in Fig. 9. For concreteness, we consider the XENON1T experiment with an exposure of 278.8

days × 1300 kg [28], as well as its future projection with 20 ton×year exposure [113].

�e sca�ering rateR, i.e., the expected number of events per detector mass per unit time,

can be expressed as

dR
dER

= NT
ρχmA

2πmχ

〈
1

v
Ptot(v

2, q2)

〉
, (5.23)

where ER denotes the nuclear recoil energy and 〈. . . 〉 indicates averaging over the halo

velocity distribution. In general, the halo average integral should include a lower-bound on

the magnitude of the velocity at vmin =
√

2mAER/(2µAχ). NT is number of target nuclei per

detector mass, ρχ is local dark ma�er density, mχ is the dark ma�er mass, and mA is mass

of the target nuclei. �e transition probability which is de�ned by the Galilean invariant

amplitude, can be organised in a way that factorises the particle and nuclear physics,

Ptot =
1

2Jχ + 1

1

2JA + 1

∑
spins

|M|2
NR
≡ 4π

2JA + 1

∑
τ,τ ′=0,1

∑
α

Rττ ′

α

(
~v⊥2
T ,

~q 2

m2
N

)
W ττ ′

α (q),

(5.24)

where Jχ, JA are spin quantum numbers of DM and nucleus, respectively. Rττ ′
α is the DM

particle response functions which are expressed in terms of NR Wilson coe�cients, c
τ/τ ′

i .

All e�ects of nuclear physics are included in the W ττ ′
α (q) function. �e summation index

α = M,Σ′,Σ
′′
,∆,∆Σ′ indicates di�erent contributions from nuclear responses, for example,

the spin-independent sca�ering is encoded in WM which is at long wave-length q → 0 and
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just counts the number of nucleons, WM(0) ∝ A2
. �e response functions WΣ′′ and WΣ′

measure the nucleon spin content of the nucleus. W∆ is for the nucleon angular momentum

content of the nucleus, while W∆Σ′ is the interference term. �e full form of these response

functions are implemented in the MATHEMATICA code dmformfactor [114].

�e relevant DM response functions to our case are given in Eq. (C.5). Furthermore, we

de�ne a four dimensional column-vector of non-relativistic Wilson coe�cients,

(~c τ )T = (cτ4, c
τ
6, c

τ
8, c

τ
9) , (5.25)

and the transition probability in term of this vector can be rewri�en as

Ptot =
4π

2JA + 1

jχ(jχ + 1)

3

∑
τ,τ ′=0,1

∑
ij

(
M ττ ′

W (q)
)
ij
cτi c

τ ′

j , (5.26)

where M ττ ′
W is a matrix of nuclear functions and it is given by Eq. (C.6). �e Eq. (5.26) can be

translated for the individual proton/neutron by relations in (5.19),

Ptot =
4π

2JA + 1

jχ(jχ + 1)

3

∑
r,r′=p,n

∑
ij

(
Arr

′

W (q)
)
ij
cri c

r′

j , (5.27)

where theArr
′

W (q) matrix is related to theM ττ ′
W (q) via Eq. (C.7). �e e�ects of the high energy

physics through the matching in Eq. (5.21) are

cp4 = −4
∑
q

F
q/p
A C (6)

4,q , cp8 = 2
∑
q

F
q/p
1 C (6)

2,q , (5.28)

cp6 =
∑
q

F
q/p
P ′ C (6)

4,q , cp9 = 2
∑
q

(
F
q/p
1 + F

q/p
2

)
C (6)

2,q . (5.29)

Considering the matching corrections in Eq. (5.5), we can make the transformation of ~c τ

vector in Eq. (5.25) into a vector whose components consist of the above electroweak Wil-

son coe�cients C
(6)
k,j . For example, the transformation matrix Kr

for the case of only �rst-

generation quarks is expressed in Eq. (C.9). Finally, the transition probability in terms ofC
(6)
k,j

reads

Ptot =
4π

2JA + 1

jχ(jχ + 1)

3

∑
r,r′=
p,n

∑
k,l=
6,7,8

∑
i,j

(
Krr′

)
kl
C

(6)
k,iC

(6)
l,j , (5.30)

where Krr′ = (Kr)T .Arr
′

W .Kr′
, and k, l indicate operator number, i, j – generation indices.
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Furthermore, the expected number of events with di�erential rate as in Eq. (5.23) is

N =

∫
dER

dR
dER

× (detector mass× run time) , (5.31)

where the integral is taken over recoil energies in the range ER ∈ [3, 40] keV [28] to approx-

imate the detector e�ciency. Using Eq. (5.30), a generic expression for N can be wri�en as

N =
∑
i,j

∑
n,k=6,7,8

akl(mχ)C
(6)
k,iC

(6)
l,j , (5.32)

where coe�cients akl(mχ) are non-trivial functions of the DM mass and to relate them with

elements of the Krr′ matrix one needs to specify velocity distribution function in Eq. (5.23)

and perform the integrations over velocity and recoil energy.

In our case, to computeN we wrote a code in the C programming language which is inte-

grated with the DirectDM [112] and dmformfactor [114] packages. We used the Maxwell-

Boltzmann (MB) function for the DM velocity distribution. �e integrations over the ve-

locity and recoil energies were performed numerically by employing the Monte Carlo inte-

gration technique. In C , this can be achieved using the GNU Scienti�c Library (GSL) with

gsl monte.h, gsl monte plain.h and gsl monte miser.h. In the end, the total rate is obtained

by averaging over the natural isotopes of Xenon, which are 1.910 %, 26.401 %, 4.071 %,

21.232 %, 26.909 %, 10.436 %, 8.857 % for
128

Xe –
132

Xe and
134

Xe,
136

Xe, respectively.

For the large dark ma�er mass,mχ > 100 GeV, when µAχ = mA×mχ/(mA+mχ)→ mA,

the behaviour of the ank(mχ) is quite simple, i.e.,

ank(mχ > 100 GeV) ∼ 1

mχ

. (5.33)

On the other hand, for the light dark ma�er mass, the ank coe�cients depend on the dark

ma�er velocity distribution. For example, for the MB velocity distribution,

ank(mχ < 100GeV) ∼ x ∗ (mχ)
√

2 ∗ Erf

[
(mχ)−2

y

]
, (5.34)

where x and y are some constants, Erf[. . . ] is the ‘error function’, Erf[z] ≡ 2/
√
π
∫ z

0
e−t

2
dt.

In order to generate the exclusion curves in Fig. 9, we used (naive) Poisson statistics as-

suming zero events in the signal region. �is corresponds to signal mean µ = 2.44 at the

90% C.L. [115]. Hence, the condition N < 2.44 de�nes the excluded area.
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5.3.2 Monojet and dijet searches at the LHC

At the LHC DM is searched for via monojets [116, 117] and monophotons analyses [118,

119], which can be interpreted in the context of minimal DM models, cf. [120–122], with

the monojet �nal state typically providing the stronger limits. We consider the recent DM

analysis by the ATLAS collaboration [116], where monojet events with large missing energy

were used to constrain a minimal model with a vector mediator V , coupling to the DM χ,

and the quark q, excluding V with masses around 2 TeV. �e quoted limits on axial mediators

are very similar.

We imported the simpli�ed DM model from Ref. [123] intoMadGraph5 aMC@NLO [124]

to generate the WIMP s-channel process pp→ jV → jχ̄χ where j is a jet from initial state

radiation, and the DM particle pair χ̄χ gives rise to missing transverse energy Emiss
T in the

detector. �e process is implemented at LO in the strong coupling constant. We adopted

the NNPDF3.0 LO PDF set [125], and for each event the factorization and renormalisation

scales were set toHT/2, with the total hadronic transverse energyHT =
√
m2
χχ + p2

T,j+pT,j

where mχχ is the invariant mass of the DM pair, and pT,j is the transverse momentum of the

parton-level jet. Events are hadronised using Pythia8 [126], and a fast detector simulation

is carried out using Delphes [127]. We considered �rst the Model-I and simulated samples

with 20k and 50k events for the cases with r = −0.9 and r = 0.14, respectively, for each

combination of DM and Z ′ masses. Similarly, we consider the Model-II with 50k events .

We apply the kinematic cuts from Ref. [116], which are as follows: Emiss

T > 200 GeV;

leading jet with pT > 150 GeV and |η| < 2.4; no more than three additional jets with pT > 30

GeV and |η| < 2.8; separation between missing transverse momentum and each of the jets

∆φ(jet, pmiss

T ) > 0.4 (0.6) for events with Emiss

T < 250 GeV (200 GeV < Emiss

T < 250 GeV). �e

remaining simulated events were binned in thirteen exclusive signal regions as in Ref. [116]

according to their missing transverse energy.

We exclude a parameter space point when the �ducial cross section of the signal in any

bin is bigger than its uncertainty at 95% con�dence, which is evaluated by adding the total

systematic uncertainty of the signal quadratically to the statistical uncertainty of the signal

and the overall uncertainty of the background (statistical and systematic
9
) from Ref. [116].

In this way we were able to reproduce with good approximation the exclusion limits for the

simpli�ed DM model with couplings gχ = 1 and gq = 0.25 scanning over several con�gurations

9
�e systematic uncertainty of the signal is obtained by combining the relative uncertainties from Ref. [116]:

luminosity uncertainty 1.7%; cross section scale uncertainty 10%; a PDF uncertainty 5%; PDF choice 10%; 1%

to 7% for the jetEmiss

T reconstruction, energy scale and resolution; modelling initial and �nal state radiation

3% to 6%. �e scale uncertainty of the signal are neglected. �e systematic uncertainties are added linearly,

overall systematic and statistical uncertainties are added in quadrature.
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of DM and mediator masses
10

.

�e exclusion limits for the Model-I include purely right-handed couplings to quarks and

axial-vectorial coupling to DM with gχ = 1. �e couplings to quarks have been chosen in

order to keep the overall magnitude of the interaction �xed: the coupling of the le�-handed

quark doublets is set to zero, gQL = 0 (|C(6)
6,1 | = 0), and the couplings to right-handed quarks

are de�ned according to the parameter r while keeping (guR)2 + (gdR)2 = (0.25)2
. With this

choice the comparison with the standard benchmarks with gq = 0.25 is straightforward.

Heavy mediators that couple to quarks can be detected at the LHC via their decays into

quarks. �e most recent analysis by the ATLAS collaboration searching for heavy resonances

in dijet �nal states, uses 139 �
−1

data for state-of-the art constraints [32] for mediator masses

above 2 TeV. For lower masses we use the results presented in Ref. [128] that are based on

29.3�
−1

of data. Here we recast these limits into the considered model, and we estimate a

lower limit on the Z ′ mass of about 2 TeV using the code developed in Ref. [129] except that

we use the PDF, NNPDF23 lo as 0130 qed.

�e decay into leptons provides typically stronger constraints. �e benchmark scenario

of Model-II has a non-zero charge for the third generation leptons. Using 19.5-20.3�
−1

data

of Ref. [130] we can constrain the decay of the heavy mediator into a τ+τ− pair using the

same setup as we use for the dijet constraints.

10
Here we follow the benchmark values in [116]. In the Model-I the couplings gχ and gq are related by the

corresponding charges of the DM and the quarks. Changing the couplings does not signi�cantly a�ect the

limits we obtain.
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Figure 9: Exclusion limits for axial mediator couplings to DM from the XENON experiment for 1
ton×year exposure (red solid) and for 20 ton×year exposure (red dashed), from LHC monojet
(blue) and dijet (green) analyses with 139 fb−1 integrated luminosity. �e results are shown
in the plane with the DM mass on the x-axis and inverse of the square root of the Wilson
coe�cient |C(6)

7,1 |on the y-axis for the Model-I with r = -0.9 (le�) and r = +0.14 (right), de�ned
as in Eq. (5.8).

5.3.3 Results

�e exclusion curves in Fig. 9 and in Fig. 10 present complementarity between DM direct

detection experiments and LHC searches. �e inverse of the square root of the Wilson coef-

�cient on the y axis gives direct information on the mediator mass for �xed couplings, and at

the same time it provides a convenient model-independent interpretation. �e choice ofC
(6)
7,1

on the y axis is arbitrary, our reasoning for this choice is that both in the Model-I and Model-
II, the right-handed up quark has non-zero charge. In Fig. 9 we show the exclusion curves

for Model-I with modi�ed right–handed up–and down–type quark charges. In the model,

isospin limit is de�ned by r = −1 in Eq. (5.8), here, however, we take r = −0.9 that is very

close to the anomaly free solution. �is point also coincides to the minimum of the A · V
operator in Fig. 8c. On the other hand, the choice r = +0.14 is taken because it corresponds

to the (approximate) minimum of the grey curve in Fig. 8c where the event rate of direct

detection experiments could be suppressed. For this model, we �nd that collider and direct

detection experiments have comparable sensitivity if we do not sit in the singular points of

suppressed direct detection rate. Moreover, we �nd that future direct detection constraints

will exclude large parts of the parameter space.
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Figure 10: Exclusion limits for Model-II from XENON experiment for 1 ton×year exposure (red
solid) and for 20 ton×year exposure (red dashed), from LHC monojet (blue), dijet (green) and
ditau (yellow) analyses with 139 fb−1 integrated luminosity. �e results are shown in the plane
with the DM mass on the x-axis and the inverse of the square root of the Wilson coe�cient
|C(6)

7,1 | on the y-axis.

In Fig. 10 we show the exclusion limits for Model-II with gauge coupling g′ = 0.1 and

charges as depicted in Tab. 4. �is model has been chosen to minimise the event rate in the

XENON experiment, thus resulting in a low direct detection sensitivity. Also the monojet

sensitivity gets reduced by the smaller couplings to quarks and to DM. On the other hand,

other collider constrains such as the ones from dijet (green curve) and ditau (yellow) searches

are here relevant.
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6 SUMMARY AND CONCLUSIONS

In this work, we considered a large class of renormalisable extensions of the standard model

and derived analytical results that are needed for phenomenological analyses of new physics.

In particular, we matched the class of perturbative unitary new physics models onto the

∆F = 1 weak e�ective Hamiltonian at one loop level. Furthermore, we considered a Ma-

jorana dark ma�er model at tree level. For the one-loop results, we have presented �nite

and manifestly gauge-invariant matching contributions in generic extensions of the SM.

�at is, we add to its �eld content any number of massive vector bosons, physical scalars,

and fermions. For a given �eld content, only a minimal number of couplings needs to be

speci�ed because perturbative unitarity of the S-matrix implies that not all couplings can

be independent. �e constraints on the couplings are codi�ed in the sum rules that arise

from Slavnov-Taylor identities which are in turn obtained from the invariance of appropri-

ate Green’s functions under BRST transformations.

�e one-loop results of this work, the sum rules on the additional couplings and the �-

nite and gauge-invariant one-loop contribution, are implemented in a Mathematica package

available for download from

https://wellput.github.io .

�e package contains generic Wilson coe�cients for the |∆F | = 1 dipole and current-

current operators. However, it is in our intension to include �avour-conserving magnetic

and electric dipole operators and dimension-six scalar operators
11

as well in the near future.

�e code can be integrated with other automated tools, which are designed for the evalu-

ation of di�erent experimental observables in �avour physics, such as flavio [25]. In fact,

the derived one-loop results are not limited to �avour observables, and they are applicable to

other NP models as well, such as DM models where DM interactions with the SM particles

are one-loop induced. Furthermore, for the sake of simplicity, we did a phenomenological

analysis for DM models where DM couples with the SM particles at tree level via exchange

of a vector Z ′ that is gauge boson of an additional new U(1)′ symmetry. It is assumed that

the DM particle is a Majorana fermion which leads to consider only the axial-vector current

on the dark side.

�ere are three SU(2)×U(1) invariant operators that couple the �rst generation of quarks

to an axial vector DM current at dimension-6. Varying the relative magnitude of the three

respective Wilson coe�cients we only �nd singular points – as shown in Fig. 8a – where

direct detection rate for a Xenon target is signi�cantly suppressed.

11
Renormalisation of dim-6 scalar operators has not been studied by me/us, see Sec. 4.3
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In a model, where these Wilson coe�cients are generated via Z ′-exchange we �nd that

collider and direct detection experiments have comparable sensitivity if we do not sit in the

singular points of suppressed direct detection rate. For typical parameter points that are

chosen to be comparable to current experimental benchmark scenarios we �nd that future

direct detection constraints will exclude large parts of the parameter space, see e.g., Fig. 9.

Yet, in a Z ′ model, anomaly conditions further constrain the allowed parameter space of

the Wilson coe�cients and the direct detection rate could only be suppressed by consider-

ing generation dependent charges. Charging the right-handed strange quark, we found an

anomaly free charge assignment, that suppresses the direct detection rate for Xenon direct

detection targets. If realised in nature, such a scenario could result in collider signals and

direct detection signals for other target nuclei then Xenon.

To conclude, the results presented for the one-loop matchings are published in Ref. [1],

while tree-level dark ma�er phenomenology is in preparation [2]. Also, in the future, we are

planning to study loop induced dark ma�er phenomenology and implement its application

into the wellput package.
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A Photon operators

�e unphysical operators, which are vanishing by applying equations of motion of the pho-

ton �eld, are

O32 =
1

g2
s

mbs̄L /D /DbR ,

O33 =
i

g2
s

s̄L /D /D /DbL ,

O35 =
ie

g2
s

[
s̄L
←
/D σµνbLFµν − Fµν s̄Lσµν /DbL

]
+O7 ,

O36 =
e

g2
s

s̄Lγ
µbL∂

νFµν +
e2

g2
s

(s̄LγµbL)
∑

f
Qf (f̄γ

µf) ,

(A.1)

whereO7 corresponds to the dipole operator in Eq. (4.3). When we use theRξ gauge we also

have to consider the following set of equations of motion vanishing gauge variant operators,

O61 = − i

gs
mbs̄L

[←
/D /A− /A /D

]
bR ,

O62 = − 1

gs

[
s̄L

(←
/D
←
/D /A+ /A /D /D

)
bL + imbs̄L /A /DbR

]
,

O63 = − 1

gs

[
s̄L

(←
/D
←
Dµ A

µ + AµD
µ /D

)
bL + imbs̄LAµD

µbR

]
,

O64 = − 1

gs

[
s̄L

(←
/D + /D

)
bL + imbs̄LbR

]
∂µAµ ,

O65 =
1

gs

[
s̄L
←
/D /A /DbL + imbs̄L

←
/D /AbR

]
.

(A.2)

108



B Loop Functions

In this appendix we collect the analytical expressions of all loop functions that appear in the

�nal results for the renormalised Wilson coe�cients. �ese functions depend on the masses

of the particles inside the respective loop diagrams and on their electromagnetic charges.

B.1 Loop Functions for the Dipole Coe�icients

In the limit where no particles are much lighter than the matching scale, we �nd the functions

involving scalars,

F d
S(x) = Qs1

(
x+ 1

4(x− 1)2
− x log(x)

2(x− 1)3

)
+Qf1

(
log(x)

2(x− 1)3
+

x− 3

4(x− 1)2

)
,

F d
S′(x) = Qs1

(
2x2 + 5x− 1

24(x− 1)3
− x2 log(x)

4(x− 1)4

)
+Qf1

(
x log(x)

4(x− 1)4
+
x2 − 5x− 2

24(x− 1)3

)
,

(B.1)

and vectors,

F d
V (x0, x) = fdV (x)− fdV (x0) ,

fdV (x) = Qv1

(
11x2 − 7x+ 2

8(x− 1)3
− 3x3 log(x)

4(x− 1)4

)
+Qf1

(
3x2 log(x)

4(x− 1)4
− 2x2 + 5x− 1

8(x− 1)3

)
,

F d
V ′(x) = Qv1

(
3x2 log(x)

2(x− 1)3
+
x2 − 11x+ 4

4(x− 1)2

)
+Qf1

(
x2 + x+ 4

4(x− 1)2
− 3x log(x)

2(x− 1)3

)
,

(B.2)

that contribute to the Wilson coe�cient of the dipole operator in Eq. (4.14). As stated above,

our results agree with Ref. [80] a�er employing the relevant unitarity sum rule.

In the limit of light fermion particles, x0 → 0 (see Sec. 4.1.1)

F d
V (0, x) = x

{
Qv1

(
−3x2 log(x)

4(x− 1)4
+

2x2 + 5x− 1

8(x− 1)3

)
+Qf1

(
3x log(x)

4(x− 1)4
+
x2 − 5x− 2

8(x− 1)3

)}
.

(B.3)

B.2 Loop Functions for the Neutral-Current Operators

We �rst give the functions that contribute to the Wilson coe�cient of the neutral-current

operators in the scenario where no light internal particles are in the loop. We start with

the �rst term in Eq. (4.17) that comprises the contributions of internal vector bosons and

fermions. We �nd the following gauge-invariant combination of the photon penguin and
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the Z−penguin

F γZ
V (x0, x) = fγZV (x)− fγZV (x0) , (B.4)

where

fγZV (x) = Qf1

(
14x2 − 21x+ 1

12(x− 1)3
+

(−9x2 + 16x− 4)

6(x− 1)4
log(x)

)
+Qv1

(
6x4 − 18x3 − 32x2 + 87x− 37

12(x− 1)3
+
x (8x3 − 2x2 − 15x+ 6)

6(x− 1)4
log(x)

)
.

(B.5)

�e terms proportional toQf andQv originate from the photon penguin and the combination

of the Z−penguin and the photon penguin, respectively.

In the limit of light fermion particles, x0 → 0 (see Sec. 4.1.1)

F γZ
V (0, x) = Qf1

(
2

3
log

(
µ2

M2
v1

)
+
x (x2 + 11x− 18)

(x− 1)3
+

(−9x2 + 16x− 4)

6(x− 1)4
log(x)

)
+Qv1

(
x (6x3 − 41x2 + 77x− 48)

12(x− 1)3
+
x (10x3 − 22x2 + 9x+ 6) log(x)

6(x− 1)4

)
.

(B.6)

�e remaining loop functions involving vector bosons are

FZ
V ′′(x0, x, y) ≡ fZV ′′(x, y)− fZV ′′(x0, y) , (B.7)

with

fZV ′′(x, y) = −x(y − 1) (3x2(y − 1)y − 10xy + 4)

4(x− 1)(xy − 1)2
log(x) +

x (2xy2 − 2xy + y + 5)

4xy − 4

+
xy (x (−4y2 − 5y + 3) + y + 5)

4(y − 1)(xy − 1)2
log(y) ,

(B.8)

as well as

FL,BZ
V (x0, x, y, z) ≡ fL,BZV (x, y, z)− fL,BZV (x0, y, z) , (B.9)
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with

fL,BZV (x, y, z) =
xy (3x2y(xy + x− 2)− (x− 1)z(xy(xy − 2) + 4))

4(x− 1)(xy − 1)2(x− z)
log(x)

+
3xy2(x+ (y − 1)z − 1)

4(y − 1)(xy − 1)2(yz − 1)
log(y)

+
xyz(z(y(z − 4)− 4) + 4)

4(z − 1)(x− z)(yz − 1)
log(z) +

xy(2xy − 5)

4xy − 4
,

(B.10)

and

FR,BZ
V (x0, x, y, z) ≡ fR,BZV (x, y, z)− fR,BZV (x0, y, z) , (B.11)

with

fR,BZV (x, y, z) =
xy(3x(xy(xy + x− 6) + 4)− (x− 1)z(xy(xy − 2) + 4))

4(x− 1)(xy − 1)2(x− z)
log(x)

+
3xy2(−4xy + x+ (y − 1)z + 3)

4(y − 1)(xy − 1)2(yz − 1)
log(y)

+
xy(z − 4)z(yz − 4) log(z)

4(z − 1)(x− z)(yz − 1)
+
xy(2xy − 5)

4xy − 4
.

(B.12)

In addition, we have

FZ
V (x, y) =

xy

x− y log

(
x

y

)
− x+ y

2
(B.13)

and

FZ
V ′(x, y) =

√
xy

[
y − 4

2 (y − 1)
− (x− 4)x

2 (x− 1) (x− y)
log (x)

+
(x ((y − 2) y + 4)− 3y2)

2 (x− y) (y − 1)2 log (y)

]
.

(B.14)

Moerover, we have the relations

FL,B′Z
V (x, y, z) = FR,BZ

V (x, y, z), FR,B′Z
V (x, y, z) = FL,BZ

V (x, y, z). (B.15)
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�e loop functions involving scalar particles are

F γ
S (x) = Qs

(
11x2 − 7x+ 2

36(x− 1)3
− x3 log(x)

6(x− 1)4

)
+Qf1

(
7x2 − 29x+ 16

36(x− 1)3
+

(3x− 2) log(x)

6(x− 1)4

)
,

(B.16)

FZ
S (x, y) =

1− 2y

2 (y − 1)
− y log (x)

2 (x− 1) (x− y)
+

(x− 1) y log (y)

2 (x− y) (y − 1)2 , (B.17)

FZ
S′(x, y) =

√
xy

(x− y)

(
x log(x)

x− 1
− y log(y)

y − 1

)
, (B.18)

FZ
S′′(x, y) =

y

2 (y − 1)
− x2 log (x)

2 (x− 1) (x− y)
+
y (x (y − 2) + y) log (y)

2 (x− y) (y − 1)2 , (B.19)

FB
S (x, y, z) =

x2y log(x)

4(x− 1)(xy − 1)(x− z)

+
yz2 log(z)

4(z − 1)(z − x)(yz − 1)
+

y log(y)

4(y − 1)(xy − 1)(yz − 1)
,

(B.20)

while the loop functions with both vectors and scalars are

FB
V S(x, y, z) =

√
xz

[
x(xy − 4) log(x)

4(x− 1)(xy − 1)(x− z)

− 3y log(y)

4(y − 1)(xy − 1)(yz − 1)
− z(yz − 4) log(z)

4(z − 1)(x− z)(yz − 1)

]
,

(B.21)

FZ
V S(x, y) =

√
y

[
− (y − 4x) log (x)

4 (x− 1) (x− y)
+
y (x+ 2y − 3) log (y)

4 (y − 1) 2 (y − x)
+

5− 4y

4 (y − 1)

]
, (B.22)

FZ
V S′(x, y) =

√
y

[
x (4x− y − 3) log (x)

4 (x− 1) 2 (x− y)
− 3x log (y)

4 (y − 1) (x− y)
+

1− 2x

4 (x− 1)

]
. (B.23)

∆F = 2 loop functions

FB
S′(x, y, z) =

2x2y log(x)

(x− 1)(xy − 1)(x− z)

− 2yz2 log(z)

(z − 1)(x− z)(yz − 1)
+

2y log(y)

(y − 1)(xy − 1)(yz − 1)

(B.24)
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FB
V S′(x, y, z) =

2x3/2
√
z(xy − 4) log(x)

(x− 1)(xy − 1)(x− z)

− 2
√
xz3/2(yz − 4) log(z)

(z − 1)(x− z)(yz − 1)
− 6

√
xy
√
z log(y)

(y − 1)(xy − 1)(yz − 1)

(B.25)

FB
V ′(x, y, z) =

2x2yz((x− 4)y − 4) log(x)

(x− 1)(xy − 1)(x− z)

− 2xy2(4y + 3)z log(y)

(y − 1)(xy − 1)(yz − 1)
− 2xyz2(y(z − 4)− 4) log(z)

(z − 1)(x− z)(yz − 1)

(B.26)

FB
V ′′(x, y, z) = − 8x2y log(x)

(x− 1)(xy − 1)(x− z)

+
8yz2 log(z)

(z − 1)(x− z)(yz − 1)
− 8y log(y)

(y − 1)(xy − 1)(yz − 1)

(B.27)
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uR dR eR χR

-1 +1 +1 -1

Table 5: �e charge assignments of the DM candidate and one generation of right-handed SM
fermions under the additional U(1)′ gauge group. �e DM candidate is neutral under the SM
gauge group.

C Dark ma�er

C.1 A possible UV completion

In our setup, we want a dark ma�er candidate with purely axial-vectorial coupling to a

spin-1 mediator. Since the most minimal additional ma�er �eld content — one Weyl fermion

charged under a spontaneously broken U(1)′ gauge group — gives rise to a Majorana fermion

a�er spontaneous symmetry breaking, the desired axial-vectorial coupling is automatically

guaranteed. Hence, we extend the SM gauge group by an additional U(1)′ which is spon-

taneously broken by the vacuum expectation value of a scalar �eld, S, and add one Weyl

fermion, χR, that is charged under this U(1)′ and is additionally odd under a Z2 symmetry

that remains exact. �is fermion is neutral under the SM gauge group.

Since the DM candidate χR is chiral under the U(1)′, the gauge symmetry is anomalous

(see Sec. 2.5). One simple solution to make it anomaly free is to also charge one generation of

right-handed SM fermions under the U(1)′. �e assignment in Table 5 is su�cient to cancel

all mixed and pure anomalies. However, charging the right-handed SM fermions under U(1)′

forbids their Yukawa terms at dimension four. To write these terms, one needs to include

powers of the U(1)′ Higgs, S, suppressed by the same power of the scale M∗ where the

interaction is generated. Writing in terms of Weyl spinor �elds transforming under the (0, 1
2
)

representation of the Lorentz group and following the conventions of [131], the Lagrangian

describing the �elds charged under the U(1)′ is given by

LU(1)′ =
∑

f=u,d,e,χ

f †R iDµσ
µ fR + (DµS)†DµS −

[
1

2
yχ χRχR S + h.c.

]
, (C.1)

whereDµ = ∂µ+i g q′ Z ′µ is the U(1)′ covariant derivative and σµ ≡ (12×2;~σ) where σi ∀ i ∈
{1, 2, 3} are the Pauli matrices, see [131] and references therein. In order to be able to write

the Yukawa term in the square bracket, the U(1)′ charge of the Higgs �eld S must be +2.

However, such a choice would require one additional U(1)′ charged scalar with charge +1

to allow for the SM Yukawa terms given the charge assignment of Table 5. �us, a solution
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that would allow all Yukakwa interactions with only one U(1)′-charged scalar, S, forces us to

assign it a charge +1. �is choice forbids the Yukawa term in Eq. (C.1) at the renormalizable

level and all Yukawa terms now arise at dimension-5 in the following way (again, writing in

terms of �elds that transform under the (0, 1
2
) representation of the Lorentz group as before)

LYukawa

U(1)′ = −yu H̃ ·Q†LuR
S

M∗
−ydH ·Q†LdR

S†

M∗
−yeH ·L†LeR

S†

M∗
−yχ χRχR

S2

M2
∗

+h.c. , (C.2)

where H̃a = εabH†b and a, b are SU(2)L indices which are made explicit here for clarity

while they are suppressed in the equation above where their contraction via the δba invariant

tensor is denoted byX ·Y ≡ δbaX
aYb withX and Y transforming under (formally) conjugate

representations. �ese higher dimensional operators can be generated at the scale M∗ via

vector-like fermions with masses of ∼ O(M∗) as shown in Fig. 11. For each of the fermions

in Table 5, we require one pair of vector-like Weyl fermions which are neutral under U(1)′

but are otherwise charged under SU(3)C or U(1)Y as necessary. �e vector-like fermion X

corresponding to the dark ma�er candidate χR is completely neutral under the SM and the

U(1)′ gauge group. However, it must also be odd under Z2 in order for the DM Yukawa term

to respect it.

A�er spontaneous symmetry breaking of the U(1)′, the DM candidate χR only transforms

under the Z2 symmetry as χR → −χR but does not carry any additional conserved charges.

�us, we can construct a le�-handed, (1
2
, 0), fermion εαβ(χ†R)β with the same quantum num-

bers as χR and, consequently, we can construct a 4-component Majorana spinor as

χM =

([
χ†R
]
α[

χR
]α̇
)
, (C.3)

which explicitly satis�es the Majorana “reality” condition χcM = χM , though it is manifestly

obvious that this must be so since the 4-component spinor is constructed from only one Weyl

fermion. �e Lagrangian of this Majorana DM is given by

LM =
1

2
χ̄M i/∂ χM +

1

2
χ̄M γµγ5 χM Z ′µ −

1

2
mχ̄M χM . (C.4)

We note here that charging the right-handed electron under the U(1)′ leads to strong bounds

from dilepton resonance searches [106] which places a bound on the Z ′ mass of m′Z &

4.5 TeV. One way to alleviate this constraint is to charge the τ instead. In this case ditau

searches [107] put a bound of m′Z & 2.1 TeV. �is bound was obtained with only 2.2 �
−1
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u†L uR

H̃ S

U †L UR

d†L dR

H S†
D†L DR

χR χR

S S

X†L XR

Figure 11: Generating the dimension-5 Yukawa interactions via vector-like-fermions. �e
fermion �ow re�ects the fact that we work with (0, 12 )-representation fermions, see [131].
�e diagram for the electron is omi�ed but it can be obtained from the down-quark one by
the replacement d→ e and D → E. �e vector-like fermions, U,D,E,X are neutral under
U(1)′.

and it is expected to be stronger given the full dataset, however, this analysis is not yet avail-

able at the time of writing.

Finally, it is worthwhile to make contact again with the discussion of isospin breaking at

the end of Sec. 5.1 in the context of the model presented here. As desired, the coupling of the

DM to the Z ′ is axial-vectorial and matching this model onto the EFT of the previous subsec-

tion generates the operatorsQ(6)
2,u andQ(6)

2,d with the ratio of coe�cients r = C (6)
2,d /C

(6)
2,u = −1.

C.2 Formulae for DM direct detection constraints

In this appendix, we will give explicit formulae for some functions discussed in Sec. 5.3.1.

�e relevant DM particle response functions [114] to our case are

Rττ ′

M

(
~v⊥2
T ,

~q 2

m2
N

)
=
jχ(jχ + 1)

3
~v⊥2
T cτ8c

τ ′

8 ,

Rττ ′

Σ′′

(
~v⊥2
T ,

~q 2

m2
N

)
=
jχ(jχ + 1)

12

[
cτ4c

τ ′

4 +
~q 2

m2
N

(
cτ4c

τ ′

6 + cτ6c
τ ′

4

)
+

~q 4

m4
N

cτ6c
τ ′

6

]
,

Rττ ′

Σ′

(
~v⊥2
T ,

~q 2

m2
N

)
=
jχ(jχ + 1)

12

[
cτ4c

τ ′

4 +
~q 2

m2
N

cτ9c
τ ′

9

]
,

Rττ ′

∆

(
~v⊥2
T ,

~q 2

m2
N

)
=
jχ(jχ + 1)

3
cτ8c

τ ′

8 ,

Rττ ′

∆Σ′

(
~v⊥2
T ,

~q 2

m2
N

)
= −jχ(jχ + 1)

3
cτ8c

τ ′

9 .

(C.5)
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�e matrix of nuclear functions is

M ττ ′

W (q) =


1
4

(
W ττ ′

Σ′′ +W ττ ′

Σ′

)
~q 2

m2
N
W ττ ′

Σ′′ 0 0
~q 2

m2
N
W ττ ′

Σ′′
~q 4

m4
N
W ττ ′

Σ′′ 0 0

0 0 v⊥2
T W ττ ′

M +W ττ ′
∆ −W ττ ′

∆Σ′

0 0 0 ~q 2

m2
N
W ττ ′

Σ′

 . (C.6)

For the individual proton/neutron, the nuclear functions are
AppW
ApnW
AnpW
AnnW

 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



M00

W

M01
W

M10
W

M11
W

 . (C.7)

A relation beween NR Wilson coe�cients and the UV Wilson coe�cients involving only the

�rst generation quarks,

~c r =


cr4

cr6

cr8

cr9

 = Kr ~C = Kr


C

(6)
6,1

C
(6)
7,1

C
(6)
8,1

0

 , (C.8)

where

Kr =


4F

u/r
A + 4F

d/r
A −4F

u/r
A −4F

d/r
A 0

−F u/r
P ′ − F

d/r
P ′ F

u/r
P ′ F

d/r
P ′ 0

2F
u/r
1 + 2F

d/r
1 2F

u/r
1 2F

d/r
1 0

2(F
u/r
1 + F

u/r
2 + F

d/r
1 + F

d/r
2 ) 2(F

u/r
1 + F

u/r
2 ) 2(F

d/r
1 + F

d/r
2 ) 0

 . (C.9)

�e numerical values of the form factors entering Kr
matrix can be found in Ref. [102].
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