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 10 

Abstract 11 

The number of newly available viral genomes and metagenomes has increased exponentially since the 12 

development of high throughput sequencing platforms and genome analysis tools. Bioinformatic 13 

annotation pipelines are largely based on open reading frame (ORF) calling software, which identifies genes 14 

independently of the sequence taxonomical background. Although ORF-calling programs provide a rapid 15 

genome annotation, they can misidentify ORFs and start codons; errors that might be perpetuated and 16 

propagated over time. This study evaluated the performance of multiple ORF-calling programs for viral 17 

genome annotation against the complete RefSeq viral database. Programs outputs varied when considering 18 

the viral nucleic acid type versus the viral host. According to the number of ORFs, Prodigal and 19 

Metaprodigal were the most accurate programs for DNA viruses, while FragGeneScan and Prodigal 20 

generated the most accurate outputs for RNA viruses. Similarly, Prodigal outperformed the benchmark for 21 

viruses infecting prokaryotes, and GLIMMER and GeneMarkS produced the most accurate annotations for 22 

viruses infecting eukaryotes. When the coordinates of the ORFs were considered, Prodigal scored high for 23 

all scenarios except for RNA viruses, where GeneMarkS generated the most reliable results. Overall, the 24 

quality of the coordinates predicted for RNA viruses was poorer than for DNA viruses, suggesting the need 25 

for improved ORF-calling programs to deal with RNA viruses. Moreover, none of the ORF-calling programs 26 

reached 90% accuracy for annotation of DNA viruses. Any automatic annotation can still be improved by 27 

manual curation, especially when the presence of ORFs is validated with wet-lab experiments. However, 28 

our evaluation of the current ORF-calling programs is expected to be useful for the improvement of viral 29 
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genome annotation pipelines and highlights the need for more expression data to improve the rigor of 30 

reference genomes. 31 

Keywords: Virus; Bacteriophage; Genome Annotation; Gene Prediction; Open Reading Frame 32 

 33 

Introduction 34 

The field of viromics—the characterization of viral communities and populations (viromes) in a given 35 

environmental niche (1)—is rapidly evolving along with the increasing discovery and characterization of 36 

new viruses across all domains of life (2,3). The development of sequencing technologies, the associated 37 

reduction in costs and increased throughput, has made high quality viral metagenomic studies possible (4). 38 

As a result, the number of new sequenced virus and phage genomes is expanding at an impressive rate 39 

(5,6), arguably without the concomitant improvement in appropriate bioinformatic tools required to 40 

examine viral contigs and genomes (7) or to address the number of viral sequences that share little or no 41 

homology to any genes of predictable function (uncultivated virus genomes) (6). 42 

New viruses are usually annotated using de novo genome annotation pipelines such as RAST (8), Prokka (9), 43 

VIGA (10), and Cenote-Taker 2 (11). All these bioinformatic tools strongly rely on open reading frame (ORF) 44 

calling software, such as GLIMMER (12), the GeneMark family of programs (13-15) and Prodigal (16), which 45 

are the most commonly used programs. These ORF-calling programs identify genes and their start codons 46 

without considering the taxonomical background of the sequence. Although most of these programs were 47 

designed for bacterial genome analysis, they have also been used to rapidly annotate complete viral 48 

genomes. However, this approach can produce poorly optimized results. For instance non-coding ORFs 49 

might be misidentified as coding ORFs, real ORFs might be missed, or start codons misidentified (17). This 50 

problem is particularly relevant as the annotation of new viruses relies on previous annotations of similar 51 

viruses, resulting in the perpetuation and propagation of annotation errors over time (5). 52 

Recent benchmarking exercises have evaluated the performance of multiple ORF-calling programs for 53 

temperate bacteriophage annotation (5,18). However, these investigations relied solely on the genomes of 54 

temperate phages whose genes were known empirically. Salisbury and Tsourkas (2019) only considered 55 

sequences of Escherichia virus Lambda and Mycobacterium virus Patience (5), whereas Lazeroff et al (2021) 56 

performed benchmarking using a total of eight virus genomes, including the aforementioned Lambda and 57 

Patience (18); yet, the sample size was smaller than the estimated sample size required for the complete 58 

collection of sequenced viral genomes. In fact, when considering all complete bacteriophage genome 59 

sequences present in the NCBI Reference Sequence Database (RefSeq), (4,166 at the time of writing) the 60 
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estimated minimum sample size was 352 (95% confidence interval; 5% error margin) or 3,331 (99% 61 

confidence interval; 1% error margin). Similarly, for all complete virus genome sequences reported in 62 

RefSeq (13,778 at the time of writing), the estimated minimum sample size was 374 (95% confidence 63 

interval; 5% margin of error) or 7,538 (99% confidence interval; 1% error margin) (19). 64 

This study evaluates the performance of multiple ORF-calling programs for viral genome annotation using 65 

the whole RefSeq viral database (20). To assess the impact of ORF misidentification, several factors were 66 

considered: A false ORF might be treated as a coding sequence, a true ORF might be lost during the 67 

bioinformatic prediction process, or the location of start codons was incorrect during the ORF prediction 68 

process. The number of ORFs and their coordinates were considered. Unfortunately, despite their 69 

importance in viral biology, this benchmarking exercise was not able to include non-coding RNA elements, 70 

which have only recently been annotated in viruses (21,22). Rigorous and regular evaluation of such 71 

systems in this way is fundamental to the evolution of viral genome annotation pipelines that can keep 72 

pace with the ever-increasing volume of virus sequence data. 73 

 74 

Material and methods 75 

Benchmark creation: database and ORF-calling programs 76 

The RefSeq viral database (20) was used as a gold standard to evaluate the performance of the different 77 

ORF calling programs,. The RefSeq collection provides a curated, non-redundant, stable database for 78 

annotated reference genomes of viruses, microbes, organelles, and eukaryotic organisms (23). At the time 79 

of writing, RefSeq contained 13,778 sequences, of which only 8,267 sequences were complete genomes, 80 

9,505 belonged to viruses infecting eukaryotic host cells, 4,166 belonged to bacteriophages (including 10 81 

sequences of Mollicutes bacteriophages) and 107 were identified as viruses infecting archaeal host cells. 82 

All 13,778 viral genome sequences from RefSeq were submitted to Prodigal v. 2.6.3 (16), GLIMMER v. 3.02 83 

(12), GeneMarkS v. 4.32 (14), PHANOTATE v. 1.5.0 (24), Metaprodigal v. 2.6.3 (25), FragGeneScan v. 1.31 84 

(26), MetaGeneAnnotator (MGA) (27), and AUGUSTUS v. 3.4.0 (28). Prodigal, GLIMMER and GeneMarkS are 85 

the most commonly used ORF-calling programs for prokaryotic genomes, being the most critical step for 86 

the majority of the de novo bioinformatics pipelines (8,9,29). PHANOTATE was included because it was 87 

specifically designed for bacteriophage genome annotation (24). Metaprodigal, FragGeneScan and MGA are 88 

particularly useful for metagenomics and metaviromics datasets as they have been optimized for gene 89 

identification in highly fragmented assemblies (especially for contigs less than 20,000 bp long) (25-27). All 90 

programs were run using the same parameters, focusing especially on the use of the NCBI genetic code 11 91 
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(“Bacterial, Archaeal and Plant Plastid Code”) for archaeal viruses and non-Mollicutes bacteriophages, 4 92 

(“Mold, Protozoan, and Coelenterate Mitochondrial Code and Mycoplasma/Spiroplasma Code”) for 93 

Mollicutes phages, and 1 (“Standard Genetic Code”) for eukaryotic viruses. In the case of AUGUSTUS, the 94 

in-built models for Staphylococcus aureus, Escherichia coli and Homo sapiens and default parameters were 95 

considered for ORF calling. All program outputs were processed using customized Python 3 scripts to 96 

retrieve the number of genes and the coordinates of these ORFs. 97 

 98 

Statistical analyses 99 

To evaluate each ORF-calling program, two different analyses were performed: i) coding sequence number 100 

prediction, and ii) coding sequence coordinate prediction. First, linear models were used to infer the 101 

accuracy or trueness, defined as the proximity of the retrieved number of viral ORFs from every program to 102 

the expected number of viral ORFs according to those described in RefSeq for the same virus. Linear models 103 

also considered the precision (measurement of the deviation between the retrieved number of viral ORFs 104 

for every program and the expected value from the linear model) of the ORF-calling programs in 105 

determining the number of viral coding sequences compared to the reference database. All linear models 106 

were forced to have intercept zero. The slope was used as a measure of accuracy, while the coefficient of 107 

determination (R
2
) was used to measure the precision. Secondly, the prediction quality of the coordinates 108 

of the viral coding sequences was evaluated by the F1 score or Sørensen-Dice coefficient, where the 109 

precision and sensitivity was defined as: 110 
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 111 

TP indicates the number of true positives (ORFs for which coordinates where exactly the same in both the 112 

output file and the reference), FP the number of false positives (ORFs for which coordinates appeared only 113 

in the output file) and FN the number of false negatives (ORFs for which coordinates appeared in the 114 

reference and were missed in the output file) (17). False Discovery Rate (FDR) and False Negative Rate 115 

(FNR) were considered to measure the type I (false coordinates were considered as true coordinates) and 116 

the type II (true coordinates were considered as false coordinates) errors. All statistical analyses were 117 

performed in R. v. 4.1.0 (30). 118 
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 119 

Data availability/Novel Programs, Software, Algorithms 120 

All Python 3 and R scripts are freely available under the GNU General Public License v. 3.0 at 121 

https://github.com/EGTortuero/Benchmarking_ORF_calling_programs_in_viral_genomes  122 

 123 

Results 124 

The outputs from each annotation program were evaluated according to two different parameters: (1) 125 

number of coding sequences and, (2) coordinates of coding sequences. 126 

 127 

Coding Sequence Number Prediction 128 

Firstly, the accuracy and the precision of the number of viral coding sequences were estimated using linear 129 

models. Accuracy was measured by the slope, and precision was measured according to the R
2
 of the 130 

regression model. In a general overview, the programs delivered different estimates of the number of 131 

coding sequences (Table 1). PHANOTATE, Prodigal and Metaprodigal overestimated the number of ORFs by 132 

30.69%, 1.59% and 1.00% respectively, while the remaining programs tended to underestimate the number 133 

of ORFs—the median percentage of underestimation was 26.95 % ± 28.95 %. Despite such observation, 134 

Prodigal and Metaprodigal showed the most accurate predictions, being closest to the ideal accuracy of 135 

100.00% (Fig. 1A). However, MGA, Prodigal and FragGeneScan were the three most precise programs 136 

according to their coefficients of determination (96.32%, 95.65% and 95.59%, respectively; Table 1). When 137 

compared according to host domain, similar results were found for all scenarios tested (Figs. 1B-D). 138 

Prodigal outperformed the accuracy test for viruses infecting archaea and bacteria (96.61% and 99.56%, 139 

respectively), while GLIMMER and GeneMarkS were the most accurate ORF callers for viruses infecting 140 

eukaryotes (99.36% and 97.82%, respectively; Table 1). Finally, when considering the viral nucleic acid, all 141 

programs predicted differences in the number of coding sequences (Figs. 1E-F). In fact, while for double-142 

stranded (ds-) and single-stranded (ss-) DNA viruses the most accurate programs were Prodigal (101.59%) 143 

and Metaprodigal (101.01%); FragGeneScan (99.62% accuracy and 88.06% precision) and Prodigal (99.01% 144 

accuracy and 87.65% precision) generated the most accurate and precise results for ds- and ss-RNA viruses 145 

(Table 1).  146 

 147 

Coding Sequence Coordinate prediction 148 
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Secondly, to predict the quality of the coordinates of the viral coding sequences, F1 score, a measure that 149 

combines precision and sensitivity, was considered. Additionally, FDR and FNR were examined to evaluate 150 

the occurrence of false positives (i.e., false coordinates considered as true; type I error) and false negatives 151 

(i.e., true coordinates considered as false; type II error). Prodigal scored highly for all tests according to the 152 

F1 score (General: 83.26%; Viruses infecting Archaea: 80.02%; Bacteriophages: 86.25%; Viruses infecting 153 

Eukaryotes: 70.86%; ds- and ss-DNA viruses: 83.92%) except when analyzing RNA virus genomes (59.51%), 154 

where GeneMarkS obtained the best F1 score (60.84%), followed by Prodigal (59.51%) and Glimmer 155 

(56.60%). In contrast, for ds- and ss-DNA viruses, Prodigal (83.92%) generated the best results based on the 156 

F1 score, followed by Metaprodigal (81.91%) and MGA (80.60%). For both viruses infecting eukaryotes and 157 

bacteria, the highest FDR and FNR was associated with AUGUSTUS (median FDR [Viruses infecting 158 

eukaryotes]: 63.71 % ± 5.77 %; median FDR [Bacteriophages]: 29.40 % ± 33.14 %; median FNR [Viruses 159 

infecting eukaryotes]: 75.90 % ± 25.04 %; median FNR [Bacteriophages]: 44.77 % ± 0.50 %). Interestingly, 160 

the performance of the different ORF-calling programs to predict the quality of the coordinates in RNA virus 161 

genomes was very poor (median F1 score: 47.44% ± 46.92%; median precision: 45.05% ± 40.54%; median 162 

sensitivity: 52.46% ± 35.17%) compared to that in DNA viruses (median F1 score: 66.50% ± 43.59%; median 163 

precision: 75.19% ± 27.42%; median sensitivity: 63.69% ± 56.71%). In fact, GeneMarkS was more precise 164 

(64.26%) than other ORF-calling programs, including Prodigal (57.17%), for the prediction of the 165 

coordinates in RNA viruses. Overall, for all tests, the most sensitive ORF-calling program was Prodigal (Table 166 

2).  167 

 168 

Discussion 169 

In this study, we evaluated the performance of multiple ORF-calling programs for viral genome annotation 170 

based on the number of ORFs and their coordinates. According to our results, we found that viral gene 171 

predictions must be analyzed not considering the target host, but which nucleic acids the virus harbors. In 172 

fact, the differences in the performance of each program were more evident between ds- and ss-DNA 173 

viruses and ds- and ss-RNA viruses than among viruses infecting archaea, bacteriophages and viruses 174 

infecting eukaryotes. 175 

We found that the performance of these ORF-calling programs was very poor for ds- and ss-RNA viruses, 176 

with GeneMarkS being the program that reached the highest F1 score, followed by Prodigal and Glimmer. 177 

This observation suggests the need for improvement for ORF calling programs to be able to deal with ds- 178 

and ss-RNA viruses, regardless of whether they are viruses infecting eukaryotes or prokaryotes. However, 179 

the vast majority of reported ds- and ss-RNA viruses infect eukaryotic organisms, driving the development 180 
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of closed-reference homology-based bioinformatic tools, such as FLAN for influenza viruses (31), VIGOR for 181 

RNA viruses (32), ViPR and VAPID for human viruses (33,34), and VADR for non-flu viruses (35). Others have 182 

been developed for ss-DNA viruses , such as PuMA for papillomaviruses (36). The decision to develop and 183 

use a closed-reference homology-based method implies that the original viral references must be 184 

exceptionally well annotated. In this context, RNA and ss-DNA viruses harbor complex gene features with 185 

transcriptional and translational exceptions such as gene overlapping and alternative splicing, which are 186 

normally missed in most genome annotations (37,38). Additionally, from the perspective of bacteriophages, 187 

there is a considerable volume of ‘dark matter’ comprising poorly defined ORFs and genes of unknown 188 

function and there are very few examples of exceptionally well-annotated phage genomes (39). All these 189 

observations represent a major challenge for accurate and precise ORF-calling and gene annotation 190 

programs. 191 

Considering the performance of the same programs applied to genome sequences from ds- and ss-DNA 192 

viruses, F1 scores were much higher than from RNA viruses. Prodigal reached the highest F1 score, followed 193 

by Metaprodigal and MGA. A potential explanation for this observation is the use of Prokka—a fast, de 194 

novo prokaryotic genome annotation pipeline—for the genome annotation of giant viruses, bacteriophages 195 

and viruses of Archaea, because this pipeline relies on Prodigal for the ORF calling process (9).  Surprisingly, 196 

these results are not consistent with previously reported benchmarks, where MGA systematically 197 

generated less false positives than other ORF-calling programs (18) and GeneMarkS achieved the highest 198 

accuracy for the automatic gene identification for temperate phages due to the fewest number of false 199 

negatives and false positives (5). Nevertheless, no benchmarking has previously reported for the 200 

annotation of non-temperate lytic bacteriophage genomes, which are considered as an alternative to 201 

antibiotics to rapidly kill bacterial pathogens (“phage therapy”) (40). Additionally, it is important to note 202 

that none of the ORF-calling programs reached 90% accuracy for ds- and ss-DNA viruses, which is 203 

concordant with a previous benchmarking exercise (5). For this reason, several authors proposed the use of 204 

multiple ORF-calling programs to identify all viral genes (5,18,41). In such a way, it would be recommended 205 

to review the output of bioinformatic ORF prediction tools and manually interpret their findings (17,18,41), 206 

even though manual curation of an annotated genome is a time- and labor-intensive process. Of course, 207 

the ideal would be the manual curation of viral genomes, validated by wet-lab experiments to confirm the 208 

presence of these ORFs, as happens with RNA viruses, where the ORFs are characterized empirically via 209 

cDNA-gDNA hybridization (42-46) or using RNA-seq experiments (47-50). In the meantime, our evaluation 210 

of the current bioinformatic tools provides benchmarking to inform decisions about the most appropriate 211 

analysis pipelines for a given subject and highlights the need for more expression data to improve the rigor 212 

of reference genomes.   213 
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Figure/Table legends 352 

 353 

Figure 1. Correlation between the expected and observed number of coding sequences when considering 354 

(A) all known viral sequences, (B) viruses infecting archaea, (C) bacteriophages, (D) viruses infecting 355 

eukaryotes, (E) ds- and ss-DNA viruses, and (F) ds- and ss-RNA viruses. Dotted line is a 1:1 line. 356 

Table 1. Accuracy and precision in the number of coding sequences 357 

Table 2. Accuracy, precision and sensitivity of the different programs. False Discovery Rate (FDR) and False 358 

Negative Ratio (FNR) are used to describe errors in the precision and sensitivity. 359 
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Table 1. Accuracy and precision in the number of coding sequences 

Case (number of sequences) Program 
Accuracy Precision 

(Slope) (R
2
) 

All viruses (13,778) PRODIGAL 1.01587 0.9565 

  METAPRODIGAL 1.01004 0.9506 

  GLIMMER 0.70951 0.7423 

  GeneMarkS 0.73051 0.7315 

  PHANOTATE 1.30686 0.855 

  MGA 0.9571 0.9632 

  FragGeneScan 0.95786 0.9559 

  AUGUSTUS (S. aureus) 0.83911 0.8969 

  AUGUSTUS (E. coli) 0.61472 0.8377 

  AUGUSTUS (H. sapiens) 0.43244 0.7892 

Viruses infecting archaeal hosts (107) PRODIGAL 0.96607 0.997 

  METAPRODIGAL 0.9337 0.995 

  GLIMMER 0.50471 0.9138 

  GeneMarkS 0.71465 0.7085 

  PHANOTATE 1.15295 0.9899 

  MGA 0.9133 0.9949 

  FragGeneScan 0.86562 0.9933 

  AUGUSTUS (S. aureus) 0.61412 0.8888 

  AUGUSTUS (E. coli) 0.4999 0.7508 

  AUGUSTUS (H. sapiens) 0.36808 0.7855 

Bacteriophages (4,166) PRODIGAL 0.99555 0.9897 

  METAPRODIGAL 0.98786 0.9895 

  GLIMMER 0.5837 0.9386 

  GeneMarkS 0.61961 0.6906 

  PHANOTATE 1.13126 0.9862 

  MGA 0.98438 0.9894 

  FragGeneScan 0.93567 0.9877 

  AUGUSTUS (S. aureus) 0.8262 0.9112 

  AUGUSTUS (E. coli) 0.68659 0.9232 

  AUGUSTUS (H. sapiens) 0.39223 0.8675 

Viruses infecting eukaryotic hosts 

(9,505) 
PRODIGAL 1.06201 0.8993 

  METAPRODIGAL 1.06079 0.8857 

  GLIMMER 0.99358 0.7113 

  GeneMarkS 0.97815 0.8566 

  PHANOTATE 1.70524 0.8109 

  MGA 0.897 0.9041 

  FragGeneScan 1.0089 0.903 
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  AUGUSTUS (S. aureus) 0.87165 0.8721 

  AUGUSTUS (E. coli) 0.45585 0.6494 

  AUGUSTUS (H. sapiens) 0.52323 0.7378 

ds- and ss-DNA viruses (7,564) PRODIGAL 1.01588 0.9565 

  METAPRODIGAL 1.01007 0.9507 

  GLIMMER 0.70949 0.7422 

  GeneMarkS 0.73032 0.7315 

  PHANOTATE 1.30676 0.8551 

  MGA 0.95717 0.9633 

  FragGeneScan 0.95784 0.9559 

  AUGUSTUS (S. aureus) 0.83915 0.897 

  AUGUSTUS (E. coli) 0.61482 0.8378 

  AUGUSTUS (H. sapiens) 0.43242 0.7892 

ds- and ss-RNA viruses (6,214) PRODIGAL 0.99008 0.8765 

  METAPRODIGAL 0.96462 0.8703 

  GLIMMER 0.74766 0.8785 

  GeneMarkS 1.05858 0.8735 

  PHANOTATE 1.4917 0.7337 

  MGA 0.84354 0.811 

  FragGeneScan 0.99624 0.8806 

  AUGUSTUS (S. aureus) 0.76804 0.804 

  AUGUSTUS (E. coli) 0.3849 0.6401 

  AUGUSTUS (H. sapiens) 0.46998 0.7512 
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Table 2. Accuracy, precision and sensitivity of the different programs. False Discovery Rate (FDR) and False Negative Ratio (FNR) are used to describe 

errors in the precision and sensitivity. 

Case Program F1 Score Precision Sensitivity 

FDR FNR 

(Type I 

Error) 

(Type II 

Error) 

All viruses (13,778) PRODIGAL 0.83261 0.826357 0.838958 0.1736427 0.1610417 

  METAPRODIGAL 0.810869 0.809406 0.812337 0.1905945 0.1876629 

  GLIMMER 0.374514 0.491625 0.302464 0.5083751 0.6975363 

  GeneMarkS 0.631786 0.747125 0.547296 0.2528753 0.4527039 

  PHANOTATE 0.689996 0.621607 0.775294 0.3783932 0.224706 

  MGA 0.793599 0.80448 0.783008 0.1955204 0.2169917 

  FragGeneScan 0.736218 0.750778 0.722212 0.2492221 0.2777881 

  AUGUSTUS (S. aureus) 0.564699 0.638428 0.506236 0.3615724 0.4937641 

  AUGUSTUS (E. coli) 0.585615 0.74484 0.482475 0.2551597 0.5175248 

  AUGUSTUS (H. sapiens) 0.226037 0.375398 0.161701 0.6246025 0.8382995 

Viruses infecting archaeal hosts (107) PRODIGAL 0.800237 0.810463 0.790266 0.1895369 0.2097341 

  METAPRODIGAL 0.794029 0.815076 0.774043 0.1849243 0.2259575 

  GLIMMER 0.357097 0.501361 0.277304 0.4986393 0.7226961 

  GeneMarkS 0.501389 0.693763 0.392541 0.3062371 0.6074594 

  PHANOTATE 0.709301 0.654914 0.773541 0.3450864 0.2264593 

  MGA 0.760603 0.793423 0.73039 0.206577 0.2696103 

  FragGeneScan 0.709419 0.759985 0.665161 0.2400153 0.3348386 

  AUGUSTUS (S. aureus) 0.494197 0.636676 0.403827 0.3633236 0.5961732 

  AUGUSTUS (E. coli) 0.38442 0.677612 0.268322 0.3223881 0.7316785 

  AUGUSTUS (H. sapiens) 0.183524 0.396226 0.119418 0.6037736 0.880582 

Bacteriophages (4,166) PRODIGAL 0.86248 0.862814 0.862146 0.1371862 0.1378536 

  METAPRODIGAL 0.854597 0.858627 0.850606 0.1413734 0.1493944 

  GLIMMER 0.347614 0.479301 0.272693 0.5206993 0.7273071 

  GeneMarkS 0.623633 0.760117 0.528702 0.2398835 0.471298 

  PHANOTATE 0.730571 0.683264 0.784917 0.3167362 0.2150832 
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  MGA 0.851837 0.858461 0.845315 0.1415395 0.1546852 

  FragGeneScan 0.58717 0.563444 0.612983 0.4365558 0.3870173 

  AUGUSTUS (S. aureus) 0.61974 0.706003 0.552262 0.2939968 0.4477382 

  AUGUSTUS (E. coli) 0.652832 0.795405 0.553601 0.2045954 0.4463986 

  AUGUSTUS (H. sapiens) 0.204648 0.350757 0.144469 0.6492429 0.8555311 

Viruses infecting eukaryotic hosts 

(9,505) 
PRODIGAL 0.708596 0.679842 0.739891 0.3201583 0.2601094 

  METAPRODIGAL 0.626137 0.607279 0.646203 0.3927206 0.353797 

  GLIMMER 0.477917 0.528893 0.435904 0.4711074 0.5640963 

  GeneMarkS 0.670447 0.705276 0.638897 0.2947242 0.3611032 

  PHANOTATE 0.539783 0.427922 0.730823 0.572078 0.2691773 

  MGA 0.531444 0.552519 0.511917 0.4474812 0.4880828 

  FragGeneScan 0.58717 0.563444 0.612983 0.4365558 0.3870173 

  AUGUSTUS (S. aureus) 0.333522 0.36286 0.308572 0.6371399 0.6914276 

  AUGUSTUS (E. coli) 0.208491 0.347304 0.148956 0.6526962 0.8510445 

  AUGUSTUS (H. sapiens) 0.316537 0.460972 0.24102 0.5390285 0.7589803 

ds- and ss-DNA viruses (7,564) PRODIGAL 0.839228 0.833695 0.844835 0.1663046 0.1551654 

  METAPRODIGAL 0.819136 0.818105 0.82017 0.1818955 0.1798304 

  GLIMMER 0.3686 0.487136 0.296461 0.512864 0.7035386 

  GeneMarkS 0.632476 0.750597 0.546477 0.249403 0.4535226 

  PHANOTATE 0.697426 0.631266 0.779078 0.3687341 0.2209217 

  MGA 0.806025 0.817158 0.795191 0.1828416 0.2048086 

  FragGeneScan 0.742858 0.758995 0.727393 0.2410054 0.2726066 

  AUGUSTUS (S. aureus) 0.570832 0.64644 0.511059 0.3535598 0.4889415 

  AUGUSTUS (E. coli) 0.59314 0.753229 0.489172 0.2467711 0.5108278 

  AUGUSTUS (H. sapiens) 0.22311 0.373769 0.159014 0.626231 0.8409861 

ds- and ss-RNA viruses (6,214) PRODIGAL 0.595122 0.571708 0.620536 0.4282921 0.3794643 

  METAPRODIGAL 0.509863 0.499019 0.521189 0.5009811 0.4788114 

  GLIMMER 0.566089 0.610232 0.527901 0.3897682 0.4720989 

  GeneMarkS 0.608441 0.642596 0.577734 0.3574045 0.4222661 
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  PHANOTATE 0.44324 0.345423 0.618343 0.6545772 0.3816568 

  MGA 0.333493 0.336816 0.330236 0.6631838 0.6697644 

  FragGeneScan 0.505519 0.483528 0.529606 0.5164718 0.4703945 

  AUGUSTUS (S. aureus) 0.341925 0.364488 0.321993 0.6355116 0.6780069 

  AUGUSTUS (E. coli) 0.121928 0.171686 0.094531 0.8283145 0.9054692 

  AUGUSTUS (H. sapiens) 0.324541 0.417475 0.265449 0.5825254 0.734551 

 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted D
ecem

ber 13, 2021. 
; 

https://doi.org/10.1101/2021.12.11.472104
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.12.11.472104
http://creativecommons.org/licenses/by-nc-nd/4.0/

