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Abstract

In distributed systems and algorithms, a stable property is a global property which
once achieved, continues to hold forever. Such a property might refer to a system’s
behavior under representative perturbations to their operating environments, where
the ability to recover from such perturbations is termed in the literature as self-
stabilization. In particular, self-stabilization is a concept of distributed algorithms
and protocols that characterizes their ability to automatically recover from an arbi-
trary configuration and converge within finite time to a configuration that satisfies a
given specification. For instance, in the population protocol (PP) model, we say that
a configuration is stable when the system gets to a configuration that is correct and
no subsequent sequence of transitions can take the PP to an incorrect configuration,
while self-stabilization refers to the system’s ability to start in any global configura-
tion and always stabilize to a configuration that meets the task specification. Such
systems can tolerate worst-case transient faults. Similarly, termination in distributed
systems is a stronger form of stability which is persistent, meaning that once such a
state has been reached, it will never change. However, termination cannot always be
achieved.

In this thesis we examine some well-known problems that require stable solu-
tions, and we provide new algorithms for them that achieve a correct stable state.
To demonstrate their correctness and efficiency, we formally analyze them and for
some of them we also provide experimental results. The thesis is broken down into
three parts; in the first part we consider systems of interacting entities for the sta-
ble computation of functions, in the second part we work on structure formation
problems where the goal is to construct stable structures that satisfy a given set of
criteria, and in the third part we consider more general dynamic networks where
mobile agents are able to move on a dynamically changing graph

In particular, Chapter 2 deals with the problem of approximate counting, while
Chapter 3 with the problem of electing a leader, considering for both the Population
Protocol model. For approximate counting, we provide a protocol for the stable
computation of an approximation of the population size, and for leader election
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a protocol that can trade off time and space by adjusting a parameter which is
embedded into the algorithm.

Chapter 4 deals with the stable construction of graphs in the Network Construc-
tors model where crash failures on the nodes may occur during the execution of the
protocol and can result to an incorrect configuration of states in the population. We
provide self-stabilizing protocols for several basic network constructions and universal
constructors that can construct a large class of graphs. In Chapter 5 we work on op-
timization algorithms for the crystal structure prediction (CSP) problem, where the
goal is to find the most stable configuration of atoms by minimizing the free energy
function. We formalize the problem from a theoretical computer science perspective,
we propose algorithms for it, and we provide experimental results and comparisons
with existing algorithms for CSP.

Finally, Chapter 6 deals with the problem of gathering a set of mobile agents on
some node of the dynamic graph they operate in. We first provide some impossibility
results, and in light of them, we focus on a relaxed version of the problem where the
agents have to stabilize to a configuration such that all agents remain in distance
at most one from each other, and eventually terminate. This problem is termed in
the literature as weak gathering. We provide a deterministic algorithm for unicyclic
graphs that runs in O(n2 + nk) number of rounds, where n is the size of the graph,
and k the number of mobile agents.
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Chapter 1

Introduction

Stability in algorithms is a notion that has been defined in several ways, and captures
certain algorithm-specific and problem-specific properties. In some cases, the goal of
an algorithm is to stably compute a function, or reach a correct, stable configuration.
In numerical algorithms for differential equations, numerical stability is a desirable
property which is concerned with the growth of round-off errors and/or small fluc-
tuations in initial data which might cause a large deviation of the final answer from
the exact solution. The stability of a learning algorithm pertains to how changes to
the training data influence the result of the algorithm.

In this thesis, we have selected four areas where stability achievement is critical
and in each of them we examine a fundamental problem and provide new algorithmic
solutions. These areas are (a) systems of interacting entities for the stable computa-
tion of functions, (b) actively and distributedly constructing a network spanning a
set of cooperating entities, (c) computation of stable atomic structures in materials,
and (d) dynamic networks in which a set of mobile agents move and cooperate.

In particular, we first consider the Population Protocol model [7] and we study
the problems of approximate counting and leader election. Our approximate counting
protocol stabilizes in Θ(log n) parallel time, where n is the size of the population,
and provides a constant factor approximation of log n. Parallel time is defined as the
total number of interactions, divided by n. Our leader election protocol terminates
in O( log

2 n
logm ) parallel time, using O(max{logm, log logn}) bits. By adjusting the

parameter m between 1 and n we obtain a leader election protocol whose time and
space can be smoothly traded off between O(log2 n) to O(log n) time and O(log log n)

to O(log n) bits. We then work on structure formation problems, and we first consider
the Network Constructors model [113]. Network Constructors resemble Population
Protocols where the agents can additionally activate edges between them. We address
the issue of dynamic formation of graphs under faults, and we answer the question of
what graph languages can be stably constructed and under what assumptions. We
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Chapter 1. Introduction 2

then work on optimization algorithms for the crystal structure prediction problem,
where the goal is to find the most stable arrangement of atoms by minimizing the
free energy function. Finally, we consider dynamic graphs where a set of k agents are
allowed to move between neighboring nodes. We study the weak gathering problem
and we provide an algorithm where the agents terminate in O(n2 +nk) rounds either
in the same node, or in two neighboring nodes of the graph.

1.1 Population Protocols

Population protocols [7] is a model of distributed computation, represented as net-
works that consist of very weak mobile computational entities (also called nodes or
agents), regarding their individual capabilities. The kind of their mobility is known
as passive mobility in the literature, hence they are classified as passively dynamic
networks. These networks consist of a large population of indistinguishable (i.e.,
anonymous) entities that interact with each other and execute an identical protocol,
stored in the local memory of each agent. Computation in an agent occurs upon
interacting with some other agent in the network. The input to a population pro-
tocol is distributed across the initial state of the entire population, and the goal is
for the population to cooperatively compute a required function on that input. Two
examples of simple protocols are given in Section 1.1.3

The interaction pattern between the agents is unpredictable and controlled by an
adversary. In the generic case, there is an underlying interaction graph specifying
the permissible interactions between the agents, typically representing distance con-
straints. The most common choice of the interaction graph is the complete graph.
In a complete interaction graph, all agents with the same state are indistinguishable,
and only the counts of agents in each state affect the outcome of the protocol. A
strong global fairness condition is imposed on the adversary to ensure that the pro-
tocol makes progress. Finally, population protocols cannot detect when they have
finished, therefore terminate; instead, the agents’ outputs are required to converge
in finite time to an output state and remain to that state indefinitely. A formal
definition of this model is given in Section 1.1.2

1.1.1 Motivation

The population protocol model was designed to model Wireless Sensor Networks
(WSN) and formally study their capabilities and limitations. Wireless Sensor Net-
works consist of low-cost and low-power sensor nodes, which are equipped with very
limited computational capacity and memory. These nodes are able to communicate
in short distances and collaborate as a group in order to complete a task. They
obtain data from the environment that they are deployed at, they locally carry out
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computations, and transmit only the required and partially processed data. Finally,
the topology of the sensor networks changes arbitrarily and very frequently.

Sensor networks have a wide range of applications that spans from continues
sensing of some environmental variable, to event detection and location sensing.
They may consist of many different types of sensors such as seismic, thermal, visual,
acoustic, and many more [134], thus allowing them to be used in many application
areas, such as for health monitoring, space exploration, environment monitoring, etc.

1.1.2 Formal definition

A population protocol is formally specified by a tuple (X,Y,Q, I,O, δ), where

1. X is a finite input alphabet

2. Y is a finite output alphabet

3. Q is a finite set of possible states for an agent

4. I : X → Q is an input map function from X to Q

5. O : Q→ Y is an output map function from Q to Y

6. δ : Q×Q→ Q×Q is the transition function that describes how pairs of agents
interact and update their states

The computation takes place among a population of n ≥ 2 agents, and proceeds
in rounds. During each round, a single pair of agents is chosen from the scheduler
to interact, and based on δ they update their states. Initially, each agent is given as
input a value from X, and then I determines its initial state from Q. At any point,
each agent’s state q ∈ Q determines its output O(q) at that time.

Let two agents u and w be in states q1 and q2, respectively, and are chosen
by the scheduler for interaction. If (q1, q2, q

′
1, q
′
2) is in the transition function δ,

u and w update their states to q′1 and q′2, respectively. To describe δ, we list
all possible interactions that update the state of u and/or w using the notation
(q1, q2) → (q′1, q

′
2). For all transitions that are not specified in δ, we assume null

transitions (e.g., (q1, q2) → (q1, q2)). Additionally, a population protocol may be
symmetric or asymmetric. In symmetric protocols, two agents in an interaction (and
thus in the corresponding transition) are indistinguishable if their states are identical.
Thus, their states are identical also after the transition. In asymmetric protocols,
the interacting nodes can always be distinguished, that is, they are assumed to com-
municate in ordered pairs (u,w), where u is called the initiator and w the responder.

The multiset of initial agent states determines the initial configuration for an
execution. In particular, a configuration of the system is a mapping C : V → Q
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specifying the state of each node in the population V . Alternatively, a configuration
can be described by an unordered multiset of all agents’ states (i.e., agents with the
same state are indistinguishable).

We write C → C ′ if C ′ can be obtained from C by a single interaction of two
agents. An execution of a protocol on input I is an infinite sequence of configurations
C0, C1, C2, . . ., each of which is a set of states drawn from Q. Ci is the configuration
at round i, C0 is the initial configuration, and Ci → Ci+1, ∀i ≥ 0. In general,
interactions can occur simultaneously, but when writing down an execution, we can
order those simultaneous interactions arbitrarily.

The interaction between the agents is unpredictable; an adversarial scheduler
chooses in each round a pair of nodes for interaction. To allow meaningful compu-
tations, we must impose some restrictions to the scheduler; otherwise, the scheduler
could initially choose a single pair of nodes that will interact in every round, leaving
the rest of the population in the same state indefinitely. The fairness condition that
we impose to the scheduler is the following: If C is a configuration that appears in-
finitely often in an execution, and C → C ′, then C ′ must also appear infinitely often
in the execution. In other words, any configuration that is reachable by a sequence
of interactions is eventually reached.

Finally, an agent’s output may change during the execution, however, correctness
is a property that must be satisfied eventually. This means that we require that the
agents produce the correct output at some time in the execution and continue to do
so forever after that time.

Definition 1.1. We say that a population protocol Π computes a function f that
maps multisets of elements of I to Y if for every such multiset I and every fair
execution of Π that starts from the initial configuration corresponding to I, the
output value of every agent eventually stabilizes to f(I).

1.1.3 Examples

As an introduction, we here provide two simple population protocols. The first one
is a protocol that elects a unique leader in the population. The set of states is
Q = {`, f}, where ` indicates that the agent is a leader, and f indicates a follower.
Initially, all nodes start as potential leaders (in state `), and the goal is that eventually
only one node should remain in state `, the rest of them being followers (in state f).

The transition function of the simple leader election protocol consists of the
following transition

(`, `)→ (`, f)
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Whenever two potential leaders interact with each other, one of them becomes
a follower. This protocol will eventually stabilize to a configuration with only one
node in state `.

For the next example, consider a scenario where we need to monitor a wild animal
population. This might be necessary for a variety of reasons, such as for disease de-
tection. Monitoring can be achieved by attaching or implanting monitoring devices
that can collect data with a predetermined frequency and can additionally commu-
nicate with a base station that collects these data for further analysis. Depending on
the method of data collection, the impact on the welfare of animals may be greater
or less, both for the individual being monitored, and the population as a whole. It
is then imperative that such devices are as small as possible, hence with limited
capabilities. A single, more powerful device in the population may be allowed to
communicate with the base station in order to send the result, or output, of the
protocol.

Consider a population of penguins where each individual has an implanted sensor
device that can recognize a particular infectious disease. Let the set of states be
Q = {d, n, u}, where d indicates that the animal is infected with the disease, n
indicates that it is not infected, while u indicates that the state of the animal is
unknown. This may happen because of insufficient or inconclusive data; not all
devices can conclude that the animal has the infection at the same time. We are
interested in identifying whether the majority of penguins are either infected, or not.
A very simple to state approximate majority protocol is given in [8]; its transition
function is shown in Protocol 1.

Protocol 1 Approximate majority
Q = {d, n, u}
δ :

1: (d, n)→ (d, u)
2: (n, d)→ (n, u)

3: (d, u)→ (d, d)
4: (n, u)→ (n, n)

This protocol makes use of two competing epidemic processes; d′s and n′s try to
propagate their state throughout the population. Epidemic processes in population
protocols permit us to design much more efficient protocols with respect to their
convergence time. As shown in [8], under a uniform random scheduler, the above
protocol converges in O(n log n) interactions, and its output is the majority, provided
that its initial margin is at least ω(

√
n log n).



Chapter 1. Introduction 6

Our protocols in Chapters 2 and 3 make use of epidemic processes in order to
achieve optimal and almost optimal time for the problems of Approximate Counting
and Leader Election, respectively.

1.2 Network Constructors

Network Constructors is a model where a population of agents running Population
Protocols can additionally activate/deactivate links when they meet. This model
was introduced in [113], and is based on the Population Protocol (PP) model [7, 11]
and the Mediated Population Protocol (MPP) model [107]. In particular, initially
all agents are isolated and in the same initial state. When two agents interact, a
protocol, which is stored in the local memory of each agent, takes as input the states
of the agents and the state of the connection between them, and updates them. The
main difference between PPs and Network Constructors is that in the PP (and the
MPP) model, the focus is on computation of functions of some input values, while
Network Constructors are mostly concerned with the stable formation of graphs that
belong to some graph language.

In [113], Michail and Spirakis gave protocols for several basic network construc-
tion problems, and they proved several universality results by presenting generic
protocols that are capable of simulating a Turing Machine and exploiting it in order
to stably construct a large class of networks.

1.2.1 Motivation

Network Constructors (and its geometric variant [104]) is a theoretical model that
may be viewed as a minimal model for programmable matter operating in a dynamic
environment [112]. Programmable matter refers to any type of matter that can
algorithmically transform its physical properties, for example shape and connectivity.
The transformation is the result of executing an underlying program, which can be
either a centralized algorithm or a distributed protocol stored in the material itself.
There is a wide range of applications, spanning from distributed robotic systems
[81], to smart materials, and many theoretical models (see, e.g., [48, 53, 56, 110] and
references therein) try to capture some aspects of them.

1.2.2 Formal definition

A Network Constructor (NET) is a distributed protocol defined by a 4-tuple (Q, q0,

Qout, δ), where Q is a finite set of node-states, q0 ∈ Q is the initial node-state,
Qout ⊆ Q is the set of output node-states, and δ : Q×Q× {0, 1} → Q×Q× {0, 1}
is the transition function, where {0, 1} is the set of edge states.
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In the generic case, there is an underlying interaction graph GU = (VU , EU )

specifying the permissible interactions between the nodes, and on top of GU , there
is a dynamic overlay graph GO = (VO, EO), meaning that GO is always a subgraph
of GU . A mapping function F maps every node in the overlay graph to a distinct
underlay node. In most cases, GU is a complete undirected interaction graph, i.e.,
EU = {uv : u, v ∈ VU and u 6= v}, while the overlay graph consists of a population
of n initially isolated nodes (also called agents).

The NET protocol is stored in each node of the overlay network, thus, each node
u ∈ GO is defined by a state q ∈ Q. Additionally, each edge e ∈ EO is defined
by a binary state (active/connected or inactive/disconnected). Initially, all nodes
are in the same state q0 and all edges are inactive. The goal is for the nodes, after
interacting and activating/deactivating edges for a while, to end up with a desired
stable overlay graph, which belongs to some graph language L.

During a (pairwise) interaction, the nodes are allowed to access the state of their
joining edge and either activate it (state = 1) or deactivate it (state = 0). When
the edge state between two nodes u, v ∈ GO is activated, we say that u and v are
connected, or adjacent at that time t, and we write u ∼

t
v.

1.2.3 Self-stabilizing protocols

Self-stabilization is a concept of distributed algorithms and protocols that charac-
terizes their ability to automatically recover from an arbitrary configuration and
converge within finite time to a configuration that satisfies a given specification. The
arbitrary configuration is usually the result of a finite number of transient faults,
however stronger forms of self-stabilization have been introduced to cope with per-
manent failures, such as process crashes (e.g., fault-tolerant self-stabilization [22, 51])
and Byzantine failures (e.g., strict stabilization [68, 122]). Self-stabilization is con-
sidered as a versatile fault tolerance approach since it recovers from such faults in a
unified manner, while state-of-the-art self-stabilizing algorithms have usually small
overhead with respect to time and space complexity.

Self-stabilization is an attractive technique for distributed systems equipped of
processes with low computational and memory capabilities, therefore, their study in
models such as Population Protocols and Network Constructors is very natural. In
Chapter 4, we examine self-stabilizing protocols that can cope with crash failures,
that is, nodes, along with their adjacent edges, are removed from the configuration
and do not participate in the execution of the protocol again.
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1.2.4 Examples

As an introduction to the Network Constructors model, we first consider the case
where no crash failures occur, and we present a simple protocol for the spanning line
problem, given in [113]. Let n be the number of the distributed processes, or nodes.
The goal is for the output which is induced by the active edges between the nodes,
to stabilize to a graph isomorphic to a line of size n.

Protocol 2 Spanning line
Q = {q0, q1, q2, l, w}
δ :

1: (q0, q0, 0)→ (q1, l, 1)
2: (l, q0, 0)→ (q2, l, 1)
3: (l, l, 0)→ (q2, w, 1)
4: (w, q2, 1)→ (q2, w, 1)
5: (w, q1, 1)→ (q2, l, 1)

q0

q1

q2

q1

l

l

(a)

q0

q1

q2

q1

q2

w

(b)

q0

q1

q2

l

q2

q2

(c)

l

q1

q2

q2

q2

q2

(d)

Figure 1.1: An example of three execution steps of the Spanning line protocol
(Protocol 2). Node-states in red represent state updates and lines in red represent

new edge activations.

In Figure 1.1a, there are two lines of size three and two, and a single isolated
node. Each line has an endpoint in state q1 and one in state l, while all intermediate
nodes are in state q2. Nodes in state l can only be on an endpoint of a line. Nodes in
state l are used in order to absorb isolated nodes (i.e., expand the line), and connect
with other lines in the population. Then, as shown in Figure 1.1b, the two endpoints
in state l eventually interact with each other. They become connected and one of
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them changes its state to q2, while the other node becomes w. w is a walking state,
meaning that when it interacts with a connected to it node in state q2, they exchange
their states. The walking state eventually reaches the endpoint in state q1, resulting
to state l (Figures 1.1c and 1.1d). This protocol, as shown in [113], constructs a
spanning line in Ω(n4) and O(n5) expected time under a uniform random scheduler.

In Section 4 we use the model of Network Constructors and we consider adver-
sarial crash faults of nodes. This means that in each round, the scheduler can pick
a node u and remove it from the configuration. We say that u crashes, and it never
participates in the execution of the protocol again.

1.3 Crystal Structure Prediction

Crystal structure prediction (CSP) is one of the major problems in computational
chemistry, that comprises of a more applied version of stability. The goal is to calcu-
late the most stable structure, or ground state, of solids from first principles, which
corresponds to the structure with the lowest free energy. CSP gained popularity in
the 1980s, following statements from John Maddox on how scientists still struggle to
predict crystal formation [101].

“One of the continuing scandals in the physical sciences is that it remains in
general impossible to predict the structure of even the simplest crystalline solids from
a knowledge of their chemical composition.”

Understanding the behaviors of materials at the atomic scale is fundamental to
modern science and technology. The crystal structure of a material bears information
about its properties, therefore making it one of the greatest problems of computa-
tional chemistry.

1.3.1 Algorithmic approaches

Traditional approaches to crystal structure prediction involve trial and error, ren-
dering experimental solutions difficult, or in some cases impossible. An alternative
approach to this problem which is now possible due to the significant progress in
computational power, is by utilizing computational techniques in order to predict
the lowest free energy structure. Given that this problem is highly-dimensional and
the free energy surface is extremely rugged with high peaks and saddle points, it
becomes almost impossible to classify that huge number of energy minima on the
energy surface. Therefore, optimization methods that have been employed include
evolutionary algorithms [97, 146, 152], data mining [40, 72, 89], simulated annealing
[71, 149], and minima hopping [4].
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The first step to crystal structure prediction is the formation of an appropriate
evaluation function. Several methods have been developed, with ab initio calculations
of the free energy being the most accurate methods but computationally expensive,
while methods that approximate the free energy are computationally cheaper but
can lead to a misguided search. Density functional theory (DFT) is a computational
quantum mechanical modeling method, which usually indicates the ground truth
when it comes to the calculation of the free energy of a structure. Other computa-
tional methods that are used to estimate the forces between atoms within molecules,
also known as force fields, include the Lennard-Jones potential and the Buckingham
potential. Lennard-Jones potential is the potential that has been studied most ex-
tensively and was not derived analytically but fitted numerically in contrast with
theoretical Buckingham potential. Although Buckingham usually performs better
than Lennard-Jones, its performance degrades in short range interactions [26, 92].
Finally, Buckingham-Coulomb potential adds the Coulomb interaction to the Pauli
repulsion and van der Waals interaction which guarantees satisfactory reliable results
for the representation of ionic interactions [98].

The next step of every crystal structure prediction algorithm is to define a way to
sample new structures. Brute-force approaches are characterized by combinatorial
explosion, rendering them highly inefficient. Hence, heuristic algorithms provide a
natural way to efficiently find approximate solutions to crystal structure prediction.
In Chapter 5 we provide an algorithm which is based on local search; an optimization
method which moves from solution to solution by applying local changes until a
solution deemed optimal is found or a time bound is elapsed. In particular, given
a solution x, it computes the neighborhood of x, N(x), and updates the current
solution with an improved one from N(x) using a local rule r (i.e., x′ = r(N(x))).
This is repeated until an optimal, with respect to N , solution is found, or until a
time bound is reached. In Section 5.3 we define three such local neighborhoods, and
in Section 5.4 we describe our local search algorithms in detail.

1.4 Mobile Agents on Dynamic Graphs

During the past two decades, there has been a rapid development in the field of
distributed computing by mobile agents. A set of computational entities operating
in a discrete universe, modeled as a graph, are able to move from node to node, while
their movement is constrained by the nature of the graph they operate in. The main
concern in the related literature is the study of the computational and complexity
issues arising in such systems.

Regarding the nature of the graph, two different settings are identified; static and
dynamic graphs. For the static setting, there is a rich variety of results, with many
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model variations and problems examined so far. Examples of such problems include:
the exploration problem, where a set of k ≥ 1 agent(s) is required to navigate in
the graph, visiting all nodes in a systematic manner; the rendezvous problem, where
two mobile agents must move along the n nodes of the graph so as to minimize the
time required to meet; black hole search, where a malicious node destroys any agent
passing by it, and the goal is for at least one agent to survive and have the entire map
of the graph with the location of the black hole; and the gathering problem, where a
set of agents, initially located in arbitrary locations of the graph, must gather in the
same node, not fixed in advance, and terminate. See [75] for a comprehensive survey
on several variations and problems in the field of distributed computing by mobile
agents.

The growing interest in problems that are inherently dynamic in nature have
recently given rise in studying computational entities moving on top of dynamic
graphs. Examples of problems that have been studied so far include the exploration
problem [17, 70, 74] and the gathering problem [59, 114]. The main challenge in the
design of algorithms in this setting is the uncertainty of the changes of the graph
that the agents have to overcome. Problems that are simple to solve in the static
case are far from trivial in a dynamic setting.

1.4.1 Motivation and related work

Social networks [120, 126, 136, 151], wireless networks [121], transportation networks
[93] are a few examples of networks that are continuously changing and evolving with
time. In social networks, the topology usually represents social relationships between
a group of people, and it is evolving with time as the group and its relationships are
updated (e.g., new individuals join or leave the group, new relationships are made or
existing relationships are broken). Communication systems with a large number of
mobile communicating devices is another example of a system where nodes join the
network, leave, and move around, while communication links appear and disappear.

The recent interest in studying such systems is motivated by the plethora of their
real-world applications, requiring us to develop models that capture their dynamics.
These networks are best represented by dynamic graph models. Dynamic graphs, also
known as temporal graphs [94, 103], temporal networks [90, 102], time-varying graphs
[30], or evolving graphs [5, 135], are graphs that change with time. Motivated by
the widespread impact of such networks, several models that capture their dynamic
nature have been proposed in the literature. For a comprehensive survey on dynamic
graph models see [153]. A dynamic graph can be thought of as a special case of
labeled graphs, where labels capture some measure of time. For example, discrete
sets of labels attached to each edge of the graph may correspond to the discrete time
steps in which the corresponding edges appear. This notion of time gives rise to a
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multitude of new challenging problems in graphs, whose solution will enable several
important modern applications.

1.4.2 A formal model for dynamic networks

A network is most commonly modeled as an undirected connected graph GU =

(V,E), referred to hereafter as an underlying graph. Each topological event in a
dynamic graph can be viewed as the transformation from one static graph to another.
Hence, the evolution of a dynamic graph G can be described as a sequence of static
graphs. In particular, given an underlying graph GU = (V,E) on n vertices, a
dynamic graph on GU is a sequence GD = {Gt = (V,Et) : t ∈ N} of graphs such that
Et ⊆ E for all t ∈ N. Every Gt is the snapshot of GD at time-step t.

A very common assumption in the literature of dynamic graphs is that the se-
quence GD is controlled by an adversarial scheduler, subject to some constraints.
In [96], the authors defined the T -interval connectivity model, in which throughout
every block of T consecutive rounds there must exist a connected spanning subgraph.
For T = 1 this means that the graph is connected in every round, but changes arbi-
trarily between rounds. The definition of 1-interval connectivity of [96] considers the
case where the underlying graph is a complete clique. In Chapter 6, we generalize
this to any underlying graph GU , meaning that G′D = (V,

⋃
tEt) ⊆ GU .

1.5 Thesis Contribution

1.5.1 Counting and leader election in population protocols

In Chapter 2 and Chapter 3 we consider the Population Protocol model and we
study the problems of counting the population size and electing a leader agent. As
in Protocol 1, we employ the use of simple epidemics in order to provide efficient
solutions to counting the size of a population of agents, and for electing a leader.
Note that an epidemic process requires Θ(log n) parallel time to infect the whole
population, under a uniform random scheduler.

The problem of exact population counting is that of designing a protocol so that
the agents eventually converge to a state where each agent encodes in its state the
exact population size n. Relaxations of this problem have also been considered in the
literature, and require the population to calculate an approximate population size
(e.g., 2dlogne). This freedom allows us to design protocols with exponentially smaller
space complexity than the problem of exact counting. In Chapter 2 we give a protocol
which provides a constant factor approximation of log n, or an upper bound ne which
is at most na for some constant a > 1 (if the agents are provided with enough memory
to store na). Our protocol assumes the existence of a unique leader in the population,
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which initiates an epidemic process and then observes its progress in the population.
The runtime of the protocol until stabilization is Θ(log n) parallel time. Each node
except from the unique leader uses only a constant number of bits. However, the
leader is required to use Θ(log log n) bits. If we require the whole population to
converge to a state that encodes the approximation of log n, then we can utilize
an additional epidemic process containing that information, which asymptotically
doesn’t affect the convergence time of the protocol.

In Chapter 3 we work on the leader election problem. We provide an algorithm
that terminates in O( log

2 n
logm ) parallel time, where 1 ≤ m ≤ n is a parameter, using

O(max{logm, log logn}) bits. By adjusting the parameterm between a constant and
n, we obtain a leader election protocol whose time and space can be smoothly traded
off between O(log2 n) to O(log n) time and O(log log n) to O(log n) bits. Finally, our
approximate counting protocol uses a leader, while our leader election protocol uses
an approximate knowledge of n. We then compose our protocols in order to obtain
a uniform protocol for both problems. We do not provide a formal analysis of this
protocol, but simulation results suggest that it works as expected.

1.5.2 Fault tolerant network constructors

In Chapter 4 we consider adversarial crash faults of nodes in the network constructors
model [113]. We first show that, without further assumptions, the class of graph lan-
guages that can be (stably) constructed under crash faults is non-empty but small.
In particular, if an unbounded number of crash faults may occur, we prove that (i)
the only constructible graph language is that of spanning cliques and (ii) a strong
impossibility result holds even if the size of the graphs that the protocol outputs in
populations of size n needs to grow with n (the remaining nodes being waste). When
there is a finite upper bound f on the number of faults, we show that it is impossi-
ble to construct any non-hereditary graph language and leave as an interesting open
problem the hereditary case. On the positive side, by relaxing our requirements we
prove that: (i) permitting linear waste enables to construct on n/(2f)−f nodes, any
graph language that is constructible in the fault-free case, (ii) partial constructibility
(i.e., not having to generate all graphs in the language) allows the construction of a
large class of graph languages. We then extend the original model with a minimal
form of fault notifications. Our main result here is a fault-tolerant universal construc-
tor : We develop a fault-tolerant protocol for spanning line and use it to simulate
a linear-space Turing Machine M . This allows a fault-tolerant construction of any
graph accepted by M in linear space, with waste min{n/2 + f(n), n}, where f(n) is
the number of faults in the execution. We then prove that increasing the permissi-
ble waste to min{2n/3 + f(n), n} allows the construction of graphs accepted by an
O(n2)-space Turing Machine, which is asymptotically the maximum simulation space
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that we can hope for in this model. Finally, we show that logarithmic local memories
can be exploited for a no-waste fault-tolerant simulation of any such protocol.

1.5.3 Crystal structure prediction via oblivious local search

In Chapter 5 we study Crystal Structure Prediction, one of the major problems
in computational chemistry. This is essentially a continuous optimization problem,
where many different, simple and sophisticated, methods have been proposed and
applied. The simple searching techniques are easy to understand, usually easy to
implement, but they can be slow in practice. On the other hand, the more sophis-
ticated approaches perform well in general, however almost all of them have a large
number of parameters that require fine tuning and, in the majority of the cases,
chemical expertise is needed in order to properly set them up. In addition, due to
the chemical expertise involved in the parameter-tuning, these approaches can be
biased towards previously-known crystal structures.

Our contribution is twofold. Firstly, we formalize the Crystal Structure Predic-
tion problem, alongside several other intermediate problems, from a theoretical com-
puter science perspective. Secondly, we propose an oblivious algorithm for Crystal
Structure Prediction that is based on local search. Oblivious means that our algo-
rithm requires minimal knowledge about the composition we are trying to compute a
crystal structure for. In addition, our algorithm can be used as an intermediate step
by any method. Our experiments show that our algorithms outperform the standard
basin hopping, a well studied algorithm for the problem.

1.5.4 Gathering in dynamic graphs

In Chapter 6 we examine the problem of gathering k ≥ 2 agents (or multi-agent
rendezvous) in dynamic graphs which may change in every round. We consider a
variant of the 1-interval connectivity model [96] described in Section 1.4.2, in which
all instances (snapshots) are always connected spanning subgraphs of an underlying
graph, not necessarily a clique. The agents are identical and not equipped with
explicit communication capabilities, and are initially arbitrarily positioned on the
graph. The problem is for the agents to gather at the same node, not fixed in advance.
We first show that the problem becomes impossible to solve if the underlying graph
has a cycle. In light of this, we study a relaxed version of this problem, called weak
gathering, where the agents are allowed to gather either at the same node, or at two
adjacent nodes. Our goal is to characterize the class of 1-interval connected graphs
and initial configurations in which the problem is solvable, both with and without
homebases (the nodes that the agents are initially placed are identified by an identical
mark, visible to any agent passing by it). On the negative side we show that when the
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underlying graph contains a spanning bicyclic subgraph and satisfies an additional
connectivity property, weak gathering is unsolvable, thus we concentrate mainly on
unicyclic graphs. As we show, in most instances of initial agent configurations, the
agents must meet on the cycle. This adds an additional difficulty to the problem,
as they need to explore the graph and recognize the nodes that form the cycle. We
provide a deterministic algorithm for the solvable cases of this problem that runs in
O(n2 + nk) number of rounds.
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Chapter 2

Approximate Counting in
Population Protocols

In this chapter, we study the problem of approximate counting for population pro-
tocols: networks of finite-state anonymous agents that interact randomly under a
uniform random scheduler. We give a protocol which provides a constant factor
approximation of log n of the population size n, or an upper bound ne which is at
most na for some constant a > 1 (if the nodes are provided with enough memory to
store na). This protocol assumes the existence of a unique leader in the population
and stabilizes in Θ(log n) parallel time, using constant number of bits in every node,
except from the unique leader which is required to use Θ(log log n) bits.

2.1 Introduction

Many distributed tasks require the existence of a leader prior to the execution of the
protocol and, furthermore, some knowledge about the system (for instance the size of
the population) can also help to solve these tasks more efficiently with respect both
to time and space. Counting is a fundamental problem in distributed computing,
where the nodes must determine the size n of the population. Similarly, approximate
counting is the problem in which the nodes must determine an estimation k of the
population size n. Counting can be then considered as a special case of approximate
counting, where k = n.

One fundamental measure of convergence is the total number of pairwise interac-
tions until all agents are in a correct output state. We also consider models in which
reactions occur in parallel according to a Poisson process. This gives an equivalent
distribution over sequences of reactions but suggests a measure of parallel time, as-
suming that each agent participates in an expected Θ(1) interactions per time unit.

19
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This time measure is asymptotically equal to the number of interactions divided by
the size n of the population.

Consider the setting in which an agent is in an initial state a, the rest n−1 agents
are in state b and the only existing transition is (a, b)→ (a, a). This is the one-way
epidemic process and it can be shown that the expected time to convergence until all
nodes change their state to a and under the uniform random scheduler is Θ(n log n)

(e.g., [9]), thus Θ(log n) parallel time. In this chapter, we make an extensive use of
epidemics, which means that information is being spread throughout the population,
thus all nodes will obtain this information in O(log n) expected parallel time. By
observing the rate of the epidemic spreading under the uniform random scheduler,
we can extract valuable information about the population. This is the key idea of
our Approximate Counting algorithm.

2.1.1 Related work

The framework of population protocols was first introduced by Angluin et al. [7] in
order to model the interactions in networks between small resource-limited mobile
agents. When operating under a uniform random scheduler, population protocols are
formally equivalent to a restricted version of stochastic Chemical Reaction Networks
(CRNs), which model chemistry in a well-mixed solution [142]. “CRNs are widely
used to describe information processing occurring in natural cellular regulatory net-
works, and with upcoming advances in synthetic biology, CRNs are a promising
programming language for the design of artificial molecular control circuitry” [35,
62]. Results in both population protocols and CRNs can be transfered to each other,
owing to a formal equivalence between these models.

Angluin et al. [11] showed that all predicates stably computable in population
protocols (and certain generalizations of it) are semilinear. Semilinearity persists
up to o(log log n) local space but not more than this [34]. Moreover, the computa-
tional power of population protocols can be increased to the commutative subclass of
NSPACE(n2), if we allow the processes to form connections between each other that
can hold a state from a finite domain [109], or by equipping them with unique identi-
fiers, as in [87]. For introductory texts to population protocols the interested reader
is encouraged to consult [15, 109] and [111] (the latter discusses population protocols
and related developments as part of a more general overview of the emerging theory
of dynamic networks).

For the counting problem, the most studied case is that of self-stabilization, which
makes the strong adversarial assumption that arbitrary corruption of memory is
possible in any agent at any time, and promises only that eventually it will stop.
Thus, the protocol must be designed to work from any possible configuration of the
memory of each agent. It can be shown that counting is impossible without having
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one agent (the “base station”) that is protected from corruption [21]. In this scenario
Θ(n log n) time is sufficient [20] and necessary [14] for self-stabilizing counting.

In the less restrictive setting in which all nodes start from the same state (apart
possibly from a unique leader and/or unique ids), there has been a growing interest
recently. In [105], the authors proposed a terminating protocol in which a pre-elected
leader equipped with two n-counters computes an approximate count between n/2
and n in O(n log n) parallel time with high probability. The idea is to have the leader
implement two competing processes, running in parallel. The first process counts
the number of nodes that have been encountered once, the second process counts the
number of nodes that have been encountered twice, and the leader terminates when
the second counter catches up the first. In the same paper, also a version assuming
unique ids instead of a leader was given. Several leaderless solutions for approximate
counting have been proposed recently [2, 25, 64, 65, 78, 143].

Regarding the exact counting problem, a uniform protocol is provided by our team
and other co-authors in [66]. In this work, the authors give the first protocol that
solves this problem in sublinear time. The protocol converges in O(log n log log n)

time and uses O(n60) states (O(1) + 60 log n bits of memory per agent) with proba-
bility 1− O( log lognn ). The time to converge is also O(log n log log n) in expectation.
Crucially, unlike most published protocols with ω(1) states, this protocol is uni-
form: it uses the same transition algorithm for any population size, so does not
need an estimate of the population size to be embedded into the algorithm. A sub-
protocol is the first uniform sublinear-time leader election population protocol, taking
O(log n log log n) time and O(n18) states. The state complexity of both the counting
and leader election protocols can be reduced to O(n30) and O(n9) respectively, while
increasing the time to O(log2 n). In a very recent work [25], the authors provide a
protocol that always achieves (i.e., with probability 1) exact counting in O(log n)

parallel time, using O(n log n log log n) states, which is improved to O(n log n) states
if we allow the protocol to output the exact count with probability 1− O(1)

n . See [63]
for a comprehensive survey on approximate and exact counting.

Finally, the task of counting has also been studied in the related context of worst-
case dynamic networks [30, 91, 96, 100, 108].

2.1.2 Preliminaries

In this chapter, the system consists of a population V of n distributed and anonymous
(i.e., do not have unique IDs) processes, also called nodes or agents, that are capable
to perform local computations. Each of them is executing as a deterministic state
machine from a finite set of states Q according to a transition function δ : Q×Q→
Q×Q. Their interaction is based on the probabilistic (uniform random) scheduler,
which picks in every discrete step a random edge from the complete graph G on n
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vertices. When two agents interact, they mutually access their local states, updating
them according to the transition function δ. The transition function is a part of
the population protocol which all nodes store and execute locally. For a formal
description of the Population Protocol model, see Section 1.1.2.

The time is measured as the number of steps until stabilization, divided by n

(parallel time). The protocol that we propose does not enable or disable connections
between nodes, in contrast with [113], where Michail and Spirakis considered a model
where a (virtual or physical) connection between two processes can be in one of a
finite number of possible states. The transition function that we present throughout
this paper, follows the notation (x, y) → (z, w), which refers to the process states
before (x and y) and after (z and w) the interaction, that is, the transition function
maps pairs of states to pairs of states.

Approximate counting problem We define as approximate counting the prob-
lem in which a leader must determine an estimation ne of the population size, where
nα ≤ ne ≤ nβ , α < β. We call the constants α and β the estimation parameters.

2.1.3 Contribution and roadmap for the chapter

In this chapter we employ the use of simple epidemics in order to provide an efficient
solution to approximate counting the size of a population of agents. Our goal is to
get polylogarithmic parallel time and to also use small memory per agent.

We start by providing a protocol which finds an upper bound ne of the size n of
the population, where ne is at most na for some a > 1 (if the nodes are provided
with enough memory to store that value). If the unique leader is provided with
O(log log n) bits of memory, the protocol gives a constant factor approximation of
log n. This protocol assumes the existence of a unique leader in the population.
The runtime of the protocol until stabilization is Θ(log n) parallel time. Each node
except from the unique leader uses only a constant number of bits. However, the
leader is required to use Θ(log log n) bits. In Section 2.2.1 we give our Approximate
Counting protocol, in Section 2.2.2 we prove its correctness, and finally, in Section
2.3, experiments that support our analysis can be found.

2.2 Fast Approximate Counting with a Unique Leader

2.2.1 Abstract description and protocol

In this section, we construct a protocol which solves the problem of approximate
counting. Our probabilistic algorithm for solving the approximate counting problem
requires a unique leader who is responsible to give an estimation on the number of
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nodes. It uses the epidemic spreading technique and it stabilizes in O(log n) parallel
time. There is initially a unique leader in state l and all other nodes are in state
q. The leader l stores two counters in its local memory, initially both set to 0. The
counters are part of the leader’s state and can be updated only during an interaction.
We use the notation l(cq ,ca) to represent the leader states, where cq is the value of
the first counter and ca is the value of the second one. The leader, after the first
interaction starts an epidemic by turning a q node into an a node. Whenever a q
node interacts with an a node, its state becomes a ((a, q)→ (a, a)). The first counter
cq is being used for counting the q nodes and the second counter ca for the a nodes,
that is, whenever the leader l interacts with a q node, the value of the counter cq is
increased by one and whenever l interacts with an a node, ca is increased by one.
The termination condition is cq = ca and then the leader holds a constant-factor
approximation of log n, which we prove that with high probability is 2cq+1 = 2ca+1.
We first describe a simple terminating protocol that guarantee with high probability
nα ≤ ne ≤ nβ , for two constants α < β, i.e., the population size estimation is
polynomially close to the actual size. Chernoff bounds then imply that repeating
this protocol a constant number of times suffices to obtain n/2 ≤ n′e ≤ 2n with high
probability.

Protocol 3 Approximate Counting (APC)

Q = {q, a, l(cq ,ca), halt}: cq ≥ 0, ca ≥ 0
δ :

1: (l(0,0), q)→ (l(1,0), a)
2: (a, q)→ (a, a)
3: (l(cq ,ca), q)→ (l(cq+1,ca), q), if cq > ca
4: (l(cq ,ca), a)→ (l(cq ,ca+1), a), if cq > ca
5: (l(cq ,ca), ·)→ (halt, ·), if cq = ca

2.2.2 Analysis

Lemma 2.1. When half or less of the population has been infected, with high prob-
ability cq > ca. In fact, when the number of infected nodes is equal to the number of
non-infected nodes, cq − ca ≈ ln (n/2)−

√
lnn > 0 w.h.p.

Proof. We divide the process of the epidemic elimination into rounds i, where round
i means that there exist i infected nodes in the population (nodes in state a). Call
an interaction a success if an effective rule applies and a new node in state a appears
on some node (the number of infected nodes is increased by one). Let the random
variable (r.v.) X be the total number of interactions between the leader l and non-
infected nodes (state q), the random variable Y be the total number of interactions
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between l and infected nodes and the r.v. I be the total number of interactions in
the population until all nodes become infected. We also define the r.v. Xi, Yi and Ii
to be the corresponding numbers in round i. Then, it holds that X =

∑r
i=1Xi, Y =∑r

i=1 Yi and I =
∑r

i=1 Ii, for any r > 0. Finally, let the r.v. Xij and Yij be
independent Bernoulli trials such that for 1 ≤ j ≤ Ii, Pr[Xij = 1] = pXi, Pr[Xij =

0] = 1− pXi, Pr[Yij = 1] = pY i and Pr[Yij = 0] = 1− pY i. This means that in every
interaction in round i, the leader, if chosen, interacts with a non-infected node with
probability pXi and with an infected node with probability pY i. Then, it holds that
Xr =

∑Ir
i=1Xij and Yr =

∑Ir
i=1 Yij , where Ir is the number of interactions until a

success in round r.

pXi =
2(n− i)
n(n− 1)

, pY i =
2i

n(n− 1)
and pIi =

2i(n− i)
n(n− 1)

We also divide the whole process into two phases; the first phase ends when half of
the population has been infected, that is 1 ≤ i ≤ n

2 and for the second phase it holds
that n

2 + 1 ≤ i ≤ n. We shall argue that if the counter cq reaches a value which
is a function of n, before the second counter ca reaches cq, the leader gives a good
estimation. We use Xa and Y a to indicate the r.v. X and Y during the first phase
and Xb, Y b for the second phase.

For 1 ≤ i ≤ n
2 (first phase) and by linearity of expectation we have:

E[Xa] = E[

n/2∑
i=1

Xi] = E[

n/2∑
i=1

Ii∑
j=1

Xij ] =

n/2∑
i=1

Ii∑
j=1

E[Xij ]

and by Wald’s equation, we have that E[
∑Ii

i=1Xij ] = E[Ii]E[Xij ].

E[Xa] =

n/2∑
i=1

n(n− 1)

2i(n− i)
2(n− i)
n(n− 1)

=

n/2∑
i=1

1

i
= Hn/2 = ln

n

2
+ an/2 ≥ ln

n

2

where Hn/2 denotes the (n2 )th Harmonic number and 0 < an < 1 for all n ∈ N
(Euler-Mascheroni constant).

E[Y a] = E[

n/2∑
i=1

Yi] = E[

n/2∑
i=1

Ii∑
j=1

Yij ] =

n/2∑
i=1

Ii∑
j=1

E[Yij ]
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and by Wald’s equation, we have that E[
∑Ii

i=1 Yij ] = E[Ii]E[Yij ].

E[Y a] =

n/2∑
i=1

n(n− 1)

2i(n− i)
2i

n(n− 1)
=

n/2∑
i=1

1

n− i
=

n−1∑
i=1

1

i
−
n/2−1∑
i=1

1

i
= Hn−1 −Hn/2−1

≈ ln 2

We now make use of the following Chernoff Bounds:

Pr[X ≤ (1− δ)µ] ≤ e−
µδ2

2 , δ ≥ 0

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

2+δ , δ ≥ 0

The probabilities that the r.v. Xa is less than (1 − δ)E(Xa) and more than (1 +

δ)E(Xa) are

Pr[Xa ≤ (1− δ)E(Xa)] ≤ e−
ln (n/2)δ2

2 =
1

(n2 )δ2/2

Pr[Xa ≥ (1 + δ)E(Xa)] ≤ e−
ln (n/2)δ2

2+δ =
1

(n2 )δ2/(2+δ)

that is, Xa does not deviate far from its expectation. The probability that the r.v.
Y a is more than (1 + δ)E(Y a), for δ = lnn

ln 2 + 2 is

Pr[Y a ≥ (1 + δ)E(Y a)] ≤ e−
µδ2

2+δ < e−
µ(δ+2)(δ−2)

2+δ = e−µ(δ−2) = e− ln 2( lnn
ln 2

+2−2)

= e− lnn =
1

n

Thus, the leader interacts a constant number of times and w.h.p. less than (1 +

δ)E[Y a] times with infected nodes during the first phase (half of the population is
infected). In addition, it interacts O(log n) times with non-infected nodes w.h.p.. In
Section 2.3, we have tested our results and the Figure 2.3 confirms this behavior.
During the second phase, the infected nodes are more than the non-infected nodes,
thus, eventually, the second counter ca will reach cq and the leader terminates. By
the end of the first phase, the difference between the two counters is w.h.p. cq− ca ≤
ln (n/2)−

√
log n > 0.

Corollary 2.2. APC (Protocol 3) does not terminate w.h.p. until more than half of
the population has been infected.



Chapter 2. Approximate Counting in Population Protocols 26

It now suffices to show that the first counter cq does not continue to rise significantly.
During the second phase, where n

2 + 1 ≤ i ≤ n, we have

E[Xb] = E[
n∑

i=n/2+1

Xi] = Hn −Hn/2 ≈ ln 2

By Chernoff Bound, the probability that the r.v. Xb is more than (1 + δ)E(Xb), for
δ = lnn

ln 2 + 2 is

Pr[Xb ≥ (1 + δ)E(Xb)] < e−
µ(δ+2)(δ−2)

2+δ = e− lnn =
1

n

Lemma 2.3. APC terminates after Θ(log n) parallel time w.h.p., using Θ(log log n)

bits of memory in the leader node.

Proof. After half of the population has been infected, it holds that |ca − cq| =

Θ(log n). When this difference reaches zero, the unique leader terminates. We fo-
cus only on the effective interactions, which are always interactions between the
leader l and nodes in states a or q. The probability that an interaction is (l, a) is
pi = i/n > 1/2, as more than half of the population is infected. Thus, the probability
that an interaction is (l, q) is qi = 1− pi = (n− i)/n < 1/2. In fact, the probability
pi is constantly decreasing as the epidemic spreads throughout the population. This
process may be viewed as a random walk on a line with positions [0,∞). The particle
starts from position a log n and there is an absorbing barrier at 0. The position of
the particle corresponds to the difference |ca − cq| of the two counters and it moves
towards zero with probability pi > 1/2. By the basic properties of random walks,
after Θ(log n) steps, the particle will be absorbed at 0. Thus, the total parallel time
to termination is Θ(log n).

The state space of the leader is the product of the counters’ values, the size
of which is bounded by O(log n). Thus, the number of states is O(log2 n), which
translates to O(log log n) bits of memory. The rest of the nodes can only be in two
states (infected or non-infected).

Theorem 2.4. When cq = ca, E[2cq ] = n, and n ≤ 2cq < n2 w.h.p..

Proof. The first counter cq, during the first phase (half or less of the population is in-
fected) is in expectation ln(n/2) and w.h.p. cq = Θ(lnn), while ca = O(

√
lnn) w.h.p.

During the second phase the first counter is increased by a small constant number on
expectation, and w.h.p. less than lnn, while the second counter ca eventually catches
up cq. This means that the unique leader of Protocol 3, when it terminates it holds
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with high probability the value cq = [lnn, 2 lnn] (cq = Θ(lnn)). Thus, n < ecq < n2

is an upper bound on the population size, where e is the Euler’s number.

2.3 Experiments

We have also measured the stabilization time of our Approximate Counting with a
unique leader protocol for different network sizes. We have executed it 100 times
for each population size n, where n = 2i and i = [4, 14]. The stabilization time is
shown in Figure 2.1. The algorithm always gives a constant factor approximation of
log n, as shown in Figure 2.2. Moreover, in Figure 2.3, we show the values of the
counters cq and ca, when half of the population has been infected by the epidemic.
These experiments support our analysis, while the counter of infected nodes reaches
a constant number and the counter of non-infected nodes reaches a value close to
log n.

Figure 2.1: Convergence time of Approximate Counting (APC) with a unique
leader protocol. Both axes are logarithmic. The dots represent the results of
individual experiments and the line represents the average values for each network

size.
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Figure 2.2: Approximate Counting (APC) with a unique leader. Estimations and
actual sizes of the population.

Figure 2.3: Approximate Counting (APC) with a unique leader. Counters cq and
ca when half of the population has been infected by the epidemic.



Chapter 3

Leader Election in Population
Protocols

In this chapter we study the problem of leader election for population protocols:
networks of finite-state anonymous agents that interact randomly under a uniform
random scheduler. We provide a protocol that terminates in O( log

2 n
logm ) parallel time,

where 1 ≤ m ≤ n is a parameter, using O(max{logm, log logn}) bits. By adjusting
the parameter m between a constant and n, we obtain a leader election protocol
whose time and space can be smoothly traded off between O(log2 n) to O(log n)

time and O(log log n) to O(log n) bits.

3.1 Introduction

Leader Election, which is a fundamental problem in distributed computing, is the
process of designating a single agent as the coordinator of some task distributed
among several nodes. The nodes communicate among themselves in order to decide
which of them will get into the leader state. Similarly to the previous chapter, we
make an extensive use of epidemics, and we construct an algorithm that solves the
Leader Election problem.

Optimal algorithms regarding the time complexity of fundamental tasks in dis-
tributed networks, for example leader election and majority, is the key for many
distributed problems. The existence of a unique leader agent is a key requirement
for many population protocols [9] and generally in distributed computing. Therefore,
having a fast protocol that elects a unique leader is of high significance as it can lead
to simpler and more efficient protocols. There are many solutions to the problem of
leader election, such as in networks with nodes having distinct labels or anonymous
networks [3, 6, 16, 73, 79].

29
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Although the availability of an initial leader does not increase the computational
power of standard population protocols (in contrast, it does in some settings where
faults can occur [58]), still it may allow faster computation. Specifically, the fastest
known population protocols for semilinear predicates without a leader take as long
as linear parallel time to converge (Θ(n)). On the other hand, when the process is
coordinated by a unique leader, it is known that any semilinear predicate can be
stably computed with polylogarithmic expected convergence time (O(log5 n)) [10].

3.1.1 Related work

For several years, the best known algorithm for leader election in population proto-
cols was the pairwise-elimination protocol of Angluin et al. [7], in which all nodes
are leaders in state l initially and the only effective transition is (l, l)→ (l, f). This
protocol always stabilizes to a configuration with unique leader, but this takes on
average linear time. Recently, Doty and Soloveichik [67] proved that not only this,
but any standard population protocol (constant number of states) requires linear
time to solve leader election. This immediately led the research community to look
into ways of strengthening the population protocol model in order to enable the de-
velopment of sub-linear time protocols for leader election and other problems (note
that Belleville, Doty, and Soloveichik [23] recently showed that such linear time lower
bounds hold for a larger family of problems and not just for leader election). Fortu-
nately, in the same way that increasing the local space of agents led to a substantial
increase of the class of computable predicates [34], it has started to become evident
that it can also be exploited to substantially speed-up computations. Alistarh and
Gelashvili [3] proposed the first sub-linear leader election protocol, which stabilizes in
O(log3 n) parallel time, assuming O(log3 n) states at each agent. In a very nice work,
Gasieniec and Stachowiak [79] designed a space optimal (O(log log n) states) leader
election protocol, which stabilizes in O(log2 n) parallel time. They use the concept of
phase clocks (introduced in [9] for population protocols), which is a synchronization
and coordination tool in distributed computing. General characterizations, including
upper and lower bounds, of the trade-offs between time and space in population pro-
tocols were achieved in [2]. In a very recent work, Berenbrink et al. [24] designed the
first time and space optimal leader election protocol which uses Θ(log log n) states
per agent, and elects a leader in O(n log n) interactions in expectation. Finally, in
[28] the authors study the problem of leader election, starting from any possible
initial configuration, and provide a silent self-stabilizing protocol that uses optimal
O(n) expected parallel time and space. Silent leader election requires Ω(n) expected
parallel time, and it means that the agents’ states eventually stop changing. More-
over, some papers [44, 119] have studied leader election in the mediated population
protocol model.
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3.1.2 Preliminaries

Similarly to Chapter 2, we here consider the Population Protocol model, as described
in Section 1.1.2, and we also assume that an approximate population size is hard-
coded into the agents memory and that the agents can access a random number of a
predefined number of bits. However, our protocol can be simulated in the standard
population protocol model without increasing the stabilization time and the number
of states asymptotically. This can be achieved by utilizing the random scheduler
as a source of randomness. In particular, in [2] the authors introduced a synthetic
coin technique that allows the agents to extract randomness from the scheduler and
simulate almost fair coin flips.

Leader election problem The problem of leader election in distributed com-
puting is for each node eventually to decide whether it is a leader or not subject to
only one node decides that it is the leader. An algorithm A solves the leader election
problem if eventually the states of agents are divided into leader and follower, a
leader remains elected and a follower can never become a leader. In every execution,
exactly one agent becomes leader and the rest determine that they are not leaders.
All agents start in the same initial state q and the output is O = {leader, follower}.
A randomized algorithm R, where the agents have access to random bits, solves the
leader election problem if eventually only one leader remains in the system w.h.p.

3.1.3 Contribution and roadmap for the chapter

In this chapter we employ the use of simple epidemics in order to provide an efficient
solution to leader election in populations. Our goal is to get polylogarithmic parallel
time and to also use small memory per agent. We assume an approximate knowledge
of the size of the population (i.e., an estimate nα ≤ ne ≤ nβ , where n is the population
size and α < β are two constant numbers) and provide a protocol (parameterized
by the size m of a counter for drawing local random numbers) that elects a unique
leader w.h.p. in O( log

2 n
logm ) parallel time, with number of bits O(max{logm, log log n})

per node.
In Section 3.2 we present our Leader Election protocol, giving in Section 3.2.1 an

abstract description, the algorithm in Section 3.2.2, and in Section 3.2.3 we present
its analysis. Finally, in Section 3.2.4 we combine our Approximate Counting protocol
of Chapter 2 and our Leader Election protocol in order to provide a size oblivious
protocol which elects a leader in O( log

2 n
logm ) parallel time. We do not provide a formal

analysis of this protocol, but simulation results suggest that it works as expected.
We have measured the stabilization time of this protocol for different population

sizes and the results can be found in Section 3.3.
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3.2 Leader Election with Approximate Knowledge of n

3.2.1 Abstract description

We assume that the nodes know a constant factor upper bound on log n, b log n,
where n is the number of nodes and b is any big constant number.
In addition, all nodes store three variables; the round e, a random number r and a
counter c and they are able to compute random numbers within a predefined range
[1,m]. We define two types of states; the leaders (l) and the followers (f). Initially,
all nodes are in state l, indicating that they are all potential leaders. The protocol
operates in rounds and in every round, the leaders compete with each other trying
to survive (i.e., do not become followers). The followers just copy the tuple (r, e)

from the leaders and try to spread it throughout the population. During the first
interaction of two l nodes, one of them becomes follower, a random number between
1 and m is being generated, the leader enters the first round and the follower copies
the round e and the random number r from the leader to its local memory. The fol-
lowers are only being used for information spreading purposes among the potential
leaders and they cannot become leaders again. Throughout this chapter, n denotes
the population size and m the maximum number that nodes can generate.

Information spreading. It has been shown that the epidemic spreading of infor-
mation can accelerate the convergence time of a population protocol. In this chapter,
we adopt this notion and we use the followers as the means of competition and com-
munication among the potential leaders. All leaders try to spread their information
(i.e., their round and random number) throughout the population, but w.h.p. all of
them except one eventually become followers. We say that a node x wins during an
interaction with another node if one of the following holds:

• Node x is in a bigger round e.

• Both nodes are in the same round, but node x has bigger random number r.

One or more leaders L are in the dominant state, if their tuple (r1, e1) wins every
other tuple in the population. Such a tuple (r1, e1) is being spread as an epidemic
throughout the population, independently of the other leaders’ tuples (all leaders or
followers with the tuple (r1, e1) always win their competitors). We also call leaders
L the dominant leaders.

Transition to next round. After the first interaction, a leader l enters the first
round. We can group all the other nodes that l can interact with into three disjoint
sets.
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• The first group contains the nodes that are in a bigger round or have a bigger
random number, being in the same round as l. If the leader l interacts with
such a node, it becomes follower.

• The second group contains the nodes that are in a smaller round or have a
smaller random number, being in the same round as l. After an interaction
with a node in this group, the other node becomes a follower (if not already a
follower) and the leader increases its counter c by one.

• The third group contains the followers that have the same tuple (r, e) as l.
After an interaction with a node in this group, l increases its counter c by one.

As long as the leader l survives (i.e., does not become a follower), it increases or re-
sets its counter c, according to the transition function δ. When the counter c reaches
b log n (recall that nb is the upper bound on the population size), it resets it and
round e is increased by one. The followers can never increase their round or generate
random numbers.

Stabilization. The protocol that we present stabilizes, as the whole population will
eventually reach in a final configuration of states. To achieve this, when the round of
a leader l reaches d2b logn−log(b log

2 n)
logm e, l stops increasing its round e, unless it interacts

with another leader. This rule guarantees the stabilization of our protocol.

3.2.2 The protocol

In this section, we present our Leader Election protocol. We use the notation pr,e

to indicate that node p has the random number r and is in the round e. Also,
we say that (r1, e1) > (r2, e2), if the tuple (r1, e1) wins with the tuple (r2, e2). A
tuple (r1, e1) wins with the tuple (r2, e2) if e1 > e2 or if they are in the same round
(e1 = e2), it holds that r1 > r2. The transition function of the protocol is given in
Protocol 4

3.2.3 Analysis

The leader election algorithm that we propose, elects a unique leader after O( log
2 n

logm )

parallel time w.h.p.. To achieve this, the algorithm works in stages, called epochs
throughout this section and the number of potential leaders decreases exponentially
between the epochs. An epoch i starts when any leader enters the ith round (e = i)

and ends when any leader enters the (i + 1)th round (e = i + 1). Here we do the
exact analysis for m = log n. This can be generalized to any m between a constant
and n.
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Protocol 4 Leader Election

Q = {l, fr,e, lr,e,c} : r ∈ [1,m], e ∈ [0, d2b logn−log(b log
2 n)

logm e], c ∈ [0, c log n]
δ :

#First interaction between two nodes. One of them becomes follower and the
other remains leader. The leader generates a random number r and enters the
first round (e = 1).

1: (l, l)→ (lr,1,1, fr,1)

#A leader in round 0 (that is, a node in state l) always loses (i.e., becomes a
follower) against a node in a higher round.

2: (fr,e, l)→ (fr,e, fr,e)
3: (lr,e,c, l)→ (lr,e,c+1, fr,e)

#The winning node propagates its tuple. If a leader loses, it becomes follower.
4: (fr,i, fs,j)→ (fk,l, fk,l), if (r, i) > (s, j) then (k, l) = (r, i) else (k, l) = (s, j)
5: (lr,i,c, ls,j,c′)→ (lk,l,c+1, fk,l), if (r, i) ≥ (s, j) then (k, l) = (r, i)
6: else (k, l) = (s, j)
7: (lr,i,c, fs,j)→ (fs,j , fs,j), if (s, j) > (r, i)
8: (lr,i,c, fs,j)→ (lr,i,c+1, fr,i), if (r, i) > (s, j)
9: (lr,e,c, fr,e)→ (lr,e,c+1, fr,e)

#When a leader increases its counter, the following code is being executed. It
checks whether it has reached c log n. If yes, it moves to the next round, generates
a new random number and checks if it has reached the final round in order to
terminate.

10: if c = b log n then
11: Increase round e by one;
12: Generate a new random number r between 1 and m;
13: Reset counter c to zero;
14: if e = d2b logn−log(b log

2 n)
logm e Stop increasing the round, unless

15: you interact with a leader

Lemma 3.1. During the execution of the protocol, at least one leader will always
exist in the population.

Proof. Assume an epoch e, in which only one leader l1 with the tuple (r1, e1) exists
in the population and the rest of the nodes have become followers. In order for l1
to become follower, there should be a follower with a tuple (r2, e2), where (r2, e2) >

(r1, e1). But, while the followers can never increase their epoch or generate a new
random number, that would imply that there exists another leader l2 with the tuple
(r2, e2), which is a contradiction.
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Lemma 3.2. Assume an epoch e and k leaders with the dominant tuple (r, e) in
this epoch. The expected parallel time to convergence of their epidemic in epoch e is
Θ(log n).

Proof. Let the random variable X be the total number of interactions until all nodes
have the dominant tuple (r, e). We divide the interactions of the protocol into rounds,
where round i means that the epidemic has been spread to i nodes. Initially, i = k,
that is, the k leaders are already infected by the epidemic, but we study the worst
case where k = 1. Call an interaction a success if the epidemic spreads to a new node.
Let also the random variables Xi, 1 ≤ i ≤ n − 1, be the number of interactions in
the ith round. Then, X =

∑n−1
i=1 Xi. The probability pi of success at any interaction

during the ith round is:

pi =
2i(n− i)
n(n− 1)

where i(n−i) are the effective interactions and n(n−1)
2 are all the possible interactions.

By linearity of expectation we have:

E[X] = E[
n−1∑
i=1

Xi] =
n−1∑
i=1

E[Xi] =
n−1∑
i=1

1

pi
=

n−1∑
i=1

n(n− 1)

2i(n− i)

=
n(n− 1)

2

n−1∑
i=1

1

i(n− i)

=
n(n− 1)

2

n−1∑
i=1

1

n
(
1

i
+

1

n− i
)

=
(n− 1)

2
[

n−1∑
i=1

1

i
+

n−1∑
i=1

1

n− i
]

=
(n− 1)

2
2Hn−1

= (n− 1)[ln(n− 1) + an−1] = Θ(n log n)

where Hn denotes the nth Harmonic number and an := Hn − log n, (n ∈ N) is a
decreasing sequence and 0 < an < 1 for all n ∈ N (Euler-Mascheroni constant). In
terms of parallel time, it holds that E[Xn ] = E[X]

n = Θ(log n).

Lemma 3.3. When a leader’s counter c ≥ b log n, its epidemic (r, e) is spread
throughout the whole population w.h.p..

Proof. Let the r.v. X be the total number of interactions until all nodes have been
infected by the dominant tuple. By Lemma 3.2, the expected interactions until the
epidemic spreads throughout the whole population is µ = (n− 1) ln (n− 1) + Θ(1).
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We now make use of the following Chernoff Bounds:

Pr[X ≤ (1− δ)µ] ≤ e−
µδ2

2 , δ ≥ 0

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

2+δ , δ ≥ 0

For δ = 1/2, it holds that

Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ

2 ≤ e−
(n−1) ln (n−1)

8 ≤
(

1

n− 1

)(n−1)/8

And for the upper bound, for δ ≥ 0

Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

2+δ < e−
µ(δ+2)(δ−2)

2+δ = e−µ(δ−2) =

(
1

n− 1

)(n−1)(δ−2)

Thus, the interactions per node under the uniform random scheduler until all nodes
become infected are w.h.p. (n−1) ln (n−1)

n < n lnn
n = lnn. Thus, after b log n interac-

tions, where nb is the population size estimation and b a large constant, there are no
non-infected nodes w.h.p..

Theorem 3.4. After O( logn
logm) epochs, there is a unique leader in the population

w.h.p..

Proof. Assume an epoch e, in which there are k leaders with the dominant tuple (r, e)

andm is the biggest number that the leaders can generate. We shall argue that by the
end of the next epoch e+1, approximately k(m−1)

m leaders will have become followers
and approximately k

m leaders will have a new dominant tuple (r2, e2). Whenever the
k leaders enter to the next epoch e+1, they generate a new random number between
1 and m. Let the random variable Xe be the number of leaders that have randomly
generated the biggest number in epoch e. We view the possible values of the random
choices as m bins and we investigate how many leaders shall go to each bin. Assume
the sequence of the random numbers Cei , 1 ≤ i ≤ k that the leaders generate in
epoch e. Let the random variables Xe

i be independent Bernoulli trials such that, for
1 ≤ i ≤ k, Pr[Xe

i = 1] = pi and Pr[Xe
i = 0] = 1 − pi and Xe =

∑k
i=1X

e
i . The

probability that a leader chooses randomly a number is

pi =
1

m
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Then, the expected number of balls in each bin, thus in the bin with the highest
index also (Xe) is

µ = E(Xe) = E(
k∑
i=1

Xe
i ) =

k∑
i=1

E(Xe
i ) =

k∑
i=1

pi =
k∑
i=1

1

m
=

k

m

Assume now inductively that Xe ≥ a log2 n, where a > 0 and m = log n. By the
Chernoff bound and observing that k ≥ ma log n ⇒ k

m ≥ a log n ⇒ µ ≥ a log n, we
prove that the number of the new dominant leaders will be more than or equal to
k
m(1 + δ) with a negligible probability.

Pr[Xe ≥ (1 + δ)µ] ≤ e−
µδ2

3 ≤ e−
a lognδ2

3 = n−
aδ2

3 = n−φ

For a ≥ 9
δ2

it holds that Pr[Xe ≥ (1+δ)µ] ≤ n−3. Consequently, if we had Xe leaders
in epoch e, we now shall have no more than Xe+1 ≤ (1 + δ)Xem leaders in epoch e+ 1

with probability Pr[Xe+1 ≤ (1 + δ)Xem ] ≥ 1− 1
n3 .

We can now assume that the expected number of leaders between the epochs can be
described by the following recursive function.

Ge =


Ge−1

m , i ≥ 1

n, i = 0
(3.1)

where Ge = (1 + δ)Xe. Then,

Ge =
Ge−1
m

=
Ge−2
m2

= ... =
n

me

The number of the expected epochs until at most a log2 n leaders remain in the
population is

Gt = a log2 n⇒ Gt−1
m

= a log2 n⇒ Gt−2
m2

= a log2 n⇒ ...⇒ n

mt
= a log2 n⇒

mt =
n

a log2 n
⇒ logm(mt) = logm(

n

a log2 n
)⇒ t = logm n− logm(a log2 n)⇒

t =
log n− log (a log2 n)

logm
⇒ t =

log n− log (a log2 n)

log logn

Let E(e), be the event that in epoch e, there are at most Ge dominant leaders.
We consider a success when (E(e) | E(1) ∩ E(2) ∩ . . . ∩ E(e − 1)) occurs until we
have at most log n leaders. By taking the union bound, the probability to fail after
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t = logn−log (a log2 n)
log logn epochs is given by

Pr(fail after t epochs) ≤
t∑
i=0

Pr[fail in epoch i | success until (i-1)th epoch]

≤
t∑
i=0

1

n
aδ2

3

=

t∑
i=0

1

nφ
=

logn−log (a log2 n)
log logn

nφ
≤ 1

nφ−1
≤ 1

n2

Corollary 3.5. After t = logn−log (a log2 n)
log logn epochs, the are at most a log2 n leaders

w.h.p..

We argue that the number of leaders can be reduced from a log2 n to a log n in one
round w.h.p.. The expected value of dominant leaders is now E[Xt+1] = a log n,

thus, by the Chernoff Bound it holds that Pr[Xt+1 ≥ (1 + δ)µ] ≤ e−
a lognδ2

3 , and for
a ≥ 9

δ2
, Pr[Xt+1 ≥ (1 + δ)µ] ≤ n−3.

Assume w.l.o.g. that m = a log n and according to the previous analysis, there exist
k = a log n leaders after t′ = logn−log (a log2 n)

log logn +1 epochs. The expected value of Xt′+1

is now µ = E[Xt′+1] = 1. Thus, by the Markov Inequality, the probability that the
number of the dominant leaders in the next epoch are at least 2 is

P (Xt′+1 ≥ 2) ≤ E[Xt′+1]

2
=

1

2

The probability that after logm n epochs, there is no unique leader in the population
is

P [at least 2 leaders exist after logm n epochs] ≤ (
1

2
)logm n =

1

2logm n

The total number of epochs until there exists a unique leader in the population is
w.h.p. 2 logn−log (a log2 n)

logm + 1 = O( logn
logm).

Theorem 3.6. Our Leader Election protocol elects a unique leader in O( log2 n
log logn)

parallel time w.h.p., and each agent uses at most O(max{logm, log logn}) bits of
memory.

Proof. There are initially n leaders in the population. During an epoch e, by Lemma
3.2 the dominant tuple spreads throughout the population in Θ(log n) parallel time,
by Lemma 3.3, w.h.p. no (dominant) leader can enter to the next epoch if their epi-
demic has not been spread throughout the whole population before and by Theorem
3.4, there will exist a unique leader after O( logn

logm) epochs w.h.p., thus, for m = b log n
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the overall parallel time is O( log2 n
log logn). Finally, by Lemma 3.1, this unique leader can

never become follower and according to the transition function in Protocol 4, a fol-
lower can never become leader again.
The rule which says the leaders stop increasing their rounds if e >= 2b logn−log (b log2 n)

logm ,
unless they interact with another leader, implies that the population stabilizes in
O( log2 n

log logn) parallel time w.h.p. and when e exceeds this value, there will exist only
one leader in the population and eventually, our protocol always elects a unique
leader.

Each agent stores four values; b log n, the round e, the random number r, and
the counter c. The round is bounded by the maximum epoch that can be reached,
and is O( logn

logm). The random number takes values in [1,m], and the counter in
[0, b log n]. In addition, each agent stores an additional bit which indicates whether it
is a leader or a follower. Thus, the total number of states is 2mb2 log3 n

logm , or 3 log log n+

logm− log logm+ 2 log 2b bits. If m is a constant number, the space complexity is
O(log log n) bits, while for m = Ω(log n), it is O(logm) bits.

Remark 3.7. By adjusting m to be any number between a constant and n and con-
ducting a very similar analysis we may obtain a single leader election protocol whose
time and space can be smoothly traded off between O(log2 n) to O(log n) time and
O(log log n) to O(log n) bits.

3.2.4 Dropping the assumption of knowing log n

Call a population protocol size-oblivious if its transition function does not depend
on the population size. Our leader election protocol requires a rough estimate on the
size of the population in order to elect a leader in polylogarithmic time, while our
approximate counting protocol requires a unique leader who initiates the epidemic
process and then gives an upper bound on the population size. In this section,
we combine our Approximate Counting and Leader Election protocols in order to
construct a size-oblivious protocol that can be executed in any uniform model of
population protocols. We conjecture that it elects a unique leader in O( log

2 n
logm ) parallel

time, however we do not provide a proof of correctness.

To combine our protocols, in our new Leader Election algorithm, the nodes instead
of using the c counter, as described in Section 3.2.1, they use two counters cq and ca.
The only difference between this protocol and our leader election protocol of Section
3.2, is that we do not use an upper bound on log n, but instead, the nodes perform the
same experiment as in our Approximate Counting protocol in order to approximate
it. Again, we call followers of a leader l the nodes that have the same tuple (r, e) as l,
where r is a random number, and e the round of l. As in our Approximate Counting



Chapter 3. Leader Election in Population Protocols 40

protocol, the first counter is used in order to count the non-followers and the latter
to count the followers. All nodes start as potential leaders in state l, and compete
each other in order to survive (i.e., remain leaders).

Initially, cq = 1 and ca = 0. Let l be a leader with the tuple (r1, e1). As in
Section 3.2, a tuple (r1, e1) is bigger that the tuple (r2, e2) if r1 > r2 or if r1 = r2

and e1 > e2. We can group all the other nodes that l can interact with into three
independent sets.

• (r1, e1) > (r2, e2). l increases its cq counter by one.

• (r1, e1) = (r2, e2). l increases its ca counter by one.

• (r1, e1) < (r2, e2). l becomes follower and resets its counters to zero.

When cq = ca holds, l increases its round e1 by one and resets cq to one and ca to zero.
This process simulates the behavior of our Approximate Counting protocol, meaning
that when cq = ca holds, the epidemic of the dominant leaders is spread throughout
the whole population w.h.p.. Regarding the termination condition, where the value
log n is needed, the nodes store a variable s which contains the average value of cq,
when cq = ca. To this end, whenever a leader enters from round e1 to e1 + 1, it
updates the value of s as follows:

s =
s(e1 − 1) + cq

e1
(3.2)

where s is initially zero. When e1 = d as
logme holds (a ≥ 1 is a small constant

number), the leader stops increasing its round and the population w.h.p. stabilizes
in a configuration with a unique leader. Even though we do not provide a formal
analysis of this protocol, in Section 3.3 we provide experiments that confirm this
behavior, that is, after O( log

2 n
logm ) parallel time there exists a single leader u in the

population, and the value s of u is polynomially close to log n.
Regarding the space complexity, as in Protocol 4, the nodes store the round

e = O( logn
logm), and the random number r = O(m). In addition, instead of one counter

c, it stores two counters cq and ca that with high probability are cq = ca = O(log n)

(Theorem 2.4). Finally, the variable s holds the average of cq when reaching the end
of a round (cq = ca), thus s = O(log n). In total, the number of states is O(m log4 n

logm ),
meaning that if m is a constant number, the space complexity is O(log log n) bits,
while for m = Ω(log n), it is O(logm) bits.
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3.3 Experiments

We have also measured the stabilization time of our Leader Election protocol for
different network sizes. We have executed it 100 times for each population size n,
where n = 2i and i = [4, 14]. The results of our experiments, as shown in Figure
3.1, support our analysis and confirm its logarithmic behavior. In these experiments,
the maximum number that the nodes could generate was m = 100. Finally, all
executions elected a unique leader in a log2 n

logm parallel time, for some small constant a.
Regarding our protocol for leader election with no knowledge of log n, the results

are shown in Figures 3.2 and 3.3. All executions elected a unique leader after a log2 n
logm

parallel time, as shown in Figure 3.2. Finally, as shown in Figure 3.3, the unique
leader holds a constant factor upper bound on log n after a log2 n

logm parallel time.

Figure 3.1: Leader Election with approximate knowledge of n. Both axes are
logarithmic. The dots represent the results of individual experiments and the line

represents the average values for each network size.
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Figure 3.2: Convergence time of the composition of Leader Election and Approx-
imate Counting protocols.

Figure 3.3: Composition of Leader Election and Approximate Counting protocols.
Upper bounds and actual sizes of log n.

3.4 Open Problems

In our leader election protocol of Section 3, when two nodes interact with each other,
the amount of data which is transferred is Ω(max{log log n, logm}) bits. In certain
applications of population protocols, the processes are not able to transfer arbitrarily
large amounts of data during an interaction. Can we design a polylogarithmic time
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population protocol for the problem of leader election that satisfies this requirement?
In addition, in Section 3.2.4 we describe how our Approximate Counting, presented in
Section 2, and Leader Election protocols can be combined into a single protocol that
can be executed in any uniform model of population protocols, and elects a unique
leader in Ω( log

2 n
logm ) parallel time. We provide some evidence that this is indeed the

case in Section 3.3, and we leave the proof of its correctness as an open problem.
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Chapter 4

Fault Tolerant Network
Constructors

In this chapter, we consider adversarial crash faults of nodes in the network construc-
tors model [113]. We first show that, without further assumptions, the class of graph
languages that can be (stably) constructed under crash faults is non-empty but small.
In particular, if an unbounded number of crash faults may occur, we prove that (i)
the only constructible graph language is that of spanning cliques and (ii) a strong
impossibility result holds even if the size of the graphs that the protocol outputs in
populations of size n needs to grow with n (the remaining nodes being waste). When
there is a finite upper bound f on the number of faults, we show that it is impossi-
ble to construct any non-hereditary graph language and leave as an interesting open
problem the hereditary case. On the positive side, by relaxing our requirements we
prove that: (i) permitting linear waste enables to construct on n/(2f)−f nodes, any
graph language that is constructible in the fault-free case, (ii) partial constructibility
(i.e., not having to generate all graphs in the language) allows the construction of a
large class of graph languages. We then extend the original model with a minimal
form of fault notifications. Our main result here is a fault-tolerant universal construc-
tor : We develop a fault-tolerant protocol for spanning line and use it to simulate
a linear-space Turing Machine M . This allows a fault-tolerant construction of any
graph accepted by M in linear space, with waste min{n/2 + f(n), n}, where f(n) is
the number of faults in the execution. We then prove that increasing the permissi-
ble waste to min{2n/3 + f(n), n} allows the construction of graphs accepted by an
O(n2)-space Turing Machine, which is asymptotically the maximum simulation space
that we can hope for in this model. Finally, we show that logarithmic local memories
can be exploited for a no-waste fault-tolerant simulation of any such protocol.

47
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4.1 Introduction

4.1.1 Related work

In this chapter, we address the issue of the dynamic formation of graphs under
faults. We do this in a minimal setting, that is, a population of agents running
Population Protocols that can additionally activate/deactivate links when they meet.
This model, called Network Constructors, was introduced in [113], and is based on
the Population Protocol (PP) model [7, 11] and the Mediated Population Protocol
(MPP) model [107]. We are interested in answering questions like the following: If
one or more faults can affect the formation process, can we always re-stabilize to a
correct graph, and if not, what is the class of graph languages for which there exists a
fault-tolerant protocol? What are the additional minimal assumptions that we need
to make in order to find fault-tolerant protocols for a bigger class of languages?

Population Protocols run on networks that consist of computational entities called
agents (or nodes). One of the challenging characteristics is that the agents have no
control over the schedule of interactions with each other. In a population of n agents,
repeatedly a pair of agents is chosen to interact. During an interaction their states
are updated based on their previous states. In general, the interactions are scheduled
by a fair scheduler. When the execution time of a protocol needs to be examined, a
typical fair scheduler is the one that selects interactions uniformly at random.

In this chapter, we examine the setting where adversarial crash faults may occur,
and we address the question of which families of graph languages can be stably
formed. Fault tolerance must deal with the graph topology, thus, previous results on
self-stabilizing PPs [12, 19, 38] and MPPs [119] do not apply here. In particular, if Π

is a protocol that constructs a graph language L, then a crash fault may result to a
configuration C such that no execution of Π starting from C stabilizes to a graph in L.
This means that when faults occur, the population must perform some computations
so as to reach a configuration where all executions of Π will again stabilize to a graph
in L. The problem is then to study self-stabilizing protocols under crash faults. Here,
adversarial crash faults mean that an adversary knows the rules of the protocol and
can select some node to be removed from the population at any time. For simplicity,
we assume that the faults can only happen sequentially. This means that in every
step at most one fault may occur, as opposed to the case where many faults can
occur during each step. The cases of sequential and parallel occurrence of faults are
equivalent to each other in the Network Constructors model w.l.o.g., but not in the
extended version of this model (which allows fault notifications) that we consider
later.

A main difference between our work and traditional self-stabilization approaches
is that the nodes are supplied with constant local memory, while in principle they can
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form linear (in the population size) number of connections per node. Existing self-
stabilization approaches that are based on restarting techniques cannot be directly
applied here [60, 61], as the nodes cannot distinguish whether they still have some
activated connections with the remaining nodes, after a fault has occurred. This
difficulty is the reason why it is not sufficient to just reset the state of a node in case
of a fault. In addition, in contrast to previous self-stabilizing approaches [69, 86]
that are based on shared memory models, two adjacent nodes can only store 1 bit of
memory in the edge joining them, which denotes the existence or not of a connection
between them.

Angluin et al. [12] incorporated the notion of self-stabilization into the population
protocol model, giving self-stabilizing protocols for some fundamental tasks such as
token passing and leader election. They focused on the goal of stably maintaining
some property such as having a unique leader or a legal coloring of the communication
graph.

Delporte-Gallet et al. [52] studied the issue of correctly computing functions
on the node inputs in the Population Protocol model [7], in the presence of crash
faults and transient faults that can corrupt the states of the nodes. They construct
a transformation which makes any protocol that works in the failure-free setting,
tolerant in the presence of such failures, as long as modifying a small number of
inputs does not change the output. In the context of fault tolerance, [58] uses a
leader to make any protocol tolerant to omission failures (i.e., failure by an agent to
read its partner’s state during an interaction). In [73], Fischer and Jiang introduced
the Ω? detectors in order to solve leader election under crash or transient faults.
An eventual leader detector Ω? is an oracle that eventually detects the presence or
absence of a leader in the population.

Guerraoui and Ruppert [87] introduced an interesting model, called Community
Protocol, which extends the Population Protocol model with unique identifiers and
enough memory to store a constant number of other agents’ identifiers. They show
that this model can solve any decision problem in NSPACE(n log n) while tolerating
a constant number of Byzantine failures.

Peleg [130] studies logical structures, constructed over static graphs, that need
to satisfy the same property on the resulting structure after node or edge failures.
He distinguishes between the stronger type of fault-tolerance obtained for geometric
graphs (termed rigid fault-tolerance) and the more flexible type required for handling
general graphs (termed competitive fault-tolerance). It differs from our work, as we
address the problem of constructing such structures over dynamic graphs.
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4.1.2 Contribution and roadmap for the chapter

The goal of any Network Constructor (NET) protocol is to stabilize to a graph that
belongs to (or satisfies) some graph language L, starting from an initial configuration
where all nodes are in the same state and all connections are disabled. In [113], only
the fault-free case was considered. In this chapter, we formally define the model that
extends NETs allowing crash failures, and we examine protocols in the presence of
such faults. Whenever a node crashes, it is removed from the population, along with
all its activated edges. This leaves the remaining population in a state where some
actions may need to be taken by the protocol in order to eventually stabilize to a
correct network.

We first study the constructive power of the original NET model in the presence
of crash faults. We show that the class of graph languages that is in principle
constructible is non-empty but very small: for a potentially unbounded number of
faults, we show that the only stably constructible language is the Spanning Clique.
We also prove a strong impossibility result, which holds even if the size of graphs that
the protocol outputs in populations of size n needs to grow with n (i.e., ω(1)), and
the remaining nodes being waste. For a bounded number of faults, we show that any
non-hereditary graph language is impossible to be constructed. However, we show
that by relaxing our requirements we can extend the class of constructible graph
languages. In particular, permitting linear waste enables to construct on n/(2f)− 1

nodes where f is a finite upper bound on the number of faults, any graph language
that is constructible in a failure-free setting. Alternatively, by allowing our protocols
to generate only a subset of all graphs in the language (called partial constructibility),
a large class of graph languages becomes constructible (see Section 4.3).

In light of the impossibilities in the Network Constructors model, we introduce
the minimal additional assumption of fault notifications. This is essentially a failure
detector ([32, 33]) that provides information about crash fault events in some nodes
of the network. In [33] the failure detector ♦S eventually outputs a set of crashed
process identities at each process of the network. In our work, after a fault on some
node u occurs, all nodes that maintain an active edge with u at that time (if any) are
notified. If there are no such nodes, an arbitrary node in the population is notified.
In that way, we guarantee that at least one node in the population will sense the
removal of u. Nevertheless, some of our constructions work without notifications in
the case of a crash fault on an isolated node (Section 4.4).

We obtain two fault-tolerant universal constructors. One of the main technical
tools that we use in them, is a fault-tolerant construction of a stable path topology
(i.e., a line). We show that this topology is capable of simulating a Turing Machine
(abbreviated “TM” throughout this chapter), and, in the event of a fault, is capable
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of always reinitializing its state correctly (Section 4.4.2). Our protocols use a subset
of the population (called waste) in order to construct there a TM, while the graph
which belongs to the required language L is constructed in the rest of the population
(called useful space). Throughout this chapter, we call waste all nodes that do not
belong to the constructed graph G ∈ L after stabilization, and remain either isolated
nodes or part of a component such as the TM. The idea is based on [113], where
they show several universality results by constructing on k nodes of the population
a network G1 capable of simulating a TM, and then repeatedly drawing a random
network G2 on the remaining n − k nodes. The idea is to execute on G1 the TM
which decides the language L with the input network G2. If the TM accepts, it
outputs G2, otherwise the TM constructs a new random graph.

This allows a fault-tolerant construction of any graph accepted by a TM in linear
space, with wastemin{n/2+f(n), n}, where f(n) is the number of faults in the execu-
tion. We finally prove that increasing the permissible waste to min{2n/3 + f(n), n}
allows the construction of graphs accepted by an O(n2)-space Turing Machine, which
is asymptotically the maximum simulation space that we can hope for in this model.

In order to give fault-tolerant protocols without waste, we design a protocol that
can be composed in parallel with any protocol in order to make it fault-tolerant.
The idea is to restart the protocol whenever a crash failure occurs. We provide a
protocol Π′ such that, given any network constructor Π with notifications, Π′ is a
fault-tolerant version of Π without waste. We show that restarting is impossible with
constant local memory, if the nodes may form a linear (in the population size) number
of connections; hence, the required memory per node in this protocol is O(log n) bits.
Table 4.1 summarizes all results proved in this chapter.

Finally, in Section 4.5 we conclude and discuss further research directions opened
by our work.

4.2 Model and Definitions

4.2.1 Network constructors with crash failures

In Section 1.2.2 we formally define the Network Constructor model. In this chapter,
we present a version of this model that allows adversarial crash failures. A crash (or
halting) failure causes an agent to cease functioning and play no further role in the
execution. This means that all the adjacent edges of F (u) ∈ GU , where F (u) is the
node of the underlying graph that u is mapped to, are removed from EU , and, at
the same time, all the adjacent edges of u ∈ GO become inactive (i.e., removed from
the configuration). Finally, we consider GU to be the complete undirected interaction
graph.
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Constructible languages
Without notifications With notifications

(Section 4.3.1)
Unbounded faults

(Section 4.3.2)
Bounded faults Unbounded faults

Only Spanning Clique Non-hereditary
impossibility

Fault-tolerant protocols:
Spanning Star, Cycle Cover,

Spanning Line
(Section 4.4.1)

Strong impossibility
even with linear

waste

A representation of
any finite graph

(partial
constructibility)

Universal Fault-tolerant
Constructors (with waste)

(Section 4.4.2)

Any constructible
graph language with

linear waste

Universal Fault-tolerant
Restart (without waste)

(Section 4.4.3)

Table 4.1: Summary of our results.

The execution of a protocol proceeds in discrete steps. In every step, an edge
e ∈ EU between two nodes F (u) and F (v) is selected by an adversary scheduler,
subject to some fairness guarantee. The corresponding nodes u and v interact with
each other and update their states and the state of the edge uv ∈ GO between them,
according to a joint transition function δ. If two nodes in states qu and qv with
the edge joining them in state quv encounter each other, they can change into states
q′u, q′v and q′uv, where (q′u, q

′
v, q
′
uv) ∈ δ(qu, qv, quv). In the original model, GU is the

complete directed graph, which means that during an interaction, the interacting
nodes have distinct roles. In our protocols, we consider the following constraint that
is imposed by the fact that the edges of the interaction graph are undirected. In
particular, δ(qu, qv, quv) = (a, b, c) implies δ(qv, qu, qvu) = (b, a, c), for any qu, qv ∈ Q.

A configuration is a mapping C : VI ∪ EI → Q ∪ {0, 1} specifying the state of
each node and each edge of the interaction graph. An execution of the protocol on
input I is a finite or infinite sequence of configurations, C0, C1, C2, . . . , each of which
is a set of states drawn from Q∪{0, 1}. In the initial configuration C0, all nodes are
in state q0 and all edges are inactive. Let qu and qv be the states of the nodes u and
v, and quv denote the state of the edge joining them. A configuration Ck is obtained
from Ck−1 by one of the following types of transitions:
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1. Ordinary transition: Ck = (Ck−1 − {qu, qv, quv}) ∪ {q′u, q′v, q′uv}
where {qu, qv, quv} ⊆ Ck−1 and (q′u, q

′
v, q
′
uv) ∈ δ(qu, qv, quv).

2. Crash failure: Ck = Ck−1 − {qu} − {quv : uv ∈ EI} where {qu, quv} ⊆ Ck−1.

We say that C ′ is reachable from C and write C  C ′, if there is a sequence of
configurations C = C0, C1, . . . , Ct = C ′, such that Ci → Ci+1 for all i, 0 6 i < t.
The fairness condition that we impose on the scheduler is quite simple to state.
Essentially, we do not allow the scheduler to avoid a possible step forever. More
formally, if C is a configuration that appears infinitely often in an execution, and
C → C ′, then C ′ must also appear infinitely often in the execution. Equivalently, we
require that any configuration that is always reachable is eventually reached.

We define the output of a configuration C as the graph G(C) = (V,E) where
V = {u ∈ VO : C(u) ∈ Qout} and E = {uv : u, v ∈ V, u 6= v, and C(uv) = 1}.
If there exists some step t ≥ 0 such that GO(Ci) = G for all i ≥ t, we say that
the output of an execution C0, C1, . . . stabilizes (or converges) to graph G, every
configuration Ci, for i ≥ t, is called output-stable, and t is called the running time
under our scheduler. We say that a protocol Π stabilizes eventually to a graph G of
type L if and only if after a finite number of pairwise interactions, the graph defined
by ‘on’ edges does not change and belongs to the graph language L.

4.2.2 Definition of terms

In this chapter, unless otherwise stated, a graph language L is an infinite set of
graphs satisfying the following properties:

1. (No gaps): For all n ≥ c, where c ≥ 2 is a finite integer, ∃G ∈ L of order n.

2. (No Isolated Nodes): ∀G ∈ L and ∀u ∈ V (G), it holds that d(u) ≥ 1 (where
d(u) is the degree of u).

Even though graph languages are not allowed to contain isolated nodes, there are
cases in which a protocol might be allowed to output one or more isolated nodes.
In particular, if a protocol Π constructing L is allowed a waste of at most w, then
whenever Π is executed on n nodes, it must output a graph G ∈ L of order |V (G)| ≥
n − w, leaving at most w nodes in one or more separate components (could be all
isolated).

Definition 4.1. We say that a protocol Π constructs a graph language L if: (i)
every execution of Π on n nodes stabilizes to a graph G ∈ L s.t. |V (G)| = n and (ii)
∀G ∈ L there is an execution of Π on |V (G)| nodes that stabilizes to G.
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Definition 4.2. We say that a protocol Π partially constructs a graph language L,
if: (i) from Definition 4.1 holds, and ∃G ∈ L s.t. no execution of Π on |V (G)| nodes
stabilizes to G.

Definition 4.3 (Fault-tolerant protocol). Let Π be a NET protocol that, in a failure-
free setting, constructs a graph G ∈ L. Π is called f -fault-tolerant if for any popu-
lation size n any execution of Π constructs a graph G ∈ L, where |V (G)| ≥ n − f ,
and f < n is an upper bound on the number of faults. We also call Π fault-tolerant
if the same holds for any number f ≤ n− 2 of faults.

Definition 4.4 (Waste and useful space). We say that a protocol Π constructs a
graph language L with waste w if: (i) every execution of Π on n nodes stabilizes to
a graph G ∈ L s.t. n− w ≤ |V (G)| ≤ n and (ii) ∀G ∈ L there is an execution of Π

on n nodes s.t. |V (G)| ≤ n ≤ |V (G)|+w that stabilizes to G. This implies that the
waste includes all crashed nodes and any auxiliary nodes required by Π to construct
G. Finally, we call |V (G)| the useful space.

Definition 4.5 (Constructible language). A graph language L is called constructible
(partially constructible) if there is a protocol that constructs (partially constructs)
it. Similarly, we call L constructible under f faults, if there is an f -fault-tolerant
protocol that constructs L, where f is an upper bound on the maximum number of
faults during an execution.

Definition 4.6 (Critical node). Let G be a graph that belongs to a graph language
L. Call u a critical node of G if by removing u and all its edges, the resulting graph
G′ = G− {u} − {uv : v ∼ u}, does not belong to L. In other words, if there are no
critical nodes in G, then any (induced) subgraph G′ of G that can be obtained by
removing nodes and all their edges, also belongs to L.

Definition 4.7 (Hereditary Language). A graph language L is called hereditary if
for any graph G ∈ L, every induced subgraph of G also belongs to L. In other words,
there is no graph G ∈ L with critical nodes.

This notion is known in the literature as hereditary property of a graph w.r.t. (with
respect to) some graph language L. Observe that if there exists a graph G s.t. for
any induced subgraph G′ of G, G′ ∈ L, does not imply that the same holds for any
graph in L. Some examples of hereditary languages are “Bipartite graph”, “Planar
graph”, “Forest of trees”, “Clique”, “Set of cliques”, and “Maximum node degree ≤ ∆”.

4.3 Network Constructors without Fault Notifications

In this section, we study the constructive power of the original NET model in the
presence of bounded and unbounded crash faults when no form of notification is
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available to the nodes. We start from the case in which the number of nodes that
crash during an execution can be anything from 0 up to n−2 nodes. We are interested
in characterizing the class of constructible graph languages. Observe that we cannot
trivially conclude that the adversary can always leave us with just 2 nodes, only
allowing our protocols to form a line of length 1. This is because our definition of
constructible languages under faults takes into account all possible executions with
f faults, for all values of f ∈ {0, 1, . . . , n − 2}. We show that in the case where the
number of faults cannot be bounded by a constant number, the only language that
is constructible is the Lc = {G : G is a spanning clique}.

We then consider the setting where only a constant number of faults are allowed,
and we show that no language L is constructible under a single fault, if L is not
Hereditary. However, if we allow linear waste in the population, any language that
is constructible without faults, becomes constructible under a constant number of
faults.

Finally, we show a family of graph languages that is partially constructible (with-
out waste in the population). The exact characterization of the class of partially
constructible languages remains as an open problem.

4.3.1 Unbounded number of faults

We consider here the setting where the number of faults can be any number up to
n − 2. We prove that the only constructible graph language is Spanning Clique =

{G : G is a spanning clique}, i.e., a clique containing all nodes.
We first present a very simple protocol which constructs the language Spanning

Clique and we show that it can tolerate any number of faults. Let Clique be the
following protocol.

Protocol 5 Clique
Q = {b}
Initial state: b

δ :
1: (b, b, 0)→ (b, b, 1)

# All transitions that do not appear have no effect.

Lemma 4.8. Clique (Protocol 5) is a fault-tolerant protocol for Spanning Clique.

Clearly, for any number f < n of faults, where n is the population size, Protocol
5 constructs the language Spanning Clique.

By Lemma 4.8, we know that the language Spanning Clique is constructible under
n− 2 faults. To clarify, this means that for any execution of Protocol 5 on n nodes,
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f of which crash (f ∈ {0, 1, . . . , n − 2}), Protocol 5 is guaranteed to stabilize to a
clique of order n− f .

We will now prove that (due to the power of the adversary), no other graph
language is constructible under unbounded faults.

Lemma 4.9. Let Π be a protocol constructing a language L and G ∈ L be a graph
that Π outputs on |V (G)| nodes. If G has an independent set S ⊆ V , s.t. |S| ≥ 2,
then there is an execution of Π on n nodes which stabilizes on |S| isolated nodes
(where |S| = n− f and f is the number of faults in that execution).

Proof. Consider an execution of Π that outputs G. By definition, there is a point
in this execution after which no further edge updates can occur (no matter what
the infinite execution suffix will be). Take any configuration Cstable after that point
and consider its sub-configuration CS induced by the independent set S. Observe
that CS encodes the state of each node u ∈ S in that particular stable configuration
Cstable. Denote also by QS the multiset of all states assigned by CS to the nodes in
S.

Every state in QS is reachable (in the sense that there exists an execution that
produces it). For each q ∈ QS consider the smallest population Vq in which there
is some execution aq of protocol Π that produces state q. Consider the population
V =

⋃
q∈QS Vq (or equivalently of size n =

∑
q∈QS |Vq|).

For each Vq in population V we execute aq until q is produced on some node
uq. After this, every q ∈ QS is present in the population V . Then, the adversary
crashes all nodes in Vq \ {uq} (i.e., only uq remains alive in each Vq). This leaves
the execution with a set of alive nodes equivalent in cardinality and configurations
to the independent set S under CS .

The above construction is a finite prefix of fair executions. For the sake of con-
tradiction, assume that in any fair continuation of the above prefix, Π eventually
stabilizes to a graph with no isolated nodes (as required by the fact that Π con-
structs a graph language L). Take one such continuation γ. As γ starts from a
configuration in all respects equivalent to that of S under Cstable, it follows that γ
can also be applied to Cstable and in particular on the independent set S starting from
CS . It follows that γ must have exactly the same effect as before, that is, eventually
it will cause the activation of at least one edge between the nodes in S. But this
violates the fact that Cstable is a stable configuration, therefore no edge could have
been activated by Π in the continuation, implying that the continuation must have
been an execution stabilizing on |S| isolated nodes.

Theorem 4.10. Let L be any graph language such that L 6= Spanning Clique. Then,
there is no protocol that constructs L if an unbounded number of crash failures may
occur.
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Proof. As L 6= Spanning Clique, there exists G ∈ L such that G is not complete (and
by definition no G′ ∈ L has isolated nodes). Therefore G has an independent set S
of size at least 2. If there exists a protocol Π that constructs L, then by Lemma 4.9
there must be an execution of Π which stabilizes on at least 2 isolated nodes. The
latter is a stable output not in L, therefore a contradiction.

Theorem 4.11. If an unbounded number of faults may occur, the Spanning Clique
is the only constructible language.

Proof. Directly from Lemma 4.8 and Theorem 4.10.

Theorem 4.12. Let L be any graph language such that the graphs G ∈ L have
maximum independent sets whose size grows with |V (G)| (i.e., ω(1)). If the useful
space of protocols is required to grow with n, then there is no protocol that constructs
L in the unbounded-faults case.

Proof. The proof is a direct application of Lemma 4.9. As the size of the maximum
independent set of G grows with |V (G)| in L, and the useful space is a non-constant
function of n, it follows that, as n grows, the stable output-graph (on the useful
space) has an independent set of size that grows with n (consider, for example, the
leaves of binary trees of growing size as such a growing independent set). As any such
stable independent set of size g(n) implies that another execution has to stabilize
to g(n) isolated nodes, it follows that any protocol for L would produce infinitely
many stable outputs of isolated nodes. The latter is contradicting the fact that the
protocol constructs L.

4.3.2 Bounded number of faults

The exact characterization established above, shows that under unbounded failures
and without further assumptions, we cannot hope for non-trivial constructions. We
now relax the power of the faults adversary, so that there is a finite upper bound f on
the number of faults. In particular, for any n ≥ 1, and fixing any such 0 ≤ f ≤ n in
advance, it is guaranteed that for all executions of a protocol on n nodes, at most f
nodes may fail during the execution. Then the class of constructible graph languages
is naturally parameterized in f . We first show that non-hereditary languages are not
constructible under a single fault.

Theorem 4.13. If there exists a critical node in G, there is no 1-fault-tolerant NET
protocol that stabilizes to it.

Proof. Let Π be a NET protocol that constructs a graph language L, tolerating one
crash failure. Consider an execution E and a sequence of configurations C0, C1, . . .

of E . Assume a time t that the output of E has stabilized to a graph G ∈ L (i.e.,



Chapter 4. Fault Tolerant Network Constructors 58

G(Ci) = G, ∀i ≥ t). Let u be a critical node in G. Assume that the scheduler
removes u and all its edges (crash failure) at time t′ > t, resulting to a graph G′ /∈ L.
In order to fix the graph (i.e., re-stabilize to a graph G′′ ∈ L), the protocol must
change at some point t′′ the configuration. This can only be the result of a state
update on some node v. Now, call E ′ the execution that node u does not crash
and, besides that, is the same as E . Then, between t′ and t′′ the node v has the
same interactions as in the previous case where node u crashed. This results to the
same state update in v, since it cannot distinguish E from E ′. The fact that u either
crashes or not, leads to the same result (i.e., v tries to fix the graph thinking that u
has crashed). This means that if we are constantly trying to detect faults in order
to deal with them, this would happen indefinitely and the protocol would never be
stabilizing. Consider that the network has stabilized to G. At some point, because
of the infinite execution, a node will surely but wrongly detect a crash failure. Thus,
G has not really stabilized.

By Definition 4.7 and Theorem 4.13 it follows that.

Corollary 4.14. If a graph language L is non-hereditary, it is impossible to be con-
structed under a single fault.

Note that this does not imply that any hereditary language is constructible under a
constant number of faults. We leave this as an interesting open problem.

On the positive side we show that in the case of bounded number of faults, there
is a non-trivial class of languages that is partially constructible. Consider the class of
graph languages defined as follows. Any such language LD,f in the family is uniquely
specified by a graph D = ([k], H) and the finite upper bound f < k on the number of
faults. A graph G = (V,E) belongs to LD,f iff there are k partitions V1, V2, . . . , Vk of
V s.t. for all 1 ≤ i, j ≤ k, ||Vi|−|Vj || ≤ f+1. In addition, E is constructed as follows.
The graph D = ([k], H), possibly containing self-loops, defines a neighboring relation
between the k partitions. For every (i, j) ∈ H (where possibly i = j), E contains all
edges between partitions Vi and Vj , i.e., a complete bipartite graph between them
(or a clique in case i = j). As no isolated nodes are allowed, every Vi must be fully
connected to at least one Vj (possibly itself). In Figure 4.1, we present an example
of a graph that belongs to LD,f , where D defines a ring graph.

We first consider the case where k = 2ε, for some constant ε ∈ N0, and we
provide a protocol that divides the population into k partitions. The protocol works
as follows: initially, all nodes are in state c0 (we call this the partition 0). When
two nodes in states ci, where i ≥ 0 interact with each other, they update their states
to c2i+1 and c2i+2, moving to partitions 2i + 1 and 2i + 2 respectively. Interactions
between nodes in different c-states (ci, cj , where i 6= j) do not affect the configuration.
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When j = 2i+ 1 ≥ k− 1 (or j = 2i+ 2 ≥ k− 1) for the first time, it means that the
node has reached its final partition. It updates its state to Pm, where m = j− k+ 1,
thus, the final partitions are {P0, P1, . . . , Pk−1}.

(a) D = ([k], H) (b) Graph of supernodes

Figure 4.1: In 4.1a, D defines a ring of size k. In 4.1b, each node of D corresponds
to a set of nodes (or supernode), while for each edge of D between two nodes ui

and uj , all nodes of Vi are connected to all nodes of Vj and vice versa.

This process divides each partition into two partitions of equal size. However, in
the case where the number of nodes is odd, a single node remains unmatched. For
this reason, all nodes participate to the final formation of H regardless of whether
they have reached their final partitions or not. There is a straightforward mapping
of each internal partition to a distinct leaf of the binary tree, that is, each partition
ci behaves as if it were in partition Pi. In order to avoid false connections between
the partitions, we also allow the nodes to disconnect from each other if they move to
a different partition. This process guarantees that eventually all nodes end up in a
single partition, and their connections are strictly described by H.

Lemma 4.15. In the absence of faults, Protocol 6, divides the population into k

partitions of at least n/k − 1 nodes each.

Proof. Initially all nodes are in state c0. When two c0 nodes interact with each
other, one of them becomes c1 and the other one c2. This means that all n nodes
split into two partitions of equal size. No node can become c0 again at any time
during the execution. In addition, there is only one partition cj that produces nodes
of some other partition ci, where i is either 2j + 1 or 2j + 2, and the size of them
are half the size of cj . This process can be viewed as traversing a labeled binary
tree, until all nodes reach to their final partition. A node in state ci has reached its
final partition when i ≥ k − 1. This process describes a subdivision of the nodes,
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Protocol 6 Graph of Supernodes
Q = {ci, Pj} × {0, 1}, 0 ≤ i ≤ 2(k − 1), 0 ≤ j ≤ k − 1
Initial state: c0

δ :
# Partitioning

1: (ci, ci, 0)→ (c2i+1, c2i+2, 0), if (i+ 1) < k
2: (ci, ·, ·)→ (Pj , ·, ·), if (i ≥ k − 1), j = i− k + 1

# Formation of graph H
3: (Pi, Pj , 0)→ (Pi, Pj , 1), if (i, j) ∈ H
4: (Pi, Pj , 1)→ (Pi, Pj , 0), if (i, j) /∈ H
5: (ci, Pj , 0)→ (ci, Pj , 1), if (i, j) ∈ H
6: (ci, Pj , 1)→ (ci, Pj , 0), if (i, j) /∈ H
7: (ci, cj , 0)→ (ci, cj , 1), if (i, j) ∈ H
8: (ci, cj , 1)→ (ci, cj , 0), if (i, j) /∈ H

# All transitions that do not appear have no effect.

where each partition splits into two partitions of equal size. The final partitions are
{ck−1, ck, . . . , c2k−2}.

Assume now that the initial population size is n0 (level 0 of the binary tree). If
n0 is even, the size of the following two partitions c1 and c2 will be n0/2. If n0 is
odd, one node remains unmatched, thus, the size of c1 and c2 will be n1 = n0−1

2 . In
the next level of the binary tree, at most one node will remain unmatched in each
partition, thus n2 = n1−1

2 . Consequently, the size of a partition in level p can be
calculated recursively, and (in the worst case) it is np =

np−1−1
2 .

np =
np−1 − 1

2
=
np−1

2
− 1

2
=

np−2

2 − 1
2

2
− 1

2

=
np−2

4
− 1

4
− 1

2
= · · · = n0

2p
−

p∑
i=1

1

2i

=
n0
2p
− (1− 2−p) >

n0
2p
− 1

(4.1)

For p = log k levels, each partition has either n0
k or n0

k − 1 nodes.

Lemma 4.16. Protocol 6, stabilizes after Θ(kn2) expected time.

Proof. Protocol 6 operates in phases, where each phase doubles the number of par-
titions. After log k phases, there exist k groups in the population and the nodes
terminate.
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We now study the time that each group ci needs in order to split into two par-
titions. Here, for simplicity, i indicates the level of a partition c in the binary tree
and mi the number of nodes of partition ci.

Let X be a random variable (r.v.) defined to be the number of steps until all mi

nodes move to their next partitions. Call a step a success if two nodes in ci interact,
thus, moving to their next partitions. We divide the steps of the protocol into epochs,
where epoch j begins with the step following the jth success and ends with the step
at which the (j+1)st success occurs. Let also the r.v. Xj , 1 ≤ j ≤ mi be the number
of steps in the jth epoch.

The probability of success during the jth epoch, for 0 ≤ j ≤ mi, is pj =
(mi−j)(mi−j−1)

n(n−1) and E[Xj ] = 1/pj . By linearity of expectation we have

E[X] = E[

mi−2∑
j=0

Xj ] =

mi−2∑
j=0

E[Xj ] = n(n− 1)

mi−2∑
j=0

1

(mi − j)(mi − j − 1)

= n(n− 1)

mi∑
j=2

1

j(j − 1)
< n(n− 1)

mi∑
j=2

1

(j − 1)2

= n(n− 1)

mi−1∑
j=1

1

j2
< n(n− 1)

π2

6
= O(n2)

(4.2)

The above uses the fact that mi ≤ n for any i ≥ 0.
For the lower bound, observe that the last two remaining nodes in ci need on

average n(n− 1)/2 steps to meet each other. Thus, we conclude that E[X] = Θ(n2).
In total,

∑log (k)−1
0 2i = 2log k−1 = k−1 partitions split, thus, the total expected

time to stabilization is Θ(kn2) steps.

Lemma 4.17. In the case where up to f faults occur during the execution of Protocol
6, each final partition has at least n/k−f−1 nodes, where k is the number of partitions
and f < k.

Proof. Call Ppi the set of partitions that are in the binary tree starting from a par-
tition ci in distance p from ci. We now study the relation between the number of
faults on some partition ci with the size of the partitions in Ppi .

Consider the case where f1 crash faults occur in some partition ci. The nodes of
each partition ci operate independently from the rest of the population, that is, they
never update their states and/or connections when they interact with nodes from
a different partition. Thus, if no more faults occur, we can assume that we have a
failure-free execution on |ci| − f1 nodes. By Lemma 4.15, after p subdivisions, each
partition in Ppi will have

⌊
|ci|−f1

2p

⌋
nodes. Consequently, any number of faults in a

partition ci are equally split into the partitions following ci.
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Now, consider a partition cj ∈ Pp1i , where f2 faults occur. The number of nodes
of cj is then

|cj | − f2 =

⌊
|ci| − f1

2p1

⌋
− f2 (4.3)

Then, all the partitions in Pp2j , by Lemma 4.15 will have at least

⌊
|cj | − f2

2p2

⌋
=


⌊
|ci|−f1
2p1

⌋
− f2

2p2

 ≥ |ci|−f1
2p1 − 1− f2

2p2
− 1 >

|ci|
2p1 − f1 − f2 − 1

2p2
− 1

(4.4)

nodes. This means that if f1+f2 faults were occurred only in cj (and not f1 faults
in ci), then the subsequent partitions in Ppj would have less nodes. This argument
can be generalized for faults in any partition.

It is then obvious that in the worst case, where up to f faults can occur, a final
partition (leaf of the binary tree) will have n

k − f − 1 nodes, and this is the result of
f faults in that final partition.

By Lemma 4.17:

Corollary 4.18. ||Vi| − |Vj || ≤ f + 1, ∀1 ≤ i, j ≤ k.

By Lemma 4.17 and the definition of partial constructibility (Definition 4.5):

Theorem 4.19. The language LD,f , where k is a constant number, is partially con-
structible under f faults.

We now show that if we permit a waste linear in n, any graph language that is
constructible in the fault-free NET model, becomes constructible under a bounded
number of faults.

Theorem 4.20. Take any NET protocol Π of the original fault-free model. There is
a NET Π′ such that when at most f faults may occur on any population of size n,
Π′ successfully simulates an execution of Π on at least n

2f − 1 nodes.

Proof. Consider any constructible language L and a protocol Π that constructs it.
For any bounded number of faults f , set k = 2ε, where 2ε−1 < f < 2ε. Consider a
protocol Π′, which consists of the rules 1 and 2 of Protocol 6. These rules partition
the population into k groups, where k is an input parameter of Π′. By Lemma 4.17,
each group has at least n/k− f − 1 nodes. For 2ε partitions, the number of nodes in
each partition is at least n

2ε − f − 1. However, as the number of partitions is strictly
more than the upper bound on the number of faults (2ε > f), there exists at least
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one partition that no fault has occurred. In the worst case where f = 2δ for some
δ ∈ N, there exists at least one partition with n

2f − 1 nodes.

4.4 Notified Network Constructors

In light of the impossibility results of Section 4.3, we allow fault notifications when
nodes crash, aiming at constructing a larger class of graph languages. In particular,
we introduce a fault flag in each node, which is initially zero. When a node u crashes
at time t, every node v which was adjacent to u at time t is notified, that is, the fault
flag of all v becomes 1 (see Figures 4.2a and 4.2b). In the case where u is an isolated
node (i.e., it has no active edges), an arbitrary node w in the graph is notified, and
its fault flag becomes 2 (see Figures 4.2c and 4.2d). Then, the fault flag becomes
immediately zero after applying a corresponding rule from the transition function.

More formally, the set of node-states is Q × {0, 1, 2}, and for clarity in our
descriptions and protocols, we define two types of transition functions. The first
one determines the node and connection state updates of pairwise interactions (δ1 :

Q ×Q × {0, 1} → Q ×Q × {0, 1}), while the second transition function determines
the node state updates due to fault notifications (δ2 : Q × {1, 2} → Q × {0}). This
means that during a step t that a node u crashes, all its adjacent nodes are allowed
to update their states based on δ2 at that same step. If there are no adjacent nodes
to u, an arbitrary node is notified, thus, updating its state based on δ2 at step t.

We have assumed that the faults can only occur sequentially (at most one fault
per step). This assumption was equivalent to the case where many faults can occur in
each step in the original NET model. However, when fault notifications are allowed,
this does not hold, unless the fault flag could be used as a counter of faults in each
step. We want to keep the model as minimal as possible, thus, we only allow the
adversary to choose one node at most in each step to crash.

In this section, we investigate whether the additional information in each agent
(the fault flag) is sufficient in order to design fault-tolerant or f−fault-tolerant pro-
tocols, overcoming the impossibility of certain graph languages in the NET model.
Such a minimal fault notification mechanism can be exploited to construct a larger
class of graph languages than in the original Network Constructors model where no
form of notifications was available.

4.4.1 Fault-tolerant protocols

In this section, we give protocols for some basic network construction problems, such
as spanning star (all u ∈ G form a single star), cycle cover (set of cycles which are
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Figure 4.2: An illustration of the fault notification mechanism. In the first ex-
ample (Figures 4.2a and 4.2b), the gray node crashed, and the nodes that were
adjacent to it at step i were notified and updated their state. At step j > i+1, this
node along with its adjacent edges are not present. In the second example (Figures
4.2c and 4.2d), the crashed node was isolated, thus an arbitrary node was notified

and updated its state.

subgraphs of G and contain all vertices of G), and in Section 4.4.2 we give a fault-
tolerant spanning line protocol which is part of our generic constructor capable of
constructing a large class of networks.

Protocol 7 constructs a spanning star. Initially all nodes are in the same state b
(or black) and they eliminate each other, becoming r (or red). Eventually, only one
node will remain in state b which will be the center of the star. In order to handle
crash faults, when a red node is notified about a fault, it becomes black. In this way
and because of the fact that a red node cannot be isolated, we guarantee that a black
node will always exist in the population.

Proposition 4.21. FT Spanning Star (Protocol 7) is a fault-tolerant protocol that
constructs a spanning star.

Proof. Assume that any number of faults f < n occur during an execution. Initially,
all nodes are in state b (black). Two nodes connect with each other, if either one of
them is black, or both of them are black, in which case one of them becomes r (red).
A black node can become red only by interaction with another black node, in which
case they also become connected. Thus, with no crash faults, a connected component
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Protocol 7 FT Spanning Star
Q = {b, r} × {0, 1}
Initial state: b

δ1 :
# Formation of spanning star. Eventually, only one node in state b remains.

1: (b, b, 0)→ (b, r, 1)
2: (b, r, 0)→ (b, r, 1)
3: (r, r, 1)→ (b, b, 0)
4: (b, b, 1)→ (b, r, 1)

δ2 :
5: (r, 1)→ (b, 0) # A leaf becomes the initial state b after a fault notification.

# All transitions that do not appear have no effect.

always includes at least one black node. In addition, all isolated nodes are always in
state b. This is because, if a red node removes an edge it becomes black.

Then, if a (connected) node crashes, the adjacent nodes are notified and the red
nodes become black, thus, any connected component should again include at least
one black node. Now, consider the case where only one black node remains in the
population. Then the rest of the population (in state r) should be in the same
connected component as the unique b node. Then, if b crashes, at least one black
node will appear, thus, this protocol maintains the invariant, as there is always at
least one black node in the population. Finally, all connected nodes in state r will
eventually disconnect from each other. FT Spanning Star then stabilizes to a star
with a unique black node in the center.

Similarly, we can show the following.

Proposition 4.22. FT Cycle-Cover (Protocol 8) is a fault-tolerant protocol that
forms a cycle cover.

In this protocol, the state of a node indicates its degree. In particular, all nodes
are initially in state q0, indicating that they are isolated. Whenever a node in state
qi, forms a connection, it moves to state qi+1. At the same time, whenever a node is
notified about a fault in a neighboring node, it decreases i by one. In this protocol
0 ≤ i ≤ 2, which guarantees that eventually all nodes will have degree 2, except
maybe for a single node or a pair of nodes which will form a line.

4.4.2 Universal fault-tolerant constructors

In this section, we ask whether there is a generic fault-tolerant constructor capable
of constructing a large class of graphs. We first give a fault-tolerant protocol that
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Protocol 8 FT Cycle-Cover
Q = {q0, q1, q2} × {0, 1}
Initial state: q0

δ1 :
1: (q0, q0, 0)→ (q1, q1, 1)
2: (q1, q0, 0)→ (q2, q1, 1)
3: (q1, q1, 0)→ (q2, q2, 1)

δ2 :
# The state of a node indicates its degree. A fault notification implies that the
degree was decreased by one.

4: (q1, 1)→ (q0, 0)
5: (q2, 1)→ (q1, 0)

# All transitions that do not appear have no effect.

constructs a spanning line (i.e., a graph of size n that forms a line), and then we
show that we can simulate a given TM on that line, tolerating any number of crash
faults. Finally, we exploit that in order to construct any graph language that can be
decided by an O(n2)−space TM, paying at most linear waste.

Lemma 4.23. FT Spanning Line (Protocol 9) is a fault-tolerant protocol that con-
structs a spanning line.

Proof. Initially, all nodes are in state q0 and they start connecting with each other
in order to form lines that eventually merge into one.

When two q0 nodes become connected, one of them becomes a leader (state
l0) and starts connecting with q0 nodes (expands). A leader state l0 is always an
endpoint. The other endpoint is in state ei (initially e1), while the inner nodes are in
state q2. Our goal is to have only one leader l0 on one endpoint, because l0 are also
used in order to merge lines. Otherwise, if there are two l0 endpoints, the line could
form a cycle. When two l0 leaders meet, they connect (line merge) and a w node
appears. This process corresponds to the rules 1, 2, and 3 of Protocol 9 (depicted
also in Figure 4.3).

The w state performs a random walk on the line and its purpose is to meet both
endpoints (at least once) before becoming an l0 leader. After interacting with the
first endpoint, it becomes w1 and changes the endpoint to e1. Whenever it interacts
with the same endpoint they just swap their states from e1, w1 to e2, w2 and vice
versa. In this way, we guarantee that wi will eventually meet the other endpoint
in state ej , j 6= i, or l0. In the first case, the wi node becomes a leader (l0), after
having walked the whole line at least once. This process is described by rules 4− 10

of Protocol 9 (depicted also in Figure 4.4).
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Protocol 9 FT Spanning Line
Q = {q0, q2, e1, e2, l0, l1, w, w1, w2} × {0, 1}
Initial state: q0

δ1 :
# Formation of lines, and merging between them.

1: (q0, q0, 0)→ (e1, l0, 1)
2: (l0, q0, 0)→ (q2, l0, 1)
3: (l0, l0, 0)→ (q2, w, 1)

# w nodes perform a random walk on their line.
4: (wi, q2, 1)→ (q2, wi, 1)
5: (w, q2, 1)→ (q2, w, 1)

# Nodes in state w introduce a unique endpoint in state l0 on their line.
6: (w, ei, 1)→ (wi, ei, 1)
7: (wi, ei, 1)→ (wj , ej , 1), i 6= j
8: (wi, ej , 1)→ (q2, l0, 1), i 6= j
9: (w, li, 1)→ (w1, e1, 1)
10: (wi, li, 1)→ (q2, l0, 1)

# w nodes eliminate each other, until only one survives.
11: (wi, wj , 1)→ (w, q2, 1)
12: (w, wj , 1)→ (w, q2, 1)

# Fault notifications on internal nodes (states q2, w, and wi), become l1, which
then introduce a new walking state.

13: (l1, q2, 1)→ (e1, w1, 1)

δ2 :
14: (ei, 1)→ (q0, 0)
15: (li, 1)→ (q0, 0)
16: (q2, 1)→ (l1, 0)
17: (w, 1)→ (l1, 0)
18: (wi, 1)→ (l1, 0)

# All transitions that do not appear have no effect.

Now, consider the case where a fault may happen on some node on the line. If the
fault flag of an endpoint state becomes 1, it updates its state to q0. Otherwise, the
line splits into two disjoint lines and the new endpoints become l1. An l1 becomes a
walking state w1, changes the endpoint into e1 and performs a random walk (rule 13

of Protocol 9).
If there are more than one walking states on a line, then all of them are w, or

wi and they perform a random walk. None of them can ever satisfy the criterion
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Figure 4.3: The left line is the result of one connection between two isolated
nodes, and one expansion (rules 1 and 2 of Protocol 9). The second line is the

result of a line merging (rule 3 of Protocol 9).
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e2 l0q2 q2
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Figure 4.4: In Figure 4.4a, the walking state and the left endpoints are in states
w2 and e2. Then, the walking state eventually reaches the second endpoint which

is in state e1, resulting to state l0 (Figure 4.4c).

to become l0 before first eliminating all the other walking states and/or the unique
leader l0 (when two walking states meet, only one survives and becomes w), simply
because they form natural obstacles between itself and the other endpoint (rules
11 and 12 of Protocol 9). This process is depicted in Figure 4.5. If a new fault
occurs, then this can only introduce another wi state which cannot interfere with
what existing wi’s are doing on the rest of the line (can meet them eventually but
cannot lead them into an incorrect decision).

If an l0 leader is merging while there are wi’s and/or w’s on its line (without
being aware of that), the merging results in a new w state, which is safe because a w
cannot make any further progress without first succeeding to beat everybody on the
line. A w can become l0 only after walking the whole line at least once (i.e., interact
with both endpoints) and to do that it must have managed to eliminate all other
walking states of the line on its way.

We have shown that despite the presence of faults, any expansion or merging
eventually succeeds, meaning that the population eventually forms a line with a
single leader in one endpoint.
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e1 w1q2 w1 e1

(b)

e1 wq2 e1q2

(c)

Figure 4.5: In Figure 4.5a there is one walking state, and one endpoint in state
l1. l1 state is the result of a fault on an adjacent node of it. This state introduces
an additional walking state, and in Figure 4.5c the two walking states interact and
only one survives. The unique walking state w is then guaranteed to first traverse

the whole line at least once before an endpoint becomes l0.

Lemma 4.24. There is a NET Π (with notifications) such that when Π is executed
on n nodes and at most f faults can occur, where 0 ≤ f < n, Π will eventually
simulate a given TM M of space O(n− f) in a fault-tolerant way.

Proof. The state of Π has two components (P, S), where P is executing a spanning
line formation procedure, while S handles the simulation of the TM M . Our goal
is to eventually construct a spanning line, where initially the state of the second
component of each node is in an initial state s0 except from one node which is in
state head and indicates the head of the TM.

In general, the states P and S are updated in parallel and independently from
each other, apart from some cases where we may need to reset either P , S or both.

In order to form a spanning line under crash failures, the P component will be
executing our FT Spanning Line protocol which is guaranteed to construct a line,
spanning eventually the non-faulty nodes.

It is sufficient to show that the protocol can successfully reinitialize the state
of all nodes on the line after a final event has happened and the line is stable and
spanning. Such an event can be a line merging, a line expansion, a fault on an
endpoint or an intermediate fault. The latter though can only be a final event if
one of the two resulting lines is completely eliminated due to faults before merging
again. In order to re-initialize the TM when the line expands to an isolated node q0,
we alter a rule of the FT Spanning Line protocol. Whenever, a leader l0 expands
to an isolated node q0, the leader becomes q2 while the node in q0 becomes l1, thus
introducing a new walking state.

We now exploit the fact that in all these cases, FT Spanning Line will generate
a w or a wi state in each affected component.
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Whenever a w1 or w2 state has just appeared or interacted with an endpoint e1
or e2 respectively, it starts resetting the simulation component S of every node that
it encounters. If it ever manages to become a leader l0, then it finally restarts the
simulation on the S component by reintroducing to it the tape head.

When the last event occurs, the final spanning line has a w or wi leader in it, and
we can guarantee a successful restart due to the following invariant. Whenever a line
has at least one w/wi state and no further events can happen, FT Spanning Line
guarantees that there is one w or wi that will dominate every other w/wi state on
the line and become an l0, while having traversed the line from endpoint to endpoint
at least once.

In its final departure from one endpoint to the other, it will dominate all w and
wi states that it will encounter (if any) and reach the other endpoint. Therefore, no
other w/wi states can affect the simulation components that it has reset on its way,
and upon reaching the other endpoint it will successfully introduce a new head of
the TM while all simulation components are in an initial state s0.

Lemma 4.25. There is a fault-tolerant NET Π (with notifications) which partitions
the nodes into two groups U and D with waste at most 2f(n), where f(n) is an upper
bound on the number of faults that can occur. U is a spanning line with a unique
leader in one endpoint and can eventually simulate a TM M . In addition, there is a
perfect matching between U and D.

Proof. Initially all nodes are in state q0. Protocol Π partitions the nodes into two
equal sets U and D and every node maintains its type forever. This is done by
a perfect matching between q0’s where one becomes qu and the other becomes qd.
Then, the nodes of U execute the FT Spanning Line protocol, which guarantees the
construction of a spanning line, capable of simulating a TM (Lemma 4.24). The
rest of the nodes (D), which are connected to exactly one node of U each, are used
to construct on them random graphs. Whenever a line merges with another line or
expands towards an isolated node, the simulation component S in the states of the
line nodes, as described in Lemma 4.24, is reinitialized sequentially.

Assume that a fault occurs on some node of the perfect matching before that pair
has been attached to a line. In this case, its pair will become isolated therefore it is
sufficient to switch that back to q0.

If a fault occurs on a D node u after its pair z has been attached to a line, z goes
into a detaching state which disconnects it from its line neighbors, turning them into
l1 and itself becoming a q0 upon release. An l1 state on one endpoint is guaranteed
to walk the whole line at least once (as wi) in order to ensure that a unique leader
l0 will be created. If u fails before completing this process, its neighbors on the line
shall be notified becoming again l1, and if one of its neighbors fails we shall treat
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this as part of the next type of faults. This procedure shall disconnect the line but
may leave the component connected through active connections within D. But this
is fine as long as the FT-Spanning Line guarantees a correct restart of the simulation
after any event on a line. This is because eventually the line in U will be spanning
and the last event will cause a final restart of the simulation on that line.

Assume that a fault occurs on a node u ∈ U that is part of the line. In this case
the neighbors of u on the line shall instantly become l1. Now, its D pair v, which
may have an unbounded number of D neighbors at that point, becomes a special
deactivating state that eventually deactivates all connections and never participates
again in the protocol, thus, it stays forever as waste. This is because the fault
partially destroys the data of the simulation, thus, we cannot safely assume that we
can retrieve the degree of v and successfully deactivate all edges. As there can be
at most f(n) such faults we have an additional waste of f(n). Now, consider the
case where u is one neighbor of a node z which is trying to release itself after its
v neighbor in D failed. Then, z implements a 2-counter in order to remember how
many of its alive neighbors have been deactivated by itself or due to faults in order
to know when it should become q0.

Theorem 4.26. For any graph language L that can be decided by a linear space TM,
there is a fault-tolerant NET Π (with notifications) that constructs a graph in L with
waste at most min{n/2 + f(n), n}, where f(n) is an upper bound on the number of
faults that can occur. 1

Proof. By Lemma 4.25, there is a protocol that constructs two groups U and D of
equal size, where each node of U is matched with exactly one node of D, and vice
versa. In addition, the nodes of U form a spanning line, and by Lemma 4.24 it can
simulate a TM M . After the last fault occurs, M is correctly initialized and the
head of the TM is on one of the endpoints of the line. The two endpoints are in
different states, and assume that the endpoint that the head ends up is in state ql
(left endpoint), and the other is in state qr (right endpoint). This construction is
depicted in Figure 4.6.

We now provide the protocol that performs the simulation of the TMM , which we
separate into several subroutines. The first subroutine is responsible for simulating
the direction on the tape and is executed once the head reaches the endpoint ql. The
simulation component S (as in Lemma 4.24) of each node has three sub-components
(h, c, d). h is used to store the head of the TM, i.e., the actual state of the control of
the TM, c is used to store the symbol written on each cell of the TM, and d is either

1Given a target graph of size |V (G)|, the size of the initial population required to construct G
depends on the number of faults that occur and on the state of the nodes during the crash failures.
In particular, the minimum size required to construct G is 2n (no faults occur), while the maximum
number of nodes is 2(n+ f(n)).
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Figure 4.6: The population is partitioned into two groups U and D that form a
perfect matching. The nodes of U eventually form a spanning line, and simulate a
TM of linear space. The TM repeatedly constructs random graphs in the nodes of

D, until the graph belongs to the given graph language.

l, r or t, indicating whether that node is on the left or on the right of the head (or
unknown). Assume that after the initialization of the TM, d = t for all nodes of the
line. Finally, whenever the head of the TM needs to move from a node u to a node
z, hz ← hu, and hu ← t.

Direction. Once the head of the TM is introduced in the endpoint ql by the lines’
leader, it moves on the line, leaving l marks on the d component of each node. It
moves on the nodes which are not marked, until it eventually reaches the qr endpoint.
At that point, it starts moving on the marked nodes, leaving r marks on its way back.
Eventually, it reaches again the ql endpoint. At that time, for each node on its right
it holds that d = r. Now, every time it wants to move to the right it moves onto the
neighbor that is marked by r while leaving an l mark on its previous position, and
vice versa. Once the head completes this procedure, it is ready to begin working as
a TM.

Construction of random graphs in D. This subroutine of the protocol constructs
a random graph in the nodes of D. Here, the nodes are allowed to toss a fair coin
during an interaction. This means that we allow transitions that with probability
1/2 give one outcome and with 1/2 another. To achieve the construction of a random
graph, the TM implements a binary counter C (log n bits) in its memory and uses
it in order to uniquely identify the nodes of set D according to their distance from
ql. Whenever it wants to modify the state of edge (i, j) of the network in D, the
head assigns special marks to the nodes in D at distances i and j from the left of the
endpoint ql. Note that the TM uses its (distributed) binary counter in order to count
these distances. If the TM wants to access the i−th node in D, it sets the counter
C to i, places a mark on the left endpoint ql and repeatedly moves the mark one
position to the right, decreasing the counter by one in each step, until C = 0. Then,
the mark has been moved exactly i positions to the right. In order to construct a
random graph in D, it first assigns a mark r1 to the first node ql, which indicates
that this node should perform random coin tosses in its next interactions with the
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other marked nodes, in order to decide whether to form connections with them, or
not. Then, the leader moves to the next node on its line and waits to interact with
the connected node in D. It assigns a mark r2, and waits until this mark is deleted.
The two nodes that have been marked (r1 and r2), will eventually interact with each
other, and they will perform the (random) experiment. Finally the second node
deletes its mark (r2). The head then, moves to the next node and it performs the
same procedure, until it reaches the other endpoint qr. Finally, it moves back to the
first node (marked as r1), deletes the mark and moves one step right. This procedure
is repeated until the node that should be marked as r1 is the right endpoint qr. It
does not mark it and it moves back to ql. The result is an equiprobable construction
of a random graph. In particular, all possible graphs over |D| nodes have the same
probability to occur. Now, the input to the TM M is the random graph that has
been drawn on D, which provides an encoding equivalent to an adjacency matrix.
Once this procedure is completed, the protocol starts the simulation of the TM M .
There are m = k(k− 1)/2 edges, where k = |D| and M has available k

2 =
√
m space,

which is sufficient for the simulation on a
√
m−space TM.

Read edges of D. We now present a mechanism, which can be used by the TM
in order to read the state of an edge joining two nodes in D. Note that a node in D
can be uniquely identified by its distance from the endpoint ql. Whenever the TM
needs to read the edge joining the nodes i and j, it sets the counter C to i. Assume
w.l.o.g. that i < j. It performs the same procedure as described in the subroutine
which draws the random graph in D. It moves a special mark to the right, decreasing
C by one in each step, until it becomes zero. Then, it assigns a mark r3 on the i−th
node of D, and then performs the same for C = j, where it also assigns a mark r4 (to
the j−th node). When the two marked nodes (r3 and r4) interact with each other,
the node which is marked as r4 copies the state of the edge joining them to a flag F
(either 0 or 1), and they both delete their marks. The head waits until it interacts
again with the second node, and if the mark has been deleted, it reads the value of
the flag F .

After a simulation, the TM either accepts or rejects. In the first case, the con-
structed graph belongs to L and the Turing Machine halts. Otherwise, the random
graph does not belong to L, thus the protocol repeats the random experiment. It
constructs again a random graph, and starts over the simulation on the new input.

A final point that we should make clear is that if during the simulation of the TM
an event occurs (crash fault, line expansion, or line merging), by Lemma 4.24 and
Lemma 4.25, the protocol reconstructs a valid partition between U and D, the TM
is re-initialized correctly, and a unique head is introduced in one endpoint. At that
time, edges in D may exist, but this fact does not interfere with the (new) simulation
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of the TM, as a new random experiment takes place for each pair of nodes in D prior
to each simulation.

We now show that if the constructed network is required to occupy 1/3 instead
of half of the nodes, then the available space of the TM-constructor dramatically
increases from O(n) to O(n2). We provide a protocol which partitions the population
into three sets U , D and M of equal size k = n/3. The idea is to use the set M as a
Θ(n2) binary memory for the TM, where the information is stored in the k(k− 1)/2

edges of M .

Lemma 4.27. Protocol 10 (3-Partition) partitions the nodes into three groups U ,
D and M , with waste 3f(n), where f(n) is an upper bound on the number of faults
that can occur. U is a spanning line with a unique leader in one endpoint and can
eventually simulate a TM, each node in D∪M is connected with exactly one node of
U , and each node of U is connected to exactly one node in D and one node in M .

Proof. Protocol 3−Partition constructs lines of three nodes each, where one endpoint
is in state qd, the other endpoint in state qm, and the center is in state qu. The nodes
of U operate as in Lemma 4.25 (i.e., they execute the FT Spanning Line protocol).
A (connected) pair of nodes waits until a third node is attached to it, and then the
center becomes qu and starts executing the FT Spanning Line protocol. Note that
at some point, it is possible that the population may only consist of pairs in states qd
and q′u. For this reason, we allow q′u nodes to connect with each other, forming lines
of four nodes. One of the q′u nodes becomes qu and the other becomes q′m. A node
in q′m becomes qm only after deactivating its connection with a qd node (its previous
pair). This results in lines of three nodes each with nodes in states qd, qu and qm.
Then, the qu nodes start forming a line, spanning all nodes of U . In a failure-free
setting, the correctness of this protocol follows from Lemma 4.25. In addition, by
Lemma 4.24, the TM of the line is initialized correctly after the last occurring event
(line expansion, line merging, or crash fault).

If we consider crash failures, it is sufficient to show that eventually U is a spanning
line and M and D are disjoint. If a node ever becomes qd or qm, it might form
connections with other nodes in D or M respectively, because of a TM simulation.
A node in M never forms connections with nodes in D. After they receive a fault
notification, they become the deactivating state s. A node in state s is disconnected
from any other node, thus, it eventually becomes isolated and never participates in
the execution again. We do this because nodes in M and D can form unbounded
number of connections. The data of the TM have been partially destroyed (because
of the crash failure), therefore it is not safe to assume that we can retrieve the degree
of them and successfully re-initialize them.
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· · ·

· · ·D

U ql qu qu qu qr

qd qd qd qd qd

· · ·M qm qm qm qm qm

Figure 4.7: The population is partitioned into three groupsM , U , and D of equal
size. The nodes of U form a perfect matching with both U and M . The nodes of
U eventually form a spanning line, and simulate a TM of linear space that uses the
edges in M as an O(n2) binary memory. The TM repeatedly constructs random
graphs in the nodes of D, until the graph belongs to the given graph language.

A node u in state q′m (inner node of a line of four nodes), after a fault notification
it becomes qw. A node in qw waits until its next interaction with a connected node v.
If v is in state qu, this means that now a triple has been formed, thus u becomes qm.
If v is in state qd, they delete the edge joining them, u becomes q0 and v becomes s
(v might have formed connections with other nodes in D).

A node u in qu, after a fault notification it becomes q′w and waits until its next
interaction with a connected node v. At that point, v can be either qd, q′m, or qm. In
all cases they disconnect from each other and u becomes q′0. The state q′0 indicates
that the node should release itself from the spanning line in U . This procedure works
as described in Lemma 4.25, thus, after releasing itself from the line, it becomes q0.
If v is in state qd or qm, it becomes s. If v is in state q′m, it becomes q′u, as its (unique)
adjacent node can only be in state qd.

A node in q′u or qw, after a fault notification it becomes q0 and continues par-
ticipating in the execution again. Finally, a node in state q′w, after receiving a fault
notification, it becomes q′0 (a q′w is the result of a fault notification in a U− node).

Note that a node in any state except from qd and qm can be re-initialized correctly,
thus they may participate in the execution again. It is apparent that no node that
might have formed unbounded number of connections can participate in the execution
again after a crash fault. This guarantees that the connections in D and M can be
correctly initialized after the final event, and that no node in D∪M can be connected
with more than one node in U . In addition, if a U−node receives a fault notification,
it releases itself from the line, thus introducing new walking states in the resulting
line(s). By Lemma 4.24, this guarantees the correct re-initialization of the TM.
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Finally, a crash failure can lead in deactivating two more nodes, in the worst case.
These nodes never participate in the execution again, thus they remain forever as
waste. This means that after f(n) crash failures, the partitioning will be constructed
in n− 3f(n) nodes.

Protocol 10 3-Partition
Q = {q0, q′0, qd, qu, q′u, qm, q′m, qw, q′w, s} × {0, 1}
Initial state: q0

δ1 :

# Formation of independent lines of three nodes.
1: (q0, q0, 0)→ (q′u, qd, 1)

2: (q′u, q0, 0)→ (qu, qm, 1)

# Two connected pairs of nodes can form a line of four nodes. In this case, one
of the endpoints is disconnected from the line.

3: (q′u, q
′
u, 0)→ (qu, q

′
m, 1)

4: (q′m, qd, 1)→ (qm, q0, 0)

# qw is the result of a fault on either a node in qd or qu state. The nodes in this
state wait until they interact with (the unique) adjacent node, and update their
state accordingly.

5: (qw, qd, 1)→ (q0, s, 0)

6: (qw, qu, 1)→ (qm, qu, 1)

# q′w is the result of a fault on a node in qd, qm, or q′m state. The nodes in
this state wait until they interact with (the unique) adjacent node, and update
their state accordingly. q′0 eventually becomes q0 after releasing itself from the
spanning line.

7: (q′w, qd, 1)→ (q′0, s, 0)

8: (q′w, qm, 1)→ (q′0, s, 0)

9: (q′w, q
′
m, 1)→ (q′0, q

′
u, 0)

# Nodes in state s are disconnected from all nodes, and are left as waste.
10: (s, ·, 1)→ (s, ·, 0)

δ2 :

11: (q′u, 1)→ (q0, 0)
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# States q′m and qu indicate intermediate nodes of the line. After a fault no-
tification, they enter to a temporary state, and wait until their first interaction
with the remaining (unique) adjacent node.

12: (q′m, 1)→ (qw, 0)
13: (qu, 1)→ (q′w, 0)

# A node in state qw or q′w, is guaranteed to have exactly one neighbor in the
(qm, qu, qd) line. Thus, after a fault notification, it becomes q0 (or q′0 if it belongs
to the set U)

14: (qw, 1)→ (q0, 0)
15: (q′w, 1)→ (q′0, 0)

# qd and qm nodes remain as waste (in state s) after a fault notification.
16: (qd, 1)→ (s, 0)
17: (qm, 1)→ (s, 0)

# All transitions that do not appear have no effect.

Theorem 4.28. For any graph language L that can be decided by an (n2/18 +

O(n))−space TM, there is a protocol that constructs L equiprobably with waste at
most min{2n/3 + f(n), n}, where f(n) is an upper bound on the number of faults.

Proof. Protocol 10 partitions the population in three groups U , D and M and by
Lemma 4.27, it tolerates any number of crash failures, while initializing correctly the
TM after the final event (line expansion, line merging, or crash fault). Reading and
writing on the edges of M is performed in precisely the same way as reading/writing
the edges of D (described in Theorem 4.26). Thus, the Turing Machine has now
a n2/18−space binary memory (the edges of M) and O(n)−space on the nodes of
the spanning line U . The random graph is constructed on the k nodes of D (useful
space), where by Lemma 4.27, k = (n−3f(n))/3 = n/3−f(n) in the worst case.

4.4.3 Designing fault-tolerant protocols without waste

A very simple, (yet impractical) idea that could tolerate any number f < n of faults
is to restart the protocol each time a node crashes. The implementation of this idea
requires the ability of some nodes to detect the removal of a node.

Definition 4.29 (Global restart). Let Π be a protocol that constructs a graph
language L and C be a set of configurations that all executions of Π starting from
any C ∈ C stabilize to a graph G ∈ L. We call global restart the process which
reaches Π to a configuration C ∈ C in finite time.

Our goal is to come up with a protocol A that can be composed with any NET
protocol Π (with notifications), so that their composition is a fault-tolerant version
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of Π. Essentially, whenever a fault occurs, A will restart all nodes in a way equivalent
to as if a new execution of Π had started on the whole remaining population. Parallel
execution of protocols is easily achieved in the Population Protocol model, by taking
the Cartesian product of their state sets and updating the states for each protocol
independently when a transition occurs ([12]). We denote the parallel composition
of two protocols Π1 and Π2 as Π1 ◦ Π2. However, in the Network Constructors
model, the connections between the nodes are binary and the Cartesian product of
their states would imply that each protocol Π1 and Π2 maintains its own connec-
tion state between each pair of nodes. To overcome this problem, we only consider
parallel composition between two protocols where only one of them is allowed to
activate/deactivate edges between the nodes. In particular, assume that Π1 is a pro-
tocol with transition function δ1 : Q1 × Q1 → Q1 × Q1 and Π2 is a protocol with
transition function δ2 : Q2 × Q2 × {0, 1} → Q2 × Q2 × {0, 1}. Then, the compo-
sition of these protocols Π1 ◦ Π2 is a Network Constructor with transition function
δ1,2 : (Q1 ×Q2)× (Q1 ×Q2)× {0, 1} → (Q1 ×Q2)× (Q1 ×Q2)× {0, 1}.

Definition 4.30. Consider any execution Ei of a protocol Π. There exists a finite
number of different executions, and for each execution a step ti that Π stabilizes. Call
Ci,j the j−th configuration of execution Ei, where j ≤ ti. Then, we call maximum
reachable degree of Π the value d = max{Degree(G(Ci,j))}, ∀i, j.

We first show that even in the case where the whole population is notified about
a crash failure, global restart is impossible for protocols with d = ω(1), if the nodes
have constant memory. However, we provide a protocol that restarts the population,
but we supply the nodes with O(log n) bits of memory. In our approach, we use fault
notifications, and if a node z crashes, the set Nz of the nodes that are notified, has
the task to restart the protocol.

Theorem 4.31. Consider a protocol Π with unbounded maximum reachable degree.
Then, global restart of Π is impossible for nodes with constant memory, even if every
node u in the population is notified about the crash failure.

Proof. Consider a protocol Π with constant number of states k and unbounded max-
imum reachable degree, which constructs a graph language L. Assume also that at
time t a crash failure occurs and that there are some edges in the graph (call them
spurious edges). Protocol Π is allowed to have rules that are triggered by the fault
and try to erase those edges (erasing process). We assume that all nodes in the
population are notified about the crash failure.

Observe that any degree more than k cannot be remembered by a node, that
is, a state q cannot indicate its degree. This means that a node cannot detect the
termination of the erasing process and eventually reset its state to an initial one to



Chapter 4. Fault Tolerant Network Constructors 79

allow the restart. To stop the erasing process is equivalent to counting the remaining
edges and wait until the degree reaches zero, but this would require logarithmic to
maximum reachable degree number of bits.

The above observation means that the agents must enter to a new initial state
and start forming new connections prior to the termination of the erasing process.
But the only way to distinguish connections made before and after a fault is to enter
to a different set of states after each fault occurs. Otherwise the erasing process will
fail. This can be achieved by having parallel executions of Π. In particular, given
Π, the agents execute Π′ = Π(1) ◦Π(2) ◦ · · · ◦Π(δ), where Π(i) is obtained from Π by
adding a constant i to it. Initially, the agents execute Π(i) for i = 1, and whenever
a fault notification is received, the agents start executing Π(i+1).

As an example, consider the following protocol Π with initial state s and a single
rule (s, s)→ (r, r). Then Π′ = Π(1) ◦Π(2) has the following rules: (s1, s1)→ (r1, r1)

and (s2, s2)→ (r2, r2), and the agents are initially in state s1.
Assume that there exists an erasing process that can distinguish between edges

made by different Π(i). Let Etu,i be the set of activated edges of a node u at time
t that were formed during the execution of Π(i). As the memory of each node is
constant, then δ is also a constant number. In addition, the number of faults that
can occur is unbounded, thus after δ faults at time t a node must execute a Π(i) that
was executed in a previous step. However, Etu,i might not be empty and then the
erasing process will fail.

In light of the impossibility result of Theorem 4.31, we allow the nodes to use
non-constant local memory in order to develop a fault tolerating procedure based on
restart.

We give a protocol that restarts any protocol Π as follows. All nodes are ini-
tially leaders. Through a standard pairwise leader elimination procedure, a unique
leader would be guaranteed to remain in the absence of failures. But because a
fault can remove the last remaining leader, the protocol handles this by generating
a new leader upon getting a fault notification. This guarantees the existence of at
least one leader in the population and eventually (after the last fault) of a unique
one. There are two main events that trigger a new restarting phase: a fault and a
leader elimination. As any new event must trigger a new restarting phase that will
not interfere with an outdated one, eventually overriding the latter and restarting
all nodes once more, we use phase counters to distinguish among phases. In the
presence of a new event it is always guaranteed that a leader at maximum phase will
eventually increase its phase, therefore a restart is guaranteed after any event. The
restarts essentially cause gradual deactivation of edges (by having nodes remember
their degree throughout) and restoration of nodes’ states to q0, thus executing Π
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on a fresh initial configuration. For the sake of clarity, we first present a simplified
version of the restart protocol that guarantees resetting the state of every node to a
uniform initial state q0. So, for the time being we may assume that the protocol to
be restarted through composition is any Population Protocol Π that always starts
from the uniform q0 initial configuration (all u ∈ V in q0 initially). Later on we shall
extend this to handle with protocols that are Network Constructors instead.

Description of the PP Restarting Protocol . The state of every node consists
of two components S1 and S2. S1 runs the restarting protocol A while S2 runs the
given PP Π. In general, they run in parallel with the only exception when A restarts
Π. The S1 component of every node stores a leader variable, taking values from
{l, f}, and is initially l, a phase variable, taking values from N≥0, initially 0, and a
fault binary flag, initially 0.

The transition function is as follows. We denote by x(u) the value of variable x
of node u and x′(u) the value of it after the transition under consideration.

If a leaders’ fault flag becomes 1 or 2, it sets it to 0, increases its phase by one, and
restarts Π. If a followers’ flag becomes 1 or 2, it sets it to 0, increases its phase by one,
becomes a leader, and restarts Π. We now distinguish three types of interactions.

When a leader u interacts with a leader v, one of them remains leader (state
l) and the other becomes a follower (state f), both set their phase variable to
max{phase(u), phase(v)} + 1 and both reset their S2 component (protocol Π) to
q0 (i.e., restart Π).

When a leader u interacts with a follower v, if phase(u) = phase(v), do nothing
in S1 but execute a transition of Π (both u and v involved). If phase(u) < phase(v),
then both set their phase variable to max{phase(u), phase(v)}+ 1 and both restart
Π, and finally, if phase(u) > phase(v), then phase′(v) = phase(u) and v restarts Π.

When a follower u interacts with a follower v, if phase(u) = phase(v) do nothing
in S1 but execute transition of Π. If phase(u) > phase(v), then v sets phase′(v) =

phase(u) and v restarts Π, and finally, if phase(u) < phase(v), then u sets phase′(u) =

phase(v) and u restarts Π.

We now show that given any such PP Π, the above restart protocol A when
composed as described with Π, gives a fault-tolerant version of Π (tolerating any
number of crash faults).

Lemma 4.32 (Leader Election). In every execution of A, a configuration C with a
unique leader is reached, such that no subsequent configuration violates this property.

Proof. If after the last fault there is still at least one leader, then from that point on at
least one more leader appears (due to the fault flags) and only pairwise eliminations
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can decrease the number of leaders. But pairwise elimination guarantees eventual
stabilization to a unique leader. It remains to show that there must be at least one
leader after the last fault. The leader state becomes absent from the population
only when a unique leader crashes. This generates a notification, raising at least one
follower’s fault flag, thus introducing at least one leader.

Call a leader-event any interaction that changes the number of leaders. Observe
that after the last leader-event in an execution there is a stable unique leader ul.

Lemma 4.33 (Final Restart). On or after the last leader-event, ul will go to a phase
such that phase(ul) > phase(u), ∀u ∈ V ′ \ {ul}, where V ′ denotes the remaining
nodes after the crash faults. As soon as this happens for the first time, let S denote
the set of nodes that have restarted Π exactly once on or after that event. Then
∀u ∈ V ′ \ S, v ∈ S, an interaction between u and v results in S ← S ∪ {u}. Thus, S
will eventually be S = V ′.

Proof. We first show that on or after the last leader-event there will be a configuration
in which phase(ul) > phase(u), ∀u ∈ V ′ \ {ul} and it is stable. As there is a unique
leader ul and follower-to-follower interactions do not increase the maximum phase
within the followers population, ul will eventually interact with a node that is in the
maximum phase. At that point it will set its phase to that maximum plus one and
we can agree that before that follower also sets its own phase during that interaction
to the new max, it has been satisfied that phase(ul) > phase(u), ∀u ∈ V ′ \ {ul}.

When the above is first satisfied, S = {ul, u} and phase(ul) = phase(u) >

phase(v), ∀v ∈ V ′ \ S. Any interaction within S, only executes a normal transition
of Π, as in S they are all in the same phase. Any interaction between a u ∈ V ′ \ S
and a v ∈ S, results in S ← S ∪{u}, because interactions between followers in V ′ \S
cannot increase the maximum phase within V ′ \ S, thus phase(v) > phase(u) holds
and the transition is: phase′(u) = phase(v) and u restarts Π, thus enters S. It follows
that S cannot decrease and any interaction between the two sets increases S, thus S
eventually becomes equal to V ′.

Putting Lemma 4.32 and Lemma 4.33 together gives the aforementioned result.

Theorem 4.34. For any such PP Π, it holds that A ◦ Π is a fault-tolerant version
of Π.

Lemma 4.35. The required memory in each agent for executing protocol A is O(log n)

bits.

Proof. Initially all nodes are potential leaders, and they eliminate each other, moving
to next phases at the same time. In the worst case, a single leader u will eliminate
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every other leader, turning them into followers, thus in a failure-free setting the phase
of u becomes at most n − 1. If we consider the case where crash faults may occur,
each fault can result in notifying the whole population. This will happen if u was
adjacent to every other node by the time it crashed. Thus, all nodes increase their
phase by one and become leaders again. In the worst case, a single leader eliminates
all the other leaders, thus, after the first fault, the maximum phase will be increased
by n− 2. The maximum phase than can be reached is

∑k
i=0(n− i) = O(kn), where

k is the maximum number of faults that may occur (k < n). Thus, each node is
required to have O(log n) bits of memory.

NET Restarting Protocol (with Notifications). We are now extending the PP
Restarting Protocol in order to handle any NET protocol Π (with notifications). Call
this new protocol B. We store in the S1 component of each node u ∈ V a degree
variable, that is, whenever a connection is formed or deleted, u increases or decreases
the value of degree by one respectively. In addition, whenever the fault flag of a node
u becomes one, it means that an adjacent node of it has crashed, thus it decreases
degree by one. In the case of Network Constructors, the nodes cannot instantly
restart the protocol Π by setting their state to the initial one q0. By Theorem 4.31,
it is evident that we first need to remove all the edges in order to have a successful
restart and eventually stabilize to a correct network.

We now define an intermediate phase, called Restarting Phase R, where the nodes
that need to be restarted enter by setting the value of a variable restart to 1 (stored
in the S1 component). As long as their degree is more than zero, they do not apply
the rules of the protocol Π in their second component S2, but instead they deactivate
their edges one by one. Eventually their degree reaches zero, and then they set restart
to 0 and continue executing protocol Π. We can say that a node u, which is in phase i
(phase(u) = i), becomes available for interactions of Π (in S2) only after a successful
restart. This guarantees that a node u will not start executing the protocol Π again,
unless its degree firstly reaches zero.

The additional Restarting Phase does not interfere with the execution of the PP
Restarting Protocol, but it only adds a delay on the stabilization time.

Lemma 4.36. The variable degree of a node u always stores its correct degree.

Proof. In a failure-free setting, whenever a node u forms a new connection, it in-
creases its degree variable by one, and whenever it deactivates a connection, it de-
creases it by one. In case of a fault, all the adjacent nodes are notified, as their fault
flag becomes one. Thus, they decrease their degree by one. In case of a fault with no
adjacent nodes, a random node is notified, and its fault flag becomes two. In that
case, it leaves the value of degree the same.
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Theorem 4.37. For any NET protocol Π (with notifications), it holds that B ◦Π is
a fault-tolerant version of Π.

Proof. Consider the case where a node u (either leader or follower) needs to be
restarted. It enters to the restarting phase in order to deactivate all of its enabled
connections, and it will start executing Π only after its degree becomes zero (by
Lemma 4.36 this will happen correctly), thus, Π always runs in nodes with no spurious
edges (edges that are the result of previous executions). Whenever two connected
nodes u ∈ R and v /∈ R, where R is the Restarting Phase, interact with each other,
they both decrease their degree variable by one, and they delete the edge joining
them. Obviously, this fact interferes with the execution of Π in node v (which is not
in the restarting phase), but v is surely in a previous phase than u and will eventually
also enter in R. This follows from the fact that a node in some phase i can never
start forming new edges before it has successfully deleted all of its edges before. New
edges are only formed with nodes in the same phase i.

The new Restarting Phase does not interfere with the states of the PP Restarting
Protocol, thus the correctness of B follows by Lemma 4.32 and Lemma 4.33.

Lemma 4.38. The required memory in each agent for executing protocol B is O(log n)

bits.

Proof. The maximum value that the variable degree can reach is the maximum
reachable degree (d) of protocol Π. Thus, by Lemma 4.35, the states that each
node is required to have is O(dkn). Both d and k are less that n − 1, thus,
O(n3) states = O(log n) bits.

4.5 Conclusions and Further Research

A number of interesting problems are left open for future work. Our only exact
characterization was achieved in the case of unbounded faults and no notifications.
If faults are bounded, non-hereditary languages were proved impossible to construct
without notifications but we do not know whether all hereditary languages are con-
structible. Relaxations, such as permitting waste or partial constructibility were
shown to enable otherwise impossible transformations, but there is still work to be
done to completely characterize these cases. In case of notifications, we managed
to obtain fault-tolerant universal constructors, but it is not yet clear whether the
assumptions of waste and local coin tossing that we employed are necessary and how
they could be dropped. Finally, in Section 4.4.3 we showed a protocol that restarts
the population whenever a fault occurs, and to achieve it we empowered the agents
with O(log n) memory. An immediate question here is whether we can achieve the
same results by simulating the algorithm of [87] to handle crash failures. Apart from
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these immediate technical open problems, some more general related directions are
the examination of different types of faults such as random, Byzantine, and commu-
nication/edge faults. Finally, a major open front is the examination of fault-tolerant
protocols for stable dynamic networks in models stronger than NETs.



Chapter 5

Crystal Structure Prediction via
Oblivious Local Search

We study Crystal Structure Prediction, one of the major problems in computational
chemistry. This is essentially a continuous optimization problem, where many differ-
ent, simple and sophisticated, methods have been proposed and applied. The simple
searching techniques are easy to understand, usually easy to implement, but they can
be slow in practice. On the other hand, the more sophisticated approaches perform
well in general, however almost all of them have a large number of parameters that
require fine tuning and, in the majority of the cases, chemical expertise is needed in
order to properly set them up. In addition, due to the chemical expertise involved
in the parameter-tuning, these approaches can be biased towards previously-known
crystal structures. Our contribution is twofold. Firstly, we formalize the Crystal
Structure Prediction problem, alongside several other intermediate problems, from
a theoretical computer science perspective. Secondly, we propose an oblivious al-
gorithm for Crystal Structure Prediction that is based on local search. Oblivious
means that our algorithm requires minimal knowledge about the composition we are
trying to compute a crystal structure for. In addition, our algorithm can be used
as an intermediate step by any method. Our experiments show that our algorithms
outperform the standard basin hopping, a well studied algorithm for the problem.

5.1 Introduction

The discovery of new materials has historically been made by experimental investiga-
tion guided by chemical understanding. This approach can be both time consuming
and challenging because of the large space to be explored. For example, a “tradi-
tional” method for discovering inorganic solid structures relies on knowledge of crystal
chemistry coupled with repeating synthesis experiments and systematically varying

85
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elemental ratios, each of which can take lots of time [141, 144]. As a result there is a
very large unexplored space of chemical systems: only 72% of binary systems, 16% of
ternary, and just 0.6% of quaternary systems have been studied experimentally [145].
These inefficiencies forced physical scientists to develop computational approaches in
order to tackle the problem of finding new materials. The first approach is based
on data mining where only pre-existing knowledge is used [39, 80, 88, 123, 138].
Although this approach has proven to be successful, there is the underlying risk
of missing best-in-class materials by being biased towards known crystal structures.
Hence, the second approach tries to fill this gap and aims at finding new materials
with little, or no, pre-existing knowledge, by predicting the crystal structure of the
material. This approach has led to the discovery of several new, counterintuitive, ma-
terials whose existence could not be deduced by the structures of previously-known
materials [37].

Several heuristic methods have been suggested for crystal structure prediction.
All these methods are based on the same fundamental principle. Every arrangement
of ions in the 3-dimensional Euclidean space corresponds to an energy value and it
defines a point on the potential energy surface. Then, the crystal structure prediction
problem is formulated as a mathematical optimization problem where the goal is to
compute the structure that corresponds to the global minimum of the potential
energy surface, since this is the most likely structure that corresponds to a stable
material. The difficulties in solving this optimization problem is that the potential
energy surface is highly non convex, with exponentially many, with respect to the
number of ions, local minima [125]. For this reason, several different algorithmic
techniques were proposed ranging from simple techniques, like quasi-random sampling
[76, 132, 133, 137], basin hopping [82, 147], and simulated annealing techniques [128,
139], to more sophisticated techniques, like evolutionary and genetic algorithms [29,
50, 99, 124, 150], and tiling approaches [36, 37]. A recent comprehensive review on
these techniques can be found in [125].

The simple searching techniques are easy to understand, usually easy to imple-
ment, and they are unbiased, but they can be slow in practice. On the other hand, the
more sophisticated approaches perform well in general, however almost all of them
have a large number of parameters that require fine tuning and, in the majority of
the cases, chemical expertise is needed in order to properly set them up. In addition,
due to the chemical expertise involved in the parameter-tuning, these approaches can
be biased towards previously-known structures.

The majority of the aforementioned heuristic techniques work, at a very high
level, in a similar way. Given a current solution x for the crystal structure prediction
problem, i.e., a location for every ion in the 3-dimensional space, they iteratively
perform the following three steps.
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1. Choose a new potential solution x′. This can be done by taking into account,
or modifying, x.

2. Perform gradient descent on the potential energy surface starting from x′, until
a local minimum is found. This process is called relaxation of x′.

3. Decide whether to keep x as the candidate solution or to update it to the
solution found after relaxing x′.

For example, basin hopping algorithms randomly choose x′, they relax x′ and if
the energy of the relaxed structure is lower than the x, or a Metropolis criterion is
satisfied, they accept this as a current solution; else they keep x and they randomly
choose x′′. The procedure usually stops when the algorithm fails to find a structure
with lower energy within a predefined number of iterations. The more sophisticated
algorithms take into account knowledge harvested from chemists and put constraints
on the way x′ is selected. For example, the MC-EMMA [37] and the FUSE [36]
algorithms use a set of building blocks to construct x′. These building blocks are
local configurations of ions that are present in, or similar to, known crystal structures.
These approaches restrict the search space ,which accelerate search, but reduce the
number of possible solutions.

This general algorithm is easy to understand, however there are some hidden
difficulties that make the problem more challenging. Firstly, it is not trivial even how
to evaluate the potential energy of a structure. There are several different methods for
calculating the energy of a structure, ranging from quantum mechanical methods, like
density functional theory 1, to force fields methods 2, like the Buckingham-Coulomb
potential function. All of which though, are hard to compute (see Section 5.2.1) from
the point of view of (theoretical) computer science and thus only numerical methods
are known and used in practice for them [77]; still there are cases where some methods
need considerable time to calculate the energy of a structure. This yields another,
more important, difficulty, the relaxation of a structure. Since it is hard to compute
the energy of a structure, it is even harder to apply gradient descent on the potential
energy surface. For these reasons, the majority of the heuristic algorithms depend
on external, well established, codes [77] for computing the aforementioned quantities.
Put differently, both energy computations and relaxations of structures are treated
as oracles or black boxes.

5.1.1 Contribution and roadmap for the chapter

Our contribution is twofold. Firstly, in Section 5.2 we formalize the Crystal Structure
Prediction problem from the theoretical computer science perspective; to the best of

1https://en.wikipedia.org/wiki/Density_functional_theory
2https://en.wikipedia.org/wiki/Force_field_(chemistry)

https://en.wikipedia.org/wiki/Density_functional_theory
https://en.wikipedia.org/wiki/Force_field_(chemistry)
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our knowledge, this is among the few papers that attempt to connect computational
chemistry and computer science. En route to this, in Section 5.2.2 we introduce
several intermediate open problems from computational chemistry in CS terms. Any
(partial) positive solution to these questions can significantly help computational
chemists to identify new materials. On the other hand, any negative result can
formally explain why the discovery of new materials is a notoriously difficult task.

Our second contribution is the partial answer for some of the questions we cast.
In general, our goal is to create oblivious algorithms that are easy to implement, they
are fast, and they work well in practice. With oblivious we mean that we are seeking
for general procedures that require minimal input and they have zero, or just a few,
parameters chosen by the user.

• In Section 5.4 we propose a purely combinatorial method for estimating the
energy of a structure, which we term depth energy computation. We choose to
compare our method against GULP [77], which is considered to be the state of
the art for computing the energy of a structure and for performing relaxations
when the Buckingham-Coulomb energy is used. Our method requires only
the charges of the atoms and their corresponding Buckingham coefficients to
work; see Eq. 5.2 in Section 5.2.1. In addition, it needs only one parameter,
the depth k. We experimentally demonstrate that our method monotonically
approximates with respect to k the energy computed by GULP and that it
achieves an error of 0.0032 for k = 6. Our experiments (Section 5.5) show that
the structure that achieves the minimum energy in depth 1 is likely to be the
structure with the minimum energy overall. In fact we show something much
stronger. If the energy of x is lower than the energy of x′ when it is computed
via the depth energy computation for k = 1, then, almost always, the energy
of x will be lower than the energy of x′ when it is computed via GULP.

• We derive oblivious algorithms for choosing which structure to relax next. All
of our algorithms are based on local search. More formally, starting with x and
using only local changes we select x′. In Section 5.3 we define several “combina-
torial neighborhoods” and we evaluate their efficiency. Our neighborhoods are
oblivious since they only need access to an oracle that calculates the energy of
a structure. We show that our method outperforms basin hopping. Moreover,
we view our algorithms as an intermediate step before relaxation that can be
applied to any existing algorithm.
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5.2 Preliminaries

A crystal is a solid material whose atoms are arranged in a highly ordered configu-
ration, forming a crystal structure that extends in all directions. A crystal structure
is characterized by its unit cell; a parallelepiped that contains atoms in a specific
arrangement. The unit cell is the period of the crystal; unit cells are stacked in the
three dimensional space to form the crystal. In this paper we focus on ionically
bonded crystals, which we describe next; what follows is relevant only on crystals of
this type. In order to fully define the unit cell of a ionically bonded crystal structure,
we have to specify a composition, unit cell parameters, and an arrangement of the
ions.

(a) Unit cell (b) Supercell

Figure 5.1: Most stable configuration of SrTiO3

Composition A composition is the chemical formula that describes the ratio of
ions that belong to the unit cell. The chemical formula contains anions, negatively
charged ions, and cations, positively charged ions. The chemical formula is a way
of presenting information about the chemical proportions of ions that constitute a
particular chemical compound, and it does not provide any information about the
exact number of atoms in the unit cell.

More formally, the composition is defined by a set of distinct chemical elements
{e1, e2, . . . , em}, their multiplicity ni, and a non-zero integer charge qi for each ele-
ment i. The number m denotes the total number of distinct chemical elements, and
ni/
∑m

j=1 nj is the proportion of the atoms of type ei in the unit cell. It is required
that the sum of the charges adds up to zero, i.e. ,

∑m
i=1 qini = 0, so that the unit

cell is charge neutral. For example, the composition for Strontium Titanate, SrTiO3,
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denotes that the following hold. For every ion of strontium (Sr) in the unit cell, there
exists one ion of titanium (Ti) and three ions of oxygen (O). Furthermore, the charge
of every ion of Sr is +2, of Ti is +4, and of O is −2. Hence, when the ratios of the
ions are according to the composition, the charge of the unit cell is zero.

Another parameter for every atom is the atomic radius. This usually corresponds
to the distance from the center of the nucleus to the boundary of the surrounding
shells of electrons. Since the boundary is not a well-defined physical entity, there are
various non-equivalent definitions of atomic radius. In crystal structures though, the
ionic radius is used and usually is treated as a hard sphere. Thus, we will use ρi to
denote the ionic radius of the element ei.

Unit cell parameters. Unit cell parameters provide a formal description of the
parallelepiped that represents the unit cell. These include the lengths y1, y2, y3 of
the parallelepiped in every dimension and the angles θ12, θ13, and θ23 between the
corresponding facets. For brevity, we denote y = (y1, y2, y3) and θ = (θ12, θ13, θ23),
and we use (y, θ) to denote the unit cell parameters.

Arrangement An arrangement describes the position of each atom of the compo-
sition in the unit cell. The position of ion i is specified by a point xi = (xi1, xi2, xi3)

in the parallelepiped defined by the unit cell parameters; fractional coordinates xi
denote the location of the nucleus of the ion i in the unit cell. A unit cell parameters-
arrangement combination (y, θ, x) in a unit cell with n ions is a point in the 3n+ 6-
dimensional space. For any two points xi and xj we will use d(xi, xj) to denote their
Euclidean distance.

As we have already said, a unit cell parameters-arrangement configuration (y, θ, x)

defines the period of an infinite structure that covers the whole 3d space. To get
some intuition, assume that we have an orthogonal unit cell, i.e., all the angles are
90 degrees. Then for every ion with position (xi1, xi2, xi3) in the unit cell, there exist
“copies” of the ion in the positions (k1 · y1 + xi1, k2 · y2 + xi2, k3 · y3 + xi3) for every
possible combination of integers k1, k2, and k3. A unit cell parameters-arrangement
configuration is feasible if the hard spheres of any two ions of the crystal structure
do not overlap; formally, it is feasible if for every two ions i and j it holds that
d(xi, xj) ≥ ρi + ρj .

Definition 5.1 (Crystal Structure). A crystal structure is characterized by a com-
position and a unit cell parameters-arrangement configuration (y, θ, x), as follows:
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1. Composition: a set of m distinct chemical elements {e1, e2, . . . , em}, their mul-
tiplicity ni, and a non-zero integer charge qi for each element i, such that∑m

i=1 qini = 0.

2. Unit cell parameters: lengths of the parallelepiped y = (y1, y2, y3), where yj is
the length of the unit cell along the j-axis, and the angles θ = (θ12, θ13, θ23)

between them.

3. Arrangement of ions: for each ion i defined by the composition, (xi1, xi2, xi3)

are its fractional coordinates, such that 0 ≤ xij ≤ 1. In other words, each xij
defines the position of ion i along the j-axis of the unit cell.

5.2.1 Energy

Any unit cell parameters-arrangement configuration of a composition corresponds
to a potential energy. When the number of ions in the unit cell is fixed, the set of
configurations define the potential energy surface.

Buckingham-Coulomb potential is among the most well adopted methods for com-
puting energy [27, 148] and it is the sum of the Buckingham potential and the
Coulomb potential. The Coulomb potential is long-range and depends only on the
charges and the distance between the ions; for a pair of ions i and j, the Coulomb
energy is defined by

CE(i, j) :=
qiqj

d(xi, xj)
. (5.1)

Note, ions i and j can be in different unit cells.
The Buckingham potential is short-range and depends on the species of the ions

and their distance. More formally, it depends on positive composition-dependent
constants Aei,ej , Bei,ej , and Cei,ej for every pair of species ei and ej ; here i can be
equal to j 3. So, for the pair of ions i, of specie ei, and j, of specie ej , the Buckingham
energy is

BE(i, j) := Aei,ej · exp(−Bei,ej · d(xi, xj))−
Cei,ej

d(xi, xj)6
. (5.2)

Again, ions i and j can be in different unit cells.
Let S(xi, ρ) denote the sphere with center xi and radius ρ. The total energy

of a crystal structure whose unit cell is characterized by n ions with arrangement
3The Buckingham constants are composition-depended since they can have small discrepancies

in different compositions. For example the constants ATi,O, BTi,O, and CTi,O for SrTiO3 can be
different than those for MgTiO3. There is a long line of research in computational chemistry that
tries to learn/estimate the Buckingham constants for various compositions. In addition, more than
one set of Buckingham constants can be available for a given composition.
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x = (x1, . . . , xn) is then defined

E(y, θ, x) = lim
ρ→∞

n∑
i=1

∑
j 6=i,j∈S(xi,ρ)

(BE(i, j) + CE(i, j)) .

E(y, θ, x) conditionally converges to a certain value [131] and usually numerical ap-
proaches are used to compute it. For this reason, and since we aim for an oblivious
algorithm, we view the computation of the energy of a structure as a black box. More
specifically, we assume that we have an oracle that given any structure (y, θ, x), it
returns its corresponding energy.

Open Question 1. Given a composition and Buckingham parameters for it, find a
simple, purely combinatorial way that approximates the energy for every crystal
structure.

Open Question 2. Given a composition {e1, e2, . . . , em} and an oracle that computes
the energy of every structure for this composition, learn efficiently (with respect to
the number of oracle calls) the Buckingham parameters Aei,ej , Bei,ej , and Cei,ej for
every i, j ∈ [m].

Relaxation The relaxation of a crystal structure (y, θ, x) computes a stationary
point on the potential energy surface by applying gradient descent starting from
(y, θ, x). The relaxation of a structure can change both the arrangement x of the ions
in the unit cell and the unit cell parameters (y, θ) of the unit cell. We follow a similar
approach as we did with the energy and we assume that there is an oracle that given
a crystal structure (y, θ, x) it returns the relaxed structure.

Open Question 3. Find an alternative, quicker, way to compute an approximate local
minimum when:

a) the unit cell parameters (y, θ) of the unit cell are fixed;

b) the arrangement x of the ions is fixed;

c) both unit cell parameters and arrangement are free.

5.2.2 Crystal structure prediction problems

In crystal structure prediction problems the general goal is to minimize the energy
in the unit cell. There are two kinds of problems we are concerned. The first cares
only about the value of the energy and the second one cares for the arrangement
and the unit cell parameters that achieve the minimum energy. From the computa-
tional chemistry point of view, both questions are interesting in their own right. The
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existence of a unit cell parameters-arrangement that achieves lower-than-currently-
known energy usually suffices for constructing a new material. On the other hand,
identifying the arrangement and the unit cell parameters of a crystal structure that
achieves the lowest possible energy can help physical scientists to predict the prop-
erties of the material.

MinEnergy

Input: A composition (as defined in Definition 5.1) with its corresponding
Buckingham constants, a positive integer n, and a rational Ê.
Question: Is there a crystal structure (y, θ, x) for the composition with
n ions that is neutrally charged and achieves Buckingham-Coulomb energy
E(y, θ, x) < Ê?

MinStructure

Input: A composition and a positive integer n, such that
∑m

i=1 ni = n, and
the corresponding Buckingham constants.
Task: Find a crystal structure (y, θ, x) for the composition with n ions that
is neutrally charged and the Buckingham-Coulomb energy E(y, θ, x) is mini-
mized.

The second class of problems, the ones that ultimately computational chemists
would like to solve, take as input only the composition and the goal is to construct
a unit cell, with any number of atoms, such that the average energy per ion is
minimized.

AvgEnergy

Input: A composition with its corresponding Buckingham constants and a
rational Ê.
Question: Is there a crystal structure for the composition that is neutrally
charged and E(y,θ,x)

n < Ê?

AvgStructure

Input: A composition with its corresponding Buckingham constants.
Task: Find a crystal structure for the composition that is neutrally charged
and the average Buckingham-Coulomb energy per ion in the unit cell, E(y,θ,x)

n ,
is minimized.
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Although the problems are considered to be intractable [125], only recently the
first correct NP-hardness result was proven for a variant of CSP [1]. However, for
the problems presented, there are no correct NP-hardness results in the literature.

Open Question 4. Provide provable lower bounds and upper bounds for the four
problems defined above.

Open Question 5. Construct a heuristic algorithm that works well in practice.

5.3 Local Search

Local search algorithms start from a feasible solution and iteratively obtain better
solutions. The key concept for the success of such algorithms, is given a feasible
solution, to be able to efficiently find an improved one. Put formally, a local search
algorithm is defined by a neighborhood function N and a local rule r. In every
iteration, the algorithm does the following.

• Has the current best solution x.

• Computes the neighborhood N(x).

• If there is an improved solution x′ in N(x), then it updates x according to the
rule r, i.e. x′ = r(N(x)); else it terminates and outputs x.

The neighborhood N(x) of a solution x consists of all feasible solutions that
are “close” in some sense to x. The size of the neighborhood can be constant or
a function of the input. In principle, the larger the size of the neighborhood, the
better the quality of the locally optimal solutions. However, the downside of choosing
large neighborhoods is that, in general, it makes each iteration computationally more
expensive. Running time and quality of solutions are competing considerations, and
the trade off between them can be determined through experimentation.

We study the following combinatorial neighborhoods for Crystal Structure Predic-
tion. All of them keep the unit cell parameters fixed and change only the arrangement
x of the n ions. Thus, for notation brevity, we define the neighborhoods only with
respect to the arrangement x.

1. k-ion swap. This neighborhood consists of all feasible arrangements that are
produced by swapping the locations of k ions. The size of this neighborhood is
O(nkk!).

2. k-swap. This neighborhood is parameterized by a discretization step δ. Using
δ we discretize the unit cell and then we perform swaps of k ions with the
content of every point of the discretization. So, an ion can swap positions with
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another ion, or simply move to another vacant position. Again, we take into ac-
count only the feasible arrangements of the ions. The size of this neighborhood
is O(nkk!/δ3k).

3. Axes. This neighborhood has a parameter δ and computes the following for
every ion i. Firstly, for every dimension it computes a plane parallel to the
corresponding facet of the unit cell and contains the ion i. The intersection of
any pair of these planes defines an “axis”. Then, this axis is discretized according
to δ. The neighborhood locates the ion to every point on the discretization on
the three axes and we keep only the arrangements that are feasible. The size
of this neighborhood is O(n/δ).

In all of our neighborhoods, we are using a greedy rule to choose x′; x′ is an
arrangement that achieves the minimum energy in N(x).

5.4 Algorithms

We propose two algorithms. The first one is a step towards answering Open Ques-
tion 1 while the second is a heuristic for MinStructure problem.

For Open Question 1, we propose the depth energy computation for estimating the
energy of a structure. Our algorithm has a single parameter, the depth parameter k,
and works as follows. Given a crystal structure, it creates k layers around the unit cell
with copies of the structure. So, for the unit cell parameters (y, θ) and the arrange-
ment x of n atoms the energy is E(y, θ, x) =

∑n
i=1

∑
j 6=i,j∈D(k) (BE(i, j) + CE(i, j)),

where D(k) denotes the set of ions in the k layers of unit cells, and BE(i, j) and
CE(i, j) are computed as in Equations 5.2 and 5.1 respectively.

For MinStructure problem, we slightly modify basin hopping. In a step of
basing hopping, a structure is randomly chosen and it is followed by a relaxation.
Our algorithm applies a combinatorial local search using the Axes neighborhood,
since this turned out to be the best among our heuristics, before the relaxation. So,
we will perform a relaxation, only after combinatorial local search cannot further
improve the solution. Our algorithm can be used as a standalone one and it can also
be integrated into any other heuristic algorithm for the Crystal Structure Prediction
problem since it is oblivious. In addition, it provides a very fast criterion that when
it succeeds it guarantees finding a lower energy crystal structure.
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5.5 Experiments

In this section we evaluate our algorithms via experimental simulations. We first
focus on SrTiO3 which we use as a benchmark. We do this because it is a well stud-
ied composition for which the Crystal Structure Prediction problem is solved. We
have implemented the algorithms in Python 2.7 and we use the Atomic Simulation
Environment (https://wiki.fysik.dtu.dk/ase/) package for setting up, manip-
ulating, running, visualizing and analyzing atomistic simulations. All experiments
were performed on a 4-core Intel i7-4710MQ with 8GB of RAM.

Energy difference
k 1 2 3 4 5 6

15 atoms 0.0639 0.0226 0.0114 0.0068 0.0045 0.0032

20 atoms 0.0670 0.0238 0.0120 0.0072 0.0047 0.0033

Table 5.1: Comparison between depth approach and GULP for SrTiO3. Energy
is in electronvolts (eV). The energy difference shows the average difference in energy
between the depth approach and the energy calculated by GULP (absolute value).

Results averaged over 2000 random feasible structures.

We evaluate the depth energy computation in several different dimensions. For
all the experiments we performed for energy computation, we fixed the unit cell to
be cubic. Firstly, we evaluate how depth energy computation behaves with respect
to k. We see that the method converges very fast and k = 6 already achieves
accuracy of three decimal points. Then, we compare our depth approach against
GULP; see Table 5.1. Our goal is to provide an intuitively simpler to interpret and
work with method for computing the energy. Even though the energy calculated
by the depth approach differs from the one calculated by GULP, we observe that
the relative energies between two random arrangements remain usually the same
even for k = 1. To be more precise, let E1(x) denote the energy of a feasible
arrangement x when k = 1 and let EG(x) denote the energy of this arrangement
as it is computed by GULP. Our experiments show that if for two random feasible
arrangements x1 and x2 it holds that E1(x1) < E1(x2), then EG(x1) < EG(x2)

for 99.8% of 1000 pairs of arrangements. This percentage reaches 100% for k = 6.
For the “special” arrangement of ions x∗ that minimizes the energy computed by
GULP, that is x∗ = argminEG(x), our experiments show that it is always true that
Ek(x

∗) < Ek(x), for every k = 1, . . . , 6, where x is a random feasible structure over
10000 of them. So, this is a good indication that the arrangement that minimizes
the energy for k = 1, also minimizes the energy overall. We view this as a striking
result; it significantly simplifies the problem thus new, analytical, methods can be
derived for the problem.

https://wiki.fysik.dtu.dk/ase/
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The next set of experiments compares the three neighborhoods described in Sec-
tion 5.3 for SrTiO3

4. We compare them in several different dimensions: the average
CPU time they need in order to find a local optimum with respect to their combi-
natorial neighborhood and the average drop in energy until they reach such a local
optimum (Tables 5.2 and 5.4); the average CPU time the relaxation needs starting
from such local minimum and the average drop in energy from relaxation (Tables 5.3
and 5.5). In addition, for the case of SrTiO3, we compare how often we can find
the optimal arrangement from a single structure. We observe that the Axes neigh-
borhood has the best tradeoff between energy drop and CPU time. The 2-ion-swap
neighborhood outperforms the other two in terms of running time, however it seems
to decrease the probability of finding the best arrangement when performing a relax-
ation on the resulting structures. This renders the use of 2-ion-swap neighborhood
inappropriate. Axes neighborhood is significantly faster and performs smoother in
terms of running time than the 2-swap neighborhood. However the latter one per-
forms better with respect to the energy drop, which is expected since axes is a subset
of the 2-swap neighborhood. In addition, the relaxation from the local minimum
found by 2-swap significantly improves the probability of finding the best arrange-
ment with only one relaxation. We should highlight that there exist structures where
the relaxation cannot improve their energy, but the neighborhoods do; hence using
Axes neighborhood we can escape from some local minima of the continuous space.

Neighborhood Running time Time stdev Energy drop Energy drop stdev
Axes 5.36 1.54 13.46 10.60

2-ion swap 0.96 0.33 7.75 8.45

2-swap 34.66 14.06 16.21 10.94

Table 5.2: Comparison of local neighbourhoods for reaching a combinatorial min-
imum for SrTiO3 with 15 atoms per unit cell and δ = 1Å (375 grid points). Time
is in seconds and energy in electronvolts (eV). Results averaged over 1000 arrange-

ments.

Neighborhood
Running
time

Time
stdev

Energy
drop

Energy drop
stdev

Global
minimum

Random structures-GULP 8.80 6.35 18.60 10.26 6.6%

Axes-GULP 7.92 6.16 5.53 2.28 10.0%

2-ion swap-GULP 8.82 6.25 11.09 5.64 4.7%

2-swap-GULP 5.14 5.08 2.79 1.05 14.8%

Table 5.3: Evaluation of relaxation procedure after using a combinatorial neigh-
borhood for SrTiO3 with 15 atoms per unit cell. Time is in seconds and energy in

electronvolts (eV). Results averaged over 1000 arragnements.

4The values of the Buckingham parameters can be found in Table 5.7
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Neighborhood Running time Time stdev Energy drop Energy drop stdev
Axes 7.56 2.08 8.23 3.71

2-ion swap 0.88 0.43 1.16 1.80

2-swap 27.93 9.98 10.26 4.05

Table 5.4: Comparison of local neighbourhoods for reaching a combinatorial min-
imum for Y2Ti2O7 and δ = 1Å (343 grid points). Time is in seconds and energy

in electronvolts (eV). Results averaged over 1000 arrangements.

Neighborhood
Running
time

Time
stdev

Energy
drop

Energy drop
stdev

Random structures-GULP 2.81 1.45 12.84 4.88

Axes-GULP 2.30 1.20 5.09 1.81

2-ion swap-GULP 2.47 2.25 12.29 4.38

2-swap-GULP 1.99 1.09 3.11 0.93

Table 5.5: Evaluation of relaxation procedure after using a combinatorial neigh-
borhood for Y2Ti2O7. Time is in seconds and energy in electronvolts (eV). Results

averaged over 1000 arragnements.

Next, we compare our algorithm for MinStructure against basin hopping
where the next structure to relax is chosen at random. Based on the results of
our previous experiments, we have chosen the Axes neighborhood as an intermediate
step before the relaxation. We have run these algorithms 200 times for SrTiO3 with
15 atoms per unit cell, and 25 times for SrTiO3 with 20 atoms per unit cell. We
report how the energy varies with respect to time until the best arrangement is found
(Fig. 5.2) and we report other statistics that further validate our approach (Table
5.6). As we can see, it is relatively easy to reach low levels of energy and the majority
of time is needed to find the absolute minimum. In addition, the overhead posed by
the use of the neighborhood search divided by the time needed by the basin hopping
to find the global minimum decreases as the number of the atoms in the unit cell
increases.

Algorithm
Number
of atoms

Total time
mean

Total time
stdev

Relaxations
Time for
relaxations

Time for
local search

Axes-
GULP

15 227.89 287.21 13.24 126.26 101.63

20 2280.57 781.66 104.33 1016.72 1049.13

Basin
hopping

15 167.89 114.89 18.14 160.79 −
20 5766.20 4748.33 450.66 4895.60 −

Table 5.6: Statistics from the experiments depicted in Figures 5.2 and 5.3 (SrTiO3

with 15 and 20 atoms per unit cell).



Chapter 5. Crystal Structure Prediction via Oblivious Local Search 99

(a) Axes - GULP coarse
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(b) Axes - GULP fine

(c) GULP coarse

(d) GULP fine

Figure 5.2: Time to reach specific energy levels for SrTiO3 (15 atoms). Figures (a)
and (b) correspond to the algorithm of Section 5.4. Figures (c) and (d) correspond
to basin hopping. The median times needed to reach every energy level are depicted

in red on the top of each plot.
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(a) Axes - GULP coarse

(b) Axes - GULP fine

(c) GULP coarse
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(d) GULP fine

Figure 5.3: Time to reach specific energy levels for SrTiO3 (20 atoms). Figures (a)
and (b) correspond to the algorithm of Section 5.4. Figures (c) and (d) correspond
to basin hopping. The median times needed to reach every energy level are depicted

in red on the top of each plot.

In our last set of experiments, we compare our algorithm against basin hopping
algorithm for Y2Ti2O7 which contains 22 atoms in its primitive unit cell. In this set of
experiments, we produced 3500 random structures. We simulated basin hopping by
sequentially relaxing the constructed structures. However, none of the relaxations
managed to find the optimal configuration. Our algorithm, using the same order
of structures as before, first used the Axes neighborhood as an intermediate step
followed by a relaxation; it managed to find the optimal configuration after visiting
only 720 structures. The execution of these algorithms is depicted in Figure 5.4 and
5.5.

The Buckingham potential parameters that were used for both Y2Ti2O7 and
SrTiO3 are presented in Table 5.7.

Interaction A (eV) ρ (Å) C (eV Å−6)
O2− −O2− 1388.77 0.36262 175

Y3+ −O2− 23000 0.24203 0

Sr2+ −O2− 1952.39 0.33685 19.22

Ti4+ −O2− 4590.7279 0.261 0

Table 5.7: The values of Buckingham potential parameters we used in our exper-
iments as they were found in [36]. All the missing parameters are set to zero.
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Figure 5.4: Performance of the Axes algorithm for Y2Ti2O7. The black points
correspond to the energy found after the relaxation of a point computed by the
Axes neighborhood at each step. The red line is the lower envelope of the energy
found by our algorithm while the blue line corresponds to the lower envelope of

basin hopping.

Figure 5.5: Performance of the basin hopping algorithm for Y2Ti2O7. The black
points correspond to the energy found after the relaxation of a random feasible
configuration of atoms at each step. The red line is the lower envelope of the energy
found by basin hopping, while the blue line corresponds to the lower envelope of

our algorithm.
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5.6 Conclusions

In this chapter we introduced and studied the Crystal Structure Prediction problem
through the lens of computer science. This is an important and very exciting prob-
lem in computational chemistry, which computer scientists are not actively studying
yet. We have identified several open questions whose solution would have significant
impact to the discovery of new materials. These problems are challenging and sev-
eral different techniques and machineries from computer science could be applied for
solving them. Our simple-to-understand algorithms are a first step towards their so-
lution. We hope that our algorithms will be used as benchmarks in the future, since
more sophisticated techniques for basin hopping can be invented. For the energy
computation via the depth approach, we conjecture that the arrangement that min-
imizes the energy for k = 1 or k = 2, matches the arrangement that minimizes the
energy when it is computed via GULP. Our numerical simulations provide significant
evidence towards this. A formal result of this would greatly simplify the objective
function of the optimization problem and it would give more hope to faster methods
for relaxation. In addition, it could provide the foundations for new techniques for
crystal structure prediction. Our algorithm that utilizes the Axes neighborhood as
an intermediate step before relaxation, seems to speed up the time the standard basin
hopping needs to find the global minimum. Are there any other neighborhoods that
outperform the Axes one? Can local search, or Axes neighborhood in particular,
improve existing methods for crystal structure prediction by a simple integration as
an intermediate step? We believe that this is indeed the case.
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Mobile Agents on Dynamic
Graphs
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Chapter 6

Gathering in 1-Interval Connected
Graphs

In this chapter we examine the problem of gathering k ≥ 2 agents (or multi-agent
rendezvous) in dynamic graphs which may change in every round. We consider a
variant of the 1-interval connectivity model [96] in which all instances (snapshots)
are always connected spanning subgraphs of an underlying graph, not necessarily
a clique. The agents are identical and not equipped with explicit communication
capabilities, and are initially arbitrarily positioned on the graph. The problem is
for the agents to gather at the same node, not fixed in advance. We first show
that the problem becomes impossible to solve if the underlying graph has a cycle.
In light of this, we study a relaxed version of this problem, called weak gathering,
where the agents are allowed to gather either at the same node, or at two adjacent
nodes. Our goal is to characterize the class of 1-interval connected graphs and initial
configurations in which the problem is solvable, both with and without homebases.
On the negative side we show that when the underlying graph contains a spanning
bicyclic subgraph and satisfies an additional connectivity property, weak gathering
is unsolvable, thus we concentrate mainly on unicyclic graphs. As we show, in most
instances of initial agent configurations, the agents must meet on the cycle. This
adds an additional difficulty to the problem, as they need to explore the graph and
recognize the nodes that form the cycle. We provide a deterministic algorithm for
the solvable cases of this problem that runs in O(n2 + nk) number of rounds.

6.1 Introduction

6.1.1 Previous work

The problem of gathering on graphs requires a set of k identical mobile agents that
operate in Look-Compute-Move cycles, to end up in the same node. In each cycle,
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an agent takes a snapshot of its immediate neighborhood (Look), performs some
computations in order to decide whether to move to one of its adjacent nodes, or
remain idle (Compute), and in the former case makes an instantaneous move to that
neighbor (Move).

The feasibility of gathering has been extensively studied in the static setting, and
under various assumptions. A very common assumption that makes the problem
solvable in ring graphs is for the agents to have distinct identities [42, 49, 55]. Al-
ternatively, another assumption which pertains to the communication capabilities of
the agents, is either to supply each node with a whiteboard where the agents can
leave notes as they travel [140], mark the nodes that the agents are initially placed,
or provide the agents with a constant number of movable tokens that can be placed
on nodes, picked up, and carried while moving [41]. Under the first communication
assumption the problem becomes solvable even in the presence of some faults [18,
31].

In [59], the authors study the feasibility of gathering a set of identical and without
explicit communication capabilities agents in dynamic rings (1-interval connectivity,
[96]). As strict gathering becomes infeasible in this setting, they focus on a variation
of gathering, called weak gathering, where the agents are allowed to gather either at
the same node, or at two adjacent nodes. They investigate the impact that chirality
(i.e., common sense of orientation on the cycle) and cross detection (i.e., the ability
to detect whether some other agent is traversing the same edge in the same round)
have on the solvability of the problem. In order to drop the latter assumption, they
later construct a mechanism which avoids agents crossing each other (i.e., no agents
traverse the same edge at the same round and in opposite directions), called Logic
Ring. To enable feasibility of weak gathering, they empower the agents with some
minimal form of implicit communication, called homebases (the nodes that the agents
are initially placed are identified by an identical mark, visible to any agent passing by
it). They provide a complete characterization of the classes of initial configurations
from which weak gathering is solvable in the presence or absence of cross detection
and chirality, by providing polynomial time distributed algorithms. They prove that
without chirality, knowledge of the ring size is strictly more powerful than knowledge
of the number of agents. Finally, with chirality, they show that knowledge of the
ring size can be substituted by knowledge of the number of agents, yielding the same
classes of feasible initial configurations.

In [57] the authors investigate the feasibility of the decentralized (or live) explo-
ration problem in 1-interval connected rings by a set of mobile agents. They consider
both the fully synchronous and semi-synchronous cases and study the impact that
anonymity and knowledge of the ring size has on the solvability of the problem.
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Other recent work [47] has considered the broadcasting problem in dynamic, con-
stantly connected, networks, where the agents can communicate when they meet at
a node, and they have global visibility allowing them to see the location of other
agents in the graph. Finally, exploration by O(n) agents of dynamic tori graphs has
been investigated in [85], and, in a very recent work, exploration in time-varying
graphs (including 1-interval connectivity) of arbitrary topology in [84].

6.1.2 Contribution and roadmap for the chapter

The existing literature on the gathering and rendezvous problems is extensive and
has been examined under various assumptions for both the environment that the
agents navigate and the capabilities of the agents (for surveys see [95, 129]). Despite
their differences, they investigate these problems in the case where the topological
structure does not change over time (i.e., they only consider static graphs). Recently,
there has been a growing interest in studying these problems in dynamic settings,
with [59] being the first work that examines the problem of weak gathering in 1-
interval connected ring graphs. Embarking from this work, we investigate if and
under what assumptions we can go beyond rings and how far, in the presence or
absence of homebases. Our main result is a distributed algorithm that solves weak
gathering in unicyclic graphs. A unicyclic graph is a connected graph containing
exactly one cycle. Observe that ring graphs are special cases of unicyclic graphs.

We use a traditional model in the literature of autonomous mobile agents on
graphs (see, e.g., [54]), and we consider it in a dynamic synchronous setting. In
particular, in this model the edges are locally labeled in each node, and at any round
some edges can be missing (i.e., being disabled), provided that the resulting graph is
connected. This means that the snapshots of the dynamic graph are always spanning
and connected subgraphs of some given underlying graph. This notion of dynamicity
includes the classic 1-interval connectivity as a sub-case when the underlying graph
is a clique.

We start a characterization of the class of solvable graphs in the aforementioned
generalized 1-interval connectivity setting, and we study the effect that port labels
have on the solvability of weak gathering. We show that weak gathering is unsolvable
when the underlying graph contains a spanning bicyclic subgraph and satisfies an
additional connectivity property, regardless of any other additional assumptions (i.e.,
communication or knowledge of graph properties). In light of this, we then focus on
unicyclic graphs, and we study the classes of initial configurations on which weak
gathering is feasible in the presence or absence of homebases. In particular, we
characterize the classes of unicyclic graphs in which certain symmetries occur and
would render impossible the problem of symmetry breaking. We show that if neither
the size of the graph nor the number of agents is known, then the agents are not able
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to distinguish between symmetric and asymmetric configurations. The additional
difficulty in unicyclic graphs comes from the fact that in most instances of initial
agent configurations, the agents must necessarily gather on the unique cycle. This
requires them to perform some sort of exploration in order to reach the cycle, while
the scheduler can choose some agent, or agents, and delay them.

In [59] the authors utilized homebases in order to break the symmetry on the ring,
however, in our setting we can exploit the topological asymmetries of the graph and
the port labeling to solve the problem. We then show that homebases can be used
in order to expand the class of feasible configurations, that is, the initial placement
of the agents might create some additional topological asymmetries. We also assume
that the agents have cross-detection. In Section 6.5 we discuss how the mechanism of
Di Luna et al. [59], that avoids agents crossing each other, could be used in order to
drop this assumption, and we conjecture that this approach gives a correct algorithm
that solves weak gathering.

We then provide a deterministic algorithm that solves weak gathering in all asym-
metric unicyclic graphs, and runs in a polynomial number of synchronous rounds.
For the cases of symmetric unicyclic graphs with symmetric initial agent placement,
we show that the problem becomes impossible to solve, and we leave as an open
problem the case of symmetric unicyclic graphs and asymmetric initial agent place-
ment. We carefully design a non-trivial mechanism that utilizes the graph topology
and after O(n2 + nk) rounds all agents reach and forever stay on the cycle. Given
this, the second part of the algorithm guarantees that the agents (weakly) gather on
the cycle, in O(n) rounds.

In summary, we show that in a large class of graphs F weak gathering is unsolv-
able. Our paper establishes that weak gathering is solvable in unicyclic 1-interval
connected graphs in O(n2 + nk) time, and we leave a small gap for graphs G /∈
(F ∪ Unicyclic). For a summary of our results see Table 6.1.

In Section 6.2, we formally describe the model and we provide all necessary defi-
nitions. In Section 6.3 we provide impossibility results for (strict) gathering, and we
describe the class of graphs where weak gathering is impossible to solve. In Sections
6.3.1 and 6.3.2 we provide a characterization of the feasible initial configurations in
unicyclic graphs and the basic limitations of weak gathering. Finally, in Section 6.4
we provide our deterministic weak gathering algorithm and its analysis.

6.2 Model and Definitions
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Graph class Assumptions Feasibility of weak gathering
Graphs in F
Definition 6.7 Any Infeasible

Proposition 6.8
Symmetric unicyclic
graphs in Ss ∩ Sa

Any Infeasible
Lemma 6.11

Unicyclic graphs No knowledge of n
and k

Infeasible
Proposition 6.13

Unicyclic graphs
not in Sa

Homebases,
knowledge of n and

k

Feasible
Theorem 6.19

Unicyclic graphs
not in Ss

Knowledge of n and
k

Feasible
Theorem 6.19

Table 6.1: Summary of our results for the weak gathering problem. Assumptions
include the existence of homebases, knowledge of the graph size n, and knowledge

of the number of agents k

6.2.1 Dynamic network model

A network is modeled as an undirected connected graph GU = (V,E), referred to
hereafter as an underlying graph. The number of nodes n = |V | of the graph is called
its size. Every node u ∈ GU has δ(u) incident edges, where δ(u) is its degree. For
each of them, it associates a port and the ports are arbitrarily labeled with unique
labels from the set {0, . . . , δ(u)− 1}. We call these labels the port numbers.

Given an underlying graph GU = (V,E) on n vertices, a dynamic graph on GU
is a sequence GD = {Gt = (V,Et) : t ∈ N} of graphs such that Et ⊆ E for all
t ∈ N. Every Gt is the snapshot of GD at time-step t. We assume that the sequence
GD is controlled by an adversarial scheduler, subject to the constraint that the
resulting dynamic graph should be 1-interval connected, that is, each Gt should be
connected. The definition of 1-interval connectivity of [96] considers the case where
the underlying graph is a complete clique. In our work, we generalize this to any
underlying graph, meaning that G′D = (V,

⋃
tEt) ⊆ GU .

Definition 6.1 (Generalized 1-interval connectivity). A dynamic graph GD is gen-
eralized 1-interval connected if for every integer t ≥ 0, the snapshot Gt = (V,Et) is
a connected and spanning subgraph of a given underlying graph GU .

Agents. There is a set A = {α1, . . . , αk} of k anonymous computational entities
(also called agents), each provided with memory and computational capabilities, that
execute the same protocol and can move on the graph. During the execution of the
protocol, an agent learns the local port number by which it enters a node and the
degree of the node. The agents are initially arbitrarily placed on some nodes of the
graph, not necessarily distinct, and they are not aware of the other agents’ positions.
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More than one agent can be in the same node and may move through the same
port number (i.e., the same edge) in the same round. We say that an agent α is
blocked if the edge that α decided to cross in the current round is disabled by the
scheduler. We consider the strong multiplicity detection model, in which each agent
can count the number of agents in its current node. Based on that information, the
port labeling, and the contents of its memory, it determines whether or not to move,
and through which port number. In addition, the agents do not have any visibility
around them, meaning that we do not allow them to see agents on their adjacent
nodes.

We say that the system has cross detection when the agents have the ability to
detect whether some other agent is traversing the same edge in opposite direction
during the same round. We assume that the system has cross detection, and in
Section 6.5 we discuss about how this assumption could be dropped.

We assume that the nodes of G do not have unique identifiers, and the agents
do not have explicit communication capabilities. We do this in order to capture
the limitations and the basic assumptions that make gathering in dynamic networks
feasible. Finally, we assume that the agents do not have knowledge of any graph
properties, other that its size.

6.2.2 Definition of terms and the problem

Definition 6.2 (Homebases). We call homebases the nodes that the agents are ini-
tially placed. Each node u is specially marked by a bit bu, such that if bu = 0 no
agent was initially placed on u, while bu = 1 means then at least one agent was
initially placed on u (i.e., its a homebase). In addition, each agent can determine
whether its current node is a homebase or not.

Definition 6.3 (Gathering problem). The gathering problem requires a set of k
agents, initially arbitrarily placed on the graph, to gather within finite time at the
same node of the underlying graph, not known to them in advance, and terminate.

Definition 6.4 (Weak gathering problem). The relaxed version of the gathering
problem, called weak gathering, requires all agents to gather within finite time at the
same node, or on two neighboring nodes of the underlying graph, and terminate.

The above definition means that all agents must terminate in at most two nodes
of the graph that are adjacent in the underlying graph. Finally, throughout the
paper, we call unicyclic graphs the connected graphs that have exactly one cycle,
and bicyclic graphs the connected graphs that have exactly two cycles, with possibly
a single common vertex.
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Definition 6.5 (Branch). Let G be a unicyclic graph. Then G consists of a unique
cycle C of nc nodes and b trees, where 0 ≤ b ≤ nc. Each tree Bwi is rooted at a
node wi ∈ C, such that the only node of the intersection of Bwi with C is wi. We
call these trees the branches of G. See Figure 6.1 for an example.

...

Bw1 Bw2

Bw3

Bw4

Figure 6.1: Example of a graph G with a unique cycle C. Each Bwi
is a tree (or

branch) of G rooted at wi ∈ C.

6.3 Impossibility Results

In this section we start by showing that strict gathering is unsolvable in 1-interval
connected graphs that have at least one cycle. In the model that we consider, the
case of connected acyclic graphs is equivalent to static trees. We then focus on the
weak gathering problem, and we show that in a large class of graphs weak gathering
is unsolvable.

Proposition 6.6. For any generalized 1-interval connected graph with at least one
cycle, there exists an initial agent placement such that gathering is unsolvable, re-
gardless of any communication assumptions and knowledge of graph properties (e.g.,
its size).

Proof. Consider an underlying graph GU = (V,E), where there exists at least one
cycle of size c > 3. Let C be an arbitrary such cycle of GU . Consider an execution
such that for each cycle C ′ 6= C, the scheduler disables an arbitrary edge in C ′ that
does not belong to C. Call the resulting graph G′U . G

′
U can now be represented as a

unicyclic graph, where each node w ∈ C is the root of a connected tree, or branch,
Gw.

Consider an initial agent placement where there are at least two agents α and α′

that are placed on branches Gw and Gu, such that w 6= u. Then, all paths between
α and α′ contain at least one edge e ∈ C. Since our graph is 1-interval connected,
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the scheduler can additionally remove an edge of the cycle C in order to block the
agents from reaching the same node, without violating the connectivity constraints.
Therefore, they cannot achieve gathering.

Definition 6.7. [Class F of graphs with blocking edges] Let G be a graph that has a
spanning bicyclic subgraph with cycles C1 and C2. For any node u that belongs to at
least one cycle, let Gu be the maximal connected subgraph, such that the intersection
of the node set of Gu with C1 and C2 contains only u. We say that G belongs to
class F if there are two edges e1 ∈ C1 and e2 ∈ C2, with endpoints u1, w1 and u2, w2

respectively, such that no node of Gu1 and Gw1 is adjacent with any node of Gu2 and
Gw2 in G. Call these edges blocking.

In other words, we say that a graph G belongs to F if G has a spanning bicyclic
subgraph GB with two cycles C1 and C2, such that all paths that contain two edges
e1 ∈ C1 and e2 ∈ C2 also contain at least one more edge from each cycle. The fact
that no node of Gu1 and Gw1 is adjacent with any node of Gu2 and Gw2 in G, and
because each Gv contains all nodes of the corresponding connected component (i.e.,
it is maximal), it means that there is no path from any node of Gu1 and Gw1 to any
node of Gu2 and Gw2 that does not contain at least one more edge from each cycle
of GB. An example is shown in Figure 6.2.

Gw1

Gu1 Gw2

Gu2

e1 e2

er1

el1 el2

er2

Figure 6.2: Example of a graph G ∈ F . Dashed lines do not belong to the
spanning bicyclic subgraph. e1 and e2 are called blocking edges.

Proposition 6.8. For any generalized 1-interval connected graph that belongs to
F , there exists an initial agent placement such that weak gathering is unsolvable,
regardless of any communication assumptions and knowledge of graph properties.

Proof. Take any underlying graph GU ∈ F , and let α and α′ be two agents that
are initially placed on some endpoint of two blocking edges e1 ∈ C1 and e2 ∈ C2,
respectively. Let pt and p′t be the positions of these agents at round t.

Consider an execution such that the scheduler disables all edges that are not
contained in the (spanning) bicyclic subgraph, and also disables the neighboring
edges et 6= e1 and e′t 6= e2 of pt and p′t on the corresponding cycles, when pt ∈ C1 and
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p′t ∈ C2, respectively. Observe that this does not violate the connectivity constraints,
as these edges belong to different cycles. Then, in each round, an agent can either
decide to wait at its current node, move on the other endpoint of e1 (and e2 for α′),
or move towards a tree rooted at pt (p′t, respectively). Observe that in the last case,
the distance in GU between the agents is increased. This is because, by the definition
of F , the nodes of the trees starting from the endpoints of e1 are not adjacent with
any node of the corresponding trees of e2 in G. Let w be a node that α moves to.
All paths between w and α′ pass through some endpoint of e1. However, when α is
on C1, the scheduler blocks it from making any progress towards α′, thus remain in
distance at least two from α′. Symmetrically, the same holds also for α′. Therefore,
the agents will never reach the same or two neighboring nodes, thus fail to solve weak
gathering.

As an example, consider that graph of Figure 6.2 which belongs to F , and two
agents α and α′ that are initially placed on u1 and u2, respectively. When α is on
u1, er1 is disabled and when it is on w1, el1 is disabled. Similarly for α′. Observe that
in any of these cases, the connectivity of the graph is maintained, while α is always
blocked on some node of Gu1 or Gw1 and α′ on some node of Gu2 or Gw2 .

6.3.1 Symmetric initial configurations in unicyclic graphs

The main difficulty in solving gathering is symmetry which occurs in several ways,
such as the topology of the graph, the port labeling, and the initial positions of
the agents. Given that the agents are identical and there is no means of explicit
communication, in case that the configuration is highly symmetric, the problem is
clearly impossible to solve by deterministic means. The problem of deterministically
breaking the symmetry is translated into the problem of distinguishing a node, or an
edge for the weak gathering problem, where the agents should meet.

In light of the above impossibilities, we hereafter consider unicyclic graphs and we
describe the class of symmetric initial configurations in such graphs, with and without
homebases. We show that weak gathering is unsolvable in symmetric unicyclic graphs.
Note that in this section we do not consider any graph dynamics, as we are only
interested in identifying the graph classes that even in a static setting, the problem
of symmetry breaking is impossible.

An initial configuration is defined by the graph, the port labeling, and the (initial)
positions of the agents.

Branch classes

Call C the nodes of the unique cycle and Bi the branch rooted on ui ∈ C, ∀ui ∈ C,
possibly consisting only of the root node ui. We define a class I of indistinguishable
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branches, the class where all of the following hold:
1) Any two branches B and B′ in I, rooted at u and u′, respectively, are isomor-

phic.
2) For each pair of branches B and B′ in I, the branches are label-preserving,

meaning that vertices with equivalent port labels (i.e., the same) are mapped onto
the vertices with equivalent port labels and vice versa. This means that for each pair
of connected nodes (u,w) ∈ B which is mapped onto the (connected) pair of nodes
(u′, w′) ∈ B′ in that order, the port label of u leading to w is the same as the port
label of u′ leading to w′ and vice versa.

3) For any two branches B and B′ in I with root nodes u and u′, respectively, the
port labels of u and u′ leading to their clockwise neighbor of the ring are the same.
Similarly, the port labels of u and u′ that lead to their counter-clockwise neighbors
of the ring are the same.

Symmetric configurations

Let I = {I0, I1, . . . , Il} be the set of all distinct branch classes of a given unicyclic
graph G. Let ui denote the i-th node in the clockwise direction of the cycle, starting
from an arbitrary node u0 ∈ C, and si ∈ I be the class that the branch starting
from ui belongs to. We call a graph symmetric if the following holds: for each Ij ∈ I
let Pj = {pj0, p

j
1, . . . , p

j
mj} be the set of all periods, where pjz < |C| and 0 ≤ z ≤ mj ,

such that for each node ui with si = Ij , there exists p
j
z such that si = s

(i+pjz) mod |C|,
∀i < |C| (see examples in Fig. 6.3).

We call Ss the set of all symmetric configurations defined by the graph topology
and port labeling.

Agent position symmetries

In a similar way we define the symmetries that are induced by the initial placement
of the agents on the graph. These symmetries can only be defined in configurations
of Ss. Assume that each vertex is initially labeled with a bit b, indicating whether
an agent is initially placed on that vertex, or not; call them agent labels. Then, we
define the set Sa of such configurations as follows. For any pair of branches B and
B′ that belong to the same branch class I and have the same periodic appearance,
the branches are label-preserving, meaning that vertices with the same agent labels
are mapped onto the vertices with the same agent labels and vice versa.

Definition 6.9. We say that a configuration S is symmetric if S ∈ Ss. If, addition-
ally, the communication model allows homebases, we call S symmetric if S ∈ (Ss∩Sa).
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...

I0
I1

I2

I0

I1
I2

...

I0 I1

I2

I1

I0

I1I2

I1

I0

...

I0
I0

I0

I1

I0

I0

I0

I1

Figure 6.3: Examples of symmetric configurations with periodic branches and
port labels on the cycle. In the top left figure all unique branches have the same
periodic appearance (i.e., Pi = {3}, ∀i ∈ {0, 1, 2}). In the top right and bottom
figures, the branches have different periodic appearances (i.e., in the top right figure
the sets of periods are P0 = {4}, P1 = {2}, and P2 = {4}, while in the bottom figure

the sets of periods are P0 = {2, 4} and P1 = {4}).

Lemma 6.10. A unique (leader) node can be elected in all non-symmetric configu-
rations. We call these configurations feasible. This holds regardless of any commu-
nication assumptions and knowledge of graph properties.

Proof. We prove this lemma by construction: we provide a deterministic algorithm
that given a configuration S (the graph topology, the port labeling, and, if available,
the homebases), such that S ∈ S\Ss or S ∈ S\(Ss ∩ Sa), elects a unique node as a
leader.

Consider a rooted tree B with port labels. Starting from the root node u, a
sequence that uniquely represents B can be constructed as follows. Consider a se-
quence TB =< T1, T2 . . . , T` >, Ti = (ti0, t

i
1, . . . , t

i
di−2), where ` = |B|, each tuple Ti

corresponds to a node of the tree, and di is its degree. Each tij is the tree size rooted
at each child node of Ti (i.e., we exclude Ti’s parent node from Ti). Then, the size
of the subtree rooted at Ti is 1 +

∑di−2
j=0 tij . Their order in Ti is defined by selecting

port labels in ascending order. If we consider the case where identical labels exist on
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the initial positions of the agents (i.e., homebases), then the above sequences can be
modified by having an H symbol in the beginning of the tuple T of each node where
a homebase exists. Finally, the tuples Ti ∈ TB are ordered in a DFS way, where we
visit the children of each node by selecting the port labels in an ascending order.
Observe that there is a simple algorithmic strategy that can be used by an agent to
traverse the tree in a DFS way: when the agent arrives at node w through a port p,
it leaves w through port (p+ 1) mod δ(w) in the next step. Initially, the agent starts
by leaving the port 0 of the root node u.

Given an arbitrary orientation on the cycle, same for all branches, construct a set
CB = (TB, p0, p1) for each branch of the tree B, where p0 is the port label of the root
node of B that leads to its neighboring node on the arbitrarily chosen orientation and
p1 the port label that leads to its second neighbor of the cycle. For each distinct set
CB, assign a unique label a ∈ Z; call them branch labels. Observe that this yields an
assignment of unique labels on branches that do not belong to the same branch class.
The above construction can be then used to distinguish a node on C as follows. Let
P uc and P uccl be the sequences of branch labels as constructed above by following the
clockwise and counter-clockwise directions respectively, starting from node u ∈ C.
Let δw1 and δ′w2

denote the two lexicographically minimum sequences of P uc and P uccl
of size |C|, ∀u ∈ C.

If there is a unique lexicographically minimum sequence, let that be δw, we elect
w as the leader node. In case that the lexicographically minimum sequences δw1 and
δ′w2

are identical, and w1 6= w2, it means that there is a unique axis of symmetry,
equidistant from w1 and w2 (otherwise, the configuration would be symmetric). If
that axis passes through one node w and one edge, we elect w as the leader node.
If the axis passes through two nodes u1 and u2, there exist two lexicographically
minimum sequences of size |C|/2 starting from w1 and w2 that both contain either
u1 or u2. Then, we elect u1 or u2 as the leader node, respectively. Observe that it
is not possible that one sequence contains u1 and the other u2, as in that case the
configuration would clearly be symmetric (i.e., the configuration would have two axes
of symmetry). Similarly, if the unique axis of symmetry passes through two edges e1
and e2, the two lexicographically minimum sequences contain both either e1 or e2;
let that edge be e1. Observe that in this case the trees starting from the endpoints
of e1 have both been assigned the same label α. This means that the ports of e1’s
endpoints are different (if they were the same, the labels would be different). Then,
we elect as leader the endpoint of e1 with the minimum label.

Lemma 6.11. If the graph and the initial agent placement are symmetric, weak
gathering cannot be solved. This holds regardless of homebases and knowledge of
graph properties.



Chapter 6. Gathering in 1-Interval Connected Graphs 119

Proof. Let S be a symmetric configuration with k agents, and Bu the branch starting
from a node u of the cycle (containing u). Consider an execution in which no edge
of the underlying graph ever becomes disabled.

Consider a symmetric initial agent placement. Then, call a group the agents that
are mapped onto vertices of the same branch class with the same periodic appearance.
The agents of each group will then perform exactly the same actions, based on the
same observations. This means that for each group of agents, they will always be on
branches that belong to the same branch class with the same periodic appearance,
and their current positions will be always mapped onto the same vertices. If they
move on the cycle, they will again perform the same actions (i.e, they will move either
clockwise, or counter-clockwise), thus, the distance between consecutive agents of the
same group will never change. Observe that this holds regardless of the existence of
homebases.

The only case that we haven’t examined is the case without homebases, where
the graph is symmetric, and the initial agent placement is asymmetric. Consider a
symmetric ring graph, where all port labels that lead to the clockwise neighbors are
the same, and the port labels that lead to the counter-clockwise neighbors are also
the same, and no edge is ever missing. Independently of the initial agent placement,
all agents operate with the same observations in each round, therefore they all move
either clockwise, or counter-clockwise (i.e., the distance between consecutive agents
of the ring remain always the same). Therefore, a more precise characterization of
the feasible graph configurations is necessary for this case. We believe that without
a way to elect a leader, same for all agents, the problem of weak gathering becomes
impossible, and we leave this as an open problem.

6.3.2 Additional limitations on the solvability of weak gathering

In this section we examine the impact that some additional limitations have on the
solvability of weak gathering. First, observe that in generalized 1-interval connected
unicyclic graphs, the scheduler can completely block an agent from reaching some
part of the graph. This implies that if some other agent moves only on that part,
then these agents would never meet or end up in neighboring nodes. As we show
in the following lemma, this problem can be overcome only if all agents explore the
graph, identify the cycle, and solve the problem there.

Lemma 6.12. For any generalized 1-interval connected unicyclic graph with cycle
C of size |C| > 3, there exists an initial agent placement such that weak gather-
ing can only be achieved on the cycle. This holds regardless of any communication
assumptions and knowledge of graph properties.
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Proof. We call a branch empty if it only consists of the root node. Consider any
unicyclic graph with a cycle C, |C| > 3, and at least one non-empty branch (if all
nodes have empty branches, then the lemma trivially follows). Let Bw be the branch
rooted on node w ∈ C. Let α be an agent that is initially placed on some node of
Bw\w, and an agent α′ that is initially placed on a (possibly empty) branch Bu,
such that u is in distance at least two from w. Then, consider an execution in which
the scheduler selects α′ and blocks it in distance two from Bw (i.e., whenever it is at
distance two from w, it disables the corresponding edge). Therefore, in order to solve
weak gathering, agent α must first reach the cycle. Additionally, the scheduler can
always block them from reaching the same branch, as it can keep them at distance
at least one. If some agent decides to move towards a branch, then the scheduler can
still block the other agent from reaching that branch.

The above lemma means that the agents must first explore the graph in order
to identify the nodes of the cycle C and gather on some node v ∈ C, otherwise, the
scheduler can always block some agent from reaching the rest of them.

Proposition 6.13. If neither n nor k are known, then the agents cannot distinguish
periodic from aperiodic graphs. This holds regardless of homebases.

Proof. Let G1 be the graph of Figure 6.4a and G2 be the graph of Figure 6.4b. The
numbers represent the local port labels of each node, and ai are the initial positions
of the agents.
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Figure 6.4: Indistinguishable unicyclic graphs

Consider an execution where no edge is missing at any round. If neither k nor n
are known to the agents, these two graphs are indistinguishable between each other,
even when the initial positions of the agents are identically marked (homebases). If
the agents are able to recognize infeasibility in G1 (because of being symmetric), then
this would also wrongly happen in G2. Otherwise, if the agents solved the problem
in G2 and terminated, then the agents in G1 would also terminate in two nodes that
are not neighbors.
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Given any unicyclic graph Gu with k agents, we can construct periodic unicyclic
graphs that the agents cannot distinguish from Gu. Let Cu = {u1, u2, . . . , uc} be the
set of nodes of the cycle in Gu. Then, to construct a periodic graph Gp, construct a
cycle Cp = {u11, u12, . . . , u1c , u21, u22, . . . , u2c , . . . , u

p
1, u

p
2, . . . , u

p
c}, and for each i, all nodes

uji , ∀j, have the same port numbers between them, and with the corresponding nodes
of Cu. In addition, for each i, the trees starting from nodes uji ∈ Cp, ∀j are exact
copies of the corresponding trees of nodes ui ∈ Cu. Finally, all agents of Gu are also
mapped onto all copies of the corresponding nodes of Gp (i.e., we have pk agents
in Gp). Then, similarly to Figure 6.4, the agents cannot distinguish Gu from any
Gp.

6.4 An Algorithm for Weak Gathering in Dynamic Uni-
cyclic Graphs

In light of the impossibilities of Section 6.3, we hereafter consider generalized 1-
interval connected unicyclic graphs, and we provide a deterministic algorithm that
solves weak gathering for all non-symmetric configurations. We assume that the
agents have knowledge of n, knowledge of the number of agents k, and the system
has cross detection. Finally, our algorithm solves weak gathering for both cases,
with and without homebases, provided that the configuration is not symmetric (as
defined in Definition 6.9). If the configuration is symmetric, then the agents agree
on unsolvability and terminate. A very significant aspect of mobile agent systems
is the memory requirements of the agents. In order to achieve symmetry breaking
by exploiting the topological asymmetries of the graph itself and the port labeling,
our algorithm constructs a map of the graph in the local memory of each agent.
Therefore, we assume that the agents have non-constant memory.

6.4.1 Weak gathering algorithm

Our deterministic algorithm is divided into two phases, and the overall idea is the
following: During the first phase all agents explore the graph using a DFS approach,
try to identify the nodes that belong to the cycle, and at the same time independently
build a map of the graph. The latter is necessary in order to break the symmetry on
the cycle and agree on a unique target node.

The problem of graph mapping becomes impossible if neither of n or k are known
and without whiteboards on the nodes [43]. Most of the algorithms rely on either the
usage of whiteboards [45, 46], or assume that the agents can observe the memory
contents of each other when they meet at the same node [83]. In the latter approach,
the agents maintain multiple hypotheses when ambiguity about the graph topology
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occurs, and they resolve that ambiguity when they meet. Interestingly, in the special
case of unicyclic graphs we show that knowledge of n alone (i.e., knowledge of k and
whiteboards are not necessary) can lead to the construction of graph maps that are
consistent (i.e., the same) among all agents.

When all agents have completed the first phase, the executed process (second
phase) ensures that they will eventually gather on the cycle. Note that the agents
may move to the second phase asynchronously. In this case, gathering might be
unsuccessful; the agents recognize it and they start the second phase again. In order
to make the description of the algorithm more clear, we first introduce a number of
variables that are stored in the local memory of each agent.

• rounds: A counter that is used in order to count the number of rounds in
several cases of the second phase. It is increased by one in each round.

• inPort, outPort : Port labels that the agent enters and leaves a node, respec-
tively.

• Graph (or G): Contains lists that represent the nodes visited by an agent. A
specific node of the underlying graph might correspond to multiple nodes in G.
We refer to the Graph of an agent α as Gα.

• currendNode: A pointer to the current node in Gα.

• depth: The distance between the agent and its initial position in Gα.

• roundsBlocked : The number of consecutive rounds that the agent remains
blocked.

• numAgents: The number of agents in the current node of the agent. The
considered model allows the agents to count the number of agents in their
current node.

• numAgentsPrev : The number of agents in the node of the agent during the
previous round (at the end of each round, the value of numAgents is copied to
numAgentsPrev).

• numAgentsTemp: A temporary variable that is used to store the number of
agents in several cases of the second phase.

• orientation: This variable is used during the second phase of the algorithm and
indicates the direction in which the agent traverses the cycle (i.e., clockwise or
counter-clockwise).

• orientationTemp: A temporary variable that is used to store the orientation.
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• crossed : A bit which becomes one when the agent crosses some other(s) agent(s).
At the end of each round it is reset to zero.

Phase 1. This phase is responsible for traversing the graph (exploration) and iden-
tifying the nodes that form the cycle. We now present all procedures that take place
during this phase.

Graph exploration. Each agent α stores in its local memory (in G) a list of the
neighbors of each vertex visited and the port numbers that led to those nodes. Let
u be the initial node of an agent α. Then, α constructs a list L(u) which represents
u. Assume that it traverses an edge through port number i and arrives at a node w
at port number j. It then constructs a new list L(w), and in L(u) it stores a tuple
which consists of the port number i and a pointer to L(w). At the same time, it
stores in L(w) a tuple with the port number j and a pointer to L(u). If α is in a
node v of G and moves through a port that is contained in a tuple of L(v), it does
not update G. Finally, for each node visited (or for each list of G), it also stores its
degree. We call these lists the Graph of α or Gα. The initial node of each agent in
Gα (i.e., the first node that was added in Gα) is marked with a special character I.
In each round, the agent α stores in currentNode a pointer to the node (or list) of
Gα that it is at. In addition, in each round it calculates the (shortest) distance in Gα
between its current node and its initial node and stores it to its depth variable.

We use a traditional technique which makes each agent traverse a tree in a DFS
way. In a round, when the agent arrives at node u through a port i, it leaves u
through port (i+ 1) mod δ(u) in the next round (if the edge is available). Initially,
each agent starts by leaving the port 0, and when depth = n, the agent moves through
the port that it arrived from. The exploration ends when the agent has explored all
paths of length n from its initial position. This can be achieved by checking if there
is a node in Gα in distance less than n that have at least one unexplored neighbor.
In particular, if the number of tuples stored in a node list is less than its degree,
then the exploration is not complete. At any point, if the edge that an agent tries
to traverse is missing, it waits until it becomes enabled. As we show later, all agents
either make progress towards the exploration of the graph and eventually complete
the first phase of the algorithm, or if the scheduler blocks an agent indefinitely, our
algorithm guarantees that the rest of the agents will reach some endpoint of the
missing edge, and terminate. This means that if some agent(s) fail to explore the
graph, all agents will still solve weak gathering.

Cycle detection. During this step, the agents check a number of predicates that help
them to detect the nodes that belong to the cycle. In particular, whenever an agent
α reaches a node u with degree δ(u) = 1, it marks the corresponding node in Gα
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with a special character��C, indicating that it does not belong to the cycle, and never
moves to that node (of Gα) again. In addition, if a node u ∈ Gα with degree δ(u) has
δ(u)− 1 marked neighbors in Gα, the agent also marks u.

In addition, each agent marks in Gα its initial node with a different special char-
acter T . Let u be the T -marked node in Gα. If at any point the agent α marks u
in Gα with ��C, it moves the T mark to the unique neighbor of u that is not marked
with ��C in Gα.

As we show in Lemma 6.14, this procedure guarantees that by the end of the
graph exploration step, the T marks of all agents will correspond to nodes of the
cycle. Each agent moves on that node by following the shortest path of G, and
performs the following computations.

Let u0 be a node that an agent α is located after the end of the graph exploration
procedure. Let Bu0 be the branch that starts from node u0. The agent α needs to
resolve the ambiguity that occurs in Gα in order to identify the nodes that belong to
the cycle. At this point, α arbitrarily chooses one of the two directions of the cycle
(e.g., the one with the lowest port number pu0), and deletes all nodes of Gα on the
opposite direction. To distinguish Bu0 from the nodes of the cycle, observe that at
that point all nodes of Bu0 are��C-marked in G, while the neighbors of u on the cycle
are not marked in G. This holds even if the initial position of an agent α is on the
cycle. Then, because of the fact that the agent explored all paths up to distance n
from its initial node, it means that it has traversed at least once the whole cycle.
In addition, as we show in Lemma 6.15, during the first cycle traversal, all branches
have been explored and marked with ��C. Then, observe that G is a tree that has a
line path L = (u0, u1, u2, . . . , uc, u0, u1, u2 . . . ) that all nodes are unmarked. Then,
starting from the first node of L, it counts and keeps all nodes of the corresponding
branches, until the total number of nodes becomes n. It removes the rest of the
nodes, and constructs the cycle by setting the corresponding port of the last node of
L that it kept to lead to the first node of L (i.e., u0), and vice versa.
Gα is now a correct map of the graph that can be used to break the symmetry

on the cycle. Note that α can now traverse the cycle both clockwise and counter-
clockwise, though, the orientation between two agents might be different. In partic-
ular, each agent has a private orientation oi, 0 ≤ i ≤ k, where clockwise is initially
the orientation defined by traversing the nodes in the order u0, u1, . . . , uc of L. We
say that there is chirality if there are no agents αi and αj such that oi 6= oj , i 6= j.
We later explain how to obtain chirality in our model.

An overview of the steps of the first phase of the algorithm is the following.

1. Initialization of variables.

2. Add the initial node in the local graph map G, and mark it with T .
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3. Explore the graph up to distance n, and construct the map of the graph.
Initially, leave through port 0.

4. Mark all nodes with ��C in G that have exactly one unmarked neighbor (i.e.,
initially the leaves). When you mark the node where the T mark is, move T
on the unique unmarked neighbor.

5. Upon exploring all paths of length n from the initial position, move on the
node which is marked with T , and construct the cycle C.

6. If the map G is symmetric, terminate. Otherwise, elect a leader and move to
the Second phase.

Finally, the pseudocode of the first phase can be found in Algorithm 11.

Phase 2. When an agent α enters this phase, it means that is has constructed a
correct map Gα of the graph in its local memory. Then, a unique node can be elected
as a leader, as described in Lemma 6.10. If the configuration is symmetric, then the
agents recognize it and terminate. In any other case a unique node will be elected
and will be the same for all agents. Let that leader be a node `. At this point,
they can also obtain chirality by utilizing the port numbers of `. Let p1 and p2 be
the ports that lead to its neighboring nodes in the cycle. Assume, without loss of
generality, that p1 < p2. Then, α sets as clockwise the orientation that is defined by
traversing p1 and counter-clockwise the one defined by traversing p2.

In this phase, an agent can either be in state walking or gathering, and initially it
is in state gathering. Each agent α in this phase assumes that all agents have entered
the second phase, and it performs some actions that would solve weak gathering
in case that this assumption is true. Otherwise (i.e., there exists some other agent
that has not entered the second phase), weak gathering will (temporarily) fail, and
updates its state to walking. In grouping we explain how the agents form groups
when certain predicates are satisfied. We call a set of agents a group if they are on
the same node and move in the same direction.

Walking state. An agent in this state traverses the cycle counter-clockwise, and after
|C| rounds, where C is the cycle, it changes its state to gathering. To achieve this,
when it enters to this state, it resets the value of its rounds variable to zero and in
each round it increases its value by one.

Gathering state. The agents in this state perform the following actions, and if they
fail to solve weak gathering they change their state to walking. We divide this process
into two steps. During the first step, each agent initially resets its rounds variable
to zero, and moves for 2|C| rounds towards the elected node `, by following the



Chapter 6. Gathering in 1-Interval Connected Graphs 126

Algorithm 11 First phase of weak gathering algorithm
Result: Identifies the nodes that form the cycle.

1: state ← Phase 1
2: statePrev ← ∅
3: rounds, depth, roundsBlocked, outPort ← 0
4: G ← ∅ # create a new empty list

1: procedure FirstPhase
2: L← ∅
3: mark(L, T )
4: mark(L, I)
5: append(G, (L, degree)) # add L in G.
6: currentNode ← G(L) # the current node is a pointer to the L list of G
7: while ∃u ∈ G: dist(u, I) < n and |L(u)| < degree(u) AND state 6= terminate

do
8: if state = terminating then
9: TerminationCondition() # See Algorithm 2
10: Continue to next iteration of the loop (next round).
11: end if
12: if degree = 1 OR markedNeighbors(G, currentNode,��C) = degree - 1 then
13: mark(currentNode, ��C)
14: if currentNode is marked with T then
15: unmark(currentNode, T )
16: neighbor ← unmarkedNeighbor(currentNode, ��C)
17: mark(neighbor, T )
18: end if
19: end if
20: nextNode ← getNode(currentNode, outPort)
21: if nextNode = ∅ then depth← depth + 1
22: if depth = n+ 1 then
23: inPort ← outPort
24: else
25: Move(outPort) # See Algorithm 3
26: L← [(inPort, pointer(currentNode))]
27: append(currentNode, (outPort, L))
28: append(G, (L, degree))
29: currentNode ← G(L)
30: end if
31: else
32: depth← dist(G, currentNode)
33: if nextNode is marked with ��C OR depth = n+ 1 then
34: inPort ← outPort
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35: else
36: Move(outPort)
37: currentNode ← nextNode
38: end if
39: end if
40: if numAgents = k then
41: state = terminate
42: end if
43: outPort ← (inPort + 1) mod degree
44: end while
45: if state 6= terminate then
46: state ← Phase 2
47: cycle ← detectCycle(G) # As described in Phase 1 of Section 6.4.1
48: leader ← electLeader(G, cycle) # Algorithm of Lemma 6.10
49: end if
50: end procedure

Algorithm 12 Termination condition of weak gathering algorithm
Result: Achieves weak gathering in case that the agent is blocked long enough
for the rest of the agents to reach some endpoint of the missing edge.

1: procedure TerminationCondition
2: if state 6= terminating AND roundsBlocked ≥ 4n+ k then
3: statePrev ← state
4: state ← terminating
5: else if state = terminating AND numAgents 6= numAgentsPrev then
6: state ← statePrev
7: roundsBlocked ← 0
8: else if roundsBlocked ≥ 8n+ 2k then
9: state ← terminate

10: end if
11: end procedure

Algorithm 13 Move step of an agent
1: procedure Move(outPort)
2: while edge through port outPort is disabled do
3: roundsBlocked ← roundsBlocked +1
4: TerminationCondition() # See Algorithm 2
5: end while
6: roundsBlocked ← 0
7: Move through port outPort
8: end procedure
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shortest path. The orientation that is followed is stored in both orientation and
orientationTemp variables. After 2|C| rounds, the agents enter the second step. We
distinguish the following cases for an agent α, depending on whether α reached `,
or not, by the end of the first step. If α arrived at node `, it checks whether all
agents are there (i.e., numAgents = k). If yes, it terminates. Otherwise, it resets
rounds to zero, sets orientation and orientationTemp to clockwise, and starts moving
clockwise on the cycle for |C| rounds. The agents that due to missing edges did not
reach the elected node `, reset rounds to zero, set orientation and orientationTemp to
counter-clockwise and start moving counter-clockwise for |C| rounds. As we show in
Lemma 6.18, by the end of round 2|C| all agents that entered state gathering during
a time window of length |C| are divided into at most two groups.

After the end of the first step, we want the agents of each group to start the
second step at the same time (the two different groups may start at different rounds).
However, observe that the agents might not enter into state gathering at the same
time, thus start the second step asynchronously. In grouping, we explain how the
agents start walking on the cycle as groups during the second step. At this point,
there are two groups of agents moving towards each other. In any case, the two
groups of agents will either end up on the same node, or they will cross each other,
or they will become blocked on the endpoints of the same edge. In grouping, we
explain how these groups of agents merge after at most |C| rounds, or terminate in
neighboring nodes. In the first two cases, if there exists some agent that has not
entered the second phase, weak gathering will temporarily fail and they all update
their states to walking. In the later case, we show that all agents will be gathered at
the endpoints of the same edge.

Grouping. This subroutine of the algorithm forms groups of agents in the following
cases.

(1) First predicate. During the first step of state gathering, the agents reset their
rounds variable to zero and move towards the elected node for 2|C| rounds. However,
not all agents start this step at the same time. The first predicate of grouping is
responsible to synchronize the agents so as to begin the second step at the same
time, and then continue moving as groups. In particular, when an agent α enters the
second step, it resets rounds to zero and starts moving either clockwise or counter-
clockwise depending on whether it reached the elected node or not. Let u be the
node where α was at the end of the first step. Then, for the next |C| rounds it tries
to move to the neighboring node (and wait there). The rest of the agents in u detect
that the number of agents in their current node was decreased; this is achieved by
calculating the difference between numAgents and numAgentsPrev in each round.
They enter into the second step and they try to move towards α. If they successfully
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reach α, they continue moving as a group until rounds = n. Otherwise, the second
step is completed (after |C| rounds), therefore they enter into state walking.

(2) Second predicate. If an agent in state walking visits the elected node ` and there
are some other agents there, it assumes that they are in state gathering. In this
case, it enters into state gathering, resets rounds to zero, and waits there at most
2|C| rounds, or until the first predicate of grouping is satisfied. In other words, the
elected node absorbs the agents passing by it.

(3) Third predicate. When two agents or groups of agents cross each other or visit
the same node, they merge into a single group. To achieve this, when they cross each
other, the agents of the group which is closer to the elected node ` by following the
clockwise path (say G1), reverse direction and update the value of their orientation
variable. The agents of the other group G2 wait until G1 catches them. The distance
to ` can be easily calculated using the graph map which is stored in the local memory
of each agent. Therefore, each agent knows the distance to ` from the nodes of both
G1 and G2. If the edge between the two groups is missing, they wait until it becomes
available again, or until the termination condition is satisfied. After a successful
merging, the agents that are in state gathering continue walking the cycle in their
initial direction defined by orientationTemp, while the agents in state walking reverse
their initial direction (i.e., they change the value of their orientationTemp variable
and set orientation = orientationTemp). Similarly, if the groups of agents visit the
same node (i.e., they do not cross each other), the agents in state walking reverse
direction, while the group of agents in state gathering does not do anything (i.e., they
continue walking in their initial direction). Finally, after a successful edge traversal of
G1, if G2 is missing, it reverses direction again, otherwise the agents in state walking
enter into the second step of gathering.

Termination condition. The overall idea is that if an agent is blocked long enough
for the rest of the agents to reach some endpoint of the missing edge, then weak
gathering is achieved and the agents terminate. To achieve this, in each round, if an
agent α is blocked at a node u, it increases roundsBlocked by one and waits there until
either the edge becomes available again (in which case it resets roundsBlocked to zero),
or until the termination condition is satisfied. In particular, if roundsBlockedα ≥
4n + k, it enters into state terminating. In this state, if during the next 4n + k

rounds the number of agents remains the same on u, it terminates. Otherwise it
moves back to its previous state and resets roundsBlocked to zero. Finally, at any
time during the execution of the algorithm, if the number of agents on a node is k,
they all terminate.

An overview of the steps of the second phase of the algorithm can be found in
Algorithm 15.
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Algorithm 14 Grouping subroutine of weak gathering algorithm
Result: Group formation of agents.

Each agent α performs the following during the second phase of the algorithm.
1. First predicate:

(a) At the end of the first step of state gathering, store to numAgentsTemp
the value of numAgents. After the first edge traversal during the second
step of state gathering, wait until numAgents = numAgentsTemp.

(b) If α is in the first step of gathering and has either reached the elected
node, or it is blocked, if numAgents < numAgentsPrev, enter into the
second step of gathering.

2. Second predicate:
If α is in state walking, its current node is the elected node `, and the number
of agents on ` are more than one, enter into state gathering.

3. Third predicate:
During the walking state and during the second step of gathering, in each
round that this predicate is not satisfied, store to numAgentsTemp the value
of numAgents. If α crossed some agent(s), go to (3a). If numAgents >
numAgentsPrev, go to (3b):

(a) Calculate the distance between the current node and the elected node `
in the clockwise path of the cycle. If α is closer to ` than the agents that
were crossed, reverse direction (i.e., change the value of orientation),
and after a successful edge traversal (merging) go to (3b). Otherwise
wait until the number of agents in the current node is increased (i.e.,
numAgents > numAgentsPrev) and then go to (3b).

(b) If α is in state waking, reverse the initial direction (i.e., the direction
before the crossing/merging which is stored in orientationTemp), enter
into the second step of gathering, and go to (3c). If α is in state gathering,
move towards the initial direction as defined in orientationTemp.

(c) After a successful edge traversal, if the number of agents remains the same
as before the crossing/merging (i.e., numAgents = numAgentsTemp), go
back to the previous state.

6.4.2 Analysis

We first show that after the end of the first phase of the algorithm, all agents correctly
identify the nodes that form the cycle C, and then they only move on C. In addition,
because of the fact that an agent can be blocked on a node of C indefinitely, we show
that during the first phase all agents reach some endpoint of the missing edge after
at most 2n rounds. We then continue and show that in the second phase of the
algorithm all agents eventually enter into state gathering and they correctly solve
weak gathering.
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Algorithm 15 Second phase of weak gathering algorithm
Result: Solves weak gathering on some node of the cycle.

1. State walking:

(a) Reset rounds to zero and move counter-clockwise.
(b) When rounds = |C|, change to state gathering.

2. State gathering:

(a) First step. Reset rounds to zero and follow the shortest path towards the
elected node ` until rounds = 2|C|.

(b) Second step. If reached `, reset rounds to zero and move clockwise for
|C| rounds. Otherwise, move counter-clockwise for |C| rounds.

3. Grouping and termination:

(a) In each round, depending on the state and step of the agent, check the ap-
propriate predicates of grouping and perform the corresponding actions.

(b) If at any time numAgents = k, terminate.
(c) If roundsBlocked = 4n+ k, change to state terminating.
(d) If during the next 4n+k rounds the number of agents in the current node

remains the same (i.e., numAgents = numAgentsPrev in each round),
terminate. Otherwise, move back to the previous state.

First phase of the algorithm

Lemma 6.14. Let dt(Tα, C) denote the (shortest) distance between the T mark of an
agent α and the closest node u of the cycle C at round t. Then, {dt(Tα, C)}, t ≥ 0

is a decreasing sequence (i.e., dt ≥ dt+1), and the T mark will eventually correspond
to u.

Proof. Initially, the agents are arbitrarily placed on some nodes of the graph. During
the first phase, each agent α constructs in its local memory the graph Gα, and marks
with T its initial node (in Gα). We refer to the T mark of an agent α as Tα. Then,
it starts the exploration of the graph in a DFS way, and up to a maximum depth
which depends on the size of the graph (depth = n). Call C the unique cycle and Bu
the branch rooted on u ∈ C where an agent α is initially placed. In order to mark
a node w ∈ Gα with ��C, all its neighbors except one must already be marked in Gα.
This can only happen initially on the leaf nodes, then their neighbors, and so on.
Now observe that all nodes of the cycle (including u) have two neighbors that belong
to the cycle C, thus, α cannot mark any of them. This means that all nodes in the
shortest path between the current position of the Tα mark and u are not marked in
Gα, while the rest of the nodes v ∈ Bu will eventually be marked with ��C. When
α marks with ��C the node that its Tα mark is, it removes it, and marks the unique
neighbor that is not marked with ��C. Similarly, the above argument will be satisfied
for the new position of Tα. Because of this, Tα can only move closer to the cycle
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every time the corresponding agent moves it. The exploration of all paths of length n
from its initial position guarantees that α will visit all nodes of the branch Bu, thus,
mark with ��C all of its nodes, except u. Consequently, the T mark will correspond
u.

In contrast to the literature on exploration of graphs and graph map construction,
in our model the agents cannot assign distinct labels on the nodes, thus recognize
them when encountered again (cf., e.g., [127]). For this reason, when an agent enters
the cycle and completes a tour, the whole graph is again considered as unexplored.
However, in the special case of unicyclic graphs, the problem of map construction
becomes solvable and our algorithm guarantees that after O(n2 + nk) rounds all
agents construct a correct map of the graph.

Lemma 6.15 (Cycle detection). Cycle detection correctly identifies the nodes that
form the cycle, and Gα of each agent α is a correct map of the graph.

Proof. By Lemma 6.14 the T marks of all agents will eventually correspond to nodes
of the cycle. Let α be an agent that after the exploration process is on a node u1 ∈ C.
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Figure 6.5: Locally constructed graph G by the end of the exploration process

Observe that Gα is a tree (rooted at u1), which has two line paths that the
nodes are not marked with��C, that correspond to the clockwise and counter-clockwise
directions of the cycle. Figure 6.5 represents the locally constructed graph Gα. Then,
α deletes one of the two paths and their corresponding branches (e.g, the one with
the lowest port number of u1). Observe that the distance between u1 and all nodes
of the branches until node uc, where c is the size of the cycle, is less than n. This
means that α has explored them and marked all nodes of the branches with��C. Then,
by counting the nodes of the cycle and their branches, it can construct a correct map
of the graph.

Lemma 6.16. The number of rounds until all agents complete phase 1 is bounded
by O(n2 + nk).
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Proof. Call C the unique cycle and Bu the branch rooted on node u ∈ C, where an
agent α is initially placed. The number of rounds until an agent explores all paths of
length n depends on the topology of the graph. In particular, when an agent enters
the cycle and completes a tour, the whole graph is again seen as unexplored, thus, the
agent continues exploring nodes that it has already visited in previous rounds. The
number of complete tours of the cycle that can occur are n/|C|, and n − |C| nodes
are visited during each tour, provided that the depth that the agent has reached is
less than n. The number of rounds R needed for the DFS exploration is then:

R = 4

n/|C|∑
i=0

(n− i|C|) =
4n(n+ |C|)

2|C|
= O(n2) (6.1)

The worst case is when the cycle has size 3, while the best case is when the cycle
has size n. Due to the 1-interval connectivity, the scheduler can block α when it
wants to traverse an edge of the cycle. During the DFS exploration, the number of
edge traversals on the cycle is 2|C| for every complete tour of it. Now observe that
if α is blocked for more than 8n + 2k rounds, it terminates, and as we show later,
weak gathering is achieved. This means, that the worst case which does not lead
to gathering, the scheduler blocks the agents for 8n + 2k − 1 rounds for each edge
traversal in C. In addition, for each cycle tour, n−|C| nodes (in the worst case) can
be explored without being blocked by the scheduler. Therefore, the total number
of rounds that an agent can remain blocked during the first phase, considering the
worst case choices of the scheduler, can be bounded by:

S = 2|C| n
|C|

(8n+ 2k − 1) = O(n2 + nk) (6.2)

The total number of rounds until all agents complete the first phase of the algo-
rithm is then O(n2 + nk).

Observation 1. Each agent in the first phase of the algorithm visits all nodes of the
cycle every O(n) rounds (at most 2n rounds), if not blocked by the scheduler.

The above observation holds because the number of nodes that are explored
during each cycle tour is n− |C| nodes on the branches and |C| nodes on the cycle.
The DFS exploration then guarantees that the number of rounds needed are 2(n −
|C|+ |C|) = 2n.

Second phase of the algorithm

We now show that phase 2 of the algorithm successfully gathers all agents either at
the same node, or at the endpoints of the same edge.
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Lemma 6.17. Let the variable roundsBlockedα of an agent α be 8n+ 2k. Then, all
agents are gathered on the endpoints of the missing edge and terminate.

Proof. Let α be an agent that is blocked on some node u of the cycle. By Observation
1 and because of the fact that the scheduler can only remove at most one edge in each
round, the rest of the agents in phase 1 perform a block-free execution, thus, after
at most 2n rounds, they traverse the cycle and they reach u. An agent in phase 2 of
the algorithm can either be in state walking or gathering. In the first case, after at
most 4|C| rounds, it reaches u. This is because it either reaches u after at most |C|
rounds, or it enters into state gathering after at most |C| rounds (second predicate
of grouping) and remains at the elected node for 2|C| rounds. Then, after |C| more
rounds it reaches u. In the second case, an agent needs 2|C| rounds to move towards
the elected node and then it walks the cycle (either clockwise or counter-clockwise)
for |C| more rounds. In all these cases observe that grouping can only delay the
agents from reaching some endpoint of the missing edge for at most k − 2 rounds.
This holds because they perform a block-free execution of the algorithm, and each
merging of agent groups takes in the worst case one additional round. Therefore,
after at most 4|C| + k − 2 ≤ 4n + k rounds, all agents reach some endpoint of the
missing edge.

After 4n + k rounds α enters into state terminating. In this state, it remains
idle and observes the number of agents on its node. In case that the number of
agents changes, as a result of the missing edge being enabled again, it moves back
to its previous state and continues the execution of the algorithm. If after 4n + k

more rounds the number remains the same, it terminates. Observe that when it
terminates, it is guaranteed that all agents will be in state terminating and (weakly)
gathered on the endpoints of the missing edge. This means that independently of
the choices of the scheduler, after that round all agents will remain idle and will
eventually terminate.

Lemma 6.18. Consider a set of agents S moving towards a node u in cycle C,
following the shortest path. After |C| rounds the agents of S are in at most two
nodes of C, and one of them is in u.

Proof. Consider a set of agents S1 ∈ S moving clockwise and a set of agents S2 ∈ S
moving counter-clockwise. Consider two agents α1, α2 ∈ S1 moving towards u.
Assume that in the shortest path to u, the distance between α1 and u is d1 and the
distance between α2 and u is d2.

The number of successful edge traversals until they reach u is at most |C|/2.
Assume that α1 didn’t reach u after |C| rounds. This means that it was blocked for
at least |C|/2+1 rounds. Since 1-interval connectivity in this setting allows only one
edge to be missing in each round, α2 can be blocked for at most |C|/2 − 1 rounds
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(when not in the same node with α1). Thus, if d1 < d2, α2 reaches α1 by round |C|,
and if d1 > d2, it reaches u by round |C|. Now consider an agent α3 ∈ S2 moving
towards u (different orientation from α1 and α2). Since α1 was blocked for at least
|C|/2+1 rounds and the agents follow the shortest path to u (they cannot be blocked
on the endpoints of the same edge), α3 can be blocked for at most |C|/2− 1 rounds.
Thus it reaches u by round |C|.

Overall, if an agent α is blocked for more than |C|/2 + 1 rounds, then all agents
that move in the same orientation towards α reach α by round |C|, while the rest of
the agents reach u. Otherwise, all agents reach u by round |C|.

Theorem 6.19. Our algorithm solves weak gathering in unicyclic graphs in O(n2 +

nk) rounds.

Proof. By Lemma 6.16, in O(n2 + nk) rounds all agents complete the first phase of
the algorithm and by Lemma 6.15 they construct a correct map of the graph. By
Lemma 6.10, if the configuration is not symmetric, the agents elect a unique node
on the cycle as a leader. If the configuration is symmetric, it means that there are
several candidate leaders, thus, by Lemma 6.11, there are agent configurations where
weak gathering is unsolvable and the agents terminate. Let r′ be the round that the
last agent enters into the second phase of the algorithm. Let also R = {r1, r2, . . . , rk}
be the rounds that the k agents enter into state gathering for the first time after r′

(i.e., ri ≥ r′, 1 ≤ i ≤ k).
In the second phase of the algorithm the agents can either be in state walking

or gathering. Consider a set of agents S1 that are in state gathering and |ri − rj | <
|C|, ∀i, j ∈ S1, and a second set of agents S2 contains the rest of them. At this
point, by Lemma 6.18 all agents that enter phase 2 at the same time, after at most
|C| rounds are divided into at most two groups G1 and G2, and one of them (say
G1) is on the elected node u. After |C| rounds all agents in S1 are in state gathering,
thus, after 2|C| rounds all agents of S1 are divided into two groups. In addition, the
first predicate of grouping subroutine guarantees that the agents of G1 and G2 will
continue moving as groups during the second step of phase 2. We now consider two
cases.

(1) All agents of S1 reached u. The agents of S2 are in state walking, and be-
cause of the second predicate of grouping some of them reach u and enter into state
gathering, while the rest of them, again by Lemma 6.18, become a group that did
not reach u due to missing edges. Observe that this group walks the cycle counter-
clockwise, while the agents of S1 walk the cycle clockwise. At this point there are
two groups of agents moving towards each other. Therefore, the third predicate of
grouping guarantees that after at most |C| rounds the two groups will either merge
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(in this case they terminate), or they will become blocked on the endpoints of the
same edge until the termination condition will be satisfied.

(2) In this case, the agents of S1 are divided into two groups at round r1 + 2|C|.
During the first 2|C| rounds, some of the agents of S2 may reach u, thus enter into
state gathering and continue moving as a group with G1.

(a) If the agents of G2 move clockwise towards u, then the rest of the agents of
S2 may cross the agents of G2 or arrive on the same node. In both cases they will
merge into a single group (third predicate of grouping).

(b) If the agents of G2 move counter-clockwise towards u, then the rest of the
agents of S2 end up on the same node with the agents of G2. This is because the
agents of G2 remain blocked long enough that at round r1 + 2|C| they did not reach
u. Then, all of the agents in the clockwise path from G2 to u, after 2|C| rounds reach
G2 (by Lemma 6.18). In this case, the agents of S2 reverse direction to clockwise
(due to the third predicate of grouping), however G2 will continue moving counter-
clockwise. Then, they reverse to their initial direction (counter-clockwise), and in the
next round, if the edge is not missing, they again reach G2. This procedure continues
until some agent in G2 enters into the second step of phase 2. Then, they will cross
each other and grouping guarantees that they will merge into a single group.

Finally, in both cases (a) and (b), all agents in state walking (S2) are absorbed by
the agents in state gathering (S1). Then, the two groups of agents move towards each
other and grouping guarantees that after |C| rounds they achieve weak gathering.

In all these cases, all agents reach either the same node and the termination
condition is satisfied, or they become blocked at the endpoints of the same missing
edge where, by Lemma 6.17, they solve weak gathering.

6.5 Open Problems

In [59] the authors provide a mechanism which avoids agent crossing on the ring.
In particular, each agent constructs an edge labeled bidirectional ring, such that
the intersection of the labels assigned in the edges of the clockwise direction with
the ones of the counter-clockwise direction is empty. Then, the agents move on the
actual ring subject to the constraint that at round r they can traverse an edge only
if the set of labels of that edge contains r. This guarantees that two agents moving
in opposite directions will never cross each other on an edge of the actual ring.
An immediate open problem is to examine whether that, or a similar, mechanism
could be adapted and used in our algorithm. In our algorithm, cross detection is
only required during the second phase. All agents after O(n2 + nk) rounds enter
into that phase and elect the same node ` as leader, thus, obtain the same sense
of orientation. By implementing a counter for the rounds, we could then allow the
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agents to move clockwise on the cycle only at odd rounds, and counter-clockwise
only at even rounds. This guarantees that no two agents could traverse the same
edge in opposite directions during the same round. Then, by slightly modifying the
second phase of our algorithm (e.g., allow 4|C| rounds during the first step in state
gathering, and 2|C| during the second step), we conjecture that the agents will again
solve weak gathering.

Even though we almost completely characterized the class of 1-interval connected
graphs in which gathering can be solved, there is a number of interesting directions
emanating from our existing knowledge on the problem. An immediate open problem
is whether we can achieve the same results if the class of dynamics is the T -interval
connectivity, for T > 1. Other dynamic models that can be considered are periodic,
that is, each edge is periodically enabled/disabled, recurrent [30], meaning that an
edge cannot remain disabled indefinitely, and other worst-case dynamic networks in
which the topology may change arbitrarily from round to round subject to some
constraints (cf., e.g., [106]). The problem of strict gathering becomes feasible in
these cases, and the goal is to find efficient algorithms for the problem. For example,
consider a ring graph and two groups of agents blocked on the endpoints of a missing
edge. Then, our algorithm could eventually achieve strict gathering by just waiting
for the disabled edge to become enabled, rather than terminate after O(n) rounds.
However, a more efficient algorithm could decide to change the orientation of the
agents and meet on some other node of the cycle. This might be the case for many
strict gathering algorithms for static graphs. By simulating any such algorithm, while
the agents just wait for the missing edges to become enabled, it might be possible
to solve strict gathering in all the solvable cases of static graphs. However, this
technique may not be applied to algorithms that are based on synchronization of
agents.

Other interesting related problems for the generalized 1-interval connectivity
model are partial gathering, and gathering with waste. The partial gathering problem
requires, for a given positive integer g, that each agent should move to a node and
terminate so that at least g agents should meet at each of the nodes they terminate
at. This is a generalization of the strict gathering problem, and for values of g ≤ k/2
it enables feasibility in a larger class of graphs. It is not clear whether this require-
ment is weaker of stronger than that of weak gathering. For example, in ring graphs
with k agents and g = k/2, the agents can terminate in any two nodes of the graph,
provided that the number of agents in both nodes are k/2. However, observe that
this problem enables feasibility in a larger class of graphs. Consider two cycles that
are connected with a line. Weak gathering is unsolvable in this setting, while partial
gathering might be possible. Consider the case that k/2 + a, a < k/2 agents are on
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a cycle C1 and the rest of them are on the cycle C2. Then, a agents from C1 is pos-
sible to escape from the cycle and reach C2, thus achieve partial gathering. Partial
gathering with waste g is the problem of gathering at least g agents on some node
(the rest of them being the waste). Similarly to partial gathering, at most one agent
might remain trapped on a cycle in this dynamic model. Finally, a generalization of
weak gathering, where the agents are allowed to gather in at most g nodes (grouping),
might also enable feasibility in a larger class of (dynamic) graphs.



Chapter 7

Conclusions

In this thesis we work on four areas where stability achievement is critical, and in each
of them we examine fundamental problems. In particular, we work on three models
of distributed computation, namely population protocols, network constructors, and
mobile agents that are moving on dynamic graphs. Finally, we provide local search
algorithms for the Crystal Structure Prediction problem. A number of interesting
questions remain to be answered in each of them, as described in the corresponding
chapters.

In Chapter 4 we worked on the Network Constructors model, and we examined
the case where crash faults may occur on the nodes. We almost characterized the
class of graphs that can be constructed under a bounded and unbounded number of
faults. We introduced some minimal form of fault notifications and we examined two
cases; partial constructibility, that is, the protocol is allowed to construct the graph in
a subset of the population, and the case where the agents have non-constant memory.
For the first case we presented a generic constructor that utilizes random bits in order
to simulate a Turing Machine that constructs any constructible graph language, and
for the second case we presented a protocol that restarts the population whenever a
fault occurs. As part of that protocol, a standard pairwise elimination protocol for
leader election is executed. The leader is then responsible to restart the population
when necessary. This sub-protocol is slow, taking O(n) parallel time to elect a unique
leader, therefore an interesting question is whether we can utilize our approach on
leader election in population protocols to speed up the execution time of our NET
restarting protocol. This task is not trivial as we need to carefully handle cases where
the unique leader crashes, and a new one has to be re-introduced in the population.
Our leader election protocol of Chapter 3 is based on epidemic processes, which
require O(log n) parallel time to reach the whole population. A possible application
of this approach in our restarting protocol could be the following; in our restarting
protocol, the agents’ state consists of two components, S1, which runs the restarting
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protocol, and S2 which runs the given protocol. We can additionally have a third
component S3 that runs our leader election protocol, and whenever a node is notified
about a crash failure, becomes a leader again and increases its phase by one. This will
guarantee that the new leaders’ tuple will dominate the rest of them and eventually,
in O( log

2 n
logm ) parallel time, a single leader will remain in the population.

In Chapter 6 we worked on a model where a set of agents is moving on dynamic
graphs, and in particular we presented a protocol that solves weak gathering in dy-
namic unicyclic graphs, in a fault-free setting. There is a growing interest in problems
such as gathering, exploration, and black hole search in dynamic settings recently,
and several model variations and assumptions have been considered. However, to the
best of our knowledge, none of them has considered faulty agents moving on dynamic
graphs. An interesting research direction would be to consider scenarios where the
agents may crash, while the rest of them still have to solve the problem. This is not
always trivial to do; for example, regarding the gathering problem, solutions that are
based on counting the number of agents and terminate when they are all gathered
would not work in that case, as the agents are unaware of the number of remaining
agents. Would a failure detector, similar to the one that we presented in Chapter 4.4,
or a variation of that, help to overcome this problem? Alternatively, we could assume
that any agent passing by a node where some other agent has crashed is informed
about the crash failure, or that the rest of the agents are completely unaware about
crash failures and examine alternative solutions to the problem that are not based
on this approach. Finally, a stronger form of faults may also be considered, such as
Byzantine faults.

In Chapter 5 we examined the problem of Crystal Structure Prediction from a
theoretical computer science perspective, and we provided local search algorithms
that explore the search space in order to find lower energy crystal structures. All
of the algorithms that have been proposed for this problem are centralized, meaning
that the algorithm makes all decisions of where each atom will be placed in each step.
A very interesting yet ambitious approach would be to model crystal structures in a
similar way as Network Constructors. Each combination of unit cell parameters and
arrangement of atoms corresponds to an energy, and each pair of atoms contributes
to that overall energy based on their types and distance between them. A possible
way to think of this problem would be to consider each atom as an agent, and that
ionic bonds between the atoms are translated to connections between agents. We
could additionally consider edge states that translate to distance between the atoms.
Information about the types of the atoms can be embedded into the agents’ states.
For instance, a state o can indicate that the agent corresponds to an oxygen atom.
The only constraint is to maintain the correct proportion of states in the initial
population, which is defined by the composition of the material. Then, a protocol
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that captures laws of crystal chemistry on how the atoms interact with each other
and form ionic bonds could prove to help identify low energy crystal structures.
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