
Learning Generalized Metrics in
Zero-Shot Classification

Thesis submitted in accordance with the requirements of the
University of Liverpool for the degree of Doctor in

Philosophy by

Guanyu Yang

Department of Electrical Engineering and Electronics
School of Electrical Engineering and Electronics and

Computer Science
University of Liverpool

4th, April, 2022





Abstract

To overcome the practical constraint that the test data should be in the same feature space
and follow the same distribution as the training data, transfer learning is proposed to
achieve the specific task on a target domain by transferring the task-relevant knowledge
from a different source domain. Zero-shot learning, as a sub-field of transfer learning,
aims to achieve the classification of target classes without corresponding labelled train-
ing samples. It was proposed to imitate the efficient human learning ability that con-
structs concepts of unknown classes based on relevant descriptions and learned categorical
knowledge. To solve the challenging task where samples corresponding to target classes
are invalid during training, researchers proposed approaches rely on two main ideas, em-
bedding and generation, respectively. Since the generative methods synthesize pseudo
samples for unseen classes based on the corresponding semantic attributes, the followed
training process for the classifier might be regarded as breaking the strict target unknown
principle. In the inductive scenario where only seen classes are available during training,
embedding methods draw more focus as they could learn a target space only depending
on the training classes to achieve classification via settled or learned metrics.

With the methods steadily improved, different problem settings, and diverse experi-
mental setups have emerged, the effectiveness of the proposed methods could be inappro-
priately evaluated. Thereby, in this dissertation, we first provide a comprehensive survey
on zero-shot image classification to provide a thorough introduction to this field. Par-
ticularly, we have examined three implementation details that can boost the performance
of zero-shot learning, i.e. whether the backbone structure has been modified, whether
fine-tuning has been conducted, and whether additional knowledge has been used. By an-
notating these experimental details, we have collected a more careful comparison between
various zero-shot methodologies.

The rest part of the dissertation summarizes our work which focuses on improving the
metric for the embedding methods under the inductive zero-shot learning scenario. Due
to the absence of the labelled target samples in the training stage, the learned embedding
space or metrics is easily over-fitted for those seen classes thus leading to the model
incorrectly predicting the unseen class as one of those in training when the test label
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space covered both the seen and unseen classes. To alleviate such an over-fitting problem,
we proposed a self-focus mechanism for a ridge regression based method. The proposed
mechanism takes the embedded semantic attribute vector as input to produce focus ratios
for the dimensions in the embedding space. When these ratios are used for constructing
the optimization loss, the correlations between the location and the importance of each
dimension are considered. Thus the learned embedding space will be more generalized
for classification. However, this mechanism can not be flexibly applied to the methods
with learnable metrics. We then, proposed two adversarial frameworks on the sample and
parameter spaces, respectively, for the relation network based methods. The designed
frameworks help train a robust model on seen data and enhance the sensitivity of unseen
classes through adversarial perturbations. As a result, the learned model returns high
responses to unseen classes while not affecting the recognition of seen classes due to the
robustness.

Key Words: Zero-shot learning, generalized zero-shot learning, embedding methods,
knowledge transform, image classification
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Chapter 1

Introduction

Machine learning algorithms have been widely applied in real-life applications. However,
the achievement of these algorithms is commonly limited by an assumption: the test
data should be in the same feature space and follow the same distribution as the training
data [1, 2]. In particular, those traditional deep learning methods based on deep neural
networks (DNN) perform significantly and even surpass humans in some areas. Still,
their performance relies on a large number of labelled training samples. Therefore, it is
very time-consuming and impractical to collect a large number of labelled samples and
retrain the model for each unique task. Semi-supervised learning can be considered as
a solution where a large number of data with only a few of them labelled are employed
during training. However, collecting sufficient unlabelled data might also be unrealistic
in practice, thus resulting in such a technique being unsatisfactory. To overcome such
difficulty, researchers proposed transfer learning, where differences between training and
test process may occur in terms of the domains, tasks, and distributions. The main idea
of transfer learning is to achieve the target task with the help of relevant labelled data or
extracted knowledge from a source domain. Based on whether the sample spaces or label
spaces of source and target domains are overlapped, transfer learning can be divided into
two categories, homogenous and heterogeneous transfer learning, respectively.

The subject of this dissertation, zero-shot learning, is a subfield of heterogeneous
transfer learning where the target labels are disjoint with those in the source data. It is
an extremely constrained scenario derived from the few-shot learning. In the few-shot
learning, though labelled samples corresponding to the target classes are not available
during training, few of them are provided during the test called support set to represent
each target class. Specially designed models can be used to extract knowledge or pro-
totypes of the target category to support the corresponding task [3–5]. In contrast, there
is no labelled sample corresponding to the target class in zero-shot learning, regardless
of the stage of training or test. Specifically, here we call the classes in training and tar-
get classes as seen and unseen classes, respectively. Since it is impractical to construct
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a cognitive concept of an unseen class without any basis, the auxiliary information is in-
troduced to support transferring the cognitive knowledge extracted from the seen classes
to the unseen classes. Inspired by the efficient learning process of humans, textual de-
scription or manually defined attributes are two commonly adopted auxiliary information
in zero-shot learning. In this dissertation, we mainly focus on methods employing the
semantic attributes as auxiliary information since the semantic space is consistent during
training and the test. Moreover, the descriptions for each class could simply be denoted
as a vector holding indicated value for each attribute. It is easier to implement than using
textual descriptions since the additional natural language processing model is not required
for extracting semantic information.

Among the zero-shot learning ideas, the generative methods can usually achieve im-
pressive results [6–10]. In this kind of method, the task is divided into three steps. First,
a generator is trained on training data to generate pseudo samples with the given seman-
tic attributes for specific classes. Then, pseudo samples corresponding to unseen classes
could be synthesized with the trained generator and semantic attributes of the unseen
classes. By expanding the original training data with the labelled pseudo data for un-
seen classes, the zero-shot classification is converted to a conventional classification task.
Thereby, the last step is to train a common classifier on the expanded data. VAE [11] or
GAN [12] based structures with several restrictions on distribution make these generative
models perform more generalized to both seen and unseen classes. However, in the most
rigorous scenario, namely inductive zero-shot learning, most of these designs become
unimplementable since the unseen classes are strictly required to be unknown during the
training process.

The embedding methods in zero-shot learning could avoid breaking the strict unknown
principle. Depending on the semantic attributes for each class, a specific embedding
space is learned where settled or learnable metrics could measure the probability or the
similarity of a sample corresponding to a class. Due to the absence of the labelled target
samples in the training stage, the learned embedding space or metrics is easily overfitted
for those seen classes, thus leading to the model incorrectly predicting the unseen class as
one of those in training when the test label space covered both the seen and unseen classes.
While some methods construct additional restrictions to prevent such biased estimation
of the model during training with the help of semantic information or unlabelled samples
of the unseen classes, such designs also are not practicable under the inductive scenario
as requiring the knowledge of unseen classes during training. Therefore, it is of great
research interest to train a generalized model based purely on training data.

The relation between embedding based zero-shot learning and its hyper research field
is shown in Fig. 1.1. In this dissertation, we focus on improving the metrics for those
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Fig. 1.1: The affiliations of embedding based zero-shot learning.

embedding methods aligning the visual and semantic spaces for the inductive zero-shot
image classification. In specific, embedding functions for visual samples, semantic at-
tributes, or both are trained to project information from different spaces into a hidden
space. With this learned space, the corresponding class for each visual instance is searched
as the one with the closest or most similar attributes, thus achieving classification via dis-
tance [13] or similarity [14] metrics. The improved metrics can be the ones constituting
the objective function during training. Additional regularization or supervised informa-
tion is considered in such modified metric, thus leading to a more generalized feature
space. Alternatively, the improved metric can also be the one applied during the test.
Under a specific learning strategy, the modified metric provides more balanced results be-
tween training and target labels. Our studies cover these two kinds of improvement where
the learned generalized feature space or measurement prevents the prediction from being
biased to those training labels.

1.1 Contributions of This Thesis

The research contributions in this dissertation are summarised in the following:

• We present a comprehensive survey on zero-shot image classification where an
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overview is presented for image classification in zero-shot learning, and the com-
parison results of various representative methods are collected on a number of
benchmarks, aiming to provide a fair and objective reference for evaluating dif-
ferent methods.

– For a rigorous and detailed review of the task in zero-shot learning, we review
and explain some commonly used terms and notations, and define the zero-
shot tasks under different learning scenarios.

– A hierarchical classification for zero-shot image classification methods is pro-
posed to introduce the representative methods for each family according to
their based frameworks.

– For constructing a fairer and more careful comparison between various zero-
shot methodologies, three implementation details that can boost the perfor-
mance of zero-shot learning are examined, i.e. whether the backbone struc-
ture has been modified, whether fine-tuning has been conducted, and whether
additional knowledge has been used. Annotating these additional beneficial
operations or knowledge applied in methods could help provide a more de-
tailed and fair comparison reference for future researchers.

• We propose a self-focus mechanism for a mean squared error based deep embed-
ding model to prevent the learned embedding function from over-fitting to the seen
classes.

– A self-focus module, constructed as a 1-layer fully connected neural network
with the activation function sigmoid followed by softmax operation, is devel-
oped to generate the focus ratios measuring the importance of the dimensions
in the embedding space during training.

– During the optimization process, the proposed mechanism allows the correla-
tions between the location and the importance of each dimension to be con-
sidered.

– Through the proposed methods, the embedded semantic attributes for unseen
classes equip larger gaps to those of seen classes which indicates an alleviation
of the over-fitting.

• An adversarial framework is designed for an embedding method with learned sim-
ilarity metrics. Gradient with respect to the input samples is adopted to make the
recognizer more sensitive to the unseen classes and keep the prediction of seen
classes roughly consistent.
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– A regularization term as the sum of the l2-norm of input samples is adopted to
achieve robust learning. This training process could be regarded as an adver-
sarial defence which makes the learned classifier sufficiently robust to small
perturbations in the sample space.

– During the test, the perturbed instance inclined to lead a prediction as unseen
is obtained in the neighborhood of the original sample through calculating an
adversarial perturbation based on a designed classification loss.

– The learned model equips the appealing feature that small sample re-adjustment
can lead to high responses to unseen classes while not affecting the recogni-
tion of seen classes due to the robust adversarial training.

• Following the idea of the previous adversarial framework, instead of adjusting the
samples, we adopted such robust defence and attack techniques on the learned pa-
rameter spaces.

– With the same baseline, such an adversarial framework on parameters space
achieves better comprehensive performance compared with the one on the
sample space.

– During the test, the perturbed instance inclined to lead a prediction as unseen
is obtained in the neighbourhood of the original sample through calculating
an adversarial perturbation based on a designed classification loss.

– The perturbation can be calculated not only for a single instance but also for
a group of samples, thus allowing the training samples to support calculating
more generalized perturbation for the parameters of the learned recognizer.

– During the test, if the target instances are allowed to be recognized in a batch
way, a shared perturbation for the parameters will lead to more significant
performance.

The correlations between the proposed methods are shown in Fig. 1.2. We first fo-
cused on the method with the settled metric (Euclidean distance) embedding method and
developed a self-focus mechanism to prevent obtaining the over-fitted embedding func-
tion. Since this proposed mechanism can not be implied to the embedding methods with
learned metrics (learned similarity). We further designed an adversarial framework for
this kind of method to learn more generalized metrics for recognizing unseen classes.
However, the designed framework can only consider a single instance at a time, which
may lead to too extreme perturbations in the framework and thus affect the prediction of
seen classes. Therefore, we improved the adversarial framework and developed it into the
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Fig. 1.2: The correlation between the proposed methods.

parameter space. Such design achieves obtaining perturbation based on multi-instance,
thus avoiding the drawbacks associated with extreme perturbations.

1.2 Summary of Remaining Chapters

Chapter 2 Comprehensive Survey on Zero-Shot Image Classification In this chap-
ter, we provide a comprehensive survey on zero-shot image classification. Backgrounds
of the research field including the motivations and research target are introduced, optional
auxiliary information such as semantic attributes and text are described with examples,
the training and test scenarios and problem definitions are specifically explained, and
representative methods for each family of methods are reviewed to provide a thorough
understanding of the zero-shot learning. Furthermore, we summarize the reported perfor-
mance of the representative methods with implementation details in terms of backbone
modification, fine-tuning and additional knowledge. This chapter is based on a paper by
Yang et al., which has been currently accepted by the journal Applied Computing and
Intelligence.

Chapter 3 Efficient Self-Focus Mechanism for Coarse-Grained Generalized Zero-
Shot Learning In this chapter, we introduce a self-focus mechanism based on a well-
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performed deep embedding method as the baseline. The baseline is designed to project
semantic attributes into the settled visual feature space to avoid aggravating an introduced
hubness problem in zero-shot learning. The specific designs for the baseline and the
proposed self-focus module are presented. We indicate how the learned focus ratio im-
proves the metric to employ the correlations between the location and the importance of
each dimension, and also explain why such an improved metric is purely adopted during
training. Furthermore, sufficient experiment results are demonstrated to verify that the
proposed mechanism could effectively alleviate the class-level over-fitting problem. This
chapter is based on the papers of Yang et al. [15, 16]

Chapter 4 Adversarial Relation Network for Generalized Zero-shot Learning In
this chapter, we propose an adversarial framework based on an embedding baseline where
similarities between semantic attributes and visual samples are learned by a DNN, namely
relation network. The two main components in this framework, a robust training process
and a sampler re-adjustment process, are introduced in detail. We proved how the training
process with the l2 norm on inputs as a regularization term could improve the robustness
of the model. We also explained the calculation process for the beneficial perturbation.
The comprehensive performance evaluation and ablation study are demonstrated to verify
the effectiveness of the entire framework and each component process, respectively. This
chapter is based on a paper by Yang et al. [17]

Chapter 5 Instance-Specific Perturbation on Parameters for Relation Network based
Generalized Zero-Shot Learning In this chapter, referring to the proposed adversar-
ial framework on sample space, we develop an adversarial framework on the parameter
space of the learn metrics for the relation network based embedding methods. We present
the process of how the robustness of parameters is attained and how the instance-specific
perturbations are calculated for both the single instance and group instances cases. The
benefit of obtaining perturbations with group instances is explained, and the effectiveness
of the proposed framework is evaluated on two baselines, thereby verifying its generaliz-
ability.

Chapter 6 Conclusion We will summarise this dissertation and conduct discussions on
future works.

In order to make each of these chapters self-contained, some critical contents appear-
ing in previous chapters may be briefly reiterated in several chapters, such as the model
definitions or illustrative figures.
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Chapter 2

Comprehensive Survey on Zero-Shot
Image Classification

In this chapter, we present an overview of image classification in zero-shot learning in-
cluding its relevant definitions, learning scenarios, and various methodologies. While
we properly structure each part and summarize each family of methods with illustration,
visualization, and tables, we put one main focus of this work on sorting out the imple-
mentation details, such as commonly used benchmarks, and diverse experiment settings
so as to offer more practical guidance to researchers in the area. In the end, the compar-
ison results of various representative methods are collected on a number of benchmarks,
aiming to provide a fair and objective reference for evaluating different methods.

Compared to the recently-presented surveys [18, 19], our work shows three major
differences. First, our work also introduces the most recently published important meth-
ods, as more seminar works and even breakthroughs emerged recently, thus reflecting a
more timely and comprehensive review. Second, based on model components, training
strategies, and learning objectives, we provide a more detailed hierarchical classification
for zero-shot image classification methods. Third, we put one main focus of our survey
on comparing different methods from the perspective of implementations, thus offering
practical guidelines for applying zero-shot learning in real scenarios.

2.1 Backgrounds

In the field of computer vision, deep learning methods have made great achievements
in both applied computing and machine intelligence. Remarkably, deep learning attains
unprecedented success in image classification. Exploiting many powerful DNNs, ma-
chines can perform at a level close to or even beyond that of humans in many applications
as long as sufficient labelled samples are provided [20–22]. However, the conventional
DNN models rely on many important factors in order to achieve excellent performance.
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Typically, DNNs require a huge number of labelled samples for training, whilst massive
sample collection and labelling may unfortunately be difficult, time-consuming, or even
impossible in many cases.

 

Learning Attributes Recognizing Instances 

  

Horse Zebra 

 

 

 (Seen) (Unseen) 

Fig. 2.1: Examples for Human learning processes.

In fact, not in line with DNNs’ high demand for data, there are many scenarios which
are commonly seen in practice:

• Large target size. Human beings could distinguish around 3,000 basic-level classes [23],
and each basic class could be expanded as subordinate ones, such as dogs in differ-
ent breed [24]. Such a huge number of categories makes it infeasible to construct a
task where each category has a sufficient number of labelled samples.

• Rare target classes. Some tasks suffer from rare classes for which the correspond-
ing samples are difficult to be obtained, such as fine-grained classification over
flowers and birds [25, 26] or medical images corresponding to certain specific situ-
ation [27].

• Growing target size. The target set for some tasks changes rapidly, with candidate
classes increasing over time, such as detection of new events in newly collected
media data [28], recognizing the brand of a product [29] or learning some writing
styles [30].
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Horse (Seen) 

Black: Yes 

White: Yes 

Brown: No 

Stripes: Yes 

Hooves: Yes 

Zebra (Unseen) 

Black: Yes 

White: Yes 

Brown: No 

Stripes: Yes 

Hooves: No 

Tiger 

Black: Yes 

White: Yes 

Brown: No 

Stripes: No 

Hooves: No 

Panda 

Black: Yes 

White:  Yes 

Brown: Yes 

Stripes: No 

Hooves: Yes 

Horse 

Training Testing 

Fig. 2.2: Examples for zero-shot learning processes.

In those scenarios, re-training a DNN model over target classes appears not very fea-
sible. Fine-tuning the trained model might be tractable only if some of the labelled tar-
get samples could be obtained. To overcome such restrictions, zero-shot learning, earlier
called zero-data learning, is set up to simulate the learning capacity of human beings [31].
Fig. 2.1 demonstrates a schematic graph for the efficient human learning process. Assum-
ing a child is equipped with knowledge including the shape of the horse, the concept of
stripes, and colours of black and white, once being told that zebra looks like a horse cov-
ered in black and white stripes, the child has a good chance of recognizing a zebra even
if seeing it for the first time [32]. Fig. 2.2 demonstrates a schematic graph for the zero-
shot learning process that situations are also similar in zero-shot learning. Based on the
auxiliary information used to describe each category and some corresponding samples, a
model can be trained to construct the correlation between samples and the auxiliary in-
formation, thus enabling to extend the classification to unseen categories, based on their
correlation as well as the auxiliary information.

2.2 Overview of Zero-Shot Learning

To describe the zero-shot classification task precisely, we will first review and explain
some commonly used terms and notations in this section, then focus on introducing the
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zero-shot image classification methods which employ semantic descriptions as auxiliary
information in the next two sections. Based on the design of the information extractor, we
classify the current methods into two main categories: embedding methods and generative

methods, and propose a taxonomy structure for these methods as shown in Fig. 2.3. For
simplicity of expression, all subsequent references to zero-shot learning refer to the image
classification task under this domain.

2.2.1 Auxiliary Information

In zero-shot learning, the target classes without corresponding training samples are named
as unseen classes, whilst the classes with labelled samples during training are called seen
classes. Due to the absence of training samples for unseen classes, the auxiliary informa-
tion is essential for constructing the cognitive concepts of unseen categories. The space of
such auxiliary information should contain enough information to distinguish all classes.
In other words, for each class, corresponding auxiliary information should be unique and
sufficiently representative to guarantee that an effective correlation between the auxiliary
information and the samples can be learned for classification. Since zero-shot learning
is inspired from the human efficient learning process, semantic information has become
the commonly dominant auxiliary information [26, 33, 34]. Similar to the feature space
for image processing, there is also a corresponding semantic space holding numeric val-
ues in zero-shot learning. To obtain such semantic space, two different kinds of semantic
sources, attributes and textual descriptions, are mainly leveraged.

Attribute. Attribute is the earliest and most commonly used source of semantic space
in zero-shot learning [19, 31, 35]. As a kind of human-annotated information, attribute
contains precise classification knowledge though its collection might be time-consuming.
Considering an attribute as a word or phrase introducing a property, one can build up a
list of attributes. By combing these attributes, all the seen and unseen classes can be de-
scribed. Moreover, these combined descriptions should be different for each class. Then
the vectors, holding binary values 0 and 1 with sizes equal to the number of the attributes,
form a semantic space where each value denotes whether the described class is equipped
with the corresponding attributes or not. In other words, the attribute vectors for all the
classes share the same size, and each dimension of the vector denotes a specific prop-
erty in a settled order. For example, in animal recognition, one attribute could be stripe.
Value 1 in the dimension of stripe of the attribute vector means that the described animal
is with stripes [35]. Suppose there are only 3 attributes: black, white, and stripes, then
the attribute vectors describing classes panda, polar bear and zebra should be something
like [1, 1, 0], [0, 1, 0] and [1, 1, 1], respectively. However, since an attribute vector is
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designed to describe the entire class, it might be imprecise to use binary values only. The
diversity of individuals within each class may lead to a mismatch between the sample and
attributes. Taking the animal recognition again as an example, we can see horses might
also be in pure black and pure white. If the attribute values of both black and white equal
1 for the class horse, then the black horse samples are contradictory to the attribute white,
so are the white horses to the black. Therefore, instead of taking the binary value, it
makes more sense to employ continuous values indicating the degree or confidence level
for an attribute. It is shown in [36] that adopting the average value of the voting results or
the proportion of the samples corresponding to an attribute leads to better classification
performance. Additionally, the relative attribute measuring the degree of attribute among
classes is also suggested [37].

Text. Instead of using human-annotated attributes, descriptions of a class such as the
name or definition could also be considered as the source to construct a semantic space.
However, it is not straightforward to transform the unstructured textual information into
representative real values. When the class name is exploited as the semantic source with-
out any external knowledge, the contained information might be far from enough for
achieving a good classification on images. In this case, pre-trained word embedding mod-
els borrowed from natural language processing could embed the class names to some rep-
resentative word vectors and form a meaningful semantic space. Specifically, the seman-
tic similarity of two vocabularies can be approximately measured by the distance between
the two corresponding embedded vectors, thus the similarity knowledge contained in the
training text corpora (for constructing the word embedding models) could be adopted for
classification. In the existing methods, Word2Vec [38–41] and GloVe [38, 41, 42] pre-
trained on English language Wikipedia [43] are two commonly used embedding models
for class name sources. Such semantic similarity measure space can also be constructed
via the knowledge in terms of ontology. An example is to adopt the hierarchical em-
bedding from a large-scale hierarchical database WordNet [38]. The keyword is another
optional semantic source. The descriptions of classes are collected through databases or
search engines to extract keywords. Consequently, the binary occurrence indicator [44]
or frequencies [38] in Bag-of-Words, or transformed term frequency–inverse document
frequency features [25, 26, 45] can construct such semantic vectors. The description in
the form of paragraph could also be used as a semantic source. For example, visual de-
scriptions in the form of ten single sentences are collected for images in [46]. After that,
the text encoder model is utilized to return the required semantic vectors. This kind of
semantic source contains more information as well as more noises.
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Other auxiliary information. In addition to the semantic source, other types of sup-
porting information also exist. That kind of information is often employed simultane-
ously with semantic information to assist the model in extracting more effective classifi-
cation knowledge. For instance, hierarchical labels in taxonomy are introduced to provide
additional supervision of classification [47, 48]; the human defined correlation between
attributes [49] capturing the gaze point of each sample is adopted as the attention super-
vision to improve the attention module producing more representative feature maps [42];
Some of these information may not provide sufficient knowledge to accomplish the en-
tire classification task. However, they can be regarded as the supplementary of semantic
information which may better construct cognitive concepts of unknown categories.

2.2.2 Learning Scenarios

In conventional image classification tasks, due to the differences in the distribution of
instances between the training and test sets, the trained model does not perform as well
during the test as it does on the training set. This phenomenon is also present in zero-
shot learning, and is even more severe owing to the disjoint property of seen and unseen
classes. Such differences in the distribution between seen and unseen classes are called
domain shift [50]. Moreover, the poor model performance is termed as class-level over-
fitting [51].

To address this challenge, by effectively employing classification knowledge from
samples and auxiliary information, researchers have proposed various methods of intro-
ducing knowledge at different stages (including training and testing). As a result, the
implementation scenarios become diverse. Both sample space and auxiliary information
space can be defined in zero-shot learning, according to which we can divide the scenarios
accordingly. In general, from the perspective of the training stage, the task can be divided
into three scenarios, namely inductive, semantic transductive, and transductive, which are
defined as follows:

• Inductive zero-shot learning. Only labelled training samples and auxiliary infor-
mation of seen classes are available during training.

• Semantic transductive zero-shot learning. Labelled training samples and auxil-
iary information of all classes are available during training.

• Transductive zero-shot learning. Labelled training samples, unlabelled test sam-
ples, and auxiliary information of all classes are available during training.

From the definition, the inductive zero-shot learning represents the most severe learning
scenario because both the target classes and instances are unknown. Models trained in this
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scenario are more likely to suffer from class-level over-fitting. In comparison, models
trained in the rest two transductive scenarios share a clear learning objective since the
classification knowledge is guided by the unseen information. However, these trained
models will not generalize to new unseen classes as well as the models trained in the
inductive scenario [19].

2.3 Overview of Zero-Shot Learning

When the zero-shot problem was first proposed in the early stage, researchers focused
only on achieving good classification on unseen classes, which is known as conventional
Zero-Shot Learning. Later, it was found that the classification of the unseen classes would
suffer from a devastating blow once the seen categories were also included as candidates
for classification. In other words, the early proposed models could not distinguish well
between seen and unseen categories and thus failed to construct the cognition concepts of
new classes. Consequently, a more challenging task called Generalized Zero-Shot Learn-
ing attracts much attention, which requires classifying both seen and unseen classes [52].
The original intention of zero-shot learning is to simulate the human process of construct-
ing the cognition concept of classes from learned knowledge and supporting information
in the absence of samples. Since the constructed cognitive concepts can be evaluated
accurately only if the unseen and seen classes can also be correctly distinguished, the fo-
cus of current works has shifted to the generalized one. Fig. 2.4 shows the schematic of
different scenarios in training and test, where the combination of the different scenarios
forms six common settings.

Problem definitions In zero-shot learning, each sample is originally designed as an
image containing certain specific objects in a tensor form holding value for each pixel.
To ensure more convenient implementation, the visual features extracted by a pre-trained
DNN are commonly regarded as the samples instead of using the image. For a rigorous
presentation, here we take the entire image as the input sample in our article. Assuming
there are totally N samples from K classes, we denote X = XS ∪ XU as the set of all
the image samples from both seen and unseen classes, and F(·) as a feature extractor for
obtaining the feature F(xi) of the image xi. Similarly the corresponding label set could
be denoted as Y = YS ∪ YU , and yi = k indicates that sample xi belongs to the kth-class.
The set of the auxiliary information is denoted as A = AS ∪AU which contains K vectors
where each vector ak stands for the auxiliary information of the kth-class. Here let KS

and KU indicate the number of seen and unseen classes, respectively, and the first KS

classes represented in A are assumed as the seen ones for convenience. Note that the seen
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and unseen classes are disjoint, which means XS ∩ XU = YS ∩ YU = AS ∩ AU = ∅. As
partial of seen class samples are adopted as test instances which should not participate
in the training process, the seen sets of the samples and labels are further consistently
divided into training and test sets as XS = XS

tr ∪ XS
te and YS = YS

tr ∪ YS
te. Specifically,

both of the train and test seen sets should cover all the KS seen classes. Since there
are three scenarios for the training process, the training set Dtr = {Xtr,Ytr,Atr} can be
respectively defined for the inductive, semantic transductive, and transductive scenarios
in the three forms as DI

tr = {XS
tr,Y

S
tr,A

S}, DST
tr = {XS

tr,Y
S
tr,A} and DT

tr = {XS
tr ∪

XU ,YS
tr,A}. For the test set Dte = {Xte,Yte,Ate}, it can also be defined in two forms

as DC
te = {XU ,YU ,AU} for conventional task and DG

te = {XU ∪ XS
te,Y

U ∪ YS
te,A} for

generalized task, respectively. With these definitions, the target of zero-shot learning can
be represented to train an information extractor M (containing the feature extractor F(·))
with a settled or a learnable classifier C on the training set Dtr to achieve classification on
Xte.

2.4 Embedding Methods

In the embedding methods, the information extractor M = {θ(·), ϕ(·)} is designed as
a union of embedding functions θ(·) and ϕ(·). The aim of these extractors is to find the
proper embedding spaces for both visual samples and auxiliary information so that the
trainable or settled classifier C can achieve class recognition on the target space. From the
perspective of the learning objective, we further classify the existing embedding methods
as: (1) feature-vector-based, (2) image-based, and (3) mechanism-improved methods.

2.4.1 Feature-Vector-Based Methods

Considering the limitation of the sample size and the latent distribution differences be-
tween the samples of the unseen and seen classes, the most easily associated and appro-
priate visual feature space is the learned space in large-scale conventional image classifi-
cation tasks. Fair data splits and extracted features for several benchmarks are discussed
and evaluated in [53]. The feature vector space learned by the deep residual network
called ResNet101 [54] over a benchmark dataset ImageNet [55] is commonly selected in
the implementations. Based on the fixed feature extractor F = Ff , feature vectors Ff (X)
are regarded as the visual samples and the insight of the feature-vector-based methods is
to design embedding functions or classifiers trying to improve the performance where the
classifier C (xi,A,M) is commonly constructed as a function taking the embedded fea-
tures and attributes to return the predicted confidence scores of all the classes represented
in A. We will review this family of methods according to their mainly relied frameworks.
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Space alignment framework. These encoding based methods often have a specific em-
bedding target space, which can be a commonly-used visual feature space, an manually
defined semantic description space, or an unknown hidden space for detecting certain cor-
relations. This idea is the first as well as one most common solution to zero-shot learning.

The classifier can be designed based on a fixed distance metric d(·, ·) such as Eu-
clidean distance or Cosine distance. Thereby, the predicted label for each visual feature
Ff (xi) is obtained as

ŷi = argmin
k

(d (θ (Ff (xi)) , ϕ (ak)) , s.t. ak ∈ Ate. (2.1)

In the following, we briefly review some representative work in the space alignment
framework. In [13], semantic-to-visual mapping is learned to align semantic and visual
features from the same class. Specifically, this method utilizes a multi-layer neural net-
work as the embedding function implying that the visual feature space is more appro-
priate as a target space to avoid aggravating the hubness problem. More studies adopt
the reconstruction or bi-direction mapping (a relaxed form of reconstruction) process to
align the information from different spaces. Linear embedding functions are applied for
both visual-to-semantic and semantic-to-visual projections in [56], and a rank minimiza-
tion technique is additionally adopted for optimizing the linear transformation matrices.
In [57], the encoding processes of the reconstruction are designed in both visual and
semantic spaces, and achieve the joint embedding by minimizing the maximum mean
discrepancy in the hidden layer. Then as a more strict case, the embeddings for the visual
feature and semantic attributes from the same class are enforced to be equal in [58], and a
two-alternate-steps algorithm is proposed in [59] to solve transformation matrices in the
joint embedding with reconstruction supervision in two alternate steps. Similar classes for
each class are selected via a threshold among cosine similarity in [60], then a semantic-
to-visual-to-semantic reconstruction process is proposed, where the inter-class distances
are pushed and the intra-class distances are reduced on the visual space. A projecting
codebook is learned in [61] with an additional center loss in [62] and a reconstruction
loss in [56] to embedded visual features and semantic attributes to a hidden orthogonal
semantic space. The label space is selected as the embedding target space in [63], where
the embedding of the unseen semantic attributes to the label space can be achieved by
learning the projecting function from both the semantic and visual spaces to the label
space. Such embedding is equivalent to linearly representing the labels of unseen classes
by those of seen classes, thus improving the generalization of the model in the label space.

The classifier can also be designed learnable such as a bilinear function W, which
predicts the confidence scores as

C (xi,A,M,W) = θ (Ff (xi))
T W ϕ (A) . (2.2)
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The semantic attributes of both the seen and unseen classes are purely represented by
those of seen in [64] to train the bilinear function which thus associates unseen classes
with seen classes. Norms of the embedded semantic attributes and embedded visual fea-
ture is constrained in [65] for fair comparisons over classes and bounding the variation
in semantic space, respectively. In [51], the bilinear function is decomposed into two
transformation matrices, and it is proved that minimizing the mean squared error between
similarity matrices and the predicted scores for all samples is equivalent to restricting
those transformation matrices to be orthogonal. A pairwise ranking loss function similar
to the one in [66] is proposed in [67] as

KS∑
j

[margin I(j = yi) + C (xi, aj,M,W)− C (xi, ayi ,M,W)]+ . (2.3)

Instead of the sum of all these pairwise terms, the ranking loss is modified by focusing on
the pair. This leads to the maximum value in [68] and results in a weighted approximate
one in [38] inspired by the unregularized ranking support vector machine [69]. It can
also be redesigned with a triplet mining strategy to construct the triplet loss with the most
negative samples and the most negative attributes as proposed in [70].

Moreover, the classifier can be defined in other forms. The instances from each class
are assumed to follow an exponential family distribution in [71] where the parameters are
learned from the semantic attributes. The method in [41] develops the ranking loss into a
non-linear classifier case by learning multi-bilinear classifiers where each time this model
chooses the one with the highest confidence score to be optimized. In [72] the attributes
of unseen classes are utilized to reconstruct those of seen classes by the sparse coding
approach. The solved coefficients are regarded as the similarity between classes. Then
a neural network is designed to learn the similarity between the embedded attributes and
visual features under the supervision of the labels and the similarities.

Graph based framework. A graph containing correlations between classes can be ad-
ditionally constructed to enhance the generalization of the trained model. In [73], two
relation graphs of the features in the hidden space are constructed based on the k-nearest
neighbors among samples and the class labels which contribute to reducing distances
between highly relevant features. This design is improved in [74] where two separated
latent spaces are learned for embedding the visual samples and semantic attributes, and
the k-nearest neighbor is replaced by the Cosine similarity to imply the relations between
samples. Based on the two embedding spaces and the weighted sum of relations between
samples and class labels an asymmetric graph structure with orthogonal projection is in-
troduced to improve the learned latent space. By fixing the number of super-classes in
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different class layers, clusters obtained through the clustering algorithm for the attributes
are taken to represent the super-class in [75], thereby a hierarchical graph over classes can
be constructed to overcome the domain gap between seen and unseen classes. In [76], the
relations between the classes are captured by augmenting the original label matrix in a
dependency propagation process with the support of the low-rank constraint.

The graphic convolutional neural network (GCN) is a neural network that directly ap-
proximates localized spectral filters on graphs to learn hidden layer representations more
relevant to the target task [77]. GCN is applied on the word embeddings of all the classes
in [78] to learn the classifier parameters for each class. Then a dense graph propagation
module is proposed in [79] where the connections from nodes to their ancestors and de-
scendants are considered. In addition to the graph of word embeddings, in [80], the graph
constructed through the k-nearest neighbor in the attribute space is also employed to learn
the classifier parameters. The outputs of the GCN based on two graphs are weighted
summed to learn the final parameters.

Meta learning framework. Meta learning process proposed in the few-shot learning
aims to train models with high knowledge transfer ability [81]. In zero-shot learning,
models trained on seen class data tend to overfit and perform poor on unseen classes.
Therefore, the methods with similar meta learning strategies are developed to train more
generalized models.

Relation network (RN) [14] is designed to learn a similarity measure based on the
neural network architecture. The visual feature and embedded semantic attributes will
be concatenated and used as the input to the measure model to return the similarity. The
whole model is trained under a meta learning process where each time the loss function is
designed based on a meta learning task sampled from the training set. Specifically, each
time a small group of the samples are selected to construct the meta classification task
where the number of the included classes is not settled. By training over several meta
tasks, the trained model would be more adaptive for different tasks. Therefore, the model
would be more generalized.

As an improvement of RN, CRnet [82] follows the same training process with the
meta tasks. Additionally, an unsupervised K-means clustering algorithm is implemented
to find the similar class groups and the corresponding group centers. Instead of training
one embedding function for the semantic attributes, multi-attributes embedding functions
are trained based on the group centers where the inputs are the differences between these
centers and the semantic attributes. Then the sum of these embedded attributes is utilized
for learning the similarity in the same way as RN.

A similar process is adopted in a correction network [83]. Based on the sampled
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meta tasks, an additional correction module is trained to modify the predicted value of
the original model to become more precise. Then the learned correction module would
be generalized since it is adapted to different meta tasks. As such, the correction will
contribute to better performance.

2.4.2 Image-Based Methods

In the image-based methods, it is the original images X instead of the extracted feature
vectors Ff (X) that are regarded as samples. Moreover, the well-designed backbone ar-
chitecture with pre-trained parameters from the image classification task is partially or
entirely borrowed as a learnable one F = Fl. The insight underlying these methods is
to optimize the feature extractor Fl simultaneously with the specific designed embedding
function and classifier. Sometimes an additional module accompanying the backbone is
designed to obtain a more adaptable feature space, thus improving the performance.

Supervision based methods. By providing additional constraints or regularizations in
the loss function for training, the feature extractor can be pushed to capture more relevant
information, which results in a more representative feature space. Rather than training an
embedding model with a bilinear classifier purely on the information from seen classes,
unlabelled data are also employed in quasi-fully supervised learning [84]. Without super-
vised information, the predicted scores of the unseen classes for those unlabelled data are
constrained to be large by constructing the sum of negative log values of them as a regu-
larization term during optimization. Then training the whole model under this quasi-fully
supervised setting with the designed loss will also improve the features extracted by the
backbone. This can alleviate the bias towards seen classes.

A discriminative feature learning process is introduced in [85]. A zoomed coordinate
is learned based on the feature maps to reconstruct a zoomed image sample with the same
size as the original one, where visual features are extracted from both of the zoomed and
original image samples. Since the semantic attributes are not discriminative enough, only
a partial list of learned embedded features is adopted for learning the bilinear classifier
with the attributes. Additionally, a triplet loss based on the squared Euclidean distance is
constructed among the rest of the embedded features to improve the learned feature space.

Domain-aware visual bias eliminating [86] adopts a margin second-order embedding
based on bilinear pooling [87] and a softmax loss function with a kind of temperature dur-
ing training. As a result, the learned feature space constrained to be more discriminative
leads to a low entropy for the instances from seen class. Then the instances from unseen
class during the test would be distinguished with a relatively high entropy.
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Attention based methods. As the attention mechanism has achieved significant perfor-
mance in the image classification tasks [88], several attention relevant modules are also
designed in zero-shot learning for capturing more representative features corresponding
to the semantic information. In most of these methods, the attention module is utilized to
obtain local features corresponding to certain specific semantic property. To produce more
adequate supervision on the attention based feature space, a second-order operation [87]
is applied on the learned features and semantics [89]. In the region graph embedding
network [90], a transformation matrix is solved to represent the similarity between the
attributes of the seen and the unseen classes. According to these similarities, a cross-
entropy loss is then designed to ensure that the classifier also outputs a higher score for
similar unseen classes when classifying samples from seen classes. As a result, the fea-
ture extractor is pushed to learn the feature space capturing more correlation information
between seen and unseen classes. In [91], a triplet loss is designed to push the inter-class
distances and reduce intra-class distances between features corresponding to both local
and entire images. This model thus improves the learned feature space more conducive to
the classification task.

Instead of purely training the attention module through the loss function defined on
the feature space, additional explicit human annotated labels for attention can also be
provided to supply the training. For example, in [42], captured gaze points are employed
to generate the ground truth of the attention maps for constructing the binary cross-entropy
loss across all the pixels. In addition to capturing local features, the attention learned from
several feature maps is combined to guide the learning of the bilinear classifier [92].

2.4.3 Mechanism-Improved Methods

The insight of the mechanism-improved methods is to propose a generalized mechanism
without changing or slightly changing the structure of the original method. The proposed
mechanism can be an improvement of the training process, an optimization of a specific
loss function, or a redesign prediction process. Commonly, this family of methods are
designed for those zero-shot models sharing certain commonalities.

Training process focused. A theoretical explanation to normalization on attributes is
presented in [93]. Then a more efficient normalization scheme is proposed standardizing
the embedded attributes to alleviate the irregular loss surface.

During the feature extracting process, a fine-tuned backbone is proposed in the at-
tribute prototype network (APN) [94]. In this work, assume the size of attributes is Da.
The prototype for each attribute P = {pda ∈ RC}Da

da=1 is learned to generate similarity
map Mda = {mda

i,j}h×w with height h and width w through multiplication of these pro-
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totypes and the corresponding feature maps. During the fine-tuning, the commonly used
linear embedding classification loss is optimized with several regularization terms. An
attribute decorrelation term is defined as the sum of l2-norm of each dimension of the
prototypes in the same disjoint attribute groups. This thus helps decorrelate unrelated
attributes via enforcing prototypes in the same group sharing the value. Another simi-
larity map compactness term can enforce the similarity maps concentrating on the peak
region [95], which is given as

LCPT =
Da∑

da=1

h∑
i=1

w∑
j=1

mda
i,j[(i− ĩ)2 + (j − j̃)2], (2.4)

where (̃i, j̃) is the coordinate of the maximum value in Mda . This element-wise multi-
plication between the similarity map and the distance between coordinates constrains the
similarity map to focus on a small number of local features. Thereby, each similarity map
Mda can be regarded as the attention map corresponding to da-th attribute. The compar-
ison result in this work shows that the fine-tuned backbone in APN outperforms the ones
in some other methods [96, 97], even when fine-tuning is also implemented. In this sense,
it can be regarded as a general improved one for feature extracting.

Isometric propagation network (IPN) [98] is proposed to guarantee the relation be-
tween classes in a propagation process based on a specific similarity measure. By defin-
ing the average of samples from the same class as the initialized visual class prototype,
in the propagation, each time the prototype is re-represented by the weighted sum of the
prototypes of similar classes. The similar classes are detected through a threshold and
a similarity measure which is the softmax with temperature on the cosine similarity for
each prototype. The similarity is also utilized as the weight for the re-representation.
Such a propagation process can also be implemented on the semantic prototypes learned
based on the trained semantic embedding module in other methods such as that used
in [82]. During the test, the unseen prototypes could be obtained using the weighted sum
of the propagated prototypes of seen classes according to the similarity measure, which
contributes to significant performance improvement with the commonly used linear clas-
sification model.

The image is divided into different regions for extracting more precise features with
the attention module in [99–101]. Moreover, an additional seen-unseen trade-off loss can
be adopted to balance the predicted scores for seen and unseen classes. For example, a
self-calibration loss term as a biased cross-entropy loss for the predicted unseen scores of
samples from seen classes is designed in [99], and a soft cross-entropy loss based on the
similarity between seen and unseen classes is utilized in [101]. Training the models with
these additional constraints increases the prediction scores for unseen classes, thereby
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promoting the sensitivity of unseen class recognition.

A meta learning process with constructed meta training tasks is adopted in [4, 81]
for few-shot learning. Instead of employing a loss function associated with the original
classification task on the whole training set, several semi-tasks of the original task, namely
meta tasks, are constructed with the meta training data sampled from the original training
set. Adopting this meta learning process in zero-shot learning improves the generalization
and restrains over-fitting [14, 82, 98]. Fig. 2.5 demonstrates an example of the meta zero-
shot task in [14].
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Fig. 2.5: One illustrative example of meta tasks in meta learning process adopted in train-
ing relation network.

Test process focused. Since most of the methods suffer the class-lever over-fitting in
generalized zero-shot tasks, a mechanism named Calibrated stacking is proposed in [52]
to adjust the predicted confidence score for each class. With a trained classifier C and
corresponding information extractor M, the predicted confidence score in the regular test
process can be obtained as C(xi,Ate,M). Then the prediction based on the calibrated
stacking is defined as

ŷi = argmax
k

C(xi,Ate,M)− γI(k ≤ KS), s.t. ak ∈ Ate, (2.5)

where I() is the indicator function judging whether the k-th class belongs to a seen class
and γ is the hyper-parameter controlling the scale of the adjustment. This calibrated stack-
ing mechanism is simply subtracting a certain value for all the predicted seen confidence
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Fig. 2.6: Schematic of the seen-unseen accuracy curve. The black point with γ = 0
denotes the original performance of the model, the red point with γ = −1 and the green
point with γ = 1 represent the adjusted results where the predicted scores are fully biased
towards the seen and unseen classes, respectively.

scores. Specifically, assume all the confidence scores are scaled in the range (0,1). Set-
ting γ = 1 will lead that all the predicted labels belong to unseen classes, and conversely
γ = −1 will cause all the predicted labels as seen classes. In other words, setting γ = −1
and 1 lead to zero accuracies for the unseen classes and seen classes, respectively. By ad-
justing γ from -1 to 1 with a tiny step size, one can obtain the adjusted accuracies for both
the seen and unseen classes. Then a seen versus unseen accuracy curve can be plotted. In
this case, the area under seen-unseen accuracy curve (AUSUC) is proposed as one opti-
mal criterion measuring the overall performance of the models in generalized zero-shot
learning tasks. A schematic is shown in Fig. 2.6.

Entire process focused. In [102], a self-learning process is proposed where each time
hard unseen classes are selected based on the frequencies of the prediction during the test.
Then an expanded training set with additional sampled instances from those hard unseen
classes is constructed to re-train the model. The modified training set could enhance the
sensitivity of model for those hard classes thus can boost the performance of the model
under the transductive scenario.
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2.5 Generative Methods

The core component of generative methods is the generator that takes semantic infor-
mation as input and outputs corresponding pseudo samples. Such a generator can be
constructed based on variational autoencoder (VAE) [11] or generative adversarial net-
work (GAN) [12] architecture. It can be also trained with the labelled samples with
corresponded semantics. Then, by employing the unseen semantics, pseudo samples of
unseen classes could be generated where the zero-shot learning task is converted to com-
mon classification. In this case, the information extractor M denotes a training process
and the output is a trained generator G which takes A (sometimes combined with Xtr) as
inputs and outputs synthesized samples for corresponding classes. With the synthesized
samples of unseen classes to support the training, the classifier can be designed as a com-
mon image classifier C(·) which takes samples as input and outputs the confidence score
for each class. Here we will review those representative generative methods in different
frameworks.

2.5.1 VAE Based Methods

Variational autoencoder is designed to derive a recognition model in the form qϕ(z|x) to
approximate the real intractable posterior ptheta(z|x) with the objective function:

L(θ, ϕ, xi) = −DKL (qϕ (z|xi) ||pθ (z)) + Eqϕ(z|xi) [log pθ (xi|z)] , (2.6)

where DKL denotes the Kullback-Leibler distance, qϕ(z|x) is regarded as a probabilistic
encoder, and pθ(x|z) is regarded as a probabilistic decoder. As the most straightforward
form of VAE, conditional VAE [103] is applied to zero-shot learning in [104] as shown in
Fig. 2.7, where the sample is concatenated with the corresponding attributes to learn the
distribution parameters; the sampled random variables based on the learned parameters
are again concatenated with the corresponding attributes to reconstruct the sample. The
objective function can be simply redesigned as

L(θ, ϕ, xi, ayi) = −DKL (qϕ (z|xi, ayi) ||pθ (z|ayi)) + Eqϕ(z|xi) [log pθ (xi|z, ayi)] . (2.7)

In [105], Kullback-Leibler distance relevant to the synthesized samples and regres-
sion error of the semantic attributes from the corresponding synthesized samples are pro-
posed as two additional regularization terms. A dual VAE architecture is designed in [8]
where two VAE frameworks are trained respectively on the visual features and semantic
attributes. The correlation between these two frameworks is constructed via minimizing
the cross reconstruction errors and the Wasserstein distances between the latent Gaussian
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Fig. 2.7: Schematic diagram of conditional VAE, where ⊕ denotes concatenation, E
denotes the encoder, and D denotes the decoder.

distribution for those sample-attributes pairs coming from the same class. The dual VAE
is improved in [9], where a deep embedding network achieving the regression task from
the semantic attribute to visual features is additionally designed. Then the hidden layer
of this network is utilized as the input of the semantic VAE framework. The designed
regression forces the hidden layer to become representative for both visual features and
semantic attributes, thus benefiting the entire VAE framework. A disentangled dual VAE
is designed in [106]. Different from the original dual VAE, each VAE framework learns
two distributions, thereby sampling two random variables zpm and ztm. Notice that m de-
notes the modality which could be s and v representing semantic space and visual space,
respectively. For a group of pairs of training data, {zpm,i} is shuffled as {z̃pm,i} and then
added up with {ztm,i}. Optimizing the model with this additional classification loss disen-
tangles category-distilling factors and category-dispersing factors from both of the visual
and semantic features. The multimodal VAE proposed in [107] builds one VAE frame-
work for the concatenation of the visual feature and the embedded semantic attributes
from the same class to capture the correlations between modalities. In identifiable VAE
designed in [108], three VAE frameworks sharing the decoder for sample reconstruction
are built taking the sample, the attribute, and both of them as inputs, respectively. With an
additional regularization term [109] encouraging disentanglement during inference, the
learned latent space captures more significant information for generating discriminative
samples.
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2.5.2 GAN Based Methods

In generative adversarial networks, a generator G and a discriminator D are designed to
be trained against each other iteratively with the loss function:

min
G

max
D
L(D,G) = Ex∼Xtr [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (2.8)

Here, pz(z) denotes a prior on input noise variables z, the discriminator is trained to
distinguish the generated pseudo samples from the samples in the original dataset and the
target of generator is to synthesize pseudo samples as similar as the real samples so that
the learned discriminator cannot recognize them. Then following the WGAN proposed
in [110] where Wasserstein distance is leveraged, the loss of the conditional WGAN in
zero-shot learning can be developed as

min
G

max
D
Lf−WGAN (D,G) =Ex∼Xtr [logD (x, ay)]− Ez∼pz(z) [D (G (z, ay) , ay)]

− λEz∼pz(z)

[(∣∣∣∣∇G(z,ay)D (G (z, ay) , ay)
∣∣∣∣2 − 1

)2
]
.

(2.9)

In [6], a classifier for seen classes is pre-trained on the training set, then adopted to supply
a classification supervision for the samples generated from a WGAN framework. Guided
by this additional supervision, the generator will learn to synthesize more discriminate
samples which benefits the training of the final classifier. Inspired by the prototypical
networks in few-shot learning [5], multiple prototypes of each seen class are calculated
in [111]. Samples of each class are grouped into several clusters, then the average of sam-
ples in each group is regarded as one prototype for the corresponding class. Similarly, the
prototypes of the synthesized samples could also be obtained based on the clusters. By
minimizing the distances from the synthesized samples to their closest corresponding pro-
totypes and distances from the synthesized prototypes to their closest real prototypes, the
synthesized samples are constrained to be highly related to the attributes and real samples.
Instead of adopting the classification supervision, a gradient guidance from a pre-trained
classifier is proposed in [7]. In this model, classifier parameters at different spots during
training are employed for calculating the optimization gradients based on the real sample
and synthesized sample, respectively. Expectations of the Cosine distances between the
gradients are calculated from the real and synthesized samples, which are then utilized
as an additional loss term to promote synthesizing samples as representative as real ones.
In [10], conditional GAN is adopted with the designed instance-level and class-level con-
trastive embedding, where two classification problems are constructed in the embedded
feature space to encourage the features to capture strong discriminative information. By
employing additional taxonomy knowledge, hierarchical labels are obtained to calculate
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multi-prototypes for each class in [48]. Constraining the synthesized samples close to all
their corresponding prototypes will encourage the synthesized samples to capture the hi-
erarchical correlations. Inspired by space-aligned embedding, semantic rectifying GAN
is proposed [112], in which a semantic rectifying loss is designed to enhance the dis-
criminativeness of semantics under the guidance of visual relationships and two pre- and
post-reconstructions (used to keep the consistency between synthesized visual and seman-
tic features). Considering that the original semantics might not be discriminative enough,
disentangling class representation generative adversarial network [113] is proposed to
search automatically discriminative representations by a multi-modal triplet lossthat uti-
lizes multi-modal information.

2.5.3 Muti-Architecture Based Methods

Since GAN based methods tend to over-fit and VAE based methods tend to under-fit,
some works adopt both the frameworks in their methods. CVAE is trained with a regres-
sor against a discriminator in [114]. The framework proposed in [96] shares the decoder
in conditional VAE as the generator for a conditional WGAN. This framework is also
applicable for the transductive scenario by training another discriminator for unseen sam-
ples. In this model, a pre-trained classifier on the training set is adopted as classification
supervision contributing to more discriminating synthesized samples. The dual VAE is
trained with two additional discriminators in [115] based on the sum of the dual VAE loss
and the conditional WGAN loss to avoid blurry synthesized samples.

2.5.4 Meta Learning Based Methods

As a meta learning process proposed in [116], Model-Agnostic Meta-Learning is referred
to in zero-shot learning to train generative models. First, each meta task contains meta
training and meta validation set which are sampled from the training set. The model
optimized over each meta task can become more generalized due to the divergence of the
meta tasks. Moreover, the optimization process for parameters is also conducted in a meta
way. Rather than learning parameters performing the best over tasks, the target here is to
learn the most adaptive ones for all the meta tasks. In other words, the learned parameters
may not achieve the best performance in the current training meta task, but may attain
significant performance in different tasks with few-step training on them.

A conditional WGAN with a pre-trained classifier is optimized under this meta learn-
ing strategy in [117]. In [118], Model-Agnostic Meta-Learning is applied to the complex
framework where the conditional VAE shares the decoder as the generator for a condi-
tional WGAN. The parameters of the encoder, decoder (generator), and discriminator are
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optimized under such strategy to generate high-fidelity samples only relying on a few
number of training examples from seen classes. Pseudo labels for the different meta task
distribution is utilized for a task discriminator in [119]. During the training, once the task
discriminator is defeated, the encoder is able to align multiple diverse tasks into a unified
distribution. With the aligned embedded features, a conditional GAN which generates the
pseudo embedded features from Gaussian noises and attributes with a learnable classifier
can be trained under the meta learning strategy.

2.6 Implementation Details

2.6.1 Benchmarks and Evaluation Criteria

Benchmarks. To avoid overlapping between unseen classes and training classes used
for the pre-trained feature extractor, specific data splits for five commonly used bench-
marks are proposed with extracted features in [53]. This work has greatly facilitated the
evaluation of models for subsequent studies. Here, we will focus on four of them to set
up a summary of the comparisons between the most representative methods.

Table 2.1: Statistics for AwA1, AwA2, aPY, CUB and SUN in terms of granularity, class
size, sample size and sample divergence.

Dataset Size Granularity
Semantic Size of Class size Sample size

type semantics train(seen) unseen train testseen testunseen

AwA1 medium coarse Attributes 85 40 10 19832 4958 5685

AwA2 medium coarse Attributes 85 40 10 23527 5882 7913

CUB medium fine Attributes 312 150 50 7057 1764 2967

aPY small coarse Attributes/text 64 20 12 5932 1483 7924

SUN medium fine Attributes 102 645 72 10320 2580 1440

Animals with Attributes (AwA2) [53] contains 30,475 images from public web sources
for 50 highly descriptive animal classes with at least 92 labelled examples per class. For
example, the attributes include stripes, brown, eats fish and so on. Caltech-UCSD-Birds-
200-2011 datasets (CUB)) [34] is a fine-grained dataset with a large number of classes
and attributes, containing 11,788 images from 200 different types of birds annotated with
312 attributes. SUN Attribute (SUN) [120] is a fine-grained dataset, medium-scale in
class number, containing 14,340 scene images annotated with 102 attributes, e.g. sail-

ing/boating, glass, and ocean. The dataset Attribute Pascal and Yahoo (aPY) [121] is a
small-scale dataset with 64 attributes and 32 object classes, including animals, vehicles,
and buildings. Fig. 2.8 present an example of generalized zero-shot task on AwA2.
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We recommend the splitting strategy used in [53] for the datasets, since most of the
current methods are evaluated following such protocol. More details can be found in
Table 2.1. Notice that Animals with Attributes (AwA1) [33] is not introduced here since
it is not publicly available due to the copyright issue. It is worthy to mention that there are
some other datasets adopted in zero-shot learning, e.g. the large scale dataset ImageNet-
1K [55], the small scale fine-grained dataset Oxford Flower-102 (FLO) [122], and fMRI
(functional Magnetic Resonance Images) [123]. Since they are not the most commonly
used as the previous four benchmarks and some of the experimental settings on them are
inconsistent in different studies, we will not go into details about them. Some evaluation
protocols for them can be referred to in [25, 26, 67, 124, 125].

Evaluation criteria. Compared with the conventional zero-shot learning task, the gen-
eralized one can better evaluate the capability for constructing recognition conception of
unseen classes, thus are selected for demonstrating the performances of the methods in
this article. Since the model needs to discriminate between seen and unseen classes si-
multaneously ensuring correct classification, the performance of both seen and unseen
classes needs to be measured. Following the most commonly used generalized task crite-
ria defined in [53], we define ACCS and ACCU as two average per-class top-1 accuracies
to measure the classification performances on seen and unseen classes as

ACCS =
1

KS

KS∑
k=1

TPk

Nk

, (2.10)

ACCU =
1

KU

KU∑
k=1

TPk

Nk

, (2.11)

where TPk denotes the number of the true positive samples that is correctly predicted in
kth-class and the Nk denotes the number of the instances in kth-class. In other words, the
top-1 prediction accuracy for each class is considered equally independent of the sample
size of that class. Specifically, the candidates for the predicted labels in such classification
are all the classes but not singly those of seen or unseen. Then the comprehensive perfor-
mance in generalized zero-shot learning task can be evaluated by the harmonic mean of
these accuracies defined as follows:

H =
2× ACCS × ACCU

ACCS + ACCU

. (2.12)
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2.6.2 Comparisons with Implementation Details

In this section, we will summarize the reported performance of the representative meth-
ods with implementation details. Tables 2.2, 2.3 & 2.4, and Tables 2.5 & 2.6 present
the comparisons on the methods on AwA2, CUB, aPY, and SUN benchmarks in types
of embedding methods and generative methods, respectively. Average ranking denotes
the mean of the ranks of H values for the four datasets, “–” denotes the results were
not reported, I , ST and T represent the inductive, semantic transductive, and transduc-
tive training scenarios, respectively. Superscript with number denotes the same methods
corresponding to different implementation setups. The results are obtained from the cor-
responding published papers or the comparisons provided in [53] and all the H values are
displayed in boldface. The listed methods are roughly sorted according to the published
periods and performances for different scenarios. Here we regard the ResNet101 pre-
trained on ImageNet 1K outputs features in 2,048 dimensions as the settled backbone for
extracting visual features. In Table 2.2 and 2.3 the backbone is not changed and most of
the embedding methods summarized in Table 2.4 adjust the backbone. The column Extra
in the table contains several indicators about the implementation details that could boost
the performance of the model, which are listed as follows.

• Backbone modification. Indicator B denotes that the architecture of the feature ex-
tractor is modified to improve the obtained visual feature space. Such modification
includes designing additional attention modules accompanied with the backbone,
repeatedly adopting the feature extractor to extract the divided image regions to ob-
tain multiple features, employing the multi-channel feature map layer before pool-
ing in the pre-trained ResNet, or constructing the backbone with other advanced
neural network architectures.

• Fine-tuning. Indicator F specifies that the borrowed backbone is fine-tuned during
training. As in most of the methods, the pre-trained backbone is frozen and the
extracted visual features are directly employed as the training samples, their perfor-
mances are evaluated under the same feature space. On the contrary, the methods
fine-tuning the backbone with the proposed model lead to different feature spaces,
thus the evaluation of them can not be considered strictly in the same setting as the
methods without fine-tuning.

• Additional knowledge. Indicator K denotes that the information commonly not
included in the benchmarks is leveraged to improve the performance of the model.
Note that the pre-trained DNN is not counted as additional knowledge as this is
somehow a common setting in zero-shot learning. Such additional knowledge in-
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cludes taxonomy knowledge as hierarchical labels, correlations between attributes
captured by manually defined or through word embedding models trained on extra
text corpora, captured gaze point, and data augmentation technology.

For those generative methods in Table 2.5 & 2.6, the scenarios are describing the
training process of the generator only. As described in the previous section, generative
methods need first generate pseudo samples of unseen classes based on the corresponding
semantic descriptions and then train the classifier. Though most of these methods follow
the inductive scenario of using only seen classes information in training a generator, us-
ing samples generated based on unseen semantic information to train the classifier can be
considered to break the unseen principle. Although some of the methods apply k-nearest
neighbors as the classifier which does not require training to avoid this ambiguity, plenty
of those generative methods are designed with a linear or non-linear classifier. The ef-
fectiveness of different types of classifiers can be influenced by a number of factors, such
as differences in the database, differences in the distribution of generated samples due to
the structure of the model, differences in the number of generated samples, and whether
or not generated samples are used to train the classifier for seen classes as well. It is dif-
ficult and inappropriate to evaluate all the generative methods under unique structure of
classifier such as the k-nearest neighbors to keep consistent setting with the embedding
methods. As a result, compared with the embedding methods of Table 2.2 & 2.3 in the
same period, most of those generative methods of Table 2.5 & 2.6 appear to achieve better
performance. To construct rigorous comparisons, we advocate evaluating the embedding
and generative methods separately. Moreover, as the current best models in both of these
two families under the inductive scenario, i.e. IPN [98] and CE-GZSL [10], perform quite
similar actually, we believe embedding and generative methods are of equal importance
in zero-shot learning.

Moreover, as shown in these four tables, the methods with modified or fine-tuned
backbones outperform their original counterparts published in the same year. Especially,
the effectiveness of fine-tuning has been verified in the embedding method DVBE [86]
and the generative method f-VAEGAN-D2 [96]. Fine-tuning leads to 2.4%, 12.0%, 3.4%,
2.1% absolute increment in the H values for DVBE on AwA2, CUB, aPY and SUN,
respectively. Similar improvements can also be observed for the f-VAEGAN-D2 under the
inductive and transductive scenarios. These results imply that fine-tuning the backbone
overall benefits the generalized zero-shot learning especially on the CUB benchmarks.

Most outstanding embedding and generative methods under the inductive scenario
often utilize additional knowledge. In this way, more adequate information can help better
construct concepts of unseen classes through knowledge of seen classes. The validity
of the employed additional knowledge is not accurately presented in these comparison
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tables. One can refer to each relevant paper for more details.

When the methods in all the scenarios are compared together, for both the embedding
and generative methods, one can find that methods STHS-S2V and STHS-WGAN [102]
in the transductive scenario, attain the highest H values on most of the benchmarks. The
unlabelled data with unseen classes attributes provide a detailed target guidance for the
transformation of categorical knowledge, thus making such scenario the easiest general-
ized case. If one takes TCN [72] as the most similar method of RN [14] under the se-
mantic transductive scenario (via accessing the unseen attributes during training), 18.1%
and 5.3% absolute improvement have been achieved on AwA2 and CUB, respectively.
Moreover, the gaps between the performances of the LFGAA [92] under both the seman-
tic transductive and inductive scenarios also confirm the contribution of unseen attributes
in training the model in generalized zero-shot learning.

In this section, the type of the classifiers or the number of synthesized pseudo sam-
ples for training is not collated here, as the impact of these implementation details on
model performance is uncertain when the models are structured differently or applied
on different databases. We focus on specifying differences in the implementation details
which commonly lead to explicit changes in performance among the current representa-
tive methods. On the one hand, we acknowledge the contribution of those methods of
adopting additional knowledge or modifications; on the other hand, showcasing numer-
ical comparisons between different methods with different implementation settings may
not be rigorous enough, which could lead to a misleading assessment of the capability of
the model. We advocate researchers set up comparisons between the methods under the
same implementation settings. Moreover, all the additional operations and/or auxiliary
knowledge appear critically important and thus should keep clear and be stated explicitly
for fair and precise evaluations.

2.7 Summary and Discussion

In this chapter, we have provided a comprehensive survey of image classification with
zero-shot learning. We have put one main focus of this survey on the implementation
issues. Particularly, with the methods steadily improved, different problem settings, and
diverse experimental setups have emerged, and thus we have examined three implemen-
tation details that can boost the performance of zero-shot learning, i.e. whether the back-
bone structure has been modified, whether fine-tuning has been conducted, and whether
additional knowledge has been used. By annotating these experimental details, we have
collected a more careful comparison between various zero-shot methodologies. While
generative methods appear to outperform embedding methods overall, we argue that the
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performance difference may be due to the different settings, thus suggesting that it may
be fairer to compare them separately. Moreover, we observe that the current best mod-
els in both families perform quite similar under the inductive scenario. Thus we believe
embedding and generative methods are of equal importance in zero-shot learning.

Through the comparisons, we can find that the zero-shot learning model has achieved
outstanding performance in the transductive scenario. For the inductive scenario as the
most rigorous one, the performances of the models still needs to be improved. While
improving the backbone to obtain a more appropriate visual feature space can effectively
improve the accuracies of the embedding methods, changing the space corresponding to
the samples can be regarded as adjusting the difficulty of the original task. In contrast, the
generative class of methods can achieve a high-level comprehensive performances based
on the original visual feature space. This indicates that those embedding methods with
settled backbone for inductive scenarios still have the potential to be improved.

42



Chapter 3

Efficient Self-Focus Mechanism for
Coarse-Grained Generalized Zero-Shot
Learning

Since most zero-shot learning tasks in reality are challenging where both the descriptions
and samples are unavailable during training, in this chapter, we focus on the zero-shot
learning under the inductive scenario in this paper. Following the embedding idea, we
choose the visual feature space as the embedding target space and use the nearest neigh-
bor search based on Euclidean distance to achieve classification. Additionally, a self-focus
module, constructed as a 1-layer fully connected neural network with the activation func-
tion sigmoid followed by softmax operation, is developed to prevent the over-fitting
during training. Via the focus ratios calculated by this module, the correlations between
the location and the importance of each dimension in the embedding space are consid-
ered during the optimization. Since the embedding model and the proposed module are
optimized together to minimize the intra-class distance, the embedding model only needs
to focus on the ratio which the proposed module considers important. In other words, by
applying the proposed self-focus mechanism, the over-fitting knowledge will be appor-
tioned to the self-focus module, and the over-fitting problem for the embedding model
can be alleviated. A series of experiments show that the proposed self-focus mechanism
achieves outstanding performance on coarse-grained zero-shot classification tasks.

3.1 Methods

To give a better explanation, we will first define the zero-shot learning and generalized
zero-shot learning tasks under the inductive scenario. We then introduce the model archi-
tecture in detail.
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3.1.1 Problem Definition

Denote X = {x1, ... , xN}, Y = {y1, ... , yN}, A = {a1, ... , aK} as visual feature, class
label, and semantic attribute sets respectively, with the total sample size N and class
number K. First we divide the category or class set into two parts, K = KS +KU , and
denote the first KS classes as seen classes for convenience. Then the dataset is divided
into training and test sets, as X = Xtr ∪ Xte, Y = Ytr ∪ Yte and N = Ntr + Nte, where
Xtr ∩ Xte = ∅. Specifically, the training set only contains samples from seen classes,
while the test set may contain those of both seen and unseen, i.e. ∀yi ∈ Ytr, yi ≤ KS

and ∀ym ∈ Yte, 0 < yi ≤ K. Given a training set Dtr = {(xi, yi, ayi)|xi ∈ Xtr}, the
target of zero-shot learning is to train a classifier C(xi, a1, ..., aKS) = ŷi on Dtr to achieve
classification on a test set Dte, where Dte = {(xm, ym, aym)|xm ∈ Xte, K

S < ym ≤ K}
for conventional zero-shot learning, and Dte = {(xm, ym, aym)|xm ∈ Xte, 0 < ym ≤ K}
for generalized zero-shot learning. In this chapter, we only focus on this strict generalized
zero-shot learning case.

3.1.2 Model Architecture

We follow the DEM [13] to avoid aggravating the hubness problem[128]. Fig. 3.1 shows
the schematic diagram of the entire framework of the proposed method, in which the
processes of the embedding, optimization, and identification are denoted by the paths in
purple, red, and blue, respectively.

Embedding. For each image sample, we use a pre-trained DNN to obtain a d-dimensional
feature vector xi, and settle this feature space as the target embedding space. Then we
construct a learnable embedding function f (·) as an 1-layer fully connected neural net-
work with activation function relu. The corresponding class attributes ayi of xi will be
mapped to the target space as the class prototype f (ayi). Therefore, the squared difference
between the feature and the prototype for each dimension can be calculated as follows:

SD(xi, f (ayi)) = (xi − f(ayi))2. (3.1)

Optimization. In order to associate the location with its corresponding dimensional
importance, a self-focus module W (·) is designed as a 1-layer fully connected neural
network with the activation function sigmoid then followed by softmax operation. With
this module, a focus ratio vector for each prototype can be obtained as W (f (ayi)). The
focused difference is defined in the following:

FD(xi, f(ayi)) = SD(xi, f (ayi))⊙W (f (ayi)), (3.2)
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Fig. 3.1: Schematic diagram of the proposed self-focus deep embedding model.

where ⊙ denotes element-wise multiplication. By adding up this focused difference for
all the dimensions, we obtain the distance for optimization as

Dop(xi, yi) =
d∑

FD(xi, f(ayi)). (3.3)

We can define the objective function as

L =
Ntr∑
i=1

Dop(xi, yi) + λ∥θ∥2, (3.4)

where θ represents all the parameters in f (·) and W (·), and λ denotes the regularization
weight.

Identification. The designed self-focus module only participates in the optimization
process. Therefore, the sum of the squared differences between an instance xj and a
prototype f (ac), which is the square of the Euclidean distance, will be directly used as the
identification distance as below:

Did(xj, c) =
d∑

SD(xj, f (ac)). (3.5)

Through the nearest neighbor search, the predicted label ŷj for the instance xj is calcu-
lated as the class holding the least identification distance as below:

ŷi = argmin
0<c≤K

Did(xi, c). (3.6)
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3.2 Target Embedding Space

In this chapter, we adopted an embedding method as our baseline where the semantic
attributes are mapped to the visual feature space. The reason for selecting visual feature
space as the target space is that such mapping direction will avoid aggravating the hubness
problem. Here, we will first introduce the hubness problem in zero-shot learning and then
present an explanation of why such mapping direction is relevant.

To measure how hubby a point in the search space is with respect to a sample set, one
can count the number of occurrences of the point as the k-nearest neighbor of the sample
in the set. The point with high occurrence frequency is called the hub. The hubness
problem commonly occurs in high-dimensional spaces [129]. When the dimensionality
is increased, the nearest neighbour search will return the hubs as the most likely result.
It is shown in [130, 131] that the hubness problem is actually related to the pairwise
similarities between the points. As the dimensionality of the space increases, the pairwise
similarities between the points in a set tend to converge to a constant and the standard
deviation converges to 0, thus causing an increase in hubness.

Consider the matrix representations of two datasets SA and SB in different space with
a linear map Wm, with the objective function as

L(WM) = ||SB −WmSA||2 + λ||Wm||2. (3.7)

We can solve this regression problem with a closed-form solution

Wm = SBS
T
A(SAS

T
A + λI)−1. (3.8)

Then we have

||WmSA||2 = ||SBS
T
A(SAS

T
A + λI)−1SA||2 (3.9)

⩽ ||SB||2||ST
A(SAS

T
A + λI)−1SA||2. (3.10)

By denote the largest single value of SA as σ, we can further obtain

||ST
A(SAS

T
A + λI)−1SA||2 =

σ2

σ2 + λ
⩽ 1. (3.11)

Thus, we could obtain ||WmSA||2 ⩽ ||SB||2 by substituting Eq.3.11 into Eq.3.10. This
inequality indicates that the mapped source datasetWmSA seems to be closer to the origin
of the space compared with the target dataset B.

Assume the visual feature space and semantic attribute space are the two spaces with
a linear map. The 2-D Schematic diagrams shown in Fig. 3.2 present an intuitive expla-
nation of the relation between the mapping direction and the hubness. If we project the
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Visual Features 

Semantic Attributes 

(a) Projection from visual to semantic space

 

Visual Features 

Semantic Attributes 

(b) Projection from semantic to visual space

Fig. 3.2: Illustration of the effects of different projection directions on the hubness prob-
lem.
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visual feature into the semantic attributes space, as shown in Fig. 3.2(a), with a pairwise
optimization object function, it becomes the regression problem described above. As a re-
sult, the projected points for visual features will be shrunk towards the origin. In this case,
the closer the semantic point is to the origin, the more likely it is to be the k-nearest neigh-
bor of visual feature points. In other words, the points for semantic attributes which are
closer to the origin are more likely to become the hubs, thus making the hubness problem
worse. However, the reversed project direction shown in Fig. 3.2(b) makes the projected
attributes shrink to the origin, which at least avoids aggravating the hubness problem. As
the situations are the same for the regression based on the deep embedding model [13], in
this chapter, we selected the baseline, the deep embedding model (DEM) [13], adopting
the visual feature space as the embedding target space.

3.3 Experiments

3.3.1 Datasets and Settings

Datasets. To verify the superiority of the proposed mechanism, three coarse-grained
and one fine-grained zero-shot learning benchmarks were selected, which are AwA1 [33],
AwA2 [53], aPY [121], and CUB [34], respectively. The extracted features and data splits
we use are consistent with the GBU setting [53] to prevent the pre-trained extractors from
contacting the unseen classes during their training. More details can be found in Table 3.1.

Table 3.1: Statistics of the benchmarks, including granularity, number of attributes and
data splits.

Granularity Dataset
Number of Number of Classes Number of Samples

Attributes (seen+unseen) Train Testseen Testunseen

Coarse

AwA1 85 40+10 19832 4958 5685

AwA2 85 40+10 23527 5882 7913

aPY 64 20+12 5932 1483 7924

Fine CUB 102 150+50 7057 1764 2967

Settings. All the DNN parameters are initialized with random weights and optimized
using the Adam Optimizer [132]. The other setup details are listed in Table 3.2.
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Table 3.2: Detailed experimental setups for each dataset.

Dataset
Embedding Self-Focus

Learning Rate
Regularization Weight

Batch Size
Layer Structures Layer Structures λ

AwA1 85-1600-2048 2048-2048 1e-4 0.001 64

AwA2 85-1600-2048 2048-2048 1e-4 0.001 64

aPY 64-1600-2048-2048-2048-2048 2048-2048 1e-4 0.0001 64

CUB 312-1200-2048 2048-2048 1e-5 0.01 100

3.3.2 Zero-Shot Recognition

As in the generalized zero-shot learning task, the classification candidates are the combi-
nation of all the seen and unseen classes. Three criteria were commonly used to evaluate
the model performance, namely, the accuracy of the seen classes ACCS , the accuracy of
the unseen classes ACCU , and the harmonic mean of these two accuracies

H =
2×ACCS ×ACCU
ACCS +ACCU

. (3.12)

In particular, all the accuracies here denote per-class average Top-1 accuracies, and the
harmonic mean is the most important criterion since it measures the overall performance.

Table 3.3: Comparison results evaluated in per-class average Top-1 accuracies on conven-
tional zero-shot learning tasks.

Method AwA1 AwA2 aPY CUB

SAE[56] 53.0 54.1 8.3 33.3

PSR-ZSL [60] – 63.8 38.4 56.0

DEM[13] 68.4 67.1 35.0 51.7

Relation Net[14] 68.2 64.2 – 55.6

Triple Verification Net[51] 68.8 – 41.3 58.1

Baseline 68.1 67.1 38.9 49.2

Proposed 70.4 68.1 38.3 48.6

The accuracies of unseen classes in conventional zero-shot learning tasks are shown
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in Table 3.3 where the highest accuracy of each dataset is highlighted in bold, and the
baseline represents the result of DEM in our own implementation. The proposed mecha-
nism improves the performances of the baseline in AwA1 and AwA2. Meanwhile, it has
no obvious negative effects on aPY and CUB. Thus, the self-focus mechanism actually
leads to a better embedding space where unseen classes are more distinguishable.

Table 3.4 shows the generalized zero-shot learning performance of the proposed model
compared with the state-of-the-art methods. In the coarse-grained tasks, our model has
a significant increase in the unseen accuracies with a slight drop in unseen accuracies,
achieving the best overall performances. The results in CUB also indicate that the pro-
posed mechanism has no negative effects on fine-grained tasks.

3.3.3 Effectiveness of Self-Focus Module
Explanation of Effectiveness on Coarse-Grained Task

The proposed mechanism is designed to alleviate the over-fitting of the embedding model
by apportioning the over-fitting knowledge to the proposed self-focus module. To achieve
this goal, the self-focus module needs to learn the relation between the class-wise di-
mensional importance and the location in the target space for calculating the focus ratio.
However, if the samples of each class are distributed too evenly in all dimensions, the
model may become less effective as all the dimensions become equally important. In
other words, to ensure the effectiveness of the proposed mechanism, for each training
class, the sample dispersion on each dimension is required to be as unique as possible.
From common sense, the intra-class distance for a coarse-grained database should be
larger than that of a fine-grained database due to the broader definition of each class. This
larger distance indicates a higher possibility of meeting the required unique sample dis-
persion. As a numerical illustration, for each dataset, we calculate the range rangedc and
variance vardc of the sample features in each dimension, class by class. Then we define
four criteria to measure the uniqueness of sample dispersion with respect to dimensions
as below:

MMR =MeanC(MeanD(rangedc)), MMV =MeanC(MeanD(vardc)),

MV R =MeanC(V arD(rangedc)), MV V =MeanC(V arD(vardc)),

where Mean() and V ar() represent the processes of calculating the mean and variance,
respectively, and the superscript C and D denote that the calculations are over classes and
dimensions respectively.

As shown in Table 3.5, the coarse-grained datasets obviously enjoy the higher four
criteria than that of the fine-grained dataset, which approximately implies the coarse-
grained ones have greater differences in sample dispersion in dimensions. Accordingly,
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Table 3.5: Comparisons of the datasets on the defined criterions.

Granularity Dataset MMR MMV MVR MV V

Coarse

AwA1 4.1591 0.3874 5.3712 0.4665

AwA2 3.8756 0.3597 5.4429 0.4989

aPY 3.9562 0.4442 4.9741 1.1907

fine CUB 1.7838 0.2105 2.1383 0.3043

more information about the dimensional importance can be provided to train a better self-
focus module, which explains why the proposed model performs significantly on them.

Efficiency of Self-Focus Mechanism

To evaluate the efficiency of the proposed mechanism, we study the performance of the
proposed model during training on two coarse-grained datasets. The focus ratios of each
category corresponding to the different training stages are shown in Fig. 3.3 in the form
of heat maps. Additionally, the focus ratios are scaled by multiplying the number of
dimensions d.

Since the dimensionality of the target space is very high (totally 2,048 dimensions),
we only select the first 50 dimensions for a clearer display. In the beginning, the calculated
focus ratios of each dimension for all categories are irregular. As the training progresses,
the proposed self-focus module starts to capture the importance of each dimension based
on the sample dispersions. As a result, focus ratios of some dimensions tend to be small
for all the classes, focus ratios of some dimensions tend to be large for all the classes, and
focus ratios of the rest dimensions vary according to the class. Namely, after a certain
number of batches is trained, the embedding model will be optimized mainly based on
the loss calculated from important dimensions. Compared with the original optimization
process, it indeed avoids the over-fitting caused by over-focusing on all dimensions.

Figs. 3.4 and 3.5 shows the average training loss and overall performance H for each
1,000-batches in the two coarse-grained datasets, AwA2 and aPY. The proposed method
initially declines slower than that of the baseline. This is because the self-focus module
has not fully effectively learned the relationship between the location and the dimensional
importance at the beginning of the training. Consequently, the unstable focus ratios bring
more randomness to the optimization direction. As the number of batches increases, the
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loss of the proposed method eventually drops to the same level as that of the baseline, and
the overall performance also starts to increase and finally exceeds that of the baseline.

Fair Comparison with Baseline

Due to the architecture of the proposed self-focus module, our whole framework actually
uses one more layer of the neural network than the baseline DEM. To fairly verify the
effectiveness of the proposed module, we also evaluate the performance of DEM with a
deeper neural network structure. Specifically, the extended layer for the deeper DEM has
the same input-output size as that of the self-focus module.

The comparison results are demonstrated in Fig. 3.6 and 3.7, where DEM* denotes
the baseline results reported on GitHub1 and the rest of the DEM represents the results ob-
tained in our own implementations corresponding to the structure with different numbers
of layers. Especially for the aPY dataset, we select the architecture with a 6-layer neural
network as the baseline due to the poor performance of the original one. It is obvious
that for the three coarse-grained databases, in the case that extending the original em-
bedding network cannot improve the performance of the model, employing the self-focus
mechanism obviously improves the accuracies of unseen classes. Although the accuracies
of seen classes have decreased slightly, the magnitudes are much smaller than the gains,
which is also a sign of alleviating the over-fitting. As a result, the overall performance of
the proposed model has been significantly improved which has verified its effectiveness.
Additionally, in our own implementation, we could not achieve the reported performance
on CUB, which still verifies that the proposed module has no negative effects on fine-
grained data.

Embedding Result

In the target mapping space, the correlations between the focus ratios and positions of
prototypes are concerned due to the proposed self-focus mechanism. We select the dimen-
sions with the large difference to compare the mapping results in Fig. 3.8, which visually
indicated that the self-focus mechanism makes the mapping position biased compared
with the baseline.

3.3.4 Alleviation of Class-Level Over-Fitting

Class-level over-fitting (CO) for zero-shot learning is defined as the phenomenon that
the model is inclined to select the seen class leading to a poor generalization of unseen
classes [51]. As shown in Fig. 3.9, for the embedding based zero-shot learning models,

1Available at https://github.com/lzrobots/DeepEmbeddingModel ZSL
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Fig. 3.6: Comparison between the proposed model and the DEM with a deeper structure
on AWA1 and AWA2.
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Fig. 3.7: Comparison between the proposed model and the DEM with a deeper structure
on aPY and CUB.
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Fig. 3.8: 2D plot of chosen dimensions and classes in AwA2 and aPY, where the subscript
represents the dimension number.
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(a) Expected projection

(b) Class-level over-fitting

Fig. 3.9: The intuitive description of the CO problem for the embedding based zero-shot
learning model: (a): The expected projection; (b): The undesirable projection caused by
class-level over-fitting.
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the CO is mainly expressed as an inappropriately mapping. Due to excessive attention to
the training target, the embedding model projects a large area in the source space to a very
small area in the target space, thereby affecting the results of the nearest neighbor search.

In order to better quantify the CO problem, for each class, we calculate the distance
between this class and its nearest seen class. Since the values for some dimensions are
always 0 after mapping, we exclude these dimensions when calculating the distance to
make it more representative. However, the difference in dimensionality will lead to im-
precise measurement. Instead of using the Euclidean distance between two points, we
utilize the mean of squared differences in all the dimensions as the distance measure.
Then the average values of these distances for all the seen and unseen classes can be sepa-
rately defined as two metrics AvgMinS−S and AvgMinU−S . It should be noted here that
the inter-class distances between unseen and seen classes can be used to measure the CO
problem, where the lower the values are, the more severe the CO is. While there is no ab-
solute relationship between the inter-class distances of seen classes and the CO problem.
However, as a demonstration of the embedding results, we computed both of them.

As the evaluation shown in Fig.3.10, in the coarse-grained zero-shot learning tasks,
employing the proposed self-focus mechanism significantly increases the average mini-
mum inter-class distances for both seen and unseen classes. For fine-grained databases,
the proposed method has no significant improvement and the reason has been analyzed in
the previous section.

3.4 Summary and Discussion

Through learning the relationship between the location and dimensional importance in
the target embedding space, a self-focus mechanism is designed for the coarse-grained
zero-shot learning tasks to introduce the focus ratio of each dimension to the training pro-
cess. Since these focus ratios lead the embedding model to focus on essential dimensions,
they effectively alleviate the over-fitting of the embedding model suffered during train-
ing. In other words, the over-fitting information is apportioned by the proposed self-focus
module. As the proposed module does not participate in the identification process, the
embedding model becomes more generalized for the unseen classes in zero-shot learning.
Extensive analysis and experimental results have validated the effectiveness and superior-
ity of the proposed method in coarse-grained zero-shot learning.

The self-focus mechanism discussed in this chapter is designed for those embedding
methods with pairwise optimization loss constructed by a mean squared error on the em-
bedding space. Though it could alleviate the class-level over-fitting via learning a more
general embedding function, such architecture can not be applied to those methods with
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Fig. 3.10: Evaluation of class-level over-fitting problem of the proposed model compared
with the baseline DEM.
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learnable metrics. However, comparing the experimental results, the learnable metrics
such as the learned similarity in relation network [14] also achieve significant perfor-
mance in zero-shot learning. This kind of method also suffers the class-level over-fitting
problem that leads to poor performance on unseen classes in the generalized zero-shot
learning task. Therefore, we proposed two adversarial frameworks for relation network
based methods in the following chapters.
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Chapter 4

Adversarial Relation Network for
Generalized Zero-shot Learning

The notion that humans can construct the concepts of categories through language de-
scriptions without any visual information brings good insight into zero-shot learning.
Most methods try to recognize the unknown categories (unseen classes) by transfer-
ring the learned knowledge of source categories (seen classes) through the side infor-
mation. Currently, zero-shot image classification is the most common zero-shot learning
task where semantic attributes and word vectors are widely used as the side informa-
tion [33, 34, 53, 121]. Moreover, the most stringent and practical zero-shot learning task
is defined as inductive generalized zero-shot learning where all information about unseen
classes is unavailable during training, and the generalized task requires that the targets
contain both seen and unseen categories [52].

Researchers have proposed various zero-shot methods, most of which can be summa-
rized as generative methods [6–8] and embedding methods [13, 51, 56, 133]. However,
both types of these methods have drawbacks in handling the inductive generalized zero-
shot learning task. The generative methods need to utilize the attributes of the target
classes during training, which actually breaks the principle of ’unknown’; on the other
hand, the embedding methods are commonly not discriminative enough and tend to clas-
sify target samples as seen classes.

In this chapter, we propose an adversarial framework called adversarial Relation Net-
work (advRN) based on an embedding method for the inductive generalized zero-shot
learning scenario. Inspired by the human recognition process [134] revealing that the
brain will make a hypothesis about incoming data based on previous knowledge, we de-
sign a sample re-adjustment (SR) process during the test to enhance the awareness of
the unseen classes attributes. In this process, the adversarial noises [135] are reversely
exploited to support the hypothesis that samples are from unseen classes. Namely, a
gradient-based worst-case perturbation is subtracted from the visual features in order to
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Hypothesis: it is a zebra 
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Description: horse full of stripes in black and white. 
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Zebra 
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(b) Proposed method

Fig. 4.1: Processes of the new class recognition: (a) for human, (b) for the proposed
method. Humans make hypotheses based on previous knowledge and then make the
judgement. Similarly, the proposed method re-adjusts the instances based on descrip-
tive attributes before recognition.
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encourage high responses of the unseen classes. On the other hand, starting from the
adversarial training method, we further show that a robust classifier can be built with
a gradient penalty (GP) regularization that proves insensitive to small perturbations on
samples of seen classes. Overall, when the SR and GP are both applied, the resulting ad-
vRN enjoys the appealing property that a small gradient adjustment on the target samples
will not affect the classification of seen classes too much but substantially increase the
classification accuracy on unseen classes.

The schematic diagram of the recognition process is illustrated in Fig. 4.1. Given
an instance x, the proposed method will adjust x to better fit the unseen class attributes.
Applying the strategies of both SR and GP, the proposed model has the appealing feature
that small sample adjustment imposed by our model can lead to a high response to unseen
classes while not affecting the recognition of seen classes due to the robust adversarial
training. Namely, compared with the adjusted instance from seen classes, such as horse,
only the true zebra instance x′j will gain after adjustment a high confidence S(x′j, az)
due to the robust nature of the recognizer (incurred by the gradient penalty). Detailed
justification can be seen in Section 4.2.

In summary, the proposed GP and SR actually form an adversarial framework which
makes the model sensitive enough to the unseen classes due to the true unseen hypotheses,
while being simultaneously sufficiently robust to avoid misleading by the false unseen
hypotheses. The main contributions of this chapter can be listed in the following:

1. A gradient penalty, derived from the adversarial training and constraining the deriva-
tives of the relation scores w.r.t input samples, is constructed as a regularization term
during training to strengthen the robustness of the recognizer for seen classes.

2. A sample re-adjustment is designed based on the gradient during the test to make
the recognizer more inclined to the unseen classes.

3. To the best of our knowledge, this is the first work using the framework of adversar-
ial examples to obtain significant improvement on inductive generalized zero-shot
learning. The proposed adversarial relation network achieves state-of-the-art per-
formance and is competitive compared to those methods taking advantage of unseen
class attributes during training.

Since our approach is equivalent to the reverse application of perturbations in the
adversarial samples, the entire framework is quite similar to a combination of adversarial
attacks and defence. In the next section, we will first introduce the concepts related to
robust adversarial training for a better understanding of the proposed framework.
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4.1 Adversarial Sample

As the deep learning model has defeated human performance in tasks such as image clas-
sification [54], speech recognition [136] and reading lips [137], adopting deep learning
techniques in real-world scenarios has made the security of learning algorithms increas-
ingly important. However, it is revealed that the DNNs are commonly vulnerable to the
adversarial perturbations [135, 138]. Thus, training a model robust enough to these well-
designed perturbations becomes an active and challenging research topic, especially in
some security-critic fields such as medical diagnosis and autonomous driving [139].

+ .007× =

x sign(∇xJ(θ,x, y))
x+

εsign(∇xJ(θ,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Fig. 4.2: An example of adversarial sample leading to misclassification of a panda as a
gibbon.

The adversarial perturbations are well-crafted and imperceptible but can mislead the
model to return unexpected results. Fig 4.2 illustrate an example of such perturbation.
The original panda picture is classified correctly by the trained DNN based model with a
confidence of 57.7%. By adding a certain adversarial perturbation to the original image,
the modified image becomes an adversarial sample that the human can hardly distinguish
from the original one, but the trained model will misclassify it as gibbon with confidence
99.3%.

Defining an original sample, also called a clean sample, and its corresponding label as
x and y, respectively. Then we can define the adversarial example of x as x′. The differ-
ence between x and x′ is denoted as d(x, x′) where l1, l2,...,linf norm are commonly used
for measuring the difference and it is usually constrained by a small value d(x, x′) ⩽ ϵ.
With a trained DNN based classifier, one can seek the adversarial example by constructing
x′ satisfying:

d(x, x′) ⩽ ϵ, such that class(x′) ̸= class(x). (4.1)

where the class denotes the prediction made by the trained classifier. Basically for a more
tractable way, one can obtain the adversarial sample by solving the optimization problem
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as follows:

x′ = argmax
d(xadv ,x)⩽ϵ

L(xadv, y), (4.2)

where the L(·, ·) represents the loss function for training the classifier. With the calculated
adversarial sample, one can mislead the classifier to return an undesired result so-called
adversarial attack. The most straightforward adversarial defence strategy is to include the
adversarial samples into the training set to promote the robustness of the model.

4.2 Methodology

In this section, we will first define the zero-shot learning task formally and then detail the
proposed adversarial relation network.

4.2.1 Problem Definition

In this chapter, we still focus on the most challenging scenario, i.e. inductive generalized
zero-shot learning, where the specific information of the targets is always limited till the
test and the models are required not only to recognize the unseen classes but also to be
discriminative enough between the seen and unseen classes.

Following the idea of Relation Network (RN) [14], the classification is performed by
comparing the relation scores of the sample and the semantic attributes for all the classes.
Denote X = {x1, ... , xN}, Y = {y1, ... , yN}, A = {a1, ... , aK} as visual features, class
labels, and semantic attributes sets, respectively, with the total sample numberN and class
numberK. We defineN = NS

tr+N
S
te+N

U andK = KS+KU to divide the whole dataset
into a source set (seen set) Xtr × Ytr × Atr = {(xi, yi, ayi), i = 1, 2, ... , NS

tr} and a target
set (unseen set) Xte × Yte × Ate = {(xm, ym, aym),m = N ′ + 1, ... , N} constructed in
terms of 3-tuple. Here Xtr∩Xte = ∅ and ∀yi ∈ Ytr : yi ≤ KS are required in the inductive
scenario. With a trained relation score function S(x, a) based on the source set, the zero-
shot learning target is to achieve the classification by satisfying S(xm, aym) > S(xm, ak)

for all k ̸= ym. Specifically, 0 < k ≤ K, N ′ = NS
tr for generalized zero-shot learning,

and KS < k ≤ K, N ′ = NS
tr +NS

te for conventional zero-shot learning.

4.2.2 Adversarial Relation Network

Relation Network [14]. In RN, the visual features X are extracted as training samples
by a pre-trained DNN. A learned embedding function fθ(·) will project the semantic at-
tribute vectors into the embedded space (visual feature space) as the prototypes of the
corresponding classes. After a feature and a prototype are concatenated, their relation
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score will be calculated via a learned metric function gϕ(·). By calculating the mean
squared error (MSE) between the one-hot labels and the relation scores, a loss function
for optimizing parameters θ and ϕ is designed as follows:

LR(Xtr,Ytr,Atr; θ, ϕ) =
1

NS
tr

1

KS

NS
tr∑

i=1

KS∑
k=1

[gϕ(xi ⊕ fθ(ak))− r(xi, ak)]2, (4.3)

r(xi, ak) =

{
0 k ̸= yi,

1 k = yi,
(4.4)

where ⊕ represents the concatenation operation and r(xi, ak) indicates whether xi and ak
represent the same class. The gϕ(xi ⊕ fθ(ak)) can be regarded as the required relation
score function S(xi, ak).

AdvRN with Gradient Penalty. In order to achieve a robust perception of seen classes,
we design a robust training process encouraging that any small perturbation on instances
of seen classes would not affect the network’s output:

min
θ,ϕ

max
ϵ:∥ϵ∥p≤σ

LR(Xtr + ϵ,Ytr,Atr; θ, ϕ), (4.5)

where the robustness against any small perturbation defined as ϵ is required in the inner
problem.

Since the minimax problem is usually difficult to solve, the first-order Taylor expan-
sion at feature point x can be used to approximately solve this non-convex problem. The
inner problem can then be relaxed as follows:

max
ϵ
LR(Xtr,Ytr,Atr; θ, ϕ) +∇XtrLR

Tϵ s.t. ∥ϵ∥p ≤ σ. (4.6)

To solve the optimization problem, we first introduce Lemma 4.2.2 from [140]. The
optimization problem maxϵ∇XtrLR

Tϵ s.t. ∥ϵ∥p ≤ σ has a closed form solution
ϵ = σ sign(∇LR)(

|∇LR|
∥∇LR∥p∗

)
1

p−1 where p∗ is the dual of p, i.e., 1
p∗

+ 1
p
= 1.

Since LR is independent of ϵ, the optimal ϵ should have a norm of σ. Then the
maximum problem can be solved by Lagrangian multiplier method with defined f(ϵ) ≡
∇XtrLR

Tϵ and g(ϵ) ≡ ∥ϵ∥p = σ. Set∇f(ϵ) = λ∇g(ϵ), we have

∇f(ϵ) = λ∇g(ϵ) (4.7)

∇XtrLR = λ
ϵp−1

p(
∑

i ϵ
p
i )

1− 1
p

(4.8)

∇XtrLR =
λ

p
(
ϵ

σ
)p−1 (4.9)

∇XtrLR

p
p−1 = (

λ

p
)

p
p−1 (

ϵ

σ
)p (4.10)

70



 

b
la

ck
: 

ye
s 

w
h
it
e:

 
ye

s 

b
ro

w
n
: 

n
o

 

st
ri

p
es

: 
ye

s 

w
at

er
: 

n
o

 

ea
ts

 f
is

h
: n

o
 

S
a
m

p
le

s 

D
N

N
 

A
tt

ri
b

u
te

s 
𝒂
𝒛
 

𝑓 𝜃
 

 𝑔
𝜙

 

R
e
la

ti
o

n
 

S
co

re
s 

Fe
a
tu

re
s 
𝑿
𝒕𝒓

 
P

ro
to

ty
p

e
s 
𝒇
𝜃
(𝒂

𝒛
) 

 

Em
b

e
d

d
in

g
 s

p
a
ce

 

O
n

e
-h

o
t 

la
b

e
ls

 

M
SE

 

G
ra

d
ie

n
t 

P
e
n

al
ty

 
Lo

ss
 

𝑳
𝑹
 

1
 

0
 

0
 

0
 

 
∇
𝑋
𝑡𝑟
𝑳
𝑹
 

 

⊕
 

Fi
g.

4.
3:

Fl
ow

ch
ar

to
f

th
e

tr
ai

ni
ng

pr
oc

es
s

in
ad

vR
N

.A
s

an
ex

am
pl

e,
th

e
se

m
an

tic
at

tr
ib

ut
e

of
Z

eb
ra

is
em

be
dd

ed
in

to
th

e
vi

su
al

fe
at

ur
e

sp
ac

e
an

d
co

pi
ed

se
ve

ra
lt

im
es

us
ed

to
ca

lc
ul

at
e

th
e

re
la

tio
n

sc
or

es
.

W
ith

th
es

e
re

la
tio

n
sc

or
es

,t
he

lo
ss

fu
nc

tio
n

fo
r

R
N

an
d

th
e

fu
rt

he
r

de
fin

ed
gr

ad
ie

nt
pe

na
lty

ca
n

be
ob

ta
in

ed
.T

he
D

N
N

de
no

te
s

th
e

pr
e-

tr
ai

ne
d

fe
at

ur
e

ex
tr

ac
to

r,
⊕

re
pr

es
en

ts
th

e
co

nc
at

en
at

in
g

op
er

at
io

ns
,f

θ

an
d
g ϕ

ar
e

th
e

em
be

dd
ed

an
d

m
et

ri
c

fu
nc

tio
n

to
be

le
ar

ne
d,

re
sp

ec
tiv

el
y.

71



By summing over two sides, we get∑
∇XtrLR

p
p−1 =

∑
(
λ

p
)

p
p−1 (

ϵ

σ
)p (4.11)

∥∇LR∥p
∗

p∗ = (
λ

p
)p

∗ ∗ 1 (4.12)

(
λ

p
) = ∥∇LR∥p∗ (4.13)

By combining Equation (4.9) and (4.13), we can easily obtain

ϵ = σ sign(∇LR)(
|∇LR|
∥∇LR∥p∗

)
1

p−1 (4.14)

This completes the proof. □

Using Lemma 4.2.2, we can obtain a closed form solution of problem (4.6). Then,
with this solution and a settled p = 2, the approximation of the minmax problem becomes

min
θ,ϕ

LR(Xtr,Ytr,Atr; θ, ϕ) + σ∥∇LR∥2. (4.15)

Here, instead of only minimizing the loss function (4.3), we additionally minimize a
gradient penalty σ∥∇LR∥2. Adding this gradient penalty into the loss as a regularization
term is approximately equivalent to injecting adversarial noises into the samples during
training, as shown above. As a result, the trained model will be less sensitive to any small
changes in samples for seen classes.

In practice, to make the model more resistant to over-fitting, the regularization term
||θ||2 can be usually applied. Consequently, the final optimization loss function for train-
ing the advRN can be summarized as below:

Ltotal = LR + σ∥∇LR∥2 + α ||θ||2, (4.16)

where σ and α are the trade-off parameters.

For illustration, we also plot Fig. 4.3 which briefly shows the proposed training pro-
cess.

4.2.3 Sample Re-adjustment with Gradient Guidance

As an imitation of the hypothesis testing cognition, we design our test process in the
following. The test process consists of three parts: gradient calculation with the unseen
classes hypothesis, sample re-adjustment, and classification as shown in Fig. 4.4.

Similar to hypothesis testing cognition, we first make an unseen-against-seen hypoth-
esis that each test instance xm belongs to unseen categories. Then we can construct an
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objective function LGm for this hypothesis as follows:

LGm =
1

K

K∑
k=1

(gϕ(xm ⊕ fθ(ak))− l(k))2, (4.17)

l(k) =

{
0 0 < k ⩽ KS,

1 KS < k ⩽ K,
(4.18)

where l(k) indicates whether the k-th class is an unseen one. This objective function
actually measures the total cost with the hypothesis that each test sample was from unseen
categories.

Inspired by the adversarial idea as discussed in Section 4.2.2 that gradient-based per-
turbations on samples tend to deceive the classification, we introduce a similar gradient
but adjust the instances in the opposite direction. Namely, the gradient of the loss func-
tion w.r.t. the input instance ∇xmLGm presents the worst-case perturbation which would
change the output of the classifier. On the contrary, adjusting the sample in a reversed
gradient direction would then lead to more confidence in the original unseen-against-seen
hypothesis.

As a result, the adjusted features become:

x′m = xm − λ∇xmLGm, (4.19)

where λ denotes the adjustment rate. After the feature instance is adjusted, we can directly
predict its label as the category with the maximum relation score between the adjusted
feature and the semantic attributes:

ŷm = argmax
k∈K

gϕ(x
′
m ⊕ fθ(ak)) (4.20)

In a short summary, by applying the SR, the model is adapted so that a high response
can be obtained for small adversarial perturbations to unseen classes, consequently en-
hancing the awareness of the unseen classes. On the other hand, robust training with GP
has the property that any small perturbations on the samples of seen classes would not
change the network’s output (as discussed in the previous subsection). This would greatly
alleviate the limitation of previous inductive GSZL methods, i.e., they are commonly not
discriminative enough and tend to classify target samples as seen classes. The detailed
steps for the whole framework are presented in Algorithm 1.

Remarks on Entire Adversarial Framework.

The training and test processes form an entire adversarial framework for the inductive gen-
eralized zero-shot learning. Adding the gradient penalty during training can be deemed
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Algorithm 1: Procedure of the proposed training & testing
Training:
Input: dataset Xtr and Ytrwith the total sample number NS

tr and
A = {a1, ... , aKS

} with class number KS , learning rate γ, regularization weight
σ, α and batch size Nb

Parameter: θ and ϕ
1: for random batch {xi}Nb

i=1 ∼ Xtr, {yi}Nb
i=1 ∼ Ytr with Kτ classes

2: Compute the LR(ϕ, θ) through Eq. 4.3
3: Calculate the total loss Ltotal(ϕ, θ) for the batch samples through Eq. 4.16
4: Optimize θ and ϕ based on the calculated total loss Ltotal(ϕ, θ):

θ ← θ − γ · ∇θLtotal(ϕ, θ)
ϕ← ϕ− γ · ∇ϕLtotal(ϕ, θ)

5: end for
6: return θ and ϕ

Testing:
Input: Trained embedding function fθ(·) and metric function gϕ(·); seen class
number KS and unseen class number KU = {KS + 1, . . . , K};
A = {a1, ... , aK}; instance xm ∈ XU

1: Calculate the object function LGm for instance through Eq. 4.17
2: Perturb the instance as x′

m through Eq. 4.19
3: Predict the final label ŷm of instance xm with the perturbed instance through Eq.4.20
4: return predicted label ŷm
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Table 4.1: Statistic information for zero-shot learning benchmark in terms of scale, gran-
ularity, attribute dimension, class size and sample size.

benchmark scale granularity
attribute class size sample size

dimension train(seen) unseen train testseen testunseen

AwA1 medium coarse 85 27+13 10 19832 4958 5685

AwA2 medium coarse 85 27+13 10 23527 5882 7913

aPY small coarse 64 15+5 12 5932 1483 7924

CUB medium fine 312 100+50 50 7057 1764 2967

as an adversarial defence for the seen classes, making the classifier sufficiently robust to
small sample perturbations. On the other hand, small sample re-adjustment in the test
phase can be regarded as an adversarial attack that tends to mislead the classifier into
choosing the unseen classes. In summary, applying the strategies of both SR and GP,
the proposed model has the appealing feature that small sample re-adjustment can lead to
high response to unseen classes while not affecting the recognition of seen classes due to
the robust adversarial training.

4.3 Experiment

4.3.1 Setup

Dataset. To evaluate the performance of the proposed method, we select four com-
monly used zero-shot learning benchmark datasets: AwA1 [33], AwA2 [53], aPY [121]
and CUB [34]. Detailed statistic information for each benchmark is shown in Table 4.1.
AwA1 is a medium-scale coarse-grained dataset containing 50 classes of animals with 85
attributes. AwA2 keeps the same setting as AwA1 but contains different samples. aPY is
a small-scale coarse-grained dataset with 32 object classes and 64 attributes, and CUB is
a medium-scale fine-grained dataset with 200 bird classes described in 312 attributes.

Setting. All quantitative evaluations were conducted in the inductive generalized zero-
shot learning scenario. We follow the attributes, features and train/test splits proposed
in [53] (GBU setting) to avoid overlapping of categories between the test set and the
set for the training feature extractor. The average per-class top-1 accuracy is selected to
measure the performance. Specifically, for generalized zero-shot learning, criteria ACCS
and ACCU denote accuracies for the seen and unseen categories, respectively, and H is
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defined as the harmonic mean of ACCS and ACCU to evaluate the overall performance as
follows:

H =
2×ACCS ×ACCU
ACCS +ACCU

. (4.21)

The learned embedding function fθ is designed as a two-layer neural network with the
activation function relu. The learned metric function gϕ engages a similar setting to that of
fθ, but the activation function of the last layer is replaced by sigmoid. The specific values
of hyperparameters for each benchmark are shown in Table 4.2 where the adjustment rate
λ is roughly chosen from {2500/32, 5000/32, 10000/32}2 by the validation set.

4.3.2 Results

Since we focus on inductive generalized zero-shot learning tasks, here we only compared
the proposed methods with the models designed under inductive scenario. It is observed
that the proposed model achieves the most significant performance for unseen accuracy
and harmonic mean compared to the state-of-the-art methods as shown in Table 4.3. As
the aim of our method is to learn a more generalized recognition model, it is reasonable
that the accuracies for seen classes are not the highest. Compared to the baseline RN,
while ACCS was decreased by 11.8%, 9.4% and 2.8%, ACCU has been significantly pro-
moted by 19.2%, 19.3% and 6.8% in AwA1, AwA2 and aPY, respectively. More impor-
tantly, overall, the proposed model attains the best harmonic mean in all the four datasets.
Taking a closer examination of CUB, we observe an increase in both ACCS and ACCU
over RN, showing that the proposed advRN model obtains a more generalized recognizer.
It is noted that, even without using the test information during training, our model leads
to comparable performance with most of the semantic transductive generalized zero-shot
learning methods.

We first plot in Fig. 4.5 the performance of advRN as the adjustment rate λ increases.
As observed, when sample re-adjustment is not applied (i.e., λ = 0), the gradient penalty
improves the accuracy of known or seen classes, but it actually leads to an over-fitting on
the seen classes and consequently causes the decline in ACCU .

4.3.3 Further Analysis

In order to further demonstrate the effectiveness, we take AwA2 as one illustrative exam-
ple to have a closer examination. However, after combining the sample re-adjustment,
the proposed advRN method improves the recognition of unseen classes significantly. A
small adjustment (with a small λ) leads to a sharp increase in ACCU and a slight de-
crease in ACCS; this alleviates the aforementioned over-fitting problem. As we observed

2This division by 32 is due to the effect of batch size during the derivation in the test process.
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in Fig. 4.5, for the proposed method, the conservative seen best node corresponds to the
performance level with ACCU the same as that of the baseline, the conservative unseen
best node corresponds to the performance level with ACCS the same as that of the base-
line, and the overall best node denotes the performance with the highest H . When λ is
in the region between the two conservative nodes, both ACCS and ACCU are beyond the
baseline, indicating that a more discriminative recognizer can be achieved.

For a more intuitive view, classification accuracies for three confusing classes in
AwA2 are demonstrated in Fig. 4.6 where bobcat is one of the unseen classes, leopard and
wolf are two seen classes. Applying SR, 20.31% more bobcat samples can be correctly
recognized than without applying SR. Simultaneously, the adversarial training prevents a
21.01% accuracy drop caused by the misleading sample re-adjustment for the wolf.

To illustrate the importance of the gradient penalty, we also compare the performances
of the proposed advRN with and without the gradient penalty. As seen in Fig. 4.7 and 4.8,
we can inspect an obvious difference between the models. For the model trained without
the gradient penalty, the learned recognizer appears more sensitive to perturbations, espe-
cially for seen classes. As a result, ACCS falls sharply when λ increases, and the overall
performance is mediocre. In comparison, with the gradient penalty, the learned recognizer
shows high robustness to seen classes. Moreover, while promoting the recognition of the
seen classes, this gradient penalty can also increase the model’s generalization to unseen
classes, as the upper bound of the unseen accuracy is also slightly increased in Fig. 4.7
and 4.8.

4.4 Summary and Discussion

In this chapter, we have designed a sample re-adjustment process for generalized zero-
shot learning to increase the model’s awareness of unseen classes. However, this adver-
sarial perturbation based adjustment may mislead the correct judgment about the seen
class. Therefore, with the idea of adversarial training, we have also designed a gradient
penalty which makes the model less sensitive to the input perturbations for those seen
classes. Applying both the sample re-adjustment and gradient penalty, we attain a more
generalized model that has achieved superior performance compared to the state-of-the-
art methods. Extensive quantitative experimental results have validated the effectiveness
of our work on four benchmark datasets.

The proposed adversarial framework in this chapter is applied to obtain robustness in
sample space. Though such design improves the model to achieve a higher comprehensive
performance in generalized tasks, it only considered perturbations on a single sample. In
other words, each time doing the recognition, the framework only enhances the sensitiv-
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ity to unseen classes based on the knowledge from a single instance. The classification
knowledge common to multiple individuals is not effectively utilized. To overcome this
drawback, we propose an adversarial framework for parameter space in the next chapter.
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Chapter 5

Instance-Specific Perturbation on
Parameters for Relation Network Based
Generalized Zero-Shot Learning

In this chapter, we consider a strict generalized zero-shot learning scenario in which
only the seen set (samples and attributes for seen classes) are available during training.
For those methods that rely on learned metrics, we propose an adversarial perturbation
mechanism during the test to alleviate over-fitting in zero-shot learning while avoiding
the use of unseen class attributes during training. Based on a trained embedding model
with the metric, for each instance, the highest confidence seen and unseen inferences can
be obtained. Then perturbations on model parameters are derived through a min-max
problem for obtaining small directions which minimize the seen confidences while max-
imizing unseen confidences. By subtracting these perturbations, the parameters become
instance-specific to alleviate over-fitting on seen classes and consequently make fairer
predictions. Additionally, to protect the seen instance from being excessively affected by
the perturbation, a parameter-wise adversarial training process is developed to ensure the
model robustness on seen classes. In the optimization process, the parameters are opti-
mized via another min-max problem favoring the direction of simultaneously minimizing
both the original loss function and that of a corresponding maximum one in the local re-
gion. Such a process has been proved to feed back a more generalized model with a flat
local minimization loss [142].

Consequently, as illustrated in Fig. 5.1, predictions of most of the seen classes keep
consistent, while the perturbation mainly enhanced unseen confidences for unseen class
instances. Note that the whole framework is designed with the focus on alleviating the
over-fitting in generalized zero-shot learning, the discrimination between unseen classes
may not be improved. In other words, by applying the proposed framework, the improve-
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Fig. 5.1: An example of test errors (seen and unseen) vs. model parameters showing the
proposed perturbation with (b) and without (a) adversarial training.

ment of the model in generalized zero-shot learning is restricted by its performance in
conventional zero-shot learning. The main contributions of this chapter are summarized
below:

• We developed a parameter-wise adversarial training process for metric learning
based embedding methods in generalized zero-shot learning to ensure the model
robustness on seen classes while proposing a novel parameter perturbation mecha-
nism to enhance the model sensitiveness on unseen classes. The framework effec-
tively alleviates the over-fitting problem in generalized zero-shot learning, avoiding
employing unseen information during training.

• To the best of our knowledge, this is the first work applying the parameter per-
turbation framework to improve the zero-shot classification. Compared with the
ideal perturbating features [17], the proposed framework can consider multiple in-
stances jointly to avoid extreme perturbation in parameter space. Taking Relation
network [14] as the baseline, the proposed framework attains outstanding perfor-
mance and can even outperform the state-of-the-arts which access unseen attributes
in their training on AWA1 and AWA2 benchmarks.

5.1 Methodology

In this section, we first review the definition of inductive zero-shot learning. We then
introduce the parameter-wise adversarial training (PAT) process as well as the model per-
turbation mechanism (MPM) in detail separately.
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5.1.1 Problem Definition

Denote X = {x1, ... , xN}, Y = {y1, ... , yN}, A = {a1, ... , aK} as visual feature, class
label, and semantic attribute sets respectively, with the total sample size N and class
number K. First we divide the category or class set into two parts, K = KS +KU , and
denote the first KS classes as seen classes for convenience. Then the dataset is divided
into training and test sets, as X = Xtr ∪ Xte, Y = Ytr ∪ Yte and N = Ntr + Nte, where
Xtr ∩ Xte = ∅. Specifically, the training set only contains samples from seen classes,
while the test set may contain those of both seen and unseen, i.e. ∀yi ∈ Ytr, yi ≤ KS

and ∀ym ∈ Yte, 0 < yi ≤ K. Given a training set Dtr = {(xi, yi, ayi)|xi ∈ Xtr}, the
target of zero-shot learning is to train a classifier C(xi, a1, ..., aKS) = ŷi on Dtr to achieve
classification on a test set Dte, where Dte = {(xm, ym, aym)|xm ∈ Xte, K

S < ym ≤ K}
for conventional zero-shot learning, and Dte = {(xm, ym, aym)|xm ∈ Xte, 0 < ym ≤ K}
for generalized zero-shot learning. In this chapter, we only focus on this strict generalized
zero-shot learning case.

5.1.2 Parameter-wise Adversarial Training

In the embedding methods based on metric learning, the semantic attribute vectors ak are
projected into the visual feature space by a learnable embedding function fθ(·). Then
a metric function gϕ(·) is trained to capture the relation score (similarity) between the
feature xi and the attribute vector ak as follows:

s(xi, ak;ϕ, θ) = gϕ(xi ⊕ fθ(ak)), (5.1)

where ⊕ represents the concatenation and r(xi, ak) indicates whether xi and ak represent
the same class. The parameter θ and ϕ are optimized in a meta-learning process. In
each optimizing episode, Nb features (corresponding to totally Kτ classes) are sampled
from the training set to construct a mini-classification task. Then, by computing the MSE
between the relation scores and the one-hot label, a loss function can be designed for
optimizing model parameters θ and ϕ:

LR(ϕ, θ) =
1

Kτ

1

Nb

Kτ∑
k=1

Nb∑
i=1

[s(xi, ak;ϕ, θ)− r(xi, ak)]2,

r(xi, ak) =

{
0 k ̸= yi,

1 k = yi.
(5.2)

Our parameter-wise adversarial training process aims to obtain a set of more robust
model parameters on seen classes. These parameters should be resistant to perturbations
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when calculating the relation scores for seen classes. To achieve this goal, we first define
a local region of ϕ with radius ϵ as:

B(ϕ; ϵ) = {ω : ||ω − ϕ||2 ≤ ϵ}. (5.3)

Then the corresponding maximum loss in the local region can be represented as:

L
′

R(ϕ, θ) = max
ϕ′∈B(ϕ;ϵ)

LR(ϕ
′
, θ)). (5.4)

To make the radius of the local region more flexible for each optimizing episode, we calcu-
late the maximum corresponding ϕ′ through gradient descent to approximately calculate
region maximum loss:

L
′

R(ϕ, θ) ≈ LR(ϕ+ σ∇ϕLR(ϕ, θ), θ), (5.5)

where σ denotes a flat rate. This additional derived loss term is in a similar fashion as the
adversarial model perturbation loss [142], which has been proved to lead to flatter local
minima. The flattening property actually ensures the desired immunity to perturbations.
Finally, the optimization loss for each episode can be summarized as below:

Lep
R (ϕ, θ) = LR(ϕ, θ) + αL

′

R(ϕ, θ) + β||θ||2, (5.6)

where α and β are the trade-off parameters. A diagram of the training process can be
found in Fig. 5.2.

5.1.3 Model Perturbation Mechanism

With a trained similarity metric s(·, ·;ϕ, θ), the inference for instance xm can be regarded
as the class k with the highest similarity. To implement the proposed model perturbation
mechanism during test, we first calculate the unseen inferences for the instance as:

ỹum = argmax
k∈{KS+1,...,K}

s(xm, ak;ϕ, θ). (5.7)

With such unseen inferences, we could use Xte (or Xtr when the test instances are not
allowed to be inferred together) to construct KU support sets {Xj

support|j = 1, ..., KU}
where for each, the instances have the same unseen inference. In order to consider the
instances jointly in the prediction process, each time an instance xm with unseen inference
j is formed into a group {xjl }Ng with other Ng − 1 support samples with the same unseen
inferences from the support set Xj

support. Then we define a loss function measuring the
distance between these inferences and the unseen inference one-hot label as below:

LP (ϕ, θ) =
1

K

1

Ng

K∑
k=1

Ng∑
l=1

[s(xjl , ak;ϕ, θ)− l(k)]
2,

l(k) =

{
0 k ̸= KS + j,

1 k = KS + j.
(5.8)
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Specifically, since the first KS classes are defined as the seen classes, k = KS + j stands
for that ak is the corresponding attribute vector for the j-th unseen class. In other words,
l(k) = 1 only holds when ak is the corresponding inferred unseen class attributes of xjl .

Minimizing such a loss function is equivalent to strengthening the confidence of the
unseen inferences for the instance group. Therefore, we apply an iteratively adversarial
perturbation to the parameter ϕ according to this loss:

ϕ[0] = ϕ (5.9)

ϕ[p+ 1] = ϕ[p]− 1

2p
λ∇ϕ[p]LP (ϕ[p], θ), (5.10)

where λ denotes the perturbation rate.

Finally, with p step perturbation, the predicted label of instance xm with is calculated
as:

ŷm = argmax
k∈{1,...,K}

s(xm, ak;ϕ[p], θ). (5.11)

A diagram of the test process can be found in Fig. 5.3. Following the proposed mecha-
nism, the sensitivity to unseen classes is substantially increased by employing adversarial
perturbation on the model. Though this operation may weaken the confidence of the seen
classes, the robustness ensured by the adversarial training process can mitigate this im-
pact. Thereby, the whole framework can effectively alleviate over-fitting in generalized
zero-shot learning. The detailed steps for the whole framework are presented in Algo-
rithm 2.

5.2 Experiment

In this section, we first review the datasets used in this work as well as the evaluation
protocol in detail. We then report the comparison results. After that, we set out abla-
tion study and sensitivity analysis to take closer examinations on our proposed method.
All the experiments are implemented based on ubuntu 16.04, PyTorch 1.7.1 and Nvidia
RTX1080Ti.

5.2.1 Datesets and Evaluation Protocol

We evaluate the proposed framework on four commonly used zero-shot learning bench-
marks: Animals with Attributes 1 (AWA1) [33] and 2 [53], attribute Pascal and Yahoo
(aPY) [ [121] and Caltech-UCSD-Birds 200-2011 dataset (CUB) [34]. AwA1 and AwA2
are two medium-scale coarse-grained animal classification datasets containing 40 seen
classes and 10 unseen classes. aPY is a small-scale coarse-grained dataset with 20 seen
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Algorithm 2: Procedure of the proposed training & testing
Training:
Input: dataset Xtr and Ytrwith the total sample number Ntr and
A = {a1, ... , aKS} with class number KS , learning rate γ, flat rate σ and batch
size Nb

Parameter: θ and ϕ
1: for random batch {xi}Nb

i=1 ∼ Xtr, {yi}Nb
i=1 ∼ Y S with Kτ classes

2: Compute the LR(ϕ, θ) through Eq. 5.2
3: Calculate region maximum loss L′

R(ϕ, θ) through Eq. 5.5
4: Optimize θ and ϕ through Eq. 5.6:

θ ← θ − γ · ∇θL
ep
R (ϕ, θ)

ϕ← ϕ− γ · ∇ϕL
ep
R (ϕ, θ)

5: end for
6: return θ and ϕ

Testing:
Input: Trained similarity metric s(·, ·, θ, ϕ); seen class number KS and unseen
class number KU ; attributes A = {a1, ... , aK}; perturbation rate λ and step p,
instance xm ∈ Xte; (support group size NG and support sets
{Xj

support|j = 1, ..., KU} if exist)
1: Calculate the unseen inferences ỹum for instance through Eq. 5.7
2: if support sets {Xj

support|j = 1, ..., KU} exist
3: Construct the group {xỹ

u
m

l }Ng with the instance and the corresponding support
set Xỹum

support

4: else
5: Construct the group {xỹ

u
m

l }1 only use the single test instance.
6: end if
7: Calculate the perturbed parameter ϕ[p] through Eq. 5.10
8: Predict the final label ŷm of instance xm with the perturbation mechanism through

Eq.5.11
9: return predicted label ŷm
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Table 5.1: Dataset statistics.

benchmark
attribute sample size

dimension train testseen testunseen

AwA1 85 19832 4958 5685

AwA2 85 23527 5882 7913

aPY 64 5932 1483 7924

CUB 312 7057 1764 2967

classes and 12 unseen classes, and CUB is a medium-scale fine-grained bird dataset with
150 seen classes and 50 unseen classes. More details can be found in Table 5.1.

We follow the data splits in the GBU setting [53] to avoid class overlapping between
the test set for zero-shot learning and the training set for the pre-trained DNN. The perfor-
mance is evaluated through top-1 average per-class accuracy ACC. Specifically, ACCS

and ACCU denote the seen and unseen classes’ accuracies in generalized zero-shot learn-
ing, respectively. In addition, a harmonic mean of these accuracies is defined to measure
the overall performance as follows:

H =
2×ACCS ×ACCU
ACCS +ACCU

. (5.12)

We take Relation Network [14], termed shortly as RN and CRNet [82], as two typi-
cal baselines to validate the effectiveness of our proposed method. In implementing RN,
both of the embedding fθ and metric functions gϕ are designed as three-layer neural net-
works with most of the activation functions as relu except gϕ using sigmoid at the output
layer. The input and output dimensions of fθ are consistent with the attributes and fea-
ture spaces, respectively, and gϕ outputs a scalar as the inferred similarity of the input
feature pair. The detailed setting for the whole framework can be found in Table 5.2.
For CRNet, the structure of the metric function is the same, while multiple embedding
functions as two-layer neural networks {fk

θ |k = 1, ..., K} are designed for embedding. A
K-clustering is first applied over the seen attributes, then the difference between the at-
tributes and the corresponding k-th cluster centre will be regarded as the input for fk

θ . And
the final embedded feature can be obtained as the sum of all the outputs of the embedding
functions. The detailed setting for the whole framework can be found in Table 5.3.
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5.2.2 Comparisons with State-of-the-Art Methods

Since our motivation is to alleviate the over-fitting, we conduct comparisons mainly in
the generalized zero-shot learning scenario as shown in Table 5.5. Additionally, Table 5.6
provides the comparison with the baseline in conventional zero-shot learning to verify
that the developed parameter-wised adversarial training has no negative effects on the
baseline.

Since our work focus on improving the embedding methods based on metric learning,
the comparisons in Table 5.5 are divided into three parts. The first part contains the results
of the methods which employed knowledge from unseen attributes when training the clas-
sifier (mainly the generative methods). Both the second and third parts provide the results
for the embedding methods where the former applies settled distance metrics while the
latter learns metrics during training. CRnet [82] and RN [14] as two metric learning based
embedding methods are selected as the baselines. As shown in Table 5.5, though some
of our implementations of the baselines (marked with *) return poorer performance com-
pared with the reported results, the proposed mechanism significantly improves them,
and the results outperform all the other embedding methods based on metric learning.
The proposed method achieves the H values of 70.0% and 69.9% on datasets AWA1 and
AWA2, respectively, which even reach the level of those methods taking advantage of ad-
ditional unseen information during training. We have mentioned that the performance of
the proposed framework is bounded by the conventional zero-shot learning performance
of the baseline. Since the baseline only obtains 40.0% and 58.5% conventional zero-shot
learning accuracies, our model does not reach the top on CUB and aPY. However, it is
still competitive with the other embedding methods, particularly, the framework performs
significantly better when multiple instances are considered in the perturbation mechanism
compared to the AdvRN approach which shares a similar motivation.

In this section, considering RN as an example, we mainly verify the effectiveness of
each part in our proposed framework. The curves of three performance metrics vs. pertur-
bation rate λ are plotted in Figs. 5.4, 5.5, 5.6 and 5.7 which demonstrates the sensitivities
of the models to λ. It is obvious that, compared with the proposed model, ACCS of the
baseline drops significantly while λ increases. It means the proposed adversarial train-
ing process effectively moderates the misleading of perturbations on the seen class, thus
enabling the model to survive stronger perturbations to improve the unseen recognition.
As a result, the metric H of the proposed method retains a series of stable high values
over a wide range of the perturbation rate. In other words, benefiting from the proposed
PAT process, the improved robustness leads the model to become more adaptable for the
perturbation parameters.
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Table 5.6: Comparisons between the proposed Padv-RN, Padv-CRnet, and their baseline
in conventional zero-shot learning.

Method AwA1 AwA2 aPY CUB

CRnet* 69.1 68.7 39.7 56.7

Padv-CRnet 69.4 68.8 40.4 57.0

RN* 69.8 68.5 40.0 58.5

Padv-RN 69.9 69.5 40.7 58.0

5.2.3 Effectiveness Analysis

For a quantitative display, an ablation study is presented in Table 5.7. Applying the multi-
instance based perturbation benefits both the baseline and the proposed model. Employing
simply the adversarial training ruins the sensitivity of unseen classes since the enhanced
robustness may lead to a lower generalization. However, once combining the adversarial
training with the proposed perturbation mechanism, we observe clear performance gains
over the case where only the perturbation mechanism is applied in general.

To verify the effectiveness of the proposed model for alleviating over-fitting. The un-
seen vs. seen trade-off curves are demonstrated in Fig. 5.8 and 5.9. This curve is obtained
by simply increasing the predicted scores for all the seen or unseen classes. The proposed
framework leads to a larger area under the curve which means the distinguishability be-
tween seen and unseen classes is more outstanding. The highest achieved H values in
these curves are listed in Table 5.8

To avoid misunderstandings, here we will elaborate that our approach is not a trans-
ductive method. In our method, a group of test samples are only used to calculate the
perturbation, which was not involved in training. Actually, even if not using a group, one
single test sample can also boost the performance. To clarify, we listed the results under
different test group settings in the second part of Tab. 5.7 , where ’1test’, ’4train’, ’32test’
and ’128test’ denote calculating the perturbation based on: one single instance, grouped
with 3 training samples as support, grouped with other 31, and 127 test samples, respec-
tively. We highlight some points as follows:
1). Parameter-wise Adversarial Training mainly makes the trained model adapted to a
wider range of perturbations, i.e. more practicable, and also improves the performance
with Model Perturbation Mechanism in some benchmarks.
2). Model Perturbation Mechanism is not a training process. Similar to an adversarial at-
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Table 5.8: The best H value in the unseen vs. seen trade-off curve.

AwA1 AwA2 aPY CUB

RN* 67.3 67.4 41.2 52.1

Padv-R 70.6 70.3 44.4 53.8

tack that obtains the worst case of the task, we reversely employ the perturbation and find
the best case of unseen inference for each instance (or group), in the neighborhood of the
parameters. In other words, it is an advanced inference process that involves calculating
the gradients, while the trained model is not updated.
3). Padv-RN1test and Padv-RN4train could be regarded as the results strictly following
the inductive ZSL setting where the support of the training samples could be considered
as employing class prototypes from training samples which does not break the inductive
settings. Under the same setting, the proposed method outperforms the previous work
[29]. Moreover, as a slight variant of our work, the perturbation could be calculated with
the support of training samples which improves the performance.
4). The perturbation is instance-specific, which only depends on the instance (or a group
of instances). Other test samples won’t participate in or affect the inferences. This is
different from transductive learning, where all test samples are available during training.
Employing only 32 instances sharing the perturbation inside a group during the test, we
find the results could be significantly improved.

In addition, we study the model sensitivity to each hyper-parameter by settling the
others same as the setting for comparisons. The results in AwA2 are displayed in Fig. 5.10
as one illustrative example.

5.3 Summary and Discussion

In this chapter, we have introduced a model adversarial perturbation framework for gen-
eralized zero-shot learning to alleviate the over-fitting problem without accessing any un-
seen information during training. Instance-specific parameters are obtained through a pa-
rameter adversarial training process to increase the sensitivity of unseen classes, while an
adversarial training process improves the resistance to such perturbation for seen classes.
Comparisons of four commonly used benchmarks demonstrate the effectiveness of the
proposed framework. With the advantage of being able to consider instances jointly, the
performance of the proposed framework is far superior to the framework with similar mo-
tivation and is even competitive with those generative methods in two of the benchmarks.
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Our main motivation for this work is to alleviate the over-fitting of the embedding
methods with learned metrics for zero-shot classification. The proposed mechanism can
only enhance the sensitivity of recognizing unseen classes, while the discrimination abil-
ity between unseen classes is not promoted. In other words, the predictions for instances
of unseen classes that have been misclassified as seen might be corrected, whereas those
instances that have been incorrectly classified as unseen would not. Furthermore, one
more step back-propagation is required in each batch in our proposed adversarial train-
ing, which may incur additional training time. How to design a faster yet more efficient
algorithm remains one open problem.
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Chapter 6

Conclusions

In this dissertation, we have presented a comprehensive survey to introduce the zero-shot
learning field thoroughly. To overcome the problem that models return low confidence
for unseen classes, we designed three metrics for the embedding based methods, one for
the regression-based model and two for learned metrics-based models. This chapter will
first briefly review the whole dissertation and then discuss the future works.

6.1 Review of the Dissertation

The survey section specifically introduced zero-shot learning in motivation, learning sce-
narios, task settings, commonly used benchmarks, representative methods, and compar-
ison results. This research field aims to emulate humans’ efficient knowledge transfer
capability to construct category concepts from descriptions, thus circumventing the de-
pendence of conventional DNN based models on a large number of labelled samples in
practical tasks. To clarify whether the concept of the target class was constructed ac-
curately, the researchers constructed a generalized zero-shot learning task to verify the
model’s generalization, i.e., the model was required to distinguish between seen and un-
seen classes while performing the classification. In facing such challenging tasks, dif-
ferent problem settings and diverse experimental setups have emerged, making the com-
parison results not fair for verifying the model’s effectiveness, thus hindering further re-
search in the field. Motivated by this situation, we constructed comparison results based
on the implementation details of zero-shot methods to evaluate the model’s effectiveness
more fairly and critically. Whether the backbone structure has been modified, whether
fine-tuning has been conducted, and whether additional knowledge has been used are an-
notated to delineate in more detail the premises corresponding to the performance of each
model. Comparing the methods belonging to the same learning scenario under the exact
specific implementation relevant settings helps rigorously clarify the superiority of each
proposed model.
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Moreover, to overcome the over-fitting problem in generalized zero-shot tasks, i.e.,
the model focuses excessively on seen classes and becomes insensitive to unseen classes,
we have introduced three improvements on metrics for those embedding based zero-shot
methods. For a regression-based deep embedding method, we proposed a focus ratios
based metric that achieves alleviating class-level over-fitting via employing the correla-
tions between the location and the importance of each dimension in the embedding space.
During training, the over-fitted knowledge is shared by the proposed module and the base-
line model. Then abandoning the proposed module during instance inference will likely
alleviate the over-fitting problem.

As those embedding methods with learned metrics perform outstanding, We design
an adversarial framework for the relation network to learn a more generalized model. In
the proposed framework, instead of predicting the label on an original instance, an indi-
vidual that most resembles the unseen class is selected from the neighbourhood to make
the inference. This sample perturbation-based relation metric achieves a high response
for unseen classes. In order to avoid disrupting the perception of classification of seen
classes by the perturbations, a robust training process is additionally applied to keep the
prediction for seen roughly consistent, thus leading to a performance that significantly
outperforms the baseline.

Finally, we developed the adversarial framework for the parameter space. A param-
eter perturbation based relation metric inherits the advantages of the feature-based one
and achieves more generalized perturbation by considering multiple instances in conjunc-
tion. Instead of calculating the perturbation through a single instance, combining the
instance with a support group sampled from the training set could contribute to a more
classification representative direction for the perturbation, which leads to more precise
enhancement for the unseen sensitivity. As a result, the improved model becomes more
generalized. When the test instances could be inferences together, the support group con-
structed by test instances could further boost the model performance.

6.2 Future Work

In this dissertation, our aim is to improve the metrics for those embedding methods with
a settled backbone under the inductive learning scenario. We will carry on our studies
based on the following ideas:

• Such designs can be extended to apply these improved mechanisms and frame-
works to those embedding methods with a modified backbone or those under other
learning scenarios.
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• These metrics could also be applied in those generative methods to train the clas-
sifier. More verification could be carried out to show whether the generalizability
brought by these improved metrics is compatible with that of the pseudo-samples,
thus further enhancing the generative methods in the discriminating phase.

• The proposed adversarial framework can be modified and applied to the training
process of the generator. The samples located at the classification boundary can be
obtained by perturbation which could be utilized to construct additional supervision
or regularization term.

• We could try to figure out a way to combine the two proposed adversarial frame-
works to enhance unseen sensitivity by adapting the perturbations in both sample
and parameter spaces. The compatibility of these two frameworks has to be ver-
ified. Since perturbing one of the instances and parameters will cause a change
in the perturbation of the other one. As a result, the whole process may be rele-
vant to an iterative forward and backward propagation to achieve the perturbation
on multi-spaces. Therefore, the simplification of the computation should also be
concerned.
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Appendix

Here is the used dataset list introduced in this dissertation:

1. Animals with Attributes (AwA2) [53] contains 30,475 images from public web
sources for 50 highly descriptive animal classes with at least 92 labelled examples
per class. For example, the attributes include stripes, brown, eats fish and so on.

2. Caltech-UCSD-Birds-200-2011 datasets (CUB)) [34] is a fine-grained dataset with
a large number of classes and attributes, containing 11,788 images from 200 differ-
ent types of birds annotated with 312 attributes.

3. SUN Attribute (SUN) [120] is a fine-grained dataset, medium-scale in class number,
containing 14,340 scene images annotated with 102 attributes, e.g. sailing/boating,
glass, and ocean.

4. The dataset Attribute Pascal and Yahoo (aPY) [121] is a small-scale dataset with 64
attributes and 32 object classes, including animals, vehicles, and buildings.

The extracted features by pretrained backbone proposed in [53] can be found through the
link:
https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/
research/zero-shot-learning/zero-shot-learning-the-good-the-bad-and-the-ugly/
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