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Abstract

We apply computations of twisted Hodge diamonds to construct an infinite number
of non-Fourier-Mukai functors with well behaved target and source spaces.

To accomplish this we first study the characteristic morphism introduced in
[BF08] in order to control it for tilting bundles. Then we continue by applying
twisted Hodge diamonds of hypersurfaces embedded in projective space to compute
the Hochschild dimension of these spaces. This allows us to compute the kernel
of the embedding into the projective space in Hochschild cohomology. Finally
we use the above computations to apply the construction in [RVdBN19] of non-
Fourier-Mukai functors and verify that the constructed functors indeed cannot be
Fourier-Mukai for odd dimensional quadrics.

Using this approach we prove that there are a large number of Hochschild
cohomology classes that can be used for the construction of [RVdBN19]. Further-
more, our results allow the application of computer-based calculations to construct
candidate functors for arbitrary degree hypersurfaces in arbitrary high dimensions.
Verifying that these are not Fourier-Mukai still requires the existence of a tilting
bundle.

In particular we prove that there is at least one non-Fourier-Mukai functor for
every odd dimensional smooth quadric.
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Chapter 1
Introduction

1.1 Background and Results

The concept of Fourier-Mukai functors generalizes the idea of a correspondence to
the categorical level.

Definition 1.1.1. A functor f : Db (X) → Db (Y ) between bounded derived
categories of schemes is called Fourier-Mukai if there exists an object M ∈
Db (Y ×X) such that f ∼= ΦM := LπY,∗

(
M

L
⊗ Rπ∗

X ( )
)

. In this case M is called
the Fourier-Mukai kernel.

In particular these functors can be understood geometrically as ΦM admits a
complete charactersiation by M ∈ Db (Y ×X).

It also turns out that most functorial constructions done in algebraic geometry
are Fourier-Mukai. This means that understanding the property of being Fourier-
Mukai, respectively of not being Fourier-Mukai, is essential for understanding
which functors between derived categories of sheaves may arise from geometric
constructions and which do not. Another indicator of the geometric nature of
Fourier-Mukai functors are the following results by V. Orlov and B. Toën:

Theorem. [Orl97] Let X and Y be smooth projective schemes. Then every fully
faithful exact functor ΨM : Db (X)→ Db (Y ) is a Fourier-Mukai functor for some
Fourier-Mukai kernel M ∈ Db (X × Y ).

Theorem. [Toe07] Let X and Y be smooth projective schemes. Then a functor
Db (X) → Db (Y ) is precisely Fourier-Mukai if it is induced by a dg-functors
between the canonical dg-enhancements.

The above results show that a lot of functors between derived categories of
smooth projective schemes are Fourier-Mukai. So Bondal, Larsen and Lunts
[BLL04] conjectured nearly 20 years ago that every exact functor between such
derived categories admits a description as a Fourier-Mukai functor.
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2 Introduction

This conjecture was disproven fifteen years later when A. Rizzardo, M. Van
den Bergh and A. Neeman [RVdBN19] constructed the first non-Fourier-Mukai
functor

Ψη : Db (Q3) ↪→ Db
(
P4
)
,

where Q3 denotes the smooth three dimensional quadric in P4. Shortly thereafter
V. Vologodsky constructed in a note [Vol16] another class of non-Fourier-Mukai
functors over a field of characteristic p. However, Vologodsky’s functor turns out
to be liftable to a Zp-linear dg-level, whereas the example from [RVdBN19] can be
proven to not even have a lift to the spectral level if one works over the rational
numbers.

In this work we generalize the result from [RVdBN19] to higher dimensions. In
particular we will work over a closed field of characteristic zero in order to show
that even in the nicest possible case there is an abundance of non-Fourier-Mukai
functors.

We then verify that in the case of a smooth odd dimensional quadric we can
apply our result to get a non-Fourier-Mukai functors in arbitrary high dimensions.

Theorem. Let Q ↪→ P2k be the embedding of a smooth odd dimensional quadric
for k > 2. Then we have an exact functor

Ψη : Db (Q)→ Db (Pn)

that cannot be Fourier-Mukai.

1.2 Proof strategy

Generally we follow the ideas from [RVdBN19]. In order to conclude that we can
construct more non-Fourier-Mukai functors we include an auxiliary results on the
kernel of the push forward in Hochschild cohomology. Furthermore we will use
more general objects, degrees and indices. We need to do this as the proof in
[RVdBN19] is very specialized to the three dimensional quadric and one needs to
take care when generalizing their strategy to a more general setting.

Recall that the construction in [RVdBN19] proceeds in two steps:

1. First the authors construct a prototypical non-Fourier-Mukai functor between
not necessarily geometric dg-categories.

2. Using behaviour of Hochschild cohomology under embeddings this functor
is turned into a geometric functor.
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More precisely, in step (1) [RVdBN19] construct a functor

L : Db (X)→ D∞ (Xη)

for a smooth scheme X and η ∈ HH≥dimX+3, where D∞ (Xη) is the derived
category of an A∞-category arising as infinitesimal deformation in the η-direction.

In step (2) the construction of L is turned into a geometric one. In [RVdBN19]
this is achieved by showing that the canonical η ∈ HH2 dimQ3

(
Q3, ω

⊗2
Q3

)
is annihi-

lated by the embedding Q3 ↪→ P4, which allows the passing from the algebraic
world to the geometric world. The authors then define Ψη to be L composed with
the pushforward into the geometric category Db (P4).

Although the construction in [RVdBN19] is very general, it has two major
drawbacks:

The first is that although L is constructed to be prototypical non-dg it is not
obvious that the composition with the pushforward is again non-Fourier-Mukai.
One usually handles these complications by applying an inductive obstruction
theory that gets unwieldy quickly as one needs to keep track of inductively chosen
lifts. Indeed [RVdBN19] only gives a single example of a non-Fourier-Mukai
functor although the construction given in step (1) and (2) is very general in
nature.

We are able to solve this issue by restricting to Hochschild cohomology classes
in degree dim (X) + 3, this leads to the first obstruction vanishing and so we do
not need to control the previous lifts in order to conclude that the pushed forward
obstruction does not vanish.

The second drawback is that the results in [RVdBN19] rely heavily on the
existence of a tilting bundle in order to conclude that the prototypical functor
L cannot be dg. Furthermore in [RRVdB19] T. Raedschelders, A. Rizzardo and
M. Van den Bergh construct an infinite amount of non-Fourier-Mukai functors
using the prototypical L mentioned above. However, to do this they apply a
geometrification result by Orlov and hence lose control over the target space. In
particular the above mentioned geometrification result relies even more on the
existence of a tilting bundle. Although our concrete examples still require the
existence of a tilting bundle we study the naturality of the characteristic morphism,
which might in future allow results using more general generators. In particular
we phrase our main result such that a non-vanishing characteristic morphism
suffices, which is guaranteed for tilting objects.

Altogether this PhD improves on the construction from [RVdBN19] to prove
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the existence of non-Fourier-Mukai functors

Ψη : Db (Q)→ Db
(
Pn+1

)
,

for Q a smooth quadric in arbitrary high dimension.

Furthermore one can use our results to calculate the dimensions of choices for
constructing candidate non-Fourier-Mukai functors as entries in twisted Hodge
diamonds. For instance, if one wants to deform a smooth degree 6 hypersurface
f : X ↪→ Pn+1 along the Hochschild cohomology of OX (−8) in a way that might
gives rise to a non-Fourier-Mukai functor, we may pick an η in a 20993-dimensional
space:

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
2996 20993 15267 917 0 0

1575 0 0 0 0
5775 0 0 0

10395 0 0
9002 0

2996.

1.3 Structure

1.3.1 Preliminaries: A∞-Structures and their Deforma-
tions

We start by collecting a few basic notions about A∞-structures and their de-
formations which we will later use to deform a scheme in a non-geometric way.
In particular we focus on the definitions of A∞- respectively An-categories and
modules over them. We use these to control lifts of Γ -objects to the level of equiv-
ariant sheaves. Furthermore we discuss how one can use Hochschild cohomology
to deform small k-linear categories into an A∞-category by introducing a higher
composition morphism.
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1.3.2 Equivariant Sheaves and the Characteristic Mor-
phism

In this section we define the structure of equivariant objects in a category and
discuss that a Fourier-Mukai functor is compatible with equivariant sheaves and
base change. We will use this later to produce a contradiction to our functors
being Fourier-Mukai.

We then introduce the (geometric) equivariant characteristic morphism and
study a categorical incarnation of it. Using this approach we are able to prove
that it admits naturality with respect to push forwards, this may eventually be
used to weaken the assumption on the existence of tilting bundles.

1.3.3 Preliminaries: Schemes and k-linear Categories

We continue by recalling the construction of W. Lowen and M. Van den Bergh of
a k-linear category associated to a compact scheme in order to embed the derived
category of sheaves in the derived category of modules over a k-linear category
which we can then deform. Furthermore we recall that the essential image of the
direct image under the diagonal embedding corresponds under this construction to
bimodules. We will later use these constructions to pass from the geometric world
to the algebraic one, while still being able to compute the Hochschild cohomology
of certain bimodules. This allows us to later deform the constructed k-linear
category along a Hochschild cohomology class.

1.3.4 Twisted Hodge Diamonds give Kernels in Hochschild
Cohomology

We apply computations of twisted Hodge diamonds in order to compute the
Hochschild cohomology of ample sheaves on a degree d hypersurface. We then
continue by computing the Hochschild cohomology of the direct image under the
embedding of an ample sheaf. We then use these computations, together with
a long exact sequence, to compute the kernel in Hochschild cohomology of the
embedding. This we will use in order to pass back to the geometric world.

1.3.5 Non-Fourier-Mukai Functors

We follow the construction in [RVdBN19] of non-Fourier-Mukai functors and then
apply the results from the previous sections in order to conclude that in the
case of a smooth degree d hypersurface we indeed we have plenty of choices for
constructing candidate functors.
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We then continue by proving that under assumptions regarding the charac-
teristic morphism and mild conditions on some Ext-groups these functors indeed
cannot be Fourier-Mukai. In particular we verify, using tilting bundles, that
there exist non-Fourier-Mukai functors for smooth quadrics in arbitrary high
dimensions.

Notation

Throughout this work we consider k to be a closed field of characteristic zero and
all schemes, algebras, A∞-categories and dg-categories are considered to be over k.
We will assume all A∞-structures to be strictly unital and graded cohomologically.

Furthermore the bounded derived category of coherent sheaves over a scheme
X will be denoted by Db (X) or Db (coh (X)) depending on the context, wherever
we need to pass to the category DbcohX (Qch (X)) using [Huy06, Proposition 3.5]
we will indicate this.



Chapter 2
Preliminaries: A∞-Structures and
their Deformations

In this chapter we will collect a few basic facts we will need later. In particular
we will focus on A∞-categories, A∞-modules and A∞-deformations of k-linear
categories.

2.1 Modules over k-linear Categories

We start by recalling the definition of modules over a k-linear category and the
relationship between those and the classical notion of modules.

The idea of generalizing the notion of modules over rings to categories first
was introduced by B. Mitchell [Mit72]. All in all the idea is that one can interpret
a k-algebra as a k-linear category with one object and under that interpretation
a module corresponds to a functor from the k-linear category to the category of
k-vector-spaces.

Remark 2.1.1. Recall that a k-linear category C is a category such that every
morphism space C (M,N) is a k-vectorspace and composition defines a k-linear
map ◦ : C (M ′,M)⊗ C (M ′′,M ′)→ C (M ′′,M).

Definition 2.1.2 ([Mit72]). Let X be a small k-linear category. A X -module is
a k-linear functor

M : X → Vect (k) .

A morphism of X -modules is a natural transformation between two X -modules
N and M:

f : N →M.

We refer to the category of X -modules X−mod.

Lemma 2.1.3. Let X be a k-linear category. Then we have that the category
X−mod is a k-linear abelian category.

7



8 Preliminaries: A∞-Structures and their Deformations

Proof. By Definition 2.1.2 we have X−mod = Funk (X ,Vect (k)). In particular
we have immediately a canonical k-action on the morphism spaces. As kernels
and cokernels can be computed objectwise in the target category [Wei94, A.4.3.]
we have that Funk (X ,Vect (k)) is also abelian. In particular we ger that X−mod
is abelian k-linear.

Remark 2.1.4. Let Γ be a k-algebra. Then we have that a classically defined
Γ -module M consists of a k-vector space V together with a k-algebra morphism
γ : Γ → End (V ).

On the other hand, if we consider Γ to be a k-linear category with one object
∗, then M consists by Definition 2.1.2 also of a vectorspace V =M (∗) together
with a morphism of k-algebras (a map of morphism spaces)

Γ → End (V ) = Vect (k) (M (∗) ,M (∗)) .

In particular in this case the two notions of modules over Γ coincide.
Similarly the notion of natural transformation captures in this case precisely

the commuting with the Γ action.

Definition 2.1.5 ([Mit72]). Let X be a k-linear category. We define the derived
category of X -modules (respectively bounded, bounded below or bounded above)
derived category, to be the derived category (respectively bounded, bounded below
or bounded above derived category) of the abelian category X−mod.

D♮ (X ) := D♮ (X−mod) ,

for ♮ ∈ { , b,−,+}.

As we will later define a k-linear category corresponding to a scheme and then
model morphisms of schemes also as functors between k-linear categories we will
denote the restriction of scalar functors in the following way:

Definition 2.1.6. Let f : X → Y be a k-linear functor and letM be a Y-module.
Then we define the module f∗M to be the X -module defined by

f∗M :=M◦ f.

Remark 2.1.7. We choose the notation f∗ over f ∗ as we will later model the
category of sheaves on a projective scheme by modules over a k-linear category,
and under this construction the functor f∗ corresponds to the direct image and so
the notation turns out to be more consistent and less confusing throughout this
work.
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Lemma 2.1.8. Let f : X → Y be a k-linear functor. Then the assignment
M 7→ f∗M defines a left exact functor f∗ : Y−mod 7→ X−mod.

Proof. As kernels and images are computed on the target category we do not need
to worry about left-exactness. It also defines a functor as it is just precomposition
with a functor and so it has to be functorial.

2.2 A∞-Structures

Throughout this section we follow [Kel01] and [Sei08], in particular we will use the
sign conventions from [Kel01]. Although B. Keller only talks about A∞-algebras,
the sign conventions can also be applied to A∞-categories and are equivalent to
the sign conventions in the book by P. Seidel which is considering A∞-categories
throughout. Furthermore K. Lefèvre-Hasegawa [LH03] covers the case of A∞-
categories using the same signs as Keller, however we primarily refer to [Sei08] for
the category case, as [LH03] is in French.

2.2.1 A∞-Categories and their Functors

Since we will repeatedly use dg-categories as examples for A∞-categories we recall
the definition of a dg-category

Definition 2.2.1. A dg category C is a category such that we have for all M,N ∈ C
a chain complex C∗ (M,N), such that the Leibnitz rule holds

d (x ◦ y) = dx ◦ y + x ◦ dy.

Definition 2.2.2 ([Kel01, 3.1.]). Let n ∈ N ∪ {∞}. An An-category X over
a field k consists of a class of objects obj (X ) and Z-graded k-vector-spaces as
morphism spaces

X (a, b) ,

for a, b ∈ obj (X ), together with compositions

mi : X (ai, ai−1)⊗k X (ai−1, ai−2)⊗ ...⊗X (a1, a0)︸ ︷︷ ︸
i

→ X (ai, a0)

of degree 2− i for 1 ≤ i ≤ n and a0, ..., ai ∈ obj (X ) such that

∑
r+s+t=k

(−1)r+st mu ◦
(
Id⊗r ⊗ms ⊗ Id⊗t

)
= 0 (∗k)

holds for all k ≤ n, where u = r + 1 + t.
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We will sometimes denote a ∈ obj (X ) by a ∈ X to avoid clumsy notation.

Definition 2.2.3 ([Sei08, (2a)]). An An-category X is called unital if every object
a ∈ obj (X ) admits a unit Id ∈ X (a, a)0 such that

m1 (Id) = 0
m2 (x, Id) = x = m2 (Id, x)
mi (xi, ..., Id, ...., x1) = 0 i ̸= 2.

Remark 2.2.4. Observe that the first few incarnations of (∗k) give:

k = 1: In this case (∗1) gives
m1 ◦m1 = 0.

This means that m1 defines a differential on X (a, b).

k = 2: Here (∗2) boils down to

m1 ◦m2 = m2 (m1 ◦ Id + Id ◦m1) ,

which is the Leibnitz rule d (x ◦ y) = dx ◦ y + x ◦ dy.

k = 3: And (∗3) gives

m2 ◦ (Id⊗m2 −m2 ⊗ Id) =
= m1 ◦m3 + m3 ⊗ (m1 ⊗ Id⊗ Id + Id⊗m1 ⊗ Id + Id⊗ Id⊗m1) ,

which means that m2 is associative up to a homotopy given by m3. More
generally one can think of an An-category as a category that is homotopy-
associative up to degree n.

By Definition 2.2.2 every An category defines an Am-category for all m ≤ n just
by forgetting the higher actions.

Definition 2.2.5 ([Sei08, (1a)]). Let X be an An-category for n ≥ 3. Then the
category H∗ (X ) is the graded k-linear category consisting of the same objects as
X and morphism spaces

H∗ (X ) (a, b) := H∗ (X (a, b)) .

Where we use Remark 2.2.4 to consider X (a, b) as a chain complex with differential
m1.
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The k-linear category H0 (X ) is the category with the same objects as X and
morphism spaces

H0 (X ) (a, b) := H0 (X (a, b)) .

We have by Remark 2.2.4 that H∗ (X ) defines a graded k-linear category and
H0 (X ) defines an ordinary k-linear category.

Definition 2.2.6 ([Sei08, (2a)]). An An-category is called homologically unital if
H0 (X ) admits a unit morphism Id ∈ H0 (X ) (a, a) for all a ∈ obj (X ).

Definition 2.2.7. An An-category is called small if its objects form a set. It is
called essentially small if the isomorphism classes of objects form a set.

Definition 2.2.8 ([Kel01, 3.1.]). An An-category is an An-algebra if obj (X )
consists of only one object for n ∈ N ∪ {∞}.

Example 2.2.9. There are a few obvious examples of A∞-categories:

• Let X be a k-linear category, then it is an A∞ category via

mi =

( ) ◦ ( ) i = 2

0 i ̸= 2.

• More generally, let X be a dg-category, then X is an A∞-category with

mi =


d i = 1

( ) ◦ ( ) i = 2

0 i /∈ {1, 2} .

Definition 2.2.10 ([Kel01, 3.4.]). An An-functor between two An-categories
f : X → Y is given by a map on objects

f : obj (X )→ obj (Y)

and a set of morphisms

{fi : X (ai, ai−1)⊗X (ai−1, ai−2)⊗ ...⊗X (a1, a2)→ Y (f (ai) , f (a0))}

of degree 1− i for every i ≤ n and ai, ..., a0 ∈ obj (X ) such that

∑
r+s+t=k

(−1)r+st fu
(
Id⊗r ⊗ms ⊗ Id⊗t

)
=
∑

1≤l≤n

k=i1+...+il

(−1)m mr (fi1 ⊗ fi2 ⊗ ...⊗ fil) (∗∗k)



12 Preliminaries: A∞-Structures and their Deformations

holds, where u = r + 1 + t and

m = (l − 1) (i1 − 1) + (l − 2) (i2 − 1) + ...+ 2 (il−2 − 1) + (il−1 − 1) .

Remark 2.2.11. Again we compute the first few incarnations of (∗∗k):

k = 1: In this case we have
f1 ◦m1 = m1 ◦ f1,

in particular f1 defines a morphism of chain complexes.

k = 2: Here we get

f1 ◦m2 = m2 ◦ (f1 ⊗ f1) + m1 ◦ f2 + f2 (m1 ⊗ Id + Id⊗m1) ,

so f1 commutes with m2 up to a homotopy given by f2.

More generally one can think of an An-morphism f as commuting with the An-
structure up to higher homotopies, whose information f includes in form of the
higher fi.

Definition 2.2.12 ([Kel01, 3.1.]). An An-functor between two unital An-algebras
is called an An-morphism for n ∈ N ∪ {∞}.

Definition 2.2.13 ([Kel01, 3.1.]). An A∞-functor f : A → B is a quasi-
equivalence if

f : obj (A) /∼= → obj (B) /∼=

is surjective and all f1 induce isomorphisms on cohomology

H∗ (f1) : H∗ (A (a, a′)) ∼−→ H∗ (B (fa, fa′)) .

Proposition 2.2.14 ([LH03, Proposition 3.2.1]). Every homologically unital
A∞-category is quasi-equivalent to an unital one.

Definition 2.2.15 ([Kel01, 3.4.]). A quasi-equivalence between two A∞-algebras
is called a quasi-isomorphism.

Theorem 2.2.16 ([Kad80]). Let X be an A∞-category. Then the cohomology
H∗ (X ) has an A∞-category structure such that

• m1 = 0

• there is a quasi-equivalence H∗X ∼−→ X lifting the identity on H∗X .

Moreover, this structure is unique up to (non-unique) isomorphism of A∞-categories.
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Remark 2.2.17. From now on we will assume that the cohomology H∗ (X ) of
an A∞-category is equipped with the A∞-structure arising by Theorem 2.2.16
instead of just regarding it as a graded category interpreted as an A∞-category.
The A∞-category constructed in Theorem 2.2.16 is also referred to as the minimal
A∞-model of X .

2.2.2 A∞-Modules and their Functors

Definition 2.2.18 ([Kel01, 4.2.]). Let X be a small An-category for n ∈ N∪{∞}.
An An-module over X consists of a Z-graded space

M (a, b)

for every pair of objects a, b ∈ objX and higher composition morphisms

mi :M (ai, ai−1)⊗X (ai−1, ai−2)⊗ ...⊗X (a1, a0)︸ ︷︷ ︸
i

→M (ai, a0)

of degree 2− i such that the following equation holds

∑
r+s+t=k

(−1)r+st mu ◦
(
Id⊗r ⊗ms ⊗ Id⊗t

)
= 0, (∗∗k)

where depending on the input mi needs to be considered as the ith higher compo-
sition morphism of X or M.

Remark 2.2.19. We again compute a few incarnations of (∗∗k) to give some
intuition on the modelled structure.

k = 1: In this case we get
mM

1 ◦mM
1 = 0.

So m1 defines a differential.

k = 2: Here we get

mM
1 ◦mM

2 = mM
2 ◦

(
mM

1 ⊗ IdM + IdM ⊗mA
1

)
,

which means that m2 suffices the Leibnitz rule.

k = 3: For this we get similar to the A∞-algebra case that the action ofM induced
by m2 is associative up to a homotopy, which is given by m3.

So one can think about an A∞-module as a homotopy coherent module over X .
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Example 2.2.20. We collect once more the standard examples.

• Let M be a graded module over a k-linear category X , then it is an A∞-
module over X via

mi =

( ) ◦ ( ) i = 2

0 i ̸= 2.

• LetM be a dg-module over a dg-algebra X . Then it defines an A∞-module
over X via

mi =


dM i = 1

( ) ◦ ( ) i = 2

0 i /∈ {1, 2} .

Definition 2.2.21 ([Kel01, 4.2.]). LetM,N be An-modules over an An-category
X for n ∈ N ∪ {∞}. A morphism of An-modules consists of a set of morphisms:

fi :M (ai, ai−1)⊗X (ai−1, ai−2)⊗ ...⊗X (a1, a0)︸ ︷︷ ︸
i

→ N (ai, a0)

of degree 1− i for i ≤ n, such that we have for every k < n

∑
r+s+t

(−1)r+st fu ◦
(
Id⊗r ⊗ms ⊗ Id⊗t

)
=
∑

n=r+s
(−1)(r−1)s mu′ (fr ⊗ Ids) (∗∗k)

where u = r + s+ t and u′ = 1 + s.

Example 2.2.22. We compute again (∗∗k) for small k:

k = 1: Similar to the cases above (∗∗1) boils down to

f1 ◦m1 = m1 ◦ f1,

which means that f1 defines a morphism of chain complexes.

k = 2: Here we get

f1 ◦m2 − f2 ◦ (m1 ⊗ Id + Id⊗m1) = m2 ◦ (f1 ⊗ IdX ) + m1 ◦ f2.

This means that similarly to the case of an An-functor between An-categories
the equation (∗∗2) encodes that f1 is compatible with the action induced by
m2 up to a homotopy given by f2.

These examples are another reason one can think about A∞-structure as a notion
for inductive homotopy coherent algebraic structures.
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Definition 2.2.23 ([Kel01, 4.2.]). An An-morphism f : M → N is a quasi-
isomorphism if it induces an isomorphism on cohomology

H∗ (f) : H∗M ∼−→ H∗N .

Definition 2.2.24 ([Kel01, 4.2.]). Let f : M → M′ and g : M′ → M′′ be
morphisms of A∞-modules over a homologically unital A∞-algebra X . Then the
composition f ◦ g :M→M′′ is given by

(f ◦ g)n =
∑

n=r+s
(−1)(r−1)s fu

(
gr ⊗ Id⊗s

)
,

where we put u = 1− s.

Definition 2.2.25 ([Kel01, 4.2.]). Let X be a homologically unital A∞-algebra,
then we define the category of A∞-modules C∞ (X ) to be the category consisting
of A∞-modules and morphisms given by A∞-morphisms.

Remark 2.2.26. The identity of an object in C∞ (X ) is given by

Id = (Id, 0, ...) .

Definition 2.2.27 ([Sei08, 1k]). Let f : X → Y be an Ai-functor. Then the
functor

f∗ : C∞ (Y)→ C∞ (X )

is given on modules by
f∗M (a) :=M (f (a))

for objects a ∈ obj (X ). Higher compositions are given by

mk (m,xk−1, ..., x1) =
∑
l<k

∑
s1,...,sl

ml (m, fsl
(xk−1, ..., xk−sl

) , ..., fs1 (as1 , ..., a1)) .

On morphisms f ∗ is given by

f∗φk (m,xk−1, ..., x1) =
∑
l<k

∑
s1,...,sl

φl (m, fsl
(xk−1, ..., xk−sl

) , ..., fs1 (as1 , ..., a1)) .

Remark 2.2.28. We again choose the notation f∗ over f ∗ as we will later model
the category of sheaves on a projective scheme by modules over a k-linear category,
and under this construction the functor f∗ corresponds to the direct image and so
the notation turns out to be more consistent and less confusing throughout this
work.
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Definition 2.2.29 ([Kel01, 4.2.]). Let X be a homologically unital small A∞-
category. Then we define the category

D∞ (X ) := C∞ (X ) [{A∞ − quasi-isomorphism}−1].

Remark 2.2.30 ([Kel01, 4.2.]). More generally one could consider A∞-categories
over commutative rings instead of a field k. In this case we would have to
distinguish between the derived category of A∞-modules, as we defined it, and
the category of A∞-modules up to homotopy. However, over a field one can prove
that actually every quasi-isomorphism of A∞-modules is a homotopy equivalence
and vice versa. In particular in this case the naively derived category arising by
formally inverting quasi-isomorphisms and the category of A∞-modules up to
homotopy coincide.

The interpretation of D∞ (X ) as arising via A∞-modules up to homotopy
immediately gives that D∞ (X ) is well-defined and there are no set-theoretic issues
arising.

2.3 A∞-Categories and their Deformations

2.3.1 Deformations

In this section we will recall some facts aboutA∞-categories and their deformations
along a Hochschild cohomology class.

Definition 2.3.1 ([DVM96]). Let X be a k-linear category. Then we call a
X -bimodule k-central if the k-action induced by the left X -action is the same as
the k-action induced by the right X -action.

Definition 2.3.2 ([?]). Let X be a k-linear category and M a k-central X -
bimodule. Then we denote by

Cn (X ,M) :=HomX ⊗kX op

X ⊗k ...⊗k X︸ ︷︷ ︸
n

,M


dHH : Cn (X ,M)→Cn+1 (X ,M)
f :

(
X⊗n

)
→M 7→x1f (x2 ⊗ ...⊗ xn+1)

+
n∑
i=1

(−1)i f (x1 ⊗ ...⊗ xixi+1 ⊗ ...⊗ xn)

+ (−1)n+1 f (x1 ⊗ ...⊗ xn)xn+1

the Hochschild complex.
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A Hochschild cochain in degree ≥ 2 is called normalized if we have

f (x1 ⊗ ...⊗ Id⊗ ...⊗ xn) = 0.

We denote the subcomplex of normalized Hochschild cochains by C∗ (X ,M).

The Hochschild cohomology HH∗ (X ,M) is the cohomology of the Hochschild
complex.

Proposition 2.3.3 ([Lod98, §1.5.7]). The inclusion C∗ (X ,M) ↪→ C∗ (X ,M) is
a quasi-isomorphism.

Now we may define the deformation of a k-linear category by a normalized
Hochschild cocycle:

Definition 2.3.4 ([RVdB14, 6.1]). Let X be a k-linear category, M a k-central
bimodule and η ∈ Cn (X ,M) with n > 2. Then we define Xη as the A∞-category
consisting of the same objects as X , morphism spaces given by

Xη (a, b) := X (a, b)⊕M[n− 2] (a, b)

and higher compositions given by:

m2 ((x,m) , (y, n)) := (m2 (x, y) ,m2 (x, n) + m2 (m, y))
mn ((x1,m1) , ..., (xn,mn)) := (0, η (x1, ..., xn))

mi :=0 i /∈ {2, n}

This construction comes together with a canonical A∞-functor

π : Xη → X (2.3.1)

acting via the identity on objects and given on morphism spaces by

π : Xη (a, b) = X (a, b)⊕M[n− 2] (Id,0)−−−→ X (a, b) .

The following Theorem 2.3.5 shows that this construction indeed defines an
A∞-structure:

Theorem 2.3.5. Let X be a k-linear category, M a k-central X -bimodule and
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let n ≥ 3. Then there is a bijective identification of the form

φ : HHn(X ,M)→


Isomorphism classes of A∞-structures on
X ⊕M[n− 2] such that mi = 0 for i /∈ {2, n}

and m2 ((x,m) , (y, n)) = (xy, xn+my)


η 7→ Xη,

where we denote by Xη the isomorphism class of Xη and by η the cohomology class
of a representative η.

Proof. First we prove that the map φ̂ : ker(dHHn) ∋ η 7→ Xη is well-defined and
surjective, and then we will show that the kernel is im(dHH).

So consider η ∈ ker(dHHn). For this to induce an A∞-stucture via mn := η and

m2(x,m)⊗ (x′,m′) = (xx′, xm′ +mx′)

we need to show that the equation (∗k)

∑
(−1)ji+lmc ◦ (Id⊗j ⊗mi ⊗ Id⊗l) = 0

holds for all j + i+ l = k with c = j + 1 + l. Since only m2 and mn are non trivial
we can focus on c, i = n and c, i = 2 while (∗2n) immediately holds as either the
source or target space has to vanish.

So consider first j + i+ l = 4, in this case the equation boils down to

m2(Id⊗m2)−m2(m2 ⊗ Id) = 0.

This is the associator, since evaluation at (x,m)⊗ (x′,m′)⊗ (x′′,m′′) yields

(x,m)((x′,m′)(x′′,m′′))− ((x,m)(x′,m′))(x′′,m′′) =
= (x,m)(x′x′′, x′m′′ +m′x′′)− (xx′, xm′ +mx′)(x′′,m′′)
= (xx′x′′, xx′m′′ + xm′x′′ +mx′x′′)− (xx′x′′, xx′m′′ + xm′x′′ +mx′x′′)
= 0.

In the case of j + i+ l = n+ 2 the equation (∗k) is given by:

m2(Id⊗mn) +
n−1∑
i=0

(−1)imn(Id⊗i ⊗m2 ⊗ Id⊗n−i−1) + (−1)nm2(mn ⊗ Id) = 0.

Observing that m2 corresponds to multiplication and substituting mn with η
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yields:

x0η(x1, ..., xn) +
n−1∑
i=0

(−1)iη(x0, ..., xixi+1, ..., xn) + (−1)nη(x0, ..., xn−1)xn = 0,

which is literally dHH(η) = 0.

To prove surjectivity let (X ⊕M[n− 2],mi) be an A∞-algebra such that mi

is only nontrivial for i = 2, n and m2 is as above. Then we get by the defining
equations of A∞-algebras

m2(Id⊗mn) +
n−1∑
i=0

(−1)imn(Id⊗k ⊗m2 ⊗ Id⊗n−k−1) + (−1)nm2(mn ⊗ Id) = 0.

In particular we may consider mn ∈ Ck(X⊗n,M) and the above equation implies
dHH(mn) = 0 and hence φ̂ is surjective.

Now consider two isomorphic A∞-categories of the desired form

(X ⊕M[n− 2],mi), (X ⊕M[n′ − 2],m′
i).

In particular we have an A∞-equivalence

f : (X ⊕M[n− 2],mi)→ (X ⊕M[n′ − 2],m′
i).

In order for f to be an isomorphism f1 has to be an isomorphism of chain complexes
over k since there exists some f−1 such that

(f ◦ f−1)1 = f1 ◦ f−1
1 = Id = f−1

1 ◦ f1 = (f−1 ◦ f)1.

In particular we get n = n′.

Let g : (X ⊕M[n− 2],mi)→ (X ⊕M[n− 2],m′′
i ) denote the A∞-isomorphism

such that g1 = f−1
1 and gi = 0 for i > 1 and m′′

n := f1 ◦mn and m′′
i = mi for i ̸= n.

We may interpret g ◦ f as a morphism with (g ◦ f)1 = Id and m′
2 = m2. Where

the latter equality holds since by the defining property of A∞-functors we have:

m′
2(f1, f1) = f1(m2) + m′

1(f2) + f2(m1 ⊗ Id + Id⊗m1)
= f1m2 m1 = 0 = m′

1.
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Now g ◦ f is an A∞-equivalence. Therefore the following equation has to hold:

(g ◦ f)1 (mn) +
n−2∑
l=0

(−1)l((g ◦ f)n−1 (Idn−2−l ⊗m2 ⊗ Id⊗l) =

= m′
n(((g ◦ f)1 ⊗ ...⊗ ((g ◦ f)1)

+ m′
2((g ◦ f)n−1 ⊗ ((g ◦ f)1)

+ (−1)nm′
2(((g ◦ f)1 ⊗ ((g ◦ f)n−1).

This gives after rearranging and plugging in (g ◦ f)1 = Id,

mn −m′
n

= (−1)n
m2(Id⊗ fn−1) + (−1)nm2(fn−1 ⊗ Id) +

n−2∑
j=1

(−1)j(Idj−1 ⊗m2 ⊗ Idn−j=2


= (−1)ndHHn−1(fn−1).

In particular the kernel of φ̂ is precisely the module of Hochschild coboundaries.

The following Corollaries allow us to work with Xη̄ for η̄ a Hochschild coho-
mology class and to assume that Xη is strictly unital.

Corollary 2.3.6. The equivalence class of Xη depends only on η̄ ∈ HHn (X ,M).

Proof. This is just the fact that the bijection in Theorem 2.3.5 is well-defined.

Corollary 2.3.7. Up to quasi-isomorphism we may assume Xη to be unital.

Proof. By the construction of Xη it suffices for η to be a normalized Hochschild
cochain. By Corollary 2.3.6 we may choose a different representative in the same
cohomology class to get an equivalent A∞-category and by Proposition 2.3.3 we
can choose a representative η′ that is normalized.

2.3.2 Tensoring with a k-Algebra

Definition 2.3.8 ([RVdBN19, 6.2]). Let X be a k-linear category,M a k-central
bimodule and Γ a k-algebra. Then we define the morphism

C∗ (X ,M)→ C∗ (X ⊗ Γ,M⊗ Γ )
η 7→ η ∪ Id



2.3. A∞-Categories and their Deformations 21

to send a Hochschild cochain η in degree n to the degree n morphism

(X ⊗ Γ )⊗n → (M⊗ Γ )
(x1 ⊗ γ1)⊗ ...⊗ (xn ⊗ γn) 7→ η (x1 ⊗ ...⊗ xn)⊗ (γ1...γn) .

Proposition 2.3.9 ([RVdBN19, 6.2]). The morphism η 7→ η ∪ Id induces a
morphism

HH∗ (X ,M)→ HH∗ (X ⊗ Γ,M⊗ Γ ) .

Proof. We only need to check that η ∪ Id is compatible with the Hochschild
differential. For this observe the following:

dHH (η ∪ Id) ((x1 ⊗ γ1)⊗ ...⊗ (xn+1 ⊗ γn+1))
= (x1 ⊗ γ1) (η ∪ Id) ((x2 ⊗ γ2)⊗ ... (xn+1 ⊗ γn+1))

+
n∑
i=1

(−1)i (η ∪ Id) ((x1 ⊗ γ1)⊗ ... (xi ⊗ γi) (xi+1 ⊗ γi+1) ...⊗ (xn+1 ⊗ γn+1))

+ (−1)n+1 (η ∪ Id) ((x1 ⊗ γ1)⊗ ...⊗ (xn ⊗ γn)) (xn+1 ⊗ γn+1)
= (x1 ⊗ γ1) (η ∪ Id) ((x2 ⊗ γ2)⊗ ...⊗ (xn+1 ⊗ γn+1))

+
n∑
i=1

(−1)i (η ∪ Id) ((x1 ⊗ γ1)⊗ ... (xixi+1 ⊗ γiγi+1) ...⊗ (xn+1 ⊗ γn+1))

+ (−1)n+1 (η ∪ Id) ((x1 ⊗ γ1)⊗ ...⊗ (xn ⊗ γn)) (xn+1 ⊗ γn+1)
= (x1 ⊗ γ1) (η (x2 ⊗ ...⊗ xn+1)⊗ γ2...γn+1)

+
n∑
i=1

(−1)i η (x1 ⊗ ...⊗ xixi+1 ⊗ ...⊗ xn+1)⊗ γ1...γn+1

+ (−1)n+1 (η (x1 ⊗ ...⊗ xn)⊗ γ1...γn) (xn+1 ⊗ γn+1)
= (x1η (x2 ⊗ ...⊗ xn+1)⊗ γ1γ2...γn+1)

+
n∑
i=1

(−1)i η (x1 ⊗ ...⊗ xixi+1 ⊗ ...⊗ xn+1)⊗ γ1...γn+1

+ (−1)n+1 (η (x1 ⊗ ...⊗ xn)xn+1 ⊗ γ1...γnγn+1)
=dHH (η) (x1 ⊗ ...⊗ xn+1)⊗ γ1...γn+1.

So the morphism is compatible with the differential and induces a morphism on
cohomology, which is the Hochschild cohomology.

Definition 2.3.10 ([RVdBN19, 6.2]). Let X be an A∞-category and let Γ be a
k-algebra. Then we define the A∞-category X ⊗k Γ to consist of objects

obj (X ⊗ Γ ) := obj (X ) ,
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and morphisms

X ⊗k Γ (a, b) := X (a, b)⊗k Γ,

with compositions

mi,X ⊗kΓ ((x1 ⊗k γ1)⊗ ...⊗ (xi ⊗k γi)) := mi,X (x1 ⊗ ...⊗ xi)⊗k γ1...γi,

for composable x1, ..., xi.

We will drop the subscript k if it is clear from context in order to prevent
clumsy notation.

Remark 2.3.11. Observe that since we are considering a k-algebra Γ every γ ∈ Γ
is in degree zero and so there are no signs arising.

Proposition 2.3.12. Let X be a k-linear category, M a k-central X -bimodule,
η ∈ HHn (X ,M) with n ≥ 3 and Γ a k-algebra. Then we have

Xη ⊗ Γ ∼= (X ⊗ Γ )η∪Id .

Proof. Consider the A∞-functor

F : Xη ⊗ Γ → (X ⊗ Γ )η∪Id

defined on objects by the identity

obj (X ) = obj (Xη) = obj (Xη ⊗ Γ ) ∋ a F7−→ a ∈ obj (X ⊗ Γ )η∪Id = obj (X ⊗ Γ ) = (objX ) .

And on morphisms as the distributor

X (a, b)⊕M[n− 2] (a, b)⊗ Γ F−→ (X ⊗ Γ ) (a, b)⊕ (M⊗ Γ ) [n− 2] (a, b)
(x, y)⊗ γ 7→ (x⊗ γ, y ⊗ γ) .

Then we immediately get that this defines a bijection on objects and morphism
spaces. However, we still need to check that F defines an A∞-functor. For this
observe that on both categories we have by definition as the only nontrivial
compositions m2 and mn. In particular it suffices to check that F preserves these
two:
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m2: We have by the definition of Xη and ⊗k the following

m2 (F ((x, y)⊗ γ)⊗ F ((x′, y′)⊗ γ′))
= m2 ((x⊗ γ, y ⊗ γ)⊗ (x′ ⊗ y′, β ⊗ γ′))
= (m2 ((x⊗ y)⊗ (x′ ⊗ y′)) ,m2 ((x⊗ γ)⊗ (y′ ⊗ γ′)) + m2 ((y ⊗ γ)⊗ (x′ ⊗ γ′)))
= (m2 ((x⊗ x′)⊗ γγ′) ,m2 (x⊗ y′)⊗ γγ′ + m2 (y ⊗ x′)⊗ γγ′)
= F ◦m2 ((x⊗ γ, y ⊗ γ)⊗ (x′ ⊗ γ′, y′ ⊗ γ′)) .

mn: Using the definitions of Xη and ⊗k we can compute

mn (F ((x1, y1)⊗ γ1)⊗ ...⊗ F ((xn, yn)⊗ γn))
= mn ((x1 ⊗ γ1, y1 ⊗ γ1)⊗ ...⊗ (xn ⊗ γn, yn ⊗ γn))
= (0, (η ∪ Id) ((x1 ⊗ γ1)⊗ ...⊗ (xn ⊗ γn)))
= (0, η (x1 ⊗ ...⊗ xn)⊗ γ1...γn)
= F ((0, η (x1 ⊗ ...⊗ xn))⊗ γ1...γn)
= F (mn ((x1, y1)⊗ ...⊗ (xn, yn))⊗ γ1...γn)
= F ◦mn (((x1, y1)⊗ γ1)⊗ ... ((xn, yn)⊗ γn)) .

So F respects also mn which means that it respects every structure morphism
and hence is an A∞-functor. Since it is bijective it is an equivalence.

Observe again that in the above calculations there is no sign arising as we are
working with a k-linear algebra Γ and so every γ ∈ Γ is in degree zero.

2.3.3 The characteristic Morphism of a k-linear Category

Definition 2.3.13 ([Low08]). Let X be a k-linear category, M a k-central X -
bimodule and let N ∈ D (X ). Then we define the (algebraic) characteristic
morphism to be given by

cN (M) : HH∗ (X ,M) = Ext∗
X ⊗X op (X ,M)→ Ext∗

X (N ,M⊗X N )
η 7→ η ⊗X IdN .

and the dual (algebraic) characteristic morphism to be

c∗
N (M) : HH∗ (X ,M) = Ext∗

X ⊗X op (X ,M)→ Ext∗
X (RHomX (M,N ) ,N )

η 7→ RHom (η, IdN ) .

Lemma 2.3.14 ([RVdBN19, 6.3.1]). Let X be a k-linear category, N ∈ D (X ),
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M an invertible k-central X -bimodule and denote its dual by MD. Then we have
the commutative diagram

HH∗ (X ,M)

Ext∗
X (N ,M⊗X N)

Ext∗
X (RHomX (M,N ) ,N ) .

cN

c∗
N

∼ MD ⊗X

In particular this allows us to pass freely from cN to c∗
N for an invertible

bimodule M.

2.3.4 Deformations of Objects

Given these notions of deformation we will now recall some results on the existence
of compatible lifts and colifts of modules.

Definition 2.3.15 ([RVdBN19, 6.4]). Let X be a k-linear category,M a k-central
X -bimodule, η ∈ HHn (X ,M) with n ≥ 3 and U ∈ D (X ).

• Assume that M is right flat, then we call a pair (V, ψ) consisting of an
object V ∈ D∞ (Xη) and an isomorphism of graded H∗ (Xη)-modules ψ :
H∗ (V ) ∼7−→ H∗ (Xη)⊗X U a lift of U to Xη.

• Assume that M is left projective, then we call a pair (V, ψ) consisting of
an object V ∈ D∞ (Xη) and an isomorphism of graded H∗ (Xη)-modules
ψ : H∗ (V ) ∼7−→ X (H∗ (Xη) , U) a colift of U to Xη.

Lemma 2.3.16 ([RVdBN19, 6.4.1]). Let X be a k-linear category, M a k-central
X -bimodule, η ∈ HHn (X ,M) with n ≥ 3 and U ∈ D (X ). The object U has a lift
to Xη if and only if cU (η) = 0 and a colift to Xη if and only if c∗

U (η) = 0.

The proof of Lemma 2.3.16 consists of trying to lift the A2-morphism given
by the action on Ext∗

X (M,M) to the A∞-level. While studying this one observes
that (∗∗k) for k = n is the only obstruction arising and one can compute that this
is measured by c∗

U (η).

2.3.5 A∞-Obstructions

In this subsection we collect obstructions against lifting a morphisms or modules
from the An-level to the An+1-level. In particular we will discuss that, if we can
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find these lifts for every n > 1, then we get that the morphism is in particular
liftable to the A∞-level. We follow for this the discussion in [RVdBN19, §7].

Lemma 2.3.17 ([RVdBN19, Lemma 7.2.1]). Let f : X → Y be an Ai-functor
between two Ai+1-categories. Then there exists a well-defined obstruction

oi+1 (f) ∈ HHi+1 (H∗X ,H∗Y)1−i

such that there exists an Ai+1-functor f̂ : X → Y with f̂j = fj for j < i and
f̂i = fi + δ with [m1, δ] = 0 if and only if oi+1 (f) vanishes.

Furthermore oi+1 (f) is natural in the sense that if we have An functors
g : X ′ → X and h : Y → Y ′, then

oi+1 (h ◦ f ◦ g) = H∗ (h) ◦ oi+1 (f) ◦ H∗ (g) .

The prove of the above Lemma 2.3.17 consists of a tedious verification that
the equation (∗∗k) for k = i+ 1 defines an element in

oi+1 (f) ∈ HHi+1 (H∗X ,H∗Y)1−i .

So one can find a lift as the preimage of oi+1 (f) under the differential of
Ext∗ (H∗X ,H∗Y) if and only if

0 = oi+1 (f) ∈ HHi+1 (H∗X ,H∗Y)1−i .

All in all this is a very similar verification to Lemma 2.3.16, as that Lemma also
tries to lift an A2-morphism to the A∞-level. But as the spaces are different it is
hard to compare the two obstructions directly.

Corollary 2.3.18 ([RVdBN19, Corollary 7.2.4]). Let f : X → Y be an Ai-functor
between A∞-categories. Then there exists an A∞-functor f̃ : X → Y with f̃j = fj

for j < i if and only if there exists a sequence of obstructions and subsequent lifts
f̂i such that on

(
f̂n−1

)
= 0 for all n > i. In particular such a sequence also gives

a lift of the desired form f̃ .

Corollary 2.3.19 ([RVdBN19, Corollary 7.2.4]). Let X be a k-linear category,
let f : X → H0 (Y) be a k-linear functor and let −n < 0 be maximal such that
H−n (Y) ̸= 0. Then

o3 (f) = o4 (f) = ... = on+1 (f) = 0

and on+2 (f) does not depend on any choices.



26 Preliminaries: A∞-Structures and their Deformations

Proof. Consider the obstructions introduced in Lemma 2.3.17. Then we have
that the space Hom (H∗X ,H∗Y) ∼= Hom (X ,H∗Y)1−i vanishes for i < n + 1. In
particular all obstructions and possible lifts we could choose for i ≤ n+ 1 have
to be 0. And so we only have one choice for a lift to the An+1-level which is
independent of choices as it is unique up to coboundaries in Hom (X ,Y)·.

Lemma 2.3.20 ([RVdBN19, Lemma 7.3.1]). 1. Let X be a dg-category , let
Γ be a k-linear category and let T ∈ D (X )Γ . Then there is a sequence of
obstructions

oi+2 ∈ HHi+2
(
Γ,Ext−i

X (T, T )
)

for i > 0 such that T lifts to an object in D (X ⊗ Γ ) if and only if all
obstructions vanish. More precisely oi+1 is only defined if o3 (T ) , ..., oi (T )
vanish and it depends on choices.

2. If f : X → Y is a dg-functor and f∗ : D (Y) → D (X ) the corresponding
change of rings functor, then after having made choices for T we may make
corresponding choices for f∗ (T ) in such a way that

f∗ (oi+2 (T )) = oi+2 (f∗ (T )) .

Remark 2.3.21. The proof of Lemma 2.3.20 similarly to the case of lift and
colift consists of trying to lift the action morphism Γ → Ext∗

X (T, T ). However
as one is now in the setting of a general dg-category one needs to actually try to
inductively lift it via Lemma 2.3.17.



Chapter 3
Equivariant Sheaves and the
Characteristic Morphism

In this chapter we define Γ -equivariant sheaves on a scheme X, for a k-algebra
Γ . We will use this in order to study the (geometric) Γ -equivariant characteristic
morphism.

3.1 Equivariant Sheaves and Fourier-Mukai Func-
tors

In this section we introduce equivariant sheaves and prove that the equivariant
structure is compatible with Fourier-Mukai functors. In particular we can use this
later to get a contradiction to being Fourier-Mukai.

Definition 3.1.1. [LVdB06, §4] Let Γ be a k-algebra and C a k-linear category.
Then we define the category CΓ to consist of objects

obj (CΓ ) := (M,ψ : Γ → EndC (M)) ,

where M∈ C and ψ is a morphism of k-algebras, and morphisms

CΓ ((M,ψ) , (N,φ)) := {α ∈ C (F,G) |α ◦ ψ (γ) = φ (γ) ◦ α ∈ C (M,N) ∀γ ∈ Γ} .

We will mostly denote (T, φ) by T if the action is clear from context to avoid
clumsy notation.

Example 3.1.2. We give a few examples to illustrate the above Definition 3.1.1:

• Since C is required to be k-linear we have that EndC ( ) comes with a
canonical k-action and so we have

Ck ∼= C.

27
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• Let C be a k-linear category and M ∈ C, then we have canonically

M = (M, Id) ∈ CEndC(M).

• Let F : C → C ′ be a k-linear functor between k-linear categories and let Γ be
a (possibly non-commutative) k-algebra. Then we can extend F canonically
to a functor

F : CΓ → C ′
Γ

M 7→ FM := (FM,F ◦ γ) ∈ C ′
Γ .

• Consider the point ∗ = Spec (k) and a k-algebra Γ . Then (M,φ) ∈ coh (∗)Γ
consists of M ∈ coh (∗) ∼= Vectk and a k-algebra morphism φ : Γ →
Endk (M). Which means that

coh (∗)Γ ∼= Γ−mod.

• Let T ∈ coh (X) be tilting for X smooth projective and set Γ := EndX (T ).
Then we have

Db (X) ∼= Db (Γ ) ∼= Db (coh (∗)Γ ) .

We will prove in Lemma 3.2.12 that this equivalence is compatible with
products of schemes under mild conditions.

We will use the next specific version of the second example throughout this
work:

• Let F ∈ coh (X) be a coherent sheaf on a scheme. Then we have canonically

F = (F , Id) ∈ coh (X)EndX(F) . (3.1.1)

Remark 3.1.3. The categories D (CΓ ) and D (C)Γ may seem very similar in notion,
however, they do not coincide. An object in M ∈ D (CΓ ) can be interpreted as
a complex of equivariant objects, i.e. it admits an action in every degree and a
differential that is compatible with these actions. On the other hand an object in
D (C)Γ can be interpreted as a complex of sheaves together with an action on the
whole complex that suffices the relations given by the Γ -action up to homotopy.
The difference between these two notions essentially boils down to the difference
between commutative diagrams up to homotopy not coinciding with homotopy
commutative diagrams, which also led to the development of derivators [Gro11].
For some more information on this interplay we refer to [RVdB14].
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By the above discussions there is a canonical forgetful functor

π : D (CΓ )→ D (C)Γ
(M ·, φ·) 7→

(
M

·
, φ·

)
,

where we denote by ( ) an equivalence class of ( ). One can think of the above
functor as forgetting that Γ acts on every degree separately. However, this functor
is neither essentially injective nor surjective in general, which we will use later.

Remark 3.1.4 ([Huy06, Remark 2.51]). Let f : A → B be a left or right exact
functor betweed derived categories. Recall that an object M ∈ A is called
f -adapted if Rif (M) ∼= 0 respectively Lif (M) ∼= 0 for i > 0.

Lemma 3.1.5. Let f : C → C ′ be a right or left exact functor between abelian k-
linear categories such that C has enough f -adapted objects and let Γ be a k-algebra.
Then the canonical functor

f : D♮ (CΓ )→ D♮ (C ′)Γ
(M,ψ) 7→

(
M, f ◦ ψ

)
admits a lift

fΓ : D♮ (CΓ )→ D♮ (C ′
Γ ) ,

with ♮ ∈ {b,+,−, }. In the case ♮ = b, respectively ♮ = − for left exact and
♮ = + for right exact functors, we assume that every M ∈ C admits a bounded
f -adapted resolution.

Proof. We have by Example 3.1.2 a canonical functor

fΓ : CΓ → C ′
Γ

(M,ψ) 7→ (fM, f ◦ ψ) .

Now as CΓ and C ′
Γ are abelian with kernels and cokernels computed on objects

we get that fΓ has the same exactness as f , and as cohomology also is computed
on M only we get that every f -adapted object is also fΓ adapted.

Since we have enough f -adapted objects we may consider for M ∈ D♮ (C) an
f -adapted replacement, which by assumption is also finite for ♮ = b respectively if
f is left exact and ♮ = − or f being right exact and ♮ = +. In particular we may
invoke [Wei94, Theorem 10.5.9] in order to find a well-defined derived functor:

fΓ : D♮ (CΓ )→ D♮ (C ′
Γ )

(M,ψ)· 7→ (fM, f ◦ ψ)·.
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Furthermore [Wei94, Theorem 10.5.9] allows us to freely use f -adapted resolutions
to compute fΓ on the derived category, i.e. we will assume from now on that
every M · is f -adapted.

Recall the functor from Remark 3.1.3

π : D♮ (C ′
Γ )→ D♮ (C ′)Γ

(F, ψ)· 7→
(
F ·, ψ·

)
.

We now just need to verify that the diagram

D♮ (CΓ ) D♮ (C ′
Γ )

D♮ (C ′)Γ
f

π

fΓ

commutes.
We indeed get

π ◦ fΓ (M, f ◦ ψ)· = π(fM, f ◦ ψ)·

=
(
fM ·, f ◦ ψ·

)
= f

(
M ·, ψ

·)
as claimed.

We will drop the Γ in fΓ if it is clear from context, respectively from the
target or source categories.

Lemma 3.1.6. Let f : X → Y be a morphism of finite-dimensional noetherian
k-schemes, Γ a k-algebra and M ∈ Db (X). Then we have the following:

• If f is proper, then the functor f∗ : Db (coh (X)Γ )→ Db (coh (Y ))Γ admits
a canonical lift

f∗,Γ : Db (coh (X)Γ )→ Db (coh (Y )Γ ) .

• If f is flat, then the functor f ∗ : Db (coh (Y )Γ ) → Db (coh (X))Γ admits a
canonical lift

f ∗
Γ : Db (coh (Y )Γ )→ Db (coh (X)Γ ) .

• If X is regular, then the functor M ⊗ : Db (coh (X)Γ ) → Db (coh (X))Γ
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admits a canonical lift

M ⊗Γ : Db (coh (X)Γ )→ Db (coh (X)Γ ) .

Proof. We check the cases separately:

f∗: By Lemma 3.1.5 it suffices to show that every coherent sheaf M admits
an f∗-adapted finite resolution in coh (X). By [Huy06, Theorem 3.22] the
object M admits an f∗-adapted resolution of finite length of quasi-coherent
sheaves. By [Huy06, Theorem 3.23] these quasi-coherent sheaves can be
picked to be coherent for f proper.

So we can find by Lemma 3.1.5 a lift

f∗,Γ : Db (coh (X)Γ )→ Db (coh (Y )Γ ) .

f ∗: As f is flat f ∗ is exact and does not need to be derived. In particular we
get by Lemma 3.1.5 immediately a lift

f ∗
Γ : Db (coh (Y )Γ )→ Db (coh (X)Γ ) .

M ⊗ ( ): By [Huy06, Proposition 3.26] we have that every F ∈ coh (X) admits a
bounded locally free resolution, which is in particular M ⊗ ( ) adapted. So
we get by Lemma 3.1.5 that M ⊗ ( ) admits a lift

M ⊗Γ ( ) : Db (coh (X)Γ )→ Db (coh (X)Γ )

as claimed.

Corollary 3.1.7. Let f : Db (X)→ Db (Y ) be a Fourier-Mukai functor between
finite-dimensional smooth projective k-schemes and let Γ be a k-algebra. Then we
have that the induced functor

f : Db (coh (X)Γ )→ Db (coh (Y ))Γ

admits a lift:
fΓ : Db (coh (X)Γ )→ Db (coh (Y )Γ ) .

Proof. Observe first that X and Y being smooth projective immediately gives
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that

π1 : X × Y → X is proper,
π2 : X × Y → Y is flat

and X × Y is regular.

As f is a Fourier-Mukai functor it has the form π1,∗ (M ⊗ π∗
2 ( )) for some M ∈

Db (Y ×X). So we get by Lemma 3.1.6 that π1,∗, π∗
2 and M ⊗ admit canonical

lifts. In particular f admits a canonical lift

fΓ := π1,∗,Γ
(
M ⊗Γ π∗

2,Γ ( )
)

as claimed.

3.2 Hochschild Cohomology and the character-
istic Morphism

As we want to study the characteristic morphism we start by recalling the definition
of the (geometric) Hochschild cohomology:

Definition 3.2.1. [Swa96] Let X be a separated scheme and M a sheaf on X.
Then the Hochschild cohomology of X with coefficients in M is given by

HH∗ (X,M) := Ext∗
X×X (O∆, ∆∗M) ,

where ∆ : X ↪→ X ×X is the diagonal embedding.

For the definition of the (geometric) characteristic morphism below we follow
[Low08] and [BF08, §3.3].

Definition 3.2.2. LetX, Y be regular schemes, Γ a k-algebra andM,T ∈ coh (X).
Then the (geometric) characteristic morphism is defined to be

cT (M) : HH∗ (X,M) = Ext∗
X×X (O∆, ∆∗M)→ Ext∗

X (T,M ⊗ T )

(α : O∆ → Σn∆∗M) 7→
(
T

π1∗(α⊗π∗
2 Id)

−−−−−−−→ ΣnM ⊗ T
)
,

where we use T ∼= π1∗ (O∆ ⊗ π∗
2T ) and M ⊗ T ∼= π1∗ (∆∗Σ

nM ⊗ π∗
2T ). If we

have a Γ -action on T , i.e. (T, φ) ∈ coh (X)Γ , there also exists a Γ -equivariant
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characteristic morphism

cT,Γ (M) : HH∗ (X,M) = Ext∗
X×X (O∆, ∆∗M)→ Ext∗

coh(X)Γ
(T,M ⊗ T )

α : (O∆ → Σn∆∗M) 7→
(
T

π1∗(α⊗π∗
2 Id)

−−−−−−−→ ΣnM ⊗ T
)
,

where we consider M ⊗ T as on object in coh (X)Γ via the functor M ⊗ ( ), i.e.

ψ : Γ → End (M ⊗ T )
γ 7→ Id⊗ φ (γ) .

To study the characteristic morphism for special T we will define the following
functor realizing the characteristic morphism on a categorical level.

Definition 3.2.3. Let X, Y be projective schemes and let T = (T, φ) ∈ coh (Y )Γ .
Then we define the functor:

CX
T : Db (X × Y )→ Db (coh (X)Γ )

M 7→ (π1∗ (M ⊗ π∗
2T ) , γ 7→ π1∗ (Id⊗ π∗

2φ (γ)))
(α : M → N) 7→ CX

T (α) = π1∗ (α⊗ π∗
2T ) .

Remark 3.2.4. One can think of the functor CX
T to send an object M ∈

Db (X × Y ) to the image of T under the Fourier-Mukai functor with kernel
M , equipped with the action induced by ΦM,Γ , i.e.

CX
T : Db (X × Y )→ Db (coh (X)Γ )

M 7→ ΦM (T ) .

The functor CX
T allows us to compute cT,Γ on a categorical level.

Proposition 3.2.5. Let X be a scheme and T ∈ coh (X)Γ and consider

CX
T : Db (X ×X)→ Db (coh (X)Γ ) .

Then we have that the equivariant characteristic morphism cT,Γ (M) is given by
evaluating the functor CX

T on the morphism space ExtX×X (O∆, ∆∗M),

cT,Γ (M) = CX
T : Ext∗

X×X (O∆, ∆∗M)→ Ext∗
coh(X)Γ

(T,M ⊗ T ) .
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Proof. By Definition 3.2.3 we have

CX
T : Ext∗

X×X (O∆, ∆∗M)→ Extcoh(X)Γ

(
CX
T (O∆) , CX

T (∆∗M)
)

α 7→ π1∗ (α⊗ π∗
2T ) .

We now have CX
T (O∆) ∼= T and CX

T (∆∗M) ∼= M × T . So the above turns by
Definition 3.2.2 into

cT,Γ (M) : Ext∗
X×X (O∆, ∆∗M)→ Ext∗

coh(X)Γ
(T,M ⊗ T )

as claimed.

Definition 3.2.6 ([BvdB03, §2.1]). Let C be a pointed category, i.e. a category
admitting a zero object. An object G ∈ C is a generator if C (G,M) = 0 implies
M = 0.

Remark 3.2.7. In a pointed category C the equation C (M,N) = 0 for two
objects M,N ∈ C means that the only morphism between M and N is the unique
morphism factoring over 0.

Furthermore we have for an object M ∈ C that if C (M,M) = 0 means that
M ∼= 0 as in that case 0 = Id and so the unique morphisms 0→M and M → 0
define isomorphisms.

Proposition 3.2.8. Let f∗ : C → D be a faithful functor between pointed categories
with a left adjoint f ∗ : D → C and let T ∈ D be a generator. Then f ∗T is a
generator.

Proof. Let M be such that C (f ∗T,M) = 0. Then we have that C (f ∗T,M) =
D (T, f∗M) = 0, in particular f∗M ∼= 0. Now D (f∗M, f∗M) = 0 and so
C (M,M) = 0. This can only hold if M ∼= 0 and so f ∗T is a generator.

Proposition 3.2.9. Let C be a k-linear category that admits a generator G and
let Γ be a k-algebra. Then(

G⊗ Γ, ψ : γ′ 7→
(
G⊗ Γ g⊗γ 7→g⊗γ′γ−−−−−−−→ G⊗ Γ

))

defines a generator of CΓ . Where we denote by G⊗Γ the sheaf arising by tensoring
locally with the k-algebra Γ as k-vectorspaces and acting exclusively on Γ .

Proof. Let (X,φ) ∈ CΓ and let f : G → X be a morphism. Then we have the
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following morphism in CΓ ,

f̂ : G⊗ Γ → X

g ⊗ γ 7→ φ (γ) ◦ f (g) .

This indeed defines a morphism in CΓ as

φ (γ′) ◦ f̂ (g ⊗ γ) = φ (γ′) ◦ φ (γ) ◦ f (g)
= φ (γ′γ) ◦ f (g)
= f̂ (g ⊗ γ′γ)
= f̂ ◦ ψ (γ′) (g ⊗ γ) .

We can compute that if f̂ vanishes then f has to vanish as well since

0 = f̂ (g ⊗ Id)
= φ (Id) ◦ f (g)
= Id ◦ f (g)
= f (g) .

This means that if the morphism space CΓ (G⊗ Γ,X) vanishes, that also
C (G,X) vanishes.

Now assume that CΓ (G⊗ Γ, (X,φ)) = 0. Then we have by the above discussion
that C (G,X) = 0. As G is a generator we get that X has to be a zero object.
And so (X,φ) has to be a zero object as well. In particular we get that G⊗ Γ is
indeed a generator of CΓ .

Remark 3.2.10. Proposition 3.2.9 is a consequence of M ⊗ Γ being the free
object in CΓ over M .

Remark 3.2.11. Recall that an object T in an abelian category A is called tilting
if T is a generator and Exti (T, T ) ∼= 0 for all i > 0.

Lemma 3.2.12. Let X, Y be smooth projective schemes, such that X admits a
generator G ∈ coh (X) with RHomi (G,G) finite-dimensional for all i, let Y be
such that it admits a tilting object T ∈ coh (Y ) and set Γ := End (T ). Then

CX
T : Db (X × Y )→ Db (coh (X)Γ )

is an equivalence of derived categories.

Proof. Throughout this proof we denote by TD := RH omY (T,OY ), the dual of
T and by πS : S → Spec (k) the unique projection from a scheme S to the point
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Spec (k). Observe that by [Huy06, Proposition 3.26] we have TD ∈ Db (Y ) as
smooth schemes are in particular regular. Furthermore, we will use the following
diagram for flat base change twice

X

X × Y

Y

Spec (k).
πX

π1

πY

π2

Since T is tilting, it is a generator of Db (Y ) and TD is generating Db (Y )
by [RVdBN19, Lemma 8.9.1]. So we get that G ⊠ TD generates Db (X × Y ) by
[BvdB03, Lemma 3.4.1]. Furthermore, we have by [BH13, 1.10] that Γ = EndY (T )
is finite-dimensional.

We first show that CX
T

(
G⊠ TD

)
is isomorphic to G⊗ Γ :

CX
T

(
G⊠ TD

)
= π1∗

((
G⊠ TD

)
⊗ π∗

2T
)

definition of CX
T

∼= π1∗
(
π∗

1G⊗ π∗
2T

D ⊗ π∗
2T
)

definition of ⊠
∼= π1∗

(
π∗

1G⊗ π∗
2

(
T ⊗ TD

))
[Huy06, (3.12)]

∼= π1∗ (π∗
1G⊗ π∗

2RH omY (T, T )) definition of TD

∼= G⊗ π1∗π
∗
2 (RH omY (T, T )) [Huy06, (3.11)]

∼= G⊗ π∗
XπY,∗RH omY (T, T ) flat base change

∼= G⊗ Γ. T has no higher Ext-groups

The above computation is compatible with the Γ -action as all isomorphisms
involved are natural isomorphism. In particular replacing π∗

2T by π∗
2γ yields

multiplication with γ in Γ .

As by Proposition 3.2.9 G ⊗ Γ is a generator for coh (X)Γ the functor CX
T

sends a generator to a generator. So it suffices to prove that

RHomX×Y
(
G⊠ TD, G⊠ TD

) CT
X−−→ RHomcoh(X)Γ

(
CX
T

(
G⊠ TD

)
, CX

T

(
G⊠ TD

))
is an isomorphism.
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To do that we first compute the source and target spaces:

RHomX×Y
(
G⊠ TD, G⊠ TD

) ∼=
∼= RHomX×Y

(
π∗

1G⊗ π∗
2T

D, π∗
1G⊗ π∗

2T
D
)

definition of ⊠
∼= RHomX×Y

(
π∗

1G,RH omX×Y
(
π∗

2T
D, π∗

1G⊗ π∗
2T

D
))

[Huy06, (3.14)]
∼= RHomX×Y

(
π∗

1G, π
∗
1G⊗ RH omX×Y

(
π∗

2T
D, π∗

2T
D
))

([Huy06, 3.13)]
∼= ΓX×Y RH omX×Y

(
π∗

1G, π
∗
1G⊗ RH omX×Y

(
π∗

2T
D, π∗

2T
D
))

[Huy06, p.85]
∼= πk,∗RH omX×Y

(
π∗

1G, π
∗
1G⊗ RH omX×Y

(
π∗

2T
D, π∗

2T
D
))

ΓX×Y ∼= πX×Y,∗

∼= πX×Y,∗
(
RH omX×Y (π∗

1G, π
∗
1G)⊗ RH omX×Y

(
π∗

2T
D, π∗

2T
D
))

[Huy06, (3.13)]
∼= πX×Y,∗

(
π∗

1RH omX (G,G)⊗ π∗
2RH omY

(
TD, TD

))
[Huy06, (3.13)]

∼= πX,∗ ◦ π1,∗
(
π∗

1RH omX (G,G)⊗ π∗
2RH omY

(
TD, TD

))
πX×Y = πX ◦ π1

∼= πX,∗ ◦
(
π1,∗

(
π∗

1RH omX (G,G)⊗ π∗
2RH omY

(
TD, TD

)))
◦ is associative

∼= πX,∗
(
RH omX (G,G)⊗ π1,∗π

∗
2RH omY

(
TD, TD

))
[Huy06, (3.11)]

∼= πX,∗
(
RH omX (G,G)⊗ π∗

XπY,∗RH omY

(
TD, TD

))
flat base change

∼= πX,∗ (RH omX (G,G)⊗ π∗
XΓ

op) [Huy06, p.85]
∼= πX,∗RH omX (G,G)⊗ Γ op [Huy06, (3.11)]
∼= RHomX (G,G)⊗ Γ op. [Huy06, p.85]

Now for RHomcoh(X)Γ
(G⊗ Γ,G⊗ Γ ) we have

RHomcoh(X)Γ
(G⊗ Γ,G⊗ Γ ) = RHomcoh(X) (G,G)⊗ RHomΓ−mod (Γ, Γ )

∼= RHomX (G,G)⊗ Γ op.

As the two spaces are isomorphic and in particular degree-wise isomorphic, it
suffices to prove bijectivity on RHomi

X×Y

(
G⊠ TD, G⊠ TD

)
. Since

RHomi
X×Y

(
G⊠ TD, G⊠ TD

) ∼= RHomi
X (G,G)⊗ Γ

we know that RHomi
X×Y

(
G⊠ TD, G⊠ TD

)
is finite-dimensional as tensor product

of finite-dimensional vector spaces. So it suffices to check that CX
T is surjective.

For this let

α⊗ β ∈ RHomi
coh(X)Γ

(G⊗ Γ,G⊗ Γ ) ∼= RHomi (G,G)⊗ Γ op.
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Then we can pick α⊠ β ∈ RHomX×Y
(
G⊠ TD, G⊠ TD

)
and get

CX
T (α⊠ β) ∼= π1,∗ (α⊠ β ⊗ π∗

2IdT )
∼= π1,∗ (α⊠ β)
∼= α⊗ β ∈ RHomcoh(X)Γ

(G⊗ Γ,G⊗ Γ ) .

This means that CX
T is surjective on the generating set of morphisms of the form

α⊗β. In particular CX
T is surjective and an isomorphism as it is surjective between

vector spaces of the same dimension which finishes the proof.

Lemma 3.2.13. Let f : X → Y be a proper morphism of schemes, Γ a k-algebra
and T ∈ coh (Y )Γ . We have f ∗T ∈ coh (X)Γ . Consider the two functors:

CX
f∗T : Db (X ×X)→ Db (coh (X)Γ )

M 7→ (π1∗ (M ⊗ π∗
2f

∗T ))
(α : M → N) 7→ π1∗ (α⊗ π∗

2f
∗T )

and

CX
T ◦ (Id× f)∗ : Db (X ×X)→ Db (X × Y )→Db (coh (X)Γ )

M 7→ (Id× f)∗ M 7→ (π1∗ (Id× f)∗ M ⊗ π
∗
2T )

(α : M → N) 7→ (Id× f)∗ α 7→π1∗ ((Id× f)∗ α⊗ π
∗
2T ) .

Then we have a natural isomorphism CX
f∗T
∼= CX

T ◦ (Id× f)∗.

Proof. Observe that Id× f is proper as product of proper morphisms and so by
[Huy06, Theorem 3.23]

(Id× f)∗ : Db (X ×X)→ Db (X × Y )

is well-defined. We will use the following two commutative diagrams in order to
construct the isomorphism

X ×X X × Y

X X

Id× f

π1

Id

π′
1

X ×X X × Y

X Y ,

Id× f

π2

f

π′
2

where we distinguish between the projections from X ×X and X × Y in order
to avoid confusion. This means that in this notation CX

T = π′
1∗ (( )⊗ π′∗

2 T ) and
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CX
f∗T = π1∗ (( )⊗ π∗

2f
∗T ).

On objects and morphisms we have the following sequence of natural iso-
mophisms

CX
f∗T ( ) = π1∗ (( )⊗ π∗

2f
∗T ) Definition 3.2.3

∼= π′
1∗ (Id× f)∗ (( )⊗ (Id× f)∗ π′∗

2 T ) π1 = π′
1 ◦ (Id× f)

f ◦ π2 = π′
2 ◦ (Id× f)

∼= π′
1∗

(
(Id× f)∗ ( )⊗ π′

2
∗
T
)

projection formula

= CX
T ◦ (Id× f)∗ ( ) . Definition 3.2.3

Both functors also induce the same Γ -action as we get analogously

π1∗ (Id⊗ π∗
2f

∗γ) ∼= π′
1∗ (Id× f)∗ (Id⊗ (Id× f)∗ π′∗

2 γ) π1 = π′
1 ◦ (Id× f)

f ◦ π2 = π′
2 ◦ (Id× f)

∼= π′
1∗

(
(Id× f)∗ Id⊗ π′

2
∗
γ
)
. projection formula

This means that the actions match up along the same natural isomorphisms and
so

CX
f∗T
∼= CX

T ◦ (Id× f)∗

as claimed.

Remark 3.2.14. The above Lemma 3.2.13 can be interpreted very naturally using
Remark 3.2.4. As CX

T sends an M to the image of T under the Fourier-Mukai
functor ΦM and we have by [Huy06, Exercise 5.12] Φ(Id×f)∗M

∼= ΦM ◦ f ∗. In
particular the two functors CX

f∗T and CX
T ◦ (f × Id)∗ should be isomorphic.

Proposition 3.2.15. Let f : X → Y be a proper morphism of schemes and
T ∈ coh (Y )Γ . Then we have

cf∗T,Γ (M) = CX
T ◦(Id× f)∗ : Ext∗

X×X (O∆, ∆∗M)→ Ext∗
coh(X)Γ

(f ∗T,M ⊗ f ∗T ) .

Proof. By Proposition 3.2.5 we have

cf∗T,Γ (M) = CX
f∗T : Ext∗

X×X (O∆, ∆∗M)→ Ext∗
coh(X)Γ

(T,M ⊗ T )

and by Lemma 3.2.13 we get

cf∗T,Γ (M) = CX
f∗T = CX

T ◦(Id× f)∗ : Ext∗
X×X (O∆, ∆∗M)→ Ext∗

coh(X)Γ
(f ∗T,M ⊗ f ∗T )
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as claimed.

Remark 3.2.16. The above result could be used to compute injectivity of the
characteristic morphism if one can find an (f, Id) : X×X → X×Y that is injective
on Ext∗

X×X (O∆, ∆∗M) and such that Y admits a tilting bundle. However, the
existence of such a morphism is not straight forward. In particular a closed
immersion of a divisor f : X ↪→ Pn is in general not injective on ExtiX ( , ) as by
the Grothendieck-Serre spectral sequence there might be correction terms arising
in degrees i > 1.



Chapter 4
Preliminaries: Schemes and k-linear
Categories

In this chapter we collect results from [RVdBN19, §8] in order to pass from
the geometric category coh (X) for a quasi-compact scheme X to modules over
a k-linear category X . We will later use this to deform the scheme X in a
non-geometric fashion.

We do this here as we will be using equivariant sheaves, which were introduced
in the previous section.

Remark 4.0.1. Recall that one denotes by DC (A) the full sub-category of D (A)
consisting of objects with cohomology objects in C for C a full subcategory of an
abelian category A.

4.1 Ordinary Presheaves and Sheaves

We start by discussing ordinary sheaves and presheaves, and how we can turn
them into modules over a small k-linear category for quasi-compact schemes.

4.1.1 Presheaves

We follow mostly [Low08, GS88] while using left modules instead of right modules,
so some conventions might be slightly different. The notation is set up to be
compatible with [RVdBN19].

Remark 4.1.1. Recall that a presheaf of algebras O on a poset (I,≤) consists of
an algebra Oi for all i ∈ I and a restriction morphism ρj,i : Oj → Oi for all i ≤ j.

Definition 4.1.2 ([Low08, §2.2]). Let (I,≤) be a poset and O a presheaf of
k-algebras on (I,≤). Then define the small k-linear category Õ to consist of
objects

obj
(
Õ
)

= I

41
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and morphisms

Õ (i, j) =

O (j) if j ≤ i

0 else,

with composition is given by multiplication and restriction

Õ (j, k)⊗k Õ (i, j) µ◦ρj,k−−−−−−−→Õ (i, k) ,

where we denoted by µ : O (k) ⊗ O (k) → O (k) the multiplication and by
ρj,k : O (j)→ O (k) the restriction for k ≤ j.

Lemma 4.1.3. Let (I,≤) be a poset and let O be a presheaf of k-algebras on
(I,≤). Then we have an equivalence of categories

π∗ : O−mod←→ Õ−mod : π∗,

,here π∗ sends an O-module M to the functor π∗M defined on objects by

i 7→M (i)

and on morphisms by

Õ (i, j) =

O (j) M−→M (j) j ≤ i

0 0−→ 0 else,

while π∗ sends a Õ-module M to the O-module defined by

π∗M (i) = M (i)

with restriction maps given via Õ (i, j) = O (j). More precisely the restriction
map is

ρπ∗M
i,j := M

(
IdM(j)

)
: π∗M (i)→ π∗M (j) .

Proof. First observe that π∗ and π∗ send a morphism M (i)→ N (i) to a morphism
M (i) → N (i). In particular we get that both π∗ and π∗ define functors that
act by the identity on morphisms of modules. Now to see that they are indeed
mutually inverse equivalences we compute their compositions

π∗ ◦ π∗: Consider an O-module M . Then we immediately have on objects:

π∗ ◦ π∗M (i) = M (i) .
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Furthermore we have the restriction maps for i ≥ j

ρπ∗◦π∗M
i,j = π∗M (Id) Definition of π∗

= Id ◦ ρMi,j Definition of π∗

= ρMi,j.

In particular we get π∗ ◦ π∗ = Id.

π∗ ◦ π∗: Consider an Õ-module M . We again have immediately on objects

π∗ ◦ π∗M (i) = M (i) .

So we only need to check that

M
!=
(
π∗ ◦ π∗M : Õ (i, j)→ Vectk (π∗ ◦ π∗M (i) , π∗ ◦ π∗M (j))

)
.

For this we compute

π∗ ◦ π∗M (γ) = π∗M (γ) ◦ ρπ∗
i,jM) Definition of π∗

= M (γ) ◦M (Id) Definition of π∗

= M (γ) .

So we get π∗ ◦ π∗ = Id.

So
π∗ : O−mod←→ Õ−mod : π∗

defines an equivalence of categories.

Definition 4.1.4. Let O and O′ be two presheaves of rings on a poset (I,≤).
Then we define the category of bimodules over O and O′ to be

Bimodk (O,O′) := O ⊗k O′op−mod.

Lemma 4.1.5 ([LVdB11, Lemma 5.2]). Let O,O′ be presheaves of rings on a
poset (I,≤). Then there exsits a fully faithful functor

Π : D (Bimodk (O,O′))→
(
Bimodk

(
Õ, Õ′

))
such that

Π∗M (i, j) =

M (j) if j ≤ i

0 else.
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Lemma 4.1.6 ([RVdBN19, Lemma 8.2.1]). Let O,O′ be preasheaves on a poset
(I,≤), let U ∈ D (O′) and let M∈ D (Bimodk (O,O′)). Then there is a natural
isomorphism in D

(
Õ
)
π∗ (M⊗O′ U) ∼= Π∗ (M)⊗Õ′ π

∗U.

4.1.2 Sheaves

We continue following [RVdBN19] in order to construct a k-linear category corre-
sponding to a quasi-compact k-seperated scheme.

Remark 4.1.7. Recall that by [BN93] we have for a quasi-separated scheme X

D (Qch (X)) ∼= DQch (OX−mod) .

We will now improve on this and pass for a quasi-compact scheme X from
D (Qch (X)) to the derived category of modules over a small k-linear category.

Definition 4.1.8 ([RVdBN19, § 8.3]). Let X be a quasi-compact seperated
k-scheme with an affine covering

X =
⋃
i∈I
Ui.

Define the following:

• For I ′ ⊂ I the set
UI′ :=

⋂
i∈I′

Ui.

• The poset (I,≤) of subsets of I ordered such that

I ′ ≤ I ′′ ⇐⇒ I ′ ⊃ I ′′.

• The presheaf of rings ÔX
I on (I,≤) associated to OX , that is

ÔX
I (I ′) := OUI′

with the canonical restriction morphisms:

ρI′,I′′ = ρUI′ ,UI′′ : ÔX
I (I ′) = OI′ → OI′′ = ÔX

I (I ′′)

as I ′′ ≤ I ′ implies UI′′ ⊂ UI′ via I ′′ ⊃ I ′.
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• Let
ϵ∗ : D (X)→ D

(
ÔX

I
−mod

)
be the functor induced by sending a quasi-coherent sheaf M to its corre-
sponding presheaf ϵ∗M .

We will drop the I for legibility whenever it does not impact the discussion.

Lemma 4.1.9 ([LVdB05, Theorem 7.6.6]). Let X be a quasi-compact separated
k-scheme. Then there is an adjunction

ϵ∗ : D (X)←→ D
(
ÔX

I
)

: ϵ∗

such that ϵ∗ ◦ ϵ∗ ∼= Id. In particular ϵ∗ is fully faithful and its essential image is
Dϵ∗coh(X)

(
ÔX

I
)

, i.e. objects M such that Hi (M) ∈ ϵ∗coh (X).

Lemma 4.1.10 ([RVdBN19, Lemma 8.4.2]). Let X be a quasi-separated quasi-
compact scheme and let M,N ∈ Qch (X). Then

ϵ∗ (M ⊗OX
N) ∼= ϵ∗M ⊗

ÔX

I ϵ∗N.

Definition 4.1.11 ([RVdBN19, § 8.3]). Let X be a quasi-compact separated
scheme. Then we denote by the corresponding curly letter the associated k-linear
category, that is

X :=
˜̂
OX

I
.

This comes together with a fully faithful embedding by Lemma 4.1.3 and
Lemma 4.1.9

w : D (X) ϵ∗

↪−→ D
(
ÔX

I
−mod

)
π∗
∼−→ D (X ) . (4.1.1)

Lemma 4.1.12 ([RVdBN19, Lemma 8.7.1]). Let f : X ↪→ Y be a closed immersion
of quasi-compact separated schemes and Y = ⋃

i∈I Ui an affine cover. Then there
exists an affine covering X = ⋃

i∈I f
−1Ui f such that f induces a k-linear functor

f : Y → X

making the diagram

Db (X) Db (Y )

D (X ) D (Y)

f∗

f∗

∼w ∼ w

commute.
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Proof. Since f is a closed immersion ⋃ni=1 f
−1Ui = X is an affine covering as well.

In particular we can define the functor f : Y → X on objects to be the identity
and on morphism spaces we can define it by f := f# : OY (UI)→ OX (UI). Now
we just need to verify that this indeed defines a functor, but as f# is a morphism
of ringed spaces it is in particular a morphism of rings. Since composition in X
and Y are defined via restriction composed with multiplication the compatibility
of f# with these structures gives that f is a k-linear functor.

Now for the diagram

Db (X) Db (Y )

D (X ) D (Y) .

f∗

f∗

w w

As all functors are induced from functors on abelian categories, it suffices to check
the commutativity on the level of sheaves:

Let F be a sheaf on X, then we have that wF is the module associated to
I 7→ F (f−1UI) and in particular f∗wF is the Y-module defined by I 7→ F (f−1UI)
with action of Y via f := f#. On the other hand f∗F is the sheaf over Y defined by
F (U) = F (f−1U), which after applying w gets sent to the module I 7→ F (f−1UI)
with action Y via f# : OYUI → OX (f−1Ui). In particular the two compositions
coincide and the diagram indeed commutes.

Definition 4.1.13 ([RVdBN19, § 8.3]). Let X be a scheme. Then define ∆∗D (X)
to be the full subcategory of D (X ×X) consisting of objects isomorphic to ∆∗M

for M ∈ D (X), where we denote by ∆ : X → X ×X the diagonal.

We will use the above defined notation even though it is not closed under
cones and ∆∗ is not full, however it makes the following diagrams and concepts
clearer.

Proposition 4.1.14 ([RVdBN19, § 8.3]). Let X = ⋃
i∈I Ui be an open covering

of a quasi-compact seperated scheme X and set

Z :=
⋃
i∈I
Ui × Ui ⊂ X ×X.

Then
ι∗Z : ∆∗Db (X) ↪→ Db (Z)

is fully faithful.
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Proof. Since X is seperated we have that

∆ : X ↪→ Z ⊂ X ×X

is a closed embedding and so all objects in ∆∗Db (coh (X)) are supported on Z

and we can restrict to Z and get that the functor

ι∗ : ∆∗Db (X) ↪→ Db (Z)

is fully faithful.

Lemma 4.1.15 ([RVdBN19, Lemma 8.4.5]). Let X be quasi-compact separated
and let M,N ∈ D (X). Then we have

ϵ∗∆∗M ⊗ÔX

I ϵ∗N ∼= ϵ∗ (M ⊗OX
N) . (4.1.2)

Lemma 4.1.16 ([RVdBN19, § 8.3]). Let X be a quasi-compact separated scheme.
Then there is a fully faithful embedding

W : ∆∗D (X) ι∗Z−→ D (Z) ϵ∗−→ D
(
ÔX

I
⊗ ÔX

I
)

Π∗
−→ D (X × X ) . (4.1.3)

Proof. By Proposition 4.1.14 and Lemma 4.1.5 we have that ∆∗ and Π∗ are fully
faithful embeddings, in particular we only need to worry about ϵ∗, but for this it
suffices to observe

ÔZ
I ∼= ÔX

I
⊗ ÔX

I
.

So W is a fully faithful embedding as a composition of fully faithful embeddings.

Corollary 4.1.17. Let X be a separated scheme and let M be a sheaf on X. Then
we have

HH∗ (X,M) ∼= HH∗ (X ,W (M)) . (4.1.4)

Proof. By Lemma 4.1.16 we have that W is fully faithful. In particular

W : HH∗ (X,M) = Ext∗
X×X (O∆, ∆∗M) ∼−→ Ext∗

X ×X (X ,WM)

is an isomorphism.

4.2 Equivariant Sheaves

We apply the above discussion on passing from sheaves to modules to the case of
Γ -equivariant sheaves, for a k-algebra Γ .
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Lemma 4.2.1. Let X be a quasi-compact scheme and let Γ be a k-algebra. Then
we have an embedding

w : Db (coh (X)Γ ) ↪→ D (X ⊗ Γ ) .

Proof. By Lemma 4.1.3 we have an embedding Qch (X) → ÔX
I
−mod. In par-

ticular if we restrict the embedding to coherent sheaves we get an embedding
coh (X) ↪→ ÔX

I
−mod.

So we get for quasi-compact schemes an embedding coh (X)Γ ↪→ ÔX
I
−modΓ

which turns after deriving into

D (coh (X)Γ ) ↪→ D
(
ÔX

I
−modΓ

)
∼= D

(
ÔX

I
⊗ Γ

)
.

Now we can finally apply Lemma 4.1.9 to get an embedding

D (coh (X)Γ ) ↪→ D
( ̂̃OI ⊗ Γ) .

Since the construction of (̃ ) actually just translates the local data on a poset to
the data of a k-linear category this is compatible with tensoring with a k-linear
category. In particular we get a functor

w : D (coh (X)Γ ) ↪→ D (X ⊗ Γ ) ,

where we used Definition 4.1.11
˜̂
OX

I = X .

4.2.1 Actions of Bimodules

We will now recall that under the equivalences w and W the functor

Φ ( ) : ∆∗Db (Qch (X))×Db (Qch (X))→ Db (Qch (X))
(M,N) 7→ ΦM (N)

corresponds to
⊗X : D (X × X op)×D (X )→ D (X ) ,

where ΦM ( ) denotes the Fourier-Mukai functor with kernel M .

Lemma 4.2.2 ([RVdBN19, Lemma 8.4.1]). Let X be a smooth quasi-compact and
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separated scheme. Then we have the following commutative diagram

∆∗Db (Qch (X)) D (Qch (X)) D (Qch (X))

D (X ⊗k X op) D (X) D (X).

×

×

Φ ( )

⊗X

w wW

Corollary 4.2.3. Let X be a smooth quasi-compact and separated scheme. Then
we have the following commutative diagram

∆∗D (coh (X)) D (coh (X)) D (coh (X))

D (X ⊗k X op) D (X) D (X).

×

×

Φ ( )

⊗X

w wW

Proof. We have by [Huy06, Proposition 3.5] an embedding D (X) ↪→ D (QchX).
In particular we can restrict the diagram from Lemma 4.2.2 to D (X).

Lemma 4.2.4 ([RVdBN19, (8.3)]). Let X be a smooth quasi-compact and separated
scheme and Γ a k-algebra. Then we have the following commutative diagram

∆∗D (Qch (X)) D (Qch (X)Γ ) D (Qch (X)Γ )

D (X ⊗k X op) D (X ⊗k Γ ) D (X ⊗k Γ ).

×

×

Φ ( )

⊗X

w wW

Corollary 4.2.5. Let X be a smooth quasi-compact and separated scheme and Γ
a k-algebra. Then we have the following commutative diagram

∆∗D (coh (X)) D (coh (X)Γ ) D (coh (X)Γ )

D (X ⊗k X op) D (X ⊗k Γ ) D (X ⊗k Γ ).

×

×

Φ ( )

⊗X

w wW

Proof. Similar to Corollary 4.2.3 we can embed D (coh (X)Γ ) ↪→ D (Qch (X)Γ ).
So we can again restrict the diagram from Lemma 4.2.4.
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Chapter 5
Twisted Hodge Diamonds give
Kernels in Hochschild Cohomology

We will show how twisted Hodge diamonds, and in particular their interior, can be
used to understand the pushforward of Hochschild cohomology under the closed
embedding of a smooth projective hypersurface of degree d.

Throughout this chapter we will follow Brückmann‘s paper ”Zur Kohomologie
von projektiven Hyperflächen” [Brü74] for computations.

Definition 5.0.1. Let X be a projective scheme of dimension n and let OX (1)
be a very ample line bundle. Then we define the twisted Hodge numbers of X to
be

hi,jp (X) := dim Hj
(
X,Ωi

X (p)
)
.

Similarly to ordinary Hodge numbers the twisted Hodge numbers can be arranged
in a twisted Hodge diamond:

hn,np (X)

hn,0p (X)

h0,0
p (X) .

h0,n
p (X)

We will drop the X if the space is clear from context.

Lemma 5.0.2. Let X be a smooth projective scheme of dimension n with canonical
sheaf of form OX (t). Then we have

HHm (X,OX (p)) ∼=
n⊕
i=0

Hi−m+n
(
X,Ωi

X

(
t− p )) .

51
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In particular this gives

dim HHm (X,OX (p)) =
n∑
i=0

hi,i−m+n
t−p (X) .

Proof. We compute, using ωX ∼= OX (t) and the Hochschild-Kostant-Rosenberg
(HKR) isomorphism [Swa96]

HHm (X,OX (p)) ∼=
n⊕
i=0

Extm−i
X

(
Ωi
X ,OX (p)

)
HKR

∼=
n⊕
i=0

Extn−m+i
X

(
OX (p) , Ωi

X (t)
)∗

Serre Duality

∼=
n⊕
i=0

Extn−m+i
X

(
OX , Ωi

X (t− p)
)∗

twisting on both sides

∼=
n⊕
i=0

Hn−m+i
(
X,Ωi

X (t− p)
)∗
. ExtjX (OX , ) ∼= Hj (X, )

Applying dimension on both sides gives

dim HHm (X,OX (p)) =
n∑
i=0

hi,i−m+n
t−p (X)

as desired.

Remark 5.0.3. By Lemma 5.0.2 one can compute dim HHm (X,OX (p)) as the
sum over the m-th column in the t− p twisted hodge diamond,

hn,nt−p

hn,0t−p

h0,0
t−p

h0,n
t−p

hn,2n−m
t−p

hm−n,0
t−p

or

hn,nt−p

hn,0t−p

h0,0
t−p.

h0,n
t−p

hm,nt−p

h0,n−m
t−p
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5.1 The Hochschild Cohomology of a smooth
Hypersurface

We will use the computations in [Brü74] and Lemma 5.0.3 to compute the
Hochschild cohomology of X.

Lemma 5.1.1. Let X ↪→ Pn+1 be a smooth degree d hypersurface. Then

hi,jp (X) = 0

if (i, j) is not of the form (i, 0) , (i, n) , (i, n− i) , (i, i), with 0 ≤ i ≤ n. And we
have for (i, i):

hi,ip (X) = δp,0 if i /∈
{

0, n2 , n
}
.

Moreover we get

hi,n−i
p (X) =

n+2∑
µ=0

(−1)µ
(
n+ 2
µ

)(
−p+ id− (µ− 1) (d− 1)

n+ 1

)
+ δp,0δi,n−i. (5.1.1)

Proof. First of all we can assume 0 ≤ i, j ≤ n as outside of that range we have
Ωi
X (p) = 0, respectively Hj (X,Ωi

X (p)) = 0 for dimension reasons.

By [Brü74, Satz 2,(42),(40),(38) and (39)] we have for 0 < i < n

hi,jp (X) =



(
−p−1
n−i

)(
−p+1+i

1+i

)
+∑n−i+1

µ=1 (−1)µ
(
n+2
µ

)(
−p−µ(d−1)+i

n+1

)
if j = n∑n+2

µ=0 (−1)µ
(
n+2
µ

)(
−p+id−(µ−1)(d−1)

n+1

)
+ δp,0δi,j if i+ j = n(

p−1
i

)(
p+n+1−i
n+1−i

)
+∑i+1

µ=1 (−1)µ
(
n+2
µ

)(
p+n−µ(d−1)−i

n+1

)
if j = 0

δp,0 if i = j /∈ {0, n}

0 else.

So only the cases for i ∈ {0, n} remain. Now [Brü74, Lemma 5] gives for j /∈ {0, n}

h0,j
p (X) = 0 = hn,jp (X) .

Which finishes the claim.

Remark 5.1.2. By Lemma 5.1.1 the p-twisted Hodge diamond of a smooth degree
d hypersurface has the shape:
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hn,np

hn,0p

h0,0
p .

h0,n
p

δ0,p

0

00

0

In particular the only non-trivial entries appear along the indicated lines. More
precisely we have along the blue lines the values for hi,n (X), along the red lines
the values hi,n−i (X) and along the green line hi,0 (X). Furthermore the dashed
line disappears if p ̸= 0 as these are the Kronecker deltas δp,0.

Proposition 5.1.3. Let X ↪→ Pn+1 be the embedding of a smooth degree d

hypersurface. Then the following formulas hold.

hi,0p (X) = hn−i,n
−p (X)

hi,n−i
p (X) = hi−1,n+1−i

p−d (X) i /∈ {0, 1, n} , p ̸= 0
hi,n+1
p−d

(
Pn+1

)
− hi,n+1

p

(
Pn+1

)
= hi,np (X) + hi−1,n

p−d (X) i /∈ {0, 1, n}

hi,0p
(
Pn+1

)
− hi,0p−d

(
Pn+1

)
= hi,0p (X) + hi−1,0

p−d (X) i /∈ {0, 1, n} .

Proof. We compute for the first equation:

hi,0p (X) = dim H0
(
X,Ωi

X (p)
)

definition

= dim Ext0
(
OX , Ωi

X (p)
)

Ext∗ (OX , ) ∼= H∗ (X, )

= dim Extn
(
Ωi
X (p) , Ωn

X

)
Serre Duality

= dim Extn
(
OX , Ωn−i

X (−p)
)

= dim Hn
(
X,Ωn−i

X (−p)
)

Ext∗ (OX , ) ∼= H∗ (X, )

= hn−i,0
p (X) . definition
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For the second equation we we have by (5.1.1) the following identity

hi,n−i
p (X) =

n+2∑
µ=0

(−1)
(
n+ 2
µ

)(
−p+ id− (µ− 1) (d− 1)

n+ 1

)

=
n+2∑
µ=0

(−1)
(
n+ 2
µ

)(
−p+ d− d+ id− (µ− 1) (d− 1)

n+ 1

)

=
n+2∑
µ=0

(−1)
(
n+ 2
µ

)(
−p+ d+ (i− 1) d− (µ− 1) (d− 1)

n+ 1

)

= hi−1,n+1−i
p−d (X) .

And for the last two Brückmann gives the formula [Brü74, (31)], which together
with [Brü74, Satz 2] gives both

hi,np−d (X) = hi+1,n
p−d

(
Pn+1

)
− hi+1,n

p

(
Pn+1

)
− hi+1,n

p (X)

hi,0p (X) = hi,0p
(
Pn+1

)
− hi,0p

(
Pn+1

)
− hi−1,0

p−d (X) .

After rearranging, these are

hi,np−d (X) + hi+1,n
p (X) = hi+1,n

p−d

(
Pn+1

)
− hi+1,n

p

(
Pn+1

)
hi,0p (X) + hi−1,0

p−d (X) = hi,0p
(
Pn+1

)
− hi,0p

(
Pn+1

)
.

Index shifting in the first equation gives

hi,np−d

(
Pn+1

)
− hi,np

(
Pn+1

)
= hi,np (X) + hi−1,n

p−d (X)

hi,0p
(
Pn+1

)
− hi,0p−d

(
Pn+1

)
= hi,0p (X) + hi−1,0

p−d (X) ,

as claimed.

We can use Lemma 5.1.1 together with Lemma 5.0.2 to compute the dimensions
of HHm (X,OX (p)):

Corollary 5.1.4. Let X be a smooth n-dimensional hypersurface of degree d and
let t = d− n− 2. Then we have that dim HHm (X,OX (p)) is given by


h0,n
t−p (X) for m = 0

hm−n,0
t−p (X) + h

m
2 ,n− m

2
t−p (X) + hm,nt−p (X) + (n− 2) δt,pδm,n for 0 < m < 2n even

hm−n,0
t−p (X) + hm,nt−p (X) + (n− 1) δt,pδm,n for 0 < m < 2n odd

hn,0t−p (X) for m = 2n

0 else.
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Proof. Observe that we have OX (t) ∼= ωX and that we can assume 0 ≤ m ≤ 2n
for dimension reasons. By Lemma 5.0.2 we have

dim HHm (X,OX (p)) =
n∑
i=0

hi,i−m+n
t−p (X) .

So we can use Lemma 5.1.1 to compute every summand. In particular we get for
n = 0 and n = 2n

dim HH0 (X,OX (p)) = h0,n
t−p (X)

dim HH2n (X,OX (p)) = hn,0t−p (X)

as there only one summand appears.
Now for 0 < m < 2n we can use Lemma 5.1.1 to get for m ̸= n

dim HHm (X,OX (p)) =
m−n∑
i

hi,i−n+m
t−p (X)

=
∑

i−j=m−n
hi,jt−p (X)

=

hm−n,0
t−p (X) + h

2n−m
2 ,m

2
t−p (X) + hm,nt−p (X) for m even

hm−n,0
t−p (X) + hm,nt−p (X) for m odd.

For m = n all the above calculations still hold, however, we get for all (i, i)
with 0 < i < n and (i, i) ̸=

(
n
2 ,

n
2

)
an additional δ0,t−p = δt,p, which means that

dim HHn (X,OX (p)) is given by
h0,0

t−p (X) + h
n
2 ,

n
2

t−p (X) + hn,nt−p (X) + (n− 2) δt,pδm,n for m even

h0,0
t−p (X) + hn,nt−p (X) + (n− 1) δt,pδm,n for m odd

as claimed.

5.2 The Hochschild Cohomology of the direct
Image

Since we want to control the pushforward in Hochschild cohomology we will use
computations by [Brü74] to understand the Hochschild dimensions of the direct
image of a line bundle under a smooth embedding.

Lemma 5.2.1. Let f : X ↪→ Y be an embedding of a smooth n-dimensional degree
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d hypersurface and set t = d− n− 2. Then we have

HHm (Y, f∗OX (p)) ∼=
dimY⊕
i=0

Hn−m+i
(
X, f ∗Ωi

Y (t− p)
)
.

Proof. We can compute, using ωX ∼= OX (t) and the Hochschild-Kostant-Rosenberg
Isomorphism (HKR) [Swa96]

HHm (Y, f∗OX (p)) ∼=
dimY⊕
i=0

Extm−i
Y

(
Ωi
Y , f∗OX (p)

)
HKR

∼=
dimY⊕
i=0

Extm−i
X

(
f ∗Ωi

Y ,OX (p)
)

f ∗ ⊣ f∗

∼=
dimY⊕
i=0

Extn−m+i
X

(
OX (p) , f ∗Ωi

Y (t)
)∗

Serre Duality

∼=
dimY⊕
i=0

Extn−m+i
X

(
OX , f ∗Ωi

Y (t− p)
)∗

twisting on both sides

∼=
dimY⊕
i=0

Hn−m+i
(
X, f ∗Ωi

Y (t− p)
)∗

ExtjX (OX , ) ∼= Hj (X, )

as desired.

Lemma 5.2.2. Let f : X ↪→ Pn+1 be a closed embedding of a smooth degree d hy-
persurface. Then we have for (i, j) /∈ {(0, 0) , (0, n) , (0, n+ 1) , (n, 1) (n, n) , (n, n+ 1)}

dim Hj
(
X, f ∗Ωi

Pn+1 (p)
)

=



hi,0p (X) + hi−1,0
p−d (X) if j=0

hi,np (X) + hi−1,n
p−d (X) if j = n

δp,0 if i = j /∈ {0, n}

δp,d if i− 1 = j /∈ {0, n}

0 else.

Moreover, we get

dim H0 (X, f ∗Ωn
Pn+1 (p)) = hn,0p (X) + hn−1,0

p−d (X)− hn−1,1
p−d (X)

dim Hn
(
X, f ∗Ω1

Pn+1 (p)
)

= h1,n
p (X) + h0,n

p−d (X)− h1,n−1
p (X)

dim H0
(
X, f ∗Ω0

Pn+1 (p)
)

= h0,0
p (X)

dim Hn
(
X, f ∗Ω0

Pn+1 (p)
)

= h0,n
p (X)

dim H0
(
X, f ∗Ωn+1

Pn+1 (p)
)

= hn,0p−d (X)

dim Hn
(
X, f ∗Ωn+1

Pn+1 (p)
)

= hn,np−d (X) .

Proof. First observe that Ωi
Pn+1 = 0 for i > n + 1 and i < 0. In particular we
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can assume 0 ≤ i ≤ n+ 1 and for dimension reasons we can additionally assume
0 ≤ j ≤ n. Furthermore, [Brü74, Lemma 5 and Lemma 6] give for 0 < j < n

dim Hj
(
X, f ∗Ω0 (p)

)
= 0

dim Hj
(
X, f ∗Ωn+1 (p)

)
= 0.

By [Brü74, Satz 1, Lemma 6, (21) and (25) ] we have for 0 < i < n+ 1

dim Hj
(
X, f ∗Ωi

Pn+1 (p)
)

=


hi,0p (Pn+1)− hi,0p−d (Pn+1) if j=0

hi,n+1
p (Pn+1)− hi,n+1

d−p (Pn+1) if j = n

δp,0δi,j + δp,dδi−1,j if j /∈ {0, n} .

Which gives after applying Proposition 5.1.3 for i /∈ {1, n}

dim Hj
(
X, f ∗Ωi

Pn+1 (p)
)

=


hi,0p (X) + hi−1,0

p−d (X) if j=0

hi,np (X) + hi−1,n
d−p (X) if j = n

δp,0δi,j + δp,dδi−1,j if j /∈ {0, n} .

Now for the special cases:

We start with the case of i ∈ {1, n}. By the discussion above we have

dim H0 (X, f ∗Ωn
Pn+1 (p)) = hn,0p

(
Pn+1

)
− hn,0p−d

(
Pn+1

)
dim Hn

(
X, f ∗Ω1

Pn+1 (p)
)

= h1,n+1
p

(
Pn+1

)
− h1,n+1

p−d

(
Pn+1

)
.

This turns, using [Brü74, (31), (33), Satz 2 and Lemma 5] into

dim H0 (X, f ∗Ωn
Pn+1 (p)) = hn,0p (X) + hn−1,0

p−d (X)− hn−1,1
p−d (X)

dim Hn
(
X, f ∗Ω1

Pn+1 (p)
)

= h1,n
p (X) + h0,n

p−d (X)− h1,n−1
p (X) .

So only the cases for i = 0 and i = n+ 1 remain:

For i = 0 we have f ∗Ω0
Pn+1 (p) ∼= OX (p), so we can apply Lemma 5.0.1 to get:

dim H0 (X,OX (p)) = h0,0
p (X)

dim Hn (X,OX (p)) = h0,n
p (X) .
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Now for i = n+ 1 we have

f ∗Ωn+1
Pn+1 (p) ∼= f ∗OX (p− n− 2)

∼= OX (d− n− 2 + p− d)
∼= Ωn

X (p− d) .

And so we get by Definition 5.0.1

dim H0 (X,Ωn
X (p− d)) = hn,0p−d (X)

dim Hn (X,Ωn
X (p− d)) = hn,np−d (X)

as claimed.

Remark 5.2.3. If we arrange the computation of the cohomology dimensions
from Lemma 5.2.2 analogously to a twisted hodge diamond, we get that it is of
the shape

hn (X, f∗Ωn (p))

hn,0
p (X) + hn−1,0

p−d
(X) − hn−1,1

p−d
(X) =h0 (X, f∗Ωn (p))

h0,0
p (X) =h0 (X, f∗Ω0 (p)

)
,

hn
(
X, f∗Ω0 (p)

)
= hn,0

p−d
(X)

hn
(
X, f∗Ω1 (p)

)
= h1,n

p (X) + h0,n
p−d

(X) − h1,n−1
p (X)

h0 (X, f∗Ω1 (p)
)

hn,0
p−d

(X) =hn
(
X, f∗Ωn+1 (p)

)

hn
(
X, f∗Ωn+1 (p)

)
= hn,n

p−d
(X)

h∗,0
p + h∗−1,0

p−d

δp,0

h∗,n
p + h∗−1,n

p−d

δp,d

where apart from the two special cases

h0 (X, f ∗Ωn
Pn+1 (p)) = hn,0p (X) + hn−1,0

p,d (X)− hn−1,1
d (X)

hn
(
X, f ∗Ω1

Pn+1 (p)
)

= h1,n
p (X) + h0,n

p−d (X)− h1,n−1
p−d (X)
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the only non-trivial entries are along the indicated lines. There we have

h0
(
X, f ∗Ωi

Pn+1

)
= h∗,0

p (X) + h∗−1,0
p−d (X)

hn
(
X, f ∗Ωi

Pn+1

)
= h∗,n

p (X) + h∗−1,n
p−d (X)

and along the two vertical diagonals we have

hi
(
X, f ∗Ωi

Pn+1

)
= δp,0

hi
(
X, f ∗Ωi+1

Pn+1

)
= δp,d.

Observe that this has the shape of the p and p− d twisted hodge diamond for X
laid on top of each other with the interior middle line removed.

Since we will focus on the case p > d we will be able to ignore the dashed lines.

Proposition 5.2.4. Let f : X ↪→ Pn+1 be a smooth n-dimensional hypersurface
of degree d and set t = d− n− 2. Then we have for m /∈ {1, 2n}:

dim HHm
(
Pn+1, f∗OX (p)

)
=

= h0,m−n
t−p (X) + h0,m−n−1

t−p−d (X) + hn,mt−p (X) + hn,m−1
t−p−d (X) + (n− 1) (δd,pδm,n+1 + δ0,pδm,n)

and for m = 1, m = 2n:

dim HH1
(
Pn+1, f∗OX (p)

)
= h1,n

t−p (X) + h0,n
t−p−d (X)− h1,n−1

t−p (X)

dim HH2n
(
Pn+1, f∗OX (p)

)
= hn,0t−p (X) + hn−1,0

t−p−d (X)− hn−1,1
t−p−d (X) .

Proof. We will compute the cases separately using OX (t) ∼= ωX :

We can use Lemma 5.2.1 to get for m /∈ {1, 2n}

dim HHm
(
Pn+1, f∗OX (p)

)
=

=
n∑
i=0

dim Hn−m+i
(
X, f ∗Ωi

Pn+1 (t− p)
)

=
∑

i−j=m−n
dim Hj

(
X, f ∗Ωi

Pn+1 (t− p)
)

= h0,m−n
t−p (X) + h0,m−n−1

t−p−d (X) + hn,mt−p (X) + hn,m−1
t−p−d (X) + (n− 1) (δd,pδm,n+1 + δ0,pδm,n) .
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For m = 1 we similarly get

dim HH1
(
Pn+1, f∗OX (p)

)
=

n+1∑
i=0

dim Hn−1+i
(
X, f ∗Ωi

Pn+1 (t− p)
)

= dim Hn
(
X, f ∗Ω1

Pn+1 (t− p)
)

= h1,n
t−p (X) + h0,n

t−p−d (X)− h1,n−1
t−p (X) .

And for m = 2n

dim HH2n
(
Pn+1, f∗OX (p)

)
=

n+1∑
i=0

dim H−n−1+i
(
X, f ∗Ωi

Pn+1 (t− p)
)

= dim H0
(
X, f ∗Ωn+1

Pn+1 (t− p)
)

= hn,0t−p (X) + hn−1,0
t−p−d (X)− hn−1,1

t−p−d (X)

which finishes the claim.

Remark 5.2.5. Since we will be able to assume p /∈ {0, d} in the next section
we will exclude these cases. However, all of the following proofs and arguments
still hold in these cases, one just needs to keep track of the Kronecker deltas in
dim HHn (X,OX (p)).

Proposition 5.2.6. Let f : X ↪→ Pn+1 be a smooth n-dimensional hypersurface
of degree d, let t = d− n− 2. Then we have for all p ∈ Z such that t− p /∈ {0, d}
that dim HHm (Pn+1, f∗OX (p)) is given by:


dim HH0 (X,OX (p)) m = 0

dim HH1 (X,OX (p)) + dim HH0 (X,OX (p+ d))− h1,n−1
t−p (X) m = 1

dim HHm (X,OX (p)) + dim HHm−1 (X,OX (p+ d))− h
m
2 ,n− m

2
t−p (X)

1 < m < 2n

even

dim HHm (X,OX (p)) + dim HHm−1 (X,OX (p+ d))− h
m+1

2 ,n− m+1
2

t−p (X)
1 < m < 2n

odd

dim HH2n (X,OX (p)) + dim HH2n−1 (X,OX (p+ d))− hn−1,1
t−p−d (X) m = 2n

dim HH2n (X,OX (p+ d)) m = 2n+ 1

0 else.

Proof. For dimension reasons we immediately get dim HHm (Pn+1, f∗OX (p)) = 0
for m < 0 respectively 2n+ 1 < m. Now for the computations:
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m = 0: We compute

dim HH0
(
Pn+1, f∗OX (p)

)
= h0,n

t−p (X) Proposition 5.2.4

= dim HH0 (X,OX (p)) . Corollary 5.1.4

m = 1: We get by Proposition 5.2.4 and Corollary 5.1.4

dim HH1
(
Pn+1, f∗OX (p)

)
=

= h1,n
t−p (X) + h0,n

t−p−d (X)− h1,n−1
t−p (X)

= dim HH1 (X,OX (p)) + dim HH0 (X,OX (p+ d))− h1,n−1
t−p (X) .

1 < m < 2n: In this case we have by Corollary 5.1.4 and Proposition 5.2.4

dim HHm
(
Pn+1, f∗OX (p)

)
=

= h0,m−n
t−p (X) + h0,m−n−1

t−p−d (X) + hn,mt−p (X) + hn,m−1
t−p−d (X)

= h0,m−n
t−p (X) + hn,mt−p (X) + h0,m−n−1

t−p−d (X) + hn,m−1
t−p−d (X)

=

dim HHm (X,OX (p)) + dim HHm−1 (X,OX (p+ d))− h
m
2 ,n− m

2
t−p (X) m even

dim HHm (X,OX (p)) + dim HHm−1 (X,OX (p+ d))− h
m
2 ,n− m+1

2
t−p (X) m odd.

m = 2n: Here we get by Proposition 5.2.4 and Corollary 5.1.4

dim HH2n
(
Pn+1, f∗OX (p)

)
=

= hn,0t−p (X) + hn−1,0
t−p−d (X)− hn−1,1

t−p (X)
= dim HH2n (X,OX (p)) + dim HH2n−1 (X,OX (p+ d))− hn−1,1

t−p−d (X) .

m = 2n+ 1: We compute

dim HH2n+1
(
Pn+1, f∗OX (p)

)
= hn,0t−p−d (X) Proposition 5.2.4

= dim HHn (X,OX (p+ d)) Corollary 5.1.4.

So we covered all cases and the statement holds.

Proposition 5.2.7 ([RVdBN19, Proposition 9.5.1]). Consider the embedding of
a smooth n-dimensional degree d hypersurface X f

↪−→ Pn+1. Then we have a long
exact sequence of the form:

· · · → HHi−2 (X,OX (p+ d))→ HHi (X,OX (p)) f∗−→ HHi
(
Pn+1, f∗OX (p)

)
→ · · · .
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Theorem 5.2.8. Let f : X ↪→ Pn+1 be the embedding of a smooth degree d

hypersurface and set t = d − n − 2. Then we have for all p ∈ Z such that
t− p /∈ {0, d}

dim ker
(
f∗ : HHm (X,OX (p))→ HHm

(
Pn+1, f∗OX (p)

))
=



h
m
2 ,n− m

2
t−p (X)

0 < m < 2n

even

hn−1,1
t−p−d (X) m = 2n

0 else.

Proof. For dimension reasons we may assume 0 ≤ m ≤ 2n. In the diagrams
for this prove we will denote OX by O and Pn+1 by P in order to avoid clumsy
notation.

We will proceed by induction over l with 2l = m using the long exact sequence
from Proposition 5.2.7:

· · · → HHm−2 (X,OX (p+ d))→ HHm (X,OX (p)) f∗−→ HHm
(
Pn+1, f∗OX (p)

)
→ · · · .

This way we can cover the odd case 2l − 1 and even case 2l in the induction step
simultaneously:

We will start with l = 1 as induction start and include the case of m = 0 to
cover the cases for m = 0, 1, 2:

We compute all the dimensions in the long exact sequence in Proposition 5.2.7
using Proposition 5.2.6 and proceed by diagram chase. Consider the following
diagram, where we denote the spaces on the left and their dimensions on the right.
We will use the arrows on the right-hand side to indicate that the dimensions to
the right of their tail are the dimensions to the left of their tip.
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0

HH0 (X,O (p))

HH0 (P, f∗O (p))

HH−1 (X,O (p + d))

HH1 (X,O (p))

HH1 (P, f∗O (p))

HH0 (X,O (p + d))

HH2 (X,O (p))

0

dim HH0 (X,O (p))

0

0

dim HH1 (X,O (p))

dim HH0 (X,O (p + d))− h1,n−1
t−p

h1,n−1
t−p

0

dim HH0 (X,O (p))

0

0

dim HH1 (X,O (p))

dim HH0 (X,O (p + d))− h1,n−1
t−p

h1,n−1
t−p

h1,n−1
t−p + dim HH2 (X,O (p)) .

+

+

+

+

+

+

−

f∗

f∗

By the above diagram chase we get that the image of the last arrow on the left has
dimension h1,n−1

t−p (X). So by the exactness of the sequence from Proposition 5.2.7
we get that this is also the dimension of the kernel of

f∗ : HH2 (X,OX (p))→ HH2 (Pn, f∗OX (p)) .

And so we get:

dim ker
(
f∗ : HH0 (X,OX (p))→ HH0 (Pn, f∗OX (p))

)
= 0

dim ker
(
f∗ : HH1 (X,OX (p))→ HH1 (Pn, f∗OX (p))

)
= 0

dim ker
(
f∗ : HH2 (X,OX (p))→ HH2 (Pn, f∗OX (p))

)
= h1,n−1

t−p (X)

as expected.

For the induction step we will cover the cases m = 2l − 1 and m = 2l
simultaneously. Assume that

dim ker
(
f∗ : HH2l−2 (X,OX (p))→ HH2l−2 (Pn, f∗OX (p))

)
= hn−l+1,l−1

t−p (X) .

We compute again the dimensions in the long exact sequence from Proposi-
tion 5.2.7 using our computations in Proposition 5.2.6. We write the long exact
sequence on the left and the dimensions on the right. We draw the arrows on the
right hand side from left to right to indicate that the dimensions to the right of
their tail are the dimensions to the left of their tip.
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ker (f∗)2l−2

HH2l−2 (X,O (p))

HH2l−2 (P, f∗O (p))

HH2l−3 (X,O (p + d))

HH2l−1 (X,O (p))

HH2l−1 (P, f∗O (p))

HH2l−2 (X,O (p− d))

HH2l (X,O (p))

hl−1,n−l+1
t−p

−hl−1,n−l+1
t−p + dim HH2l−2 (X,O (p))

dim HH2l−2 (X,O (p + d))

0

dim HH2l−1 (X,O (p))

dim HH2l−2 (X,O (p + d))− hl,n−l
t−p

hl,n−l
t−p

hl−1,n−l+1
t−p + dim HH2l−2 (X,O (p))

dim HH2l−2 (X,O (p + d))

0

dim HH2l−1 (X,O (p))

dim HH2l−2 (X,O (p + d))− hl−1,n−l+1
t−p

hl,n−l
t−p (X)

hl,n−l
t−p + dim HH2l (X,O (p)) .

hl−1,n−l+1
t−p

−

−

+

+

+

+

+

f∗

f∗

By the exactness of the sequence this means that

dim ker
(
f∗ : HH2l−1 (X,OX (p))→ HH2l−1 (Pn, f∗OX (p))

)
= 0

dim ker
(
f∗ : HH2l (X,OX (p))→ HH2l (Pn, f∗OX (p))

)
= hn−l,l

t−p (X) .

Now finally for the case of l = n:

By the above induction we have

dim ker
(
f∗ : HH2n−2 (X,OX (p))→ HH2n−2 (Pn, f∗OX (p))

)
= h1,n−1

t−p (X) .

We apply again diagram chase along long exact sequence from Proposition 5.2.7
using the computations in Proposition 5.2.6. We continue to write the long exact
sequence on the left and the dimensions on the right. The diagonal arrows on
the right again symbolize that the dimensions to the right of their tail are the
dimensions of the kernel to the left of their tip:
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ker (f∗)2n−2

HH2n−2 (X,O (p))

HH2n−2 (P, f∗O (p))

HH2n−3 (X,O (p + d))

HH2n−1 (X,O (p))

HH2n−1 (P, f∗O (p))

HH2n−2 (X,O (p− d))

HH2n (X,O (p))

hn−1,1
t−p

−hn−1,1
t−p + dim HH2n−2 (X,O (p))

dim HH2n−2 (X,O (p + d))

0

dim HH2n−1 (X,O (p))

dim HH2n−2 (X,O (p + d))− hn−1,1
t−p−d

hn−1,1
t−p−d

hn−1,1
t−p + dim HH2n−2 (X,O (p))

dim HH2n−3 (X,O (p + d))

0

dim HH2n−1 (X,O (p))

dim HH2n−2 (X,O (p + d))− hn−1,1
t−p

hn−1,1
t−p−d

dim HH2n (X,O (p))− hn−1,1
t−p−d.

hn−1,1
t−p

+

−

+

+

+

+

+

f∗

f∗

This diagram gives us

dim ker
(
f∗ : HH2n−1 (X,OX (p))→ HH2n−1 (Pn, f∗OX (p))

)
= 0

dim ker
(
f∗ : HH2n (X,OX (p))→ HH2n (Pn, f∗OX (p))

)
= hn−1,1

t−p−d (X) .

So we covered the case for m = 2n and are done as for m < 0 and m > 0 the
source space is trivial.

We now finally state the following in order to guarantee the existence of
non-trivial kernels of pushforwards of Hochschild cohomology.

Proposition 5.2.9. Let f : X ↪→ P2k be an embedding of a smooth odd dimen-
sional degree d > 1 hypersurface of dimension n = 2k − 1 for k > 2 and let
p = −kd− d. Then we have

ker
(
HHn+3 (X,OX (p))→ HHn+3

(
Pn+1, f∗OX (p)

)) ∼= k.

Proof. By Theorem 5.2.8 we have

dim ker
(
HHn+3 (X,OX (p))→ HHn+3

(
Pn+1, f∗OX (p)

))
= hk+1,k−2

t−p (X)
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with t = d− n− 2 = d− 2k − 1.

So it suffices to compute that hk+1,k−2
t−p (X) = 1, with t− p = kd+ 2d− 2k − 1.

By (5.1.1) this is

hk+1,k−2
t−p (X) =

=
2k−1+2∑
µ=0

(−1)µ
(

2k − 1 + 2
µ

)(
−kd− 2d+ 2k + 1 + (k + 1) d− (µ− 1) (d− 1)

2k − 1 + 1

)

=
2k+1∑
µ=0

(−1)µ
(

2k + 1
µ

)(
−kd− 2d+ 2k + 1 + kd+ d− µd+ d+ µ− 1

2k

)

=
2k+1∑
µ=0

(−1)µ
(

2k + 1
µ

)(
2k − µd+ µ

2k

)

=
(

2k + 1
0

)(
2k
2k

)
= 1.

Here we used that for µ > 1 we have 2k − µd + µ < 2k as d > 1, which means
that the terms

(
2k+1
µ

)(
2k+µd+µ

2k

)
vanish for µ ≥ 1.

So we get

dim ker
(
HHn+3 (X,OX (p))→ HHn+3

(
Pn+1, f∗OX (p)

))
= 1

as claimed.

5.3 Examples

We collect a few examples of twisted Hodge diamonds that were computed using
the Sage package by Pieter Belmans and Piet Glas [BG].

The first two examples illustrate the general shape as given in Lemma 5.1.1
and the third will be an explicit example of Proposition 5.2.9.

Example 5.3.1. Let f : X ↪→ P6 be a smooth degree 7 hypersurface then the
8-twisted hodge diamond is
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0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
2996 20993 15267 917 0 0

1575 0 0 0 0
5775 0 0 0

10395 0 0
9002 0

2996.

And so we have by Theorem 5.2.8, since t− 8 = −8,

dim ker
(
f∗ : HH4 (X,OX (−8))→ HH4 (X, f∗OX (−8))

)
= 917

dim ker
(
f∗ : HH6 (X,OX (−8))→ HH6 (X, f∗OX (−8))

)
= 15267

dim ker
(
f∗ : HH8 (X,OX (−8))→ HH8 (X, f∗OX (−8))

)
= 20993.

Example 5.3.2. Let f : X ↪→ P8 be smooth degree 5 hypersurface then the
−7-twisted hodge diamond is

6390
0 20511

0 0 25704
0 0 0 16840

0 0 0 0 4950
0 0 0 0 0 720

0 0 0 0 0 0 36
0 0 0 486 13051 30276 8451 165

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0.



5.3. Examples 69

And so we have by Theorem 5.2.8, since t+ 7 = 3,

dim ker
(
f∗ : HH2 (X,OX (3))→ HH2 (X, f∗OX (3))

)
= 8451

dim ker
(
f∗ : HH4 (X,OX (3))→ HH4 (X, f∗OX (3))

)
= 15267

dim ker
(
f∗ : HH6 (X,OX (3))→ HH6 (X, f∗OX (3))

)
= 13051

dim ker
(
f∗ : HH8 (X,OX (3))→ HH8 (X, f∗OX (3))

)
= 486.

The next example illustrates a case of Proposition 5.2.9:

Example 5.3.3. Let f : X ↪→ P10 be a smooth degree 5 hypersurface and consider
OX (−30). Then we can compute, using Theorem 5.2.8

dim ker (f∗ : HHm (X,OX (−30))→ HHm (X, f∗OX (−30))) .

To do this we need to compute the t− p = 24 twisted Hodge-diamond

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
11979044 100298 2882 1 0 0 0 0 0 0

107439618 0 0 0 0 0 0 0 0
523445109 0 0 0 0 0 0 0

1580020794 0 0 0 0 0 0
3149538513 0 0 0 0 0

4236318471 0 0 0 0
3815626243 0 0 0

2209626573 0 0
744650346 0

111098130.

And as expected by Proposition 5.2.9 we get

dim ker
(
f∗ : HH12 (X,OX (−30))→ HH12 (X, f∗OX (−30))

)
= 1.
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Chapter 6
Non-Fourier-Mukai Functors

In this chapter we follow the ideas from [RVdBN19] to construct candidate non-
Fourier-Mukai functors for hypersurfaces of arbitrary degree. We then verify that
under assumptions on the characteristic morphisms and some concentrated Ext-
groups these indeed cannot be Fourier-Mukai. We finish the chapter by computing
that these assumptions are satisfied when the source category is the derived
category of an odd dimensional quadric, which gives concrete non-Fourier-Mukai
functors between well behaved spaces in arbitrary high dimensions.

Since we follow the approach from [RVdBN19] we will consider functors of a
similar form:

Ψη : Db (X) L−→ Dbwcoh(X)

(
X dg
η

) ψX ,η,∗−−−→ Dbwcoh(X) (Xη)
f̃∗−→ Db

(
Pn+1

)
, (6.0.1)

where X dg
η denotes the dg-hull of Xη and ψX ,η,∗ is the induced comparison functor.

6.1 Constructing candidate non-Fourier-Mukai
Functors

We start by collecting a few results from [RVdBN19], which are central for our
construction. We refer the interested reader to [RVdBN19] for an in depth
discussion.

In order to apply the construction from Definition 4.1.11 we fix for every
quasi-compact scheme a finite affine covering X = ⋃

i∈I Ui.
We use the following construction from [RVdBN19] as the core of our candidate

functors:

Proposition 6.1.1. Let X be smooth projective of dimension n and let η ∈
HH≥n+3 (X,M) for M a coherent sheaf. Then there exists an exact functor

Db (X) L−→ Dbwcoh(X)

(
X dg
η

)
71
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such that RHomXη
(X , L ( )) ∼= w, where RHom denotes the derived internal Hom

functor.

Proof. First observe that by Lemma 4.1.16 we have an isomorphism

HH∗ (X,M) ∼= HH∗ (X ,WM)

and so we may consider η ∈ HH≥n+3 (X ,WM).
By [RVdBN19, Lemma 10.1] and since Qch (X) has global dimension n and

Hi (Xη) vanishes in the right degrees we can apply [RVdBN19, Proposition 5.3.1]
with A = wQch (X) and c = Xη to get a functor

L′ : Db (Qch (X)) ∼= Db (wQchX)→ DbwQch(X)

(
X dg
η

)
.

Now we can use [Huy06, Proposition 3.5] to turn this into a functor

L : Db (X) ∼
↪−→ Dbcoh(X) (Qch (X)) L′

−→ Db
(
X dg
η

)
with the desired property.

Finally, by [RVdBN19, Corollary 10.4] we know that the essential image of
this functor is contained in DbwcohX (Xη).

Remark 6.1.2. Similarly to the notation X we will denote the k-linear category
corresponding to Pn+1 by Pn+1.

We will also use the following notation from [RVdBN19] for f̃ .

Proposition 6.1.3. [RVdBN19, Proposition 7.2.6] Let f : Pn+1 → X be a functor
of k-linear categories and η ∈ HHk (X ,M) such that f∗η = 0. Then there exists
an A∞-functor f̃ making the diagram

X Pn+1

Xη

f

π f̃

commute. In particular we have

π ◦ f̃ = f. (6.1.1)

Now we construct a candidate functor Ψη for η ∈ HH≥n+3 (X,OX (p)).
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Construction 6.1.4. Let X ↪→ Pn+1 be the embedding of a smooth n-dimensional
scheme with n ≥ 3 and let

0 ̸= η ∈ ker
(
f∗ : HHm (X,OX (p))→ HHm

(
Pn+1, f∗OX (p)

))
for m > n+ 2.

Then a functor of the form (6.0.1) is constructed to be,

Ψη : Db (coh (X)) L−→ Dbwcoh(X)

(
X dg
η

) ψXη,∗−−−→ Dbwcoh(X) (Xη)
f̃∗−→ Db

(
coh

(
Pn+1

))
,

where we have the functor L by Proposition 6.1.1, ψXη ,∗ is the comparison functor
between the A∞-category Xη and its dg-hull X dg

η constructed in [RVdBN19, § D.1]
and f̃∗ exists by Proposition 6.1.3.

Now we may use the results from Chapter 5 to construct candidate functors.
Observe that these are just candidate functors, for verifying that they are not
Fourier-Mukai we will need to assume that a equivariant characteristic morphism
of η does not vanish and that m = n+ 3.

Corollary 6.1.5. Let f : X → Pn+1 be the embedding of a degree d hypersurface
and let m > n + 2 then we have a h

m
2 ,n− m

2
p (X)-dimensional space of choices to

construct a candidate functor

Ψη : Db (X)→ Db
(
Pn+1

)
.

Proof. In order for Construction 6.1.4 to work we need

0 ̸= η ∈ ker
(
f∗ : HHm (X,OX (p))→ HHm

(
Pn+1, f∗OX (p)

))
.

By Theorem 5.2.8 ker (f∗ : HHm (X,OX (p))→ HHm (Pn+1, f∗OX (p))) has dimen-
sion h

m
2 ,n− m

2
p (X) which finishes the claim.

Now we can state our main Theorem, which we will prove throughout § 6.2.

Theorem 6.1.6. Let f : X ↪→ Pn+1 be an embedding of a smooth degree d

hypersurface of dimension n ≥ 3 and let

0 ̸= η ∈ ker
(
f∗ : HHn+3 (X,OX (p))→ HHn+3

(
Pn+1, f∗OX (p)

))
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such that there exists a k-algebra Γ and G ∈ Db (coh (X)Γ ) with

cG,Γ (η) ̸= 0
ExtiX (G (−p) , T ) = 0 for i ̸= n

Extn−1
X (G,G (p+ d)) ∼= Extn−2

X (G,G (p+ d)) ∼= 0.

Then we have that the functor

Ψη : Db (coh (X))→ Db
(
coh

(
Pn+1

))
is well-defined and not a Fourier-Mukai functor.

6.2 Proving Theorem 6.1.6

We fix for the rest of this section an embedding of a smooth degree d hypersurface
f : X ↪→ Pn+1, a non-vanishing Hochschild cohomology class η ∈ HHn+3 (X,O (p)),
such that f∗η = 0, Γ a k-algebra and G ∈ D (coh (X)Γ ) such that

cG,Γ (η) ̸= 0 (6.2.1)
ExtiX (G (−p) , T ) = 0 for i ̸= n (6.2.2)
Extn−1

X (G,G (p+ d)) ∼= Extn−2(G,G (p+ d)) ∼= 0. (6.2.3)

Observe first that by Construction 6.1.4 Ψη is well-defined and even unique up
to a choice of f̃ . So we may focus for the rest of this section on verifying that Ψη
cannot be Fourier-Mukai.

We follow mostly the ideas from [RVdBN19].
We start by using the assumptions on G to prove that the negative part of

Ext∗
Xη

(LG,LG) is concentrated in degree −1 which allows us to control which
A∞-obstruction does not vanish. This obstruction we will then push forward to
prove that Ψη cannot be Fourier-Mukai. In order to avoid clumsy notation we
start by setting

G := wG ∈ X−mod and G̃ := L (G) . (6.2.4)

Remark 6.2.1. We have by [RVdBN19, § D.1] an equivalence ψXη : X dg
η

∼−→ Xη
and by Definition 2.3.4 a canonical functor π : Xη → X . So we will denote the
functor

ψ−1
Xη ,∗ ◦ π∗ : D (X )→ D∞ (Xη)→ D

(
X dg
η

)
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simply by π∗ and

ψXη ,∗ ◦ π∗ : D
(
X dg
η

)
→ D∞ (Xη)→ D (X )

by π∗ to avoid clumsy and confusing notation.

Definition 6.2.2. Consider the distinguished triangle in D
(
X dg
η

)
[RVdBN19,

Lemma 10.3]:
G α−→ G̃ β−→ Σ−n−1G ⊗ wOX (−p) γ−→ ΣG, (6.2.5)

where G is considered as an X dg
η -module via π∗ : Db (X )→ D

(
X dg
η

)
. Then define

the morphism φ by:

φ : Extn+1+i
X (G (−p) , G)→ ExtiX dg

η

(
G̃, G̃

)
(
g : Σ−n−1−iG (−p)→ G

)
7→ α ◦ π∗ (w (g)) ◦Σ−iβ :

(
Σ−iG̃ → G̃

)
.

Lemma 6.2.3. For i < 0 the morphism

φ : Extn+1+i
X (G (−p) , G) ∼= ExtiX dg

η

(
G̃, G̃

)
is an isomorphism.

Proof. We will check that for i < 0 the morphisms involved in the definition of

φ : Extn+1+i
X (G (−p) , G)→ ExtiX dg

η

(
G̃, G̃

)
(
g : Σ−n−1−iG (−p)→ G

)
7→ (α ◦ π∗) (w (g)) ◦Σ−iβ :

(
Σ−iG̃ → G̃

)
are isomorphisms.

w: By (4.1.1) w : Db (X)→ Db (X ) is a fully faithful embedding, in particular,
using G = wG (6.2.4) we have

w : Extn+1+i
X (G,G) ∼−→ Extn+1+i

X (G,G) .

α ◦ π∗ ( ): We have by [RVdBN19, Corollary 5.3.2] an adjunction:

RHomX dg
η

(
G ⊗ wOX (−p) , G̃

) ∼= RHomX (G ⊗ wOX (−p) ,G)

This isomorphism can be computed explicitly to be:

α ◦ π∗ : RHomX dg
η

(
G ⊗ wOX (−p) , G̃

) ∼= RHomX (G ⊗ wOX (−p) ,G) ,

see [RVdBN19, (11.6)].
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◦ β: Consider the distinguished triangle (6.2.5) in D
(
X dg
η

)
:

G α−→ G̃ β−→ Σ−n−1G ⊗ wOX (−p) .

Apply RHomX dg
η

(
, G̃
)

to get the distinguished triangle:

RHomX dg
η

(
Σ−n−1G ⊗ wOX (−p) , G̃

) ◦β−−→ RHomX dg
η

(
G̃, G̃

)
→ RHomX dg

η

(
G, G̃

)
.

Now we may use [RVdBN19, Corollary 5.3.2] and Proposition 4.1.11,

RHomX dg
η

(
G, G̃

) ∼= RHomXη

(
G, G̃

) ∼= RHomX (G,G) ∼= RHomX (G,G) ,

to get

RHomX dg
η

(
Σ−n−1G ⊗ wOX (−p) , G̃

) ◦β−−→ RHomX dg
η

(
G̃, G̃

)
→ RHomX (G, G) .

Applying Hi turns this into the long exact sequence:

· · · → Exti−1
X (G,G)→ Extn+1+i

X dg
η

(
G ⊗ wOX (−p) , G̃

) ◦β−−→ ExtiX dg
η

(
G̃, G̃

)
→ · · · .

And as G is a sheaf on X, specializing to i < 0 yields the long exact sequence:

· · · → 0→ Extn+1+i
X dg

η

(
G ⊗ wOX (−p) , G̃

) ◦β−−→ ExtiX dg
η

(
G̃, G̃

)
→ 0→ · · · .

In particular

◦ β : Extn+1+i
X dg

η

(
G ⊗ wOX (−p) , G̃

) ∼−→ ExtiX dg
η

(
G̃, G̃

)
is an isomorphism for i < 0.

So altogether we get that

φ : Extn+1+i
X (G (−p) , G) ∼−→ ExtiX dg

η

(
G̃, G̃

)
(
g : Σ−n−1−iG (−p)→ G

)
7→
(
α ◦ π∗ (w (g)) ◦Σ−iβ : Σ−iG̃ → G̃

)
is indeed an isomorphism for i < 0 as it is a composition of isomorphisms.

Corollary 6.2.4. Let p < −n− 1 and i > 1. Then Ext−i
Xη

(
G̃, G̃

)
= 0.

Proof. By (6.2.2) we have that Ext∗
X (G (−p) , G) is concentrated in degree n and

so we have by Lemma 6.2.3

Ext−i
X dg

η

(
G̃, G̃

) ∼= Extn+1−i
X (G (−p) , G) ∼= 0
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for i > 1.
And since we have a quasi-equivalence Xη ∼= X dg

η we get

Ext−i
Xη

(
G̃, G̃

) ∼= Extn+1−i
X (G (−p) , G)

as claimed.

Definition 6.2.5 ([RVdBN19, Lemma 11.4]). Let X be a k-linear category, Γ a k-
algebra and let M be a k-central X -bimodule. Then we have for a Γ -equivariant
X -module G ,i.e. G ∈ X−modΓ , the (algebraic) Γ -equivariant characteristic
morphism

cG,Γ : HH∗ (X ,M) = Ext∗
X ⊗X op (X ,M)→ Ext∗

X ⊗Γ (G,G ⊗M)
η 7→ G ⊗X η

Observe that this morphism factors naturally as

cG,Γ : HH∗ (X ,M) η 7→η∪1−−−−→ HH∗ (X ⊗ Γ,M⊗ Γ ) cG−→ Ext∗
X ⊗Γ (G,G ⊗M) ,

where cG : HH∗ (X ⊗ Γ,M⊗ Γ )→ Ext∗
X ⊗Γ (G,G ⊗M) is the (algebraic) charac-

teristic morphism for G ∈ D (X ⊗ Γ ), see Definition 2.3.13.

Lemma 6.2.6. There is a commutative diagram:

HHn+3 (X,OX (p))

HHn+3 (X , wOX (p))

Extn+3
coh(X)Γ

(G,G (p))

Extn+3
X ⊗Γ (G,G ⊗ wOX (p)),

∼ ∼

cG,Γ

cG,Γ

where cG,Γ is the (geometric) equivariant characteristic morphism discussed in § 3
and cG,Γ is the (algebraic) characteristic morphism from Definition 6.2.5.

Proof. By [RVdBN19, (8.13)] we have the commutative diagram

∆∗D (X)

D (X ⊗ X op)

D (coh (X)Γ )

D (X ⊗ Γ ) ,

W∼ w ∼

π1,∗ ( ⊗ π∗
2G)

G ⊗X
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where we denote by ∆∗D (X) ⊂ D (X ×X) the essential image of the direct image
along the diagonal embedding ∆ : X → X ×X.

Considering the induced diagram on morphism spaces for

HHn+3 (X,O (p)) = Extn+3
X×X (O∆,O∆ (p)) = Extn+3

∆∗D(X) (O∆,O∆ (p))

gives that the diagram

HHn+3 (X,OX (p))

HHn+3 (X , wOX (p))

Extn+3
coh(X)Γ

(G,G (p))

Extn+3
X ⊗Γ (G,G ⊗ wOX (p))

∼ ∼

cG,Γ

cG,Γ

commutes.

Since G ∈ Db (coh (X)Γ ) we get a Γ -action on G and G̃ via the functors w and
L, i.e. G̃ ∈ D

(
X dg
η

)
Γ
. So Lemma 2.3.20 gives well-defined obstructions against

G̃ ∈ D∞ (Xη)Γ ∼= D
(
X dg
η

)
Γ

admitting a lift to an A∞-module in D∞ (Xη ⊗ Γ ):

oi
(
G̃
)
∈ HHi

(
Γ,Ext2−i

Xη

(
G̃, G̃

))
for i > 2.

Remark 6.2.7. The next Lemma will use the obstruction obtained from the
equivariant characteristic morphism (6.2.1) in order to conclude that the first
A∞-obstruction against an equivariant lift of G̃ cannot vanish. We do this by
observing that a colift of G to Xη would also give an equivariant lift of G̃. The
control of o3

(
G̃
)

is necessary as we want to push forward the obstruction from Xη
to Pn+1 which cannot be done with the obstruction arising by the characteristic
morphism.

Lemma 6.2.8. We have:

0 ̸= o3
(
G̃
)
∈ HH3

(
Γ,Ext−1

Xη

(
G̃, G̃

))
.

Proof. Assume o3
(
G̃
)

vanishes. Then by Corollary 6.2.4 Ext−i
Xη

(
G̃, G̃

)
= 0 for

i > 1 and so:
oi
(
G̃
)
∈ HHi

(
Γ,Ext2−i

Xη

(
G̃, G̃

))
= 0

for all i > 2.
So G̃ would admit a lift, i.e. an object

Ĝ ∈ D
(
X dg
η ⊗ Γ

) ∼= D∞ (Xη ⊗ Γ )
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with Ĝ ∼= G̃ in D (Xη)Γ .
Consider the triangle (6.2.5) in D∞ (Xη) ∼= D

(
X dg
η

)
G → G̃ ∼= Ĝ → Σn+1G ⊗ wOX (−p)→ ΣG,

where we use the shorthand G for π∗G. This gives:

H∗
(
Ĝ
) ∼= G ⊕Σn+1G ⊗ wOX (−p) .

By the construction of the triangle (6.2.5) in [RVdBN19, § 10], the above isomor-
phism is compatible with the Xη-action. So by Definition 2.3.15 Ĝ is a colift of
G ∈ D (X ⊗k Γ ) to D∞

(
(Xη ⊗k Γ )η∪1

)
.

By Lemma 2.3.16, the obstruction against such a colift is the image of η ∪ 1
under the characteristic morphism

HHn+3 (X ⊗ Γ,wOX (p)⊗ Γ )→ Extn+3
X ⊗Γ (G,G ⊗ wOX (p)) .

However, this obstruction cannot vanish. As if we consider the equivariant
characteristic morphism cG,Γ :

HHn+3 (X , wOX (p)) µ7→µ∪1−−−−→ HHn+3 (X ⊗ Γ,wOX (p)⊗ Γ ) cG−→ Extn+3
X ⊗Γ (G,G ⊗ wOX (p)) ,

we have the commutative diagram from Lemma 6.2.6:

HHn+3 (X,OX (p))

HHn+3 (X , wOX (p))

Extn+3
coh(X)Γ

(G,G (p))

Extn+3
X ⊗Γ (G,G ⊗ wOX (p)) .

∼ ∼

cG,Γ

cG,Γ

By assumption (6.2.1) we have that cG,Γ (η) ̸= 0. So cG (η ∪ 1) ≠ 0, which means
that such a colift of G̃ to (X ⊗ Γ )η∪1 cannot exist. Now by the discussion above
this means that a lift of G̃ to D∞ (Xη ⊗ Γ ) cannot exist and so o3

(
G̃
)

cannot be
zero.

Lemma 6.2.9. There is a commutative diagram

ExtnX (G (−p) , G)

ExtnPn+1 (f∗ (G (−p)) , f∗ (G))

Ext−1
Xη

(
G̃, G̃

)

Ext−1
Pn+1

(
f̃∗
(
G̃
)
, f̃∗

(
G̃
))

,

f∗ f̃∗ ◦ ψXη ,∗

φ

f̃∗φ

(6.2.6)
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where the lower morphism is given by

f̃∗φ : ExtnPn+1 (f∗G (−p) , f∗G))→ Ext−1
Pn+1

(
f̃∗G̃, f̃∗G̃

)
g 7→ f̃∗α ◦ w (g) ◦ f̃∗β.

Proof. Recall that by Definition 6.2.2 the morphism φ is given by

φ : Extn+1+i
X (G (−p) , G)→ Ext−1

X dg
η

(
G̃, G̃

)
(
g : Σ−n−1−iG (−p)→ G

)
7→
(
α ◦ π∗ (wg) ◦ β : ΣiG̃ → G̃

)
,

where α and β are the first and second morphisms in the distinguished triangle
(6.2.5) in D

(
X dg
η

)

G α−→ G̃ β−→ Σ−n−1G ⊗ wOX (−p) γ−→ ΣG.

Applying the exact functor f̃∗◦ψXη ,∗ gives the distinguished triangle in D (Pn+1)

f̃∗G
f̃∗α−−→ f̃∗G̃

f̃∗β−−→ Σ−n−1f̃∗G ⊗ wOX (−p) f̃∗γ−−→ Σf̃∗G,

which is a shorthand for

f̃∗π∗G
f̃∗α−−→ f̃∗G̃

f̃∗β−−→ Σ−n−1f̃∗π∗G ⊗ wOX (−p) f̃∗γ−−→ Σf̃∗π∗G.

So we may use π ◦ f̃ = f to get

f∗G
f̃∗α−−→ f̃∗G̃

f̃∗β−−→ Σ−n−1f∗G ⊗ wOX (−p) f̃∗γ−−→ Σf∗G. (6.2.7)

In particular

f̃∗φ : ExtnPn+1 (f∗ (wOX (p)⊗ G) , f∗ (G))→ Ext−1
Pn+1

(
f̃∗
(
G̃
)
, f̃∗

(
G̃
))

g 7→ f̃∗α ◦ wg ◦ f̃∗β

is well-defined.
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Now we compute

f̃∗ ◦ φ (g) = f̃∗ (α ◦ π∗ (wg) ◦ β) Definition of φ
= f̃∗α ◦

(
f̃∗ ◦ π∗

)
(wg) ◦ f̃∗β f̃∗ is a functor

= f̃∗α ◦ (f∗ ◦ w) (g) ◦ f̃∗β f̃∗ ◦ π∗ (g) = f∗g

= f̃∗α ◦ (w ◦ f∗) (g) ◦ f̃∗β [RVdBN19, Lemma 8.7.1]
= f̃∗φ (f∗g) Definition of f̃∗φ

and the diagram indeed commutes.

Corollary 6.2.10. The right map in the diagram (6.2.6)

f̃∗ ◦ ψη,∗ : Ext−1
X dg

η

(
G̃, G̃

) ∼−→ Ext−1
Pn+1

(
f̃∗
(
G̃
)
, f̃∗

(
G̃
))

is an isomorphism.

Proof. Since G,G (−p) are coherent sheaves on X and f∗ is exact we have

Ext1
Pn+1

(
f∗
(
Σ−n−1G ⊗ wOX (−p)

)
, f∗ (G)

) ∼=
∼= Ext1

Pn+1

(
f∗
(
Σ−n−1G⊗OX (−p)

)
, f∗ (G)

)
(4.1.1)

∼= Extn+2
Pn+1 (f∗ (G (−p)) , f∗ (G)) Exti

(
Σ−j ,

) ∼= Exti+j ( , )

= 0. dimPn+1 = n+ 1

So in the distinguished triangle (6.2.7)

f∗G
f̃∗α−−→ f̃∗G̃

f̃∗β−−→ Σ−n−1f∗G ⊗ wOX (−p) f̃∗γ−−→ Σf∗G

f̃∗γ vanishes, and we have:

f̃∗
(
G̃
) ∼= f∗ (G)⊕ f∗

(
Σ−n−1wOX (−p)⊗X G

)
via the splitting morphisms f̃∗α and f̃∗β.

This means that both, the top morphism, by Lemma 6.2.3, and the lower
morphism, by splitting, in (6.2.6) are isomorphsims. So by Lemma 6.2.9 it suffices
to prove that

f∗ : ExtnX (OX (−p)⊗G,G)→ ExtnPn+1 (f∗ (OX (−p)⊗G) , f∗ (G))

is an isomorphism.
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As tensoring with OX (p) is an autoequivalence this is equivalent to

f∗ : ExtnX (G,G (p))→ ExtnPn+1 (f∗G, f∗G (p))

being an isomorphism. Consider the long exact sequence associated to a divisor
[RVdBN19, (9.13)]:

· · · → Extn−2
X (G, G (p + d))→ ExtnX (G, G (p)) f∗−→ ExtnPn+1 (f∗ (G) , f∗G (p))→ · · · .

By assumption (6.2.3) we have

Extn−2
X (G,G (p+ d)) ∼= 0 and Extn−1

X (G,G (p+ d)) ∼= 0,

so the long exact sequence has the shape

· · · → 0→ ExtnX (G,G (p)) f∗−→ ExtnPn+1 (f∗ (G) , f∗G (p))→ 0→ · · · .

By exactness that immediately gives that

f∗ : ExtnX (G (−p) , G) ∼−→ ExtnPn+1 (f∗G (−p) , f∗G)

is an isomorphism, which finishes the proof.

Lemma 6.2.11. The obstruction o3 (Ψη (G)) ∈ HH3
(
Γ,Ext−1

Pn+1 (Ψ (G) , Ψ (G))
)

against lifting to D (Pn+1 ⊗ Γ ) from Lemma 2.3.20 does not vanish.

Proof. By part (2) of Lemma 2.3.20 we have

o3 (Ψ (G)) =
(
f̃∗ ◦ ψXη ,∗

)
o3
(
G̃
)
∈ HH3

(
Γ,Ext−1

Pn+1 (Ψ (G) , Ψ (G))
)
.

Furthermore, as o3 is the first obstruction we do not need to keep track of
any choices. So we can use Corollary 6.2.10 to get that f̃∗ ◦ ψXη ,∗ induces an
isomorphism in degree −1 and by Lemma 6.2.8 we have 0 ̸= o3

(
G̃
)
. So altogether

0 ̸=
(
f̃∗ ◦ ψXη ,∗

)
o3
(
G̃
)

= o3 (Ψ (G)) ∈ HH3
(
Γ,Ext−1

Pn+1 (Ψ (G) , Ψ (G))
)
.

Now we can finally finish the proof of Theorem 6.1.6.

Proof. Assume Ψη is Fourier-Mukai. Then by Corollary 3.1.7 Ψη admits a lift

Ψη,Γ : Db (coh (X)Γ )→ Db
(
coh

(
Pn+1

)
Γ

)
.

This means that Ψη (G) ∈ Db (Pn+1)Γ has a lift toDb (coh (Pn+1)Γ ) ↪→ D∞ (Pn+1 ⊗k Γ ).
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Since we have by Lemma 6.2.11

o3 (Ψη (G)) ̸= 0

such a lift cannot exist.
So Ψη cannot be Fourier Mukai.

6.3 Application: odd dimensional Quadrics

We will show that the tilting bundle G for an odd dimensional quadric hypersurface
and its endomorphism algebra Γ satisfy the assumptions of Theorem 6.1.6. For
this we start by recalling that quadrics admit an exceptional sequence, which
gives rise to a tilting bundle.

Theorem 6.3.1 ([B0̈5, Corollary 3.2.8]). Let Q ↪→ P2k be the embedding of a
smooth quadric. Then Q admits an exceptional sequence:

(S (−2k + 1) ,OQ (−2k + 2) , ...,OQ (−1) ,OQ) ,

where S denotes the spinor bundle.

In particular we may consider for the embedding of a smooth quadric f : Q ↪→
P2k the tilting bundle:

G := S (−2k + 1)⊕
−2k+2⊕
l=0
OQ (−l) and Γ := End (G) .

Now we need to verify the assumptions on the concentration of Ext∗
Q (G(−p), G))

and Ext∗
Q (G,G (p+ d)). We will use p = −2k − 2 and

0 ̸= η ∈ ker
(
f∗ : HHn+3 (X,OQ (−2k − 2))→ HHn+3

(
P2k, f∗OQ (−2k − 2)

))
as we know by Proposition 5.2.9 that

f∗ : HHn+3 (Q,OQ (−2k − 2))→ HHn+3
(
Pn+1, f∗OQ (−2k − 2)

)
has one-dimensional kernel.

For the Ext-calculations we will need the following statement which also holds
for even quadrics. However, as in the even case we would need to track the different
spinor bundles depending on the equivalence class of the dimension modulo four,
we will restrict to the odd case for legibility.
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Lemma 6.3.2. Let Q ↪→ P2k be a smooth odd dimensional quadric and let S be
the spinor bundle. Then the following hold:

1. We have for i /∈ {0, 1, n}

ExtiQ (S, S (m)) ∼= Exti−1
Q (S, S (m+ 1)) .

2. If m ≤ −1 we have additionally

ExtiQ (S, S (m)) ∼= Exti−1
Q (S, S (m+ 1))

ExtiQ (S, S (m)) ∼= Exti−1
Q (S, S (m+ 1)) .

Proof. Consider the short exact sequence [Ott88, Theorem 2.8]

0 7→ S 7→ O2k+1

Q → S (1)→ 0

which gives after applying ExtiQ ( , S (m+ 1)) the long exact sequence

· · · Exti−1
Q

(
O2k+1
Q , S (m+ 1)

)
Exti−1

Q (S, S (m+ 1))

ExtiQ (S (1) , S (m+ 1)) ExtiQ
(
O2k+1
Q , S (m+ 1)

)
· · · .

In particular we have

ExtiQ (S, S (m)) ∼= ExtiQ (S (1) , S (m+ 1)) ∼= Exti+1
Q (S, S (m− 1))

if we have for j ∈ {i, i− 1}

Extj
(
O2k+1

Q , S (m+ 1)
) ∼= 2k+1⊕

l=0
Extj (OQ, S (m+ 1)) ∼=

2k+1⊕
l=0

Hj (X,S (m+ 1)) = 0.

By [Ott88, Theorem 2.3] we have Hj (X,S (m+ 1)) = 0 for j /∈ {0, n} which
implies 1.

If m ≤ −1 we have m + 1 ≤ 0 and so we get by [Ott88, Theorem 2.3]
H0 (X,S (m+ 1)) = 0, which gives 2.
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Proposition 6.3.3. Let i ̸= 2k − 1. Then we have

Ext∗
Q (G (2k + 2) , G) = 0

Proof. Since G is a sheaf we may assume 0 ≤ i ≤ 2k − 2 for dimension reasons.
By definition of G and additivity of Ext we have

ExtiQ (G(2k + 2), G) =

= ExtiQ
((

S (−2k + 1)⊕
2k−2⊕
l=0
OQ (−l) (2k + 2)

)
, S (−2k + 1)⊕

2k−2⊕
l=0
OQ (−l)

)

∼=
2k−2⊕
h,l=0

ExtiQ (OQ (2k + 2− l) ,OQ (−h))

⊕
2k−2⊕
l=0

ExtiQ (OQ (2k + 2− l) , S (−2k + 1))

⊕
2k−2⊕
l=0

ExtiQ (S (2k + 2− 2k + 1) ,OQ (−l))

⊕ ExtiQ (S (−2k + 1 + 2k + 2) , S (−2k + 1))

In particular we can compute these Ext-groups one by one.

We start with ExtiQ (OQ (2k + 2− l) ,OQ (−h)) for which we get

ExtiQ (OQ (2k + 2− l) ,OQ (−h)) ∼=
∼= ExtiQ (OQ,OQ (l − h− 2k − 2)) twisting on both sides
∼= Hi (Q,OQ (l − h− 2k − 2)) ExtiQ (OQ, ) ∼= Hi (Q, )
∼= 0. l − h− 2k − 2 < 0

Since we have l − 4k − 1 ≤ 0 we get

ExtiQ (OQ (2k + 2− l) , S (−2k + 1)) ∼=
∼= ExtiQ (OQ, S (l − 4k − 1)) twisting on both sides
∼= Hi (Q,S (l − 4k − 1)) ExtiQ (OQ, ) ∼= Hi (Q, )
∼= 0. [Ott88, Theorem 2.3]
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By [Ott88, Theorem 2.8] we have S∨ ∼= S (1) which we may use to compute

ExtiQ (S (3) ,OQ (−l)) ∼= ExtiQ (S,OQ (−3− l)) twisting on both sides
∼= ExtiQ (OQ, S∨ (−3− l)) dualizing
∼= ExtiQ (OQ, S (−2− l)) S∨ ∼= S (1)
∼= Hi (Q,S (−2− l)) ExtiQ (OQ, ) ∼= Hi (Q, )
∼= 0. [Ott88, Theorem 2.3]

We may use i ≤ 2k − 1 to get

ExtiQ (S (3) , S (−2k + 1)) ∼= ExtiQ (S, S (−2k − 2)) twisting on both sides
∼= Ext1

Q (S, S (−2k − 3 + i)) Lemma 6.3.2
∼= Ext−1

Q (S, S (−2k − 1 + i)) Lemma 6.3.2
∼= 0. S is a sheaf

So every direct summand vanishes, and in particular

ExtiQ (G(2k + 2), G) = 0 for i ̸= n

as desired.

Proposition 6.3.4. Let i /∈ {0, 2k − 1}. Then we have

ExtiQ (G,G (−2k)) ∼= 0.

Proof. Since Q has dimension 2k−1 and G is a sheaf we may assume 0 < i < 2k−1.
By definition of G and additivity of ExtiQ ( , ) we have:

ExtiQ (G,G (−2k))

= ExtiQ
(
S (−2k + 1)⊕

2k−2⊕
l=0
OQ (−l) , S (−4k + 1)⊕

2k−2⊕
h=0
OQ (−2k − h)

)

∼=
2k−2⊕
l,h=0

ExtiQ (OQ (−l) ,OQ (OQ (−2k − h)))

⊕
2k−2⊕
l=0

ExtiQ (OQ (−l) , S (−4k + 1))

⊕
2k−2⊕
l=0

ExtiQ (S (−2k + 1) ,OQ (−2k − l))

⊕ ExtiQ (S (−2k + 1) , S (−4k + 1)) .
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As above we can compute the cases separately.

We start with ExtiQ (OQ (−l) ,OQ (−2k − h)). For this we get:

ExtiQ (OQ (−l) ,OQ (−2k − h)) ∼=
∼= ExtiQ (OQ,OQ (l − 2k − h)) twisting on both sides
∼= Hi (Q,OQ (1− 2k − h)) ExtiQ (OQ, ) ∼= Hi (Q, )
∼= 0. i /∈ {0, 2k − 1}

For ExtiQ (OQ (−l) , S (−4k + 1)) we get

ExtiQ (OQ (−l) , S (−4k + 1)) ∼=
∼= Exti (OQ, S (l − 4k + 1)) twisting on both sides
∼= Hi (Q,S (l − 4k + 1)) ExtiQ (OQ, ) ∼= Hi (Q, )
∼= 0. i /∈ {0, 2k − 1} [Ott88,Theorem 2.3]

While for ExtiQ (S (−2k + 1) ,OQ (−2k − l)) one can compute:

ExtiQ (S (−2k + 1) ,OQ (−2k − l)) ∼=
∼= ExtiQ (S,OQ (−1− l)) twisting on both sides
∼= ExtiQ (OQ, S∨ (−1− l)) dualizing
∼= ExtiQ (OQ, S (−l)) [Ott88,Theorem 2.8]
∼= Hi (Q,S (−l)) ExtiQ (OQ, ) ∼= Hi (Q, )
= 0. i /∈ {0, 2k − 1} [Ott88,Theorem 2.3]

Finally for ExtiQ (S (−2k + 1) , S (−4k + 1)) we get

ExtiQ (S (−2k + 1) , S (−4k + 1)) ∼=
∼= ExtiQ (S, S (−2k)) twisting on both sides
∼= Ext1

Q (S, S (−2k + i− 1)) Lemma 6.3.2(1)
∼= Ext0

Q (S, S (−2k − i)) Lemma 6.3.2(2)
∼= Ext−1

Q (S, S (−2k + 1− i)) Lemma 6.3.2(2)
= 0, S is a sheaf

where we used i < 2k − 1 and so −2k + i ≤ −1, respectively −2k + 1 + i ≤ −1
for the last two lines.

So all the direct summands of ExtiQ (G,G (−2k)) vanish for i /∈ {0, 2k − 1} as
claimed.
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So altogether we can now phrase the following Theorem 6.3.5 which also
recovers the result from [RVdBN19] when specialized to the case k = 2.

Theorem 6.3.5. Let Q ↪→ P2k be the embedding of a smooth odd dimensional
quadric for k ≥ 2. Then we have an exact functor:

Ψη : Db (Q)→ Db (Pn)

that cannot be Fourier-Mukai.

Proof. We want to apply Theorem 6.1.6.
First of all we have by Proposition 5.2.9 for k > 2 an

0 ̸= η ∈ HH2k+2 (Q,OQ (−2k − 2))

that is in the kernel of f∗ : HHn+3 (Q,O (−2k − 2))→ HHn+3(P2k,f∗O(−2k−2)).
For k = 2 we get that the top Hochschild cohomology is HHn+3 (Q,O (−2k − 2)),

and so by Theorem 5.2.8 we have

dim ker
(
f∗ : HHn+3 (Q,O (−6))→ HHn+3

(
P4, f∗O (−6)

))
= h2,1

1 (Q) .

Using the formula (5.1.1) we compute

h2,1
1 (Q) =

5∑
µ=0

(−1)µ
(

6
µ

)(
−1 + 4− (µ− 1) (2− 1)

4

)

=
5∑

µ=0
(−1)µ

(
6
µ

)(
−1 + 4− (µ− 1)

4

)

=
5∑

µ=0
(−1)µ

(
6
µ

)(
4− µ

4

)

= (−1)0
(

6
0

)(
4
4

)
= 1,

where we used that
(

4−µ
4

)
only can be nonzero if µ = 0. In particular we get a

one-dimensional kernel from which we may pick an η ̸= 0.
We now collect the other assumptions which we verified above.
By Theorem 6.3.1 Q admits a tilting bundle G and by Lemma 3.2.12 we know

that for Γ := End (G) the functor CQ
G,Γ is an equivalence. In particular we get

by Proposition 3.2.5 cG,Γ (η) ̸= 0, which is assumption (6.2.1). Now finally we
need to verify that the corresponding Ext-groups are suitably concentrated, which
is verified in Proposition 6.3.3 for assumption (6.2.2) and Proposition 6.3.4 for



6.3. Application: odd dimensional Quadrics 89

assumption (6.2.3).
So we may apply Theorem 6.1.6 to get a non-Fourier-Mukai functor Ψη.
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