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Abstract

It has been widely documented that the sampling and resampling steps in particle filters
cannot be differentiated. The reparameterisation trick was introduced to allow the sampling
step to be reformulated into a differentiable function. We extend the reparameterisation trick to
include the stochastic input to resampling therefore limiting the discontinuities in the gradient
calculation after this step. Knowing the gradients of the prior and likelihood allows us to run
particle Markov Chain Monte Carlo (p-MCMC) and use the No-U-Turn Sampler (NUTS) as
the proposal when estimating parameters.

We compare the Metropolis-adjusted Langevin algorithm (MALA), Hamiltonian Monte
Carlo with different number of steps and NUTS. We consider three state-space models and
show that NUTS improves the mixing of the Markov chain and can produce more accurate
results in less computational time.

1 Introduction

State-Space Space Models (SSMs) have been used to model dynamical systems in a wide range of
research fields (see [1] for numerous examples). SSMs are represented by two stochastic processes:
{Xt}t≥0 and {Yt}t≥0 where Xt indicates the hidden state which evolves according to a Markov
process p (xt|xt−1, θ) and Yt is the observation (both at time t ≥ 0), such that

Xt|Xt−1 ∼ p (xt|xt−1, θ) , (1)

Yt|Xt ∼ p (yt|xt, θ) . (2)

The initial latent state X0 has initial density denoted µθ(x0). The SSM is parameterised by an
unknown static parameter θ contained in the parameter space Θ. The transition and observation
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densities are given by (1) and (2), respectively. In this paper we focus on Bayesian parameter
estimation in SSMs using Particle Markov Chain Monte Carlo (p-MCMC), as first proposed in [2].
This approach combines two Monte Carlo methods that use repeated sampling techniques to obtain
numerical estimates of a target distribution π(θ), for which exact inference is intractable. The two
methods are Markov Chain Monte Carlo (MCMC), as described in [3–5], and Sequential Monte
Carlo (SMC) i.e. a particle filter, as described in [6–8].

MCMC algorithms such as Metropolis-Hastings (M-H) often use random walk sampling within
the proposal. Such proposals can struggle to enable the MCMC to reach the stationary distribution
when estimating large numbers of parameters. A related issue can occur with Gibbs samplers
when the correlation between parameters is high. These issues can result in the sampler getting
stuck in local maxima within π(θ). Hamiltonian Monte Carlo (HMC), as described in [9], is an
approach that simulates from a problem-specific Hamiltonian system to generate the samples used
in the MCMC. HMC has been seen to be effective when estimating parameters in models when the
target distribution is complex or multi-modal but is sensitive to hyperparameters which have to be
determined by the user. An adaptive version of HMC called the No-U-Turn Sampler (NUTS) [10]
automates the selection of these hyperparameters. Probabilistic programming languages (ppls) such
as Stan [11] and PyMC3 [12] are tools that have been developed to allow users to define and make
inferences about probabilistic models using NUTS.

Particle filters have been used in many areas of research, such as finance [13], disease mod-
elling [14] and multiple target tracking [15] to infer time-dependent hidden states. The original
contribution of [2] uses a particle filter to calculate an unbiased estimate of the often intractable
likelihood for θ. A M-H algorithm with a random walk proposal was used to sample from π(θ).
Using such a proposal in p-MCMC will inherit the same issues as described above in the context of
MCMC generically. To make use of more sophisticated proposals the gradient of the log-posterior
of the parameter, θ, needs to be estimated.

Extensions of the original p-MCMC algorithm have focused on including gradient information
when proposing new parameters. Reference [16] shows how to estimate the score (gradient) of the
log-likelihood and the observed information matrices at θ in SSMs using particle filter methods.
The two methods proposed run with computational complexity O(N) and O(N2), respectively.
The first has a linear computational cost but the performance decreases over time. The second has
a computational cost that increases quadratically with the number of particles N but performance
does not deteriorate over time, with [17] theoretically substantiating this claim. [18] built on this
work to compute these terms with computational complexity O(N) and avoids the quadratically
increasing variance caused by particle degeneracy. In [19–22] the authors utilise the previous work
of [18] to recursively estimate the score (gradient) of the log-likelihood at θ. References [19] and [20]
include Langevin Monte Carlo (LMC) methods seen in [23] whilst [21] and [22] include first- and
second-order Hessian information about the posterior in the proposal. Use of the Hessian is shown to
improve the mixing of the Markov chain at the stationary phase and decrease the length of burn-in.
However, calculating a d × d matrix of the second-order partial derivatives can become infeasible
when the dimensionality, d, becomes large. While [21], [22] do mention using HMC dynamics
within p-MCMC, to the best of the authors’ knowledge, no implementation of this approach has
been described in the literature up to now.

We aim to complement the recent literature seen in machine learning that addresses the problem
of differentiating resampling (see section 6)). In order to obtain the gradient of the log-likelihood
w.r.t θ, the particle filter needs to differentiated. However, it has been noted in [24–26] that the
stochastic nature of both the sampling and resampling steps, that are inherently part of the particle
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filter, are not differentiable. As will be explained in more detail later in this paper (in Sections 3
and 4.1), the reparameterisation trick was proposed in [27] to reformulate the sampling operation
into a differentiable function by sampling a noise vector in advance and defining the likelihood
for θ as being a deterministic function of this sampled noise vector. However, resampling remains
problematic since after resampling all weights are equal. More specifically, the gradients cannot be
calculated since the new particles’ states are not differentiable w.r.t. the weights that are input to
resampling. Recent work in machine learning has focused on how to modify the resampling step to
make it differentiable.

Using the reparameterisation trick for resampling has been described in [28] in the context of
fixing the random number seed in every simulation to produce common random numbers (CRN).
Our core contribution is to fix the random numbers used within the resampling step so we can
condition the input to resampling which results in the subsequent particle derivative calculations
being a function of the parent particle. The gradients can then be efficiently estimated and utilised
within the framework of p-MCMC and specifically used to calculate gradient-based proposals for
θ: more specifically, this allows us to use NUTS as the proposal. Another novel contribution,
relative to the previous work on differentiable particle filters in the neural network community,
is that we provide full Bayesian parameter estimates (including variances). This differs from the
present literature on differentiable particle filtering which focuses exclusively on point-estimates of
parameters. We also compare NUTS’ performance with that achieved by HMC and Metropolis-
adjusted Langevin algorithm (MALA).

An outline of the paper is as follows: in Section 2 we describe a generic particle filter followed by
a description of the difficulties associated with differentiating the sampling and resampling steps.
We describe how to calculate the likelihood and gradients in Section 3, the methods to propagate
the derivatives of the particle weights in Section 4 and how we extend the reparameterisation trick
to include the stochastic input to resampling in section 5. We test the likelihood and gradient
estimates, explain particle-HMC (p-HMC) and particle-NUTS (p-NUTS) and detail comparative
numerical results in the context of three applications in Section 8. Concluding remarks are described
in Section 9.

2 Particle filtering background

Assume we have considered t timesteps, obtaining data at each increment of t given by y1:t. The
state sequence x1:t grows with time where xt has nx dimensions. The dynamics and likelihood are
parameterised by θ (which has nθ dimensions) such that

p (y1:t, x1:t|θ) = p(y1|x1, θ)p (x1|θ) (3)

×
t∏

τ=2

p (yτ |xτ , θ) p (xτ |xτ−1, θ) .

If θ is known, we can run a (conventional) particle filter.

2.1 Particle Filter

At every timestep t, the particle filter draws N samples (particles) from a proposal distribution,
q (x1:t|y1:t, θ), which is parameterised by the sequence of states and measurements. The samples
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are seen as statistically independent and each represents a different hypothesis for the sequence of

states of the system. The ith sample has an associated weight, w
(θ,i)
t , which indicates the relative

importance of each of the corresponding sample. The weights at t = 0 are set to be 1/N . The
proposal distribution is constructed recursively as

q (x1:t|y1:t, θ) = q (x1|y1, θ)
t∏

τ=2

q (xτ |xτ−1, yτ , θ) , (4)

such that we can pose an estimate with respect to the joint distribution, p (y1:t, x1:t|θ), as follows:∫
p (y1:t, x1:t|θ) f (x1:t) dx1:t ≈

1

N

N∑
i=1

w
(θ,i)
1:t f

(
x
(i)
1:t

)
. (5)

This is an unbiased estimate, where (for t >1)

w
(θ,i)
1:t =

p
(
y1|x(θ,i)

1 , θ
)
p
(
x
(θ,i)
1 |θ

)
q
(
x
(θ,i)
1 |y1, θ

)
×

∏t
τ=2 p

(
yτ |x(θ,i)

τ , θ
)
p
(
x
(θ,i)
τ |x(θ,i)

τ−1 , θ
)

∏t
τ=2 q

(
x
(θ,i)
τ |x(θ,i)

τ−1 , yτ , θ
) (6)

=w
(θ,i)
1:t−1

p
(
yt|x(θ,i)

t , θ
)
p
(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)

q
(
x
(θ,i)
t |x(θ,i)

t−1 , yt

) , (7)

and is a recursive formulation for the unnormalised weight, w
(θ,i)
1:t , with incremental weight

σ
(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

p
(
yt|x(θ,i)

t , θ
)
p
(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)

q
(
x
(θ,i)
t |x(θ,i)

t−1 , yt

) . (8)

For t=1

σ
(
x
(θ,i)
1:1

)
=

p
(
y1|x(θ,i)

1 , θ
)
p
(
x
(θ,i)
1 |θ

)
q
(
x
(θ,i)
1 |y1

) . (9)

2.2 Choice of proposal

Three commonly used options for the proposal distribution are:

1. Using the dynamic model as the proposal

q
(
x
(θ,i)
t |x(θ,i)

t−1 , yt

)
= p

(
x
(i)
t |x(θ,i)

t−1 , θ
)
, (10)

which simplifies the weight update to

w
(θ,i)
1:t = p

(
yt|x(θ,i)

t , θ
)
w

(θ,i)
1:t−1. (11)

4



2. In certain situations it is possible to use the “optimal” proposal which is

q
(
x
(θ,i)
t |x(θ,i)

t−1 , yt

)
= p

(
x
(θ,i)
t |x(θ,i)

t−1 , yt

)
(12)

with weights updated according to

w
(θ,i)
1:t = p

(
yt|x(θ,i)

t−1 , θ
)
w

(θ,i)
1:t−1. (13)

Note that the term “optimal” in this context of the particle proposal means that the variance
of the incremental particle weights at the current timestep is minimized. In fact, this variance
is zero since the weight in (13) is independent of xt (as explained in [29]).

3. Using the Unscented Transform, as explained in [30].

2.3 Estimation with respect to the posterior

It is often the case that we wish to calculate estimates with respect to the posterior, p (x1:t|y1:t, θ),
which we can calculate as follows:∫

p (x1:t|y1:t, θ)f (x1:t) dx1:t (14)

=

∫
p (y1:t, x1:t|θ)
p (y1:t|θ)

f (x1:t) dx1:t, (15)

p (y1:t|θ) =
∫

p (y1:t, x1:t|θ) dx1:t ≈
1

N

N∑
i=1

w
(θ,i)
1:t (16)

in line with (5), such that∫
p (x1:t|y1:t, θ) f (x1:t) dx1:t

≈ 1
1
N

∑N
i=1 w

(θ,i)
1:t

1

N

N∑
i=1

w
(θ,i)
1:t f

(
x
(θ,i)
1:t

)
(17)

=

N∑
i=1

w̃
(θ,i)
1:t f

(
x
(θ,i)
1:t

)
, (18)

where

w̃
(θ,i)
1:t =

w
(θ,i)
1:t∑N

j=1 w
(θ,j)
1:t

(19)

are the normalised weights.
Equation (18) is a biased estimate since it is a ratio of estimates, in contrast with (5).
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2.4 Resampling

The algorithm described up to now is called the sequential importance sampling (SIS) algorithm. As
time evolves, the normalised weights will become increasingly skewed such that one of the weights
given by (19) becomes close to unity and the others approach zero. This is an inevitability and
cannot be avoided [31]. As well as the number of effective samples, Neff, eventually becoming 1,
most of the computational effort will be expended on particles that have very little contribution to
the overall estimate.

It is often suggested that monitoring Neff, can be used to identify the need to resample, where

Neff =
1∑N

i=1

(
w̃

(θ,i)
1:t

)2 . (20)

There are many resampling methods, some of which are outlined and evaluated in [32] but they all
share the same purpose—stochastically replicate particles with higher weights whilst eliminating
ones with lower weights. Multinomial resampling is commonly used and involves drawing from the
current particle set N times proportional to its weight. The associated distribution is defined by

w̃
(θ,i)
1:t for i = 1, . . . , N. (21)

To keep the total unnormalised weight constant (such that the approximation (16) is the same
immediately before and after resampling), we assign each newly-resampled sample an unnormalised
weight

1

N

N∑
i=1

w
(θ,i)
1:t . (22)

Note this is such that the normalised weights after resampling are 1
N .

3 Calculating the likelihood and gradients

We pose the calculation of the likelihood of the parameter as the calculation of the approximation
in (16), (ie the sum of unnormalised particle filter weights), with t = T .

Differentiating the weights gives an approximation to the gradient of the likelihood1:

d

dθ
p(y1:t|θ) ≈ 1

N

N∑
i=1

d

dθ
w

(θ,i)
1:t . (23)

For numerical stability, it is typically preferable to propagate values in logs. Applying the Chain
Rule to (16) and (23) gives

d

dθ
log p(y1:t|θ) ≈

1

N

1

p(y1:t|θ)

N∑
i=1

w
(θ,i)
1:t

d

dθ
logw

(θ,i)
1:t (24)

≈ 1

N

N∑
i=1

w̃
(θ,i)
1:t

d

dθ
logw

(θ,i)
1:t . (25)

1We note that this approach differs from that advocated in [20–22], which use a Fixed-Lag filter (with a user-
specified lag) to approximate the derivatives. In contrast, we explicitly calculate the derivatives of the approximation
to the likelihood.
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Note that in (25), the weights outside the logs are normalised, while the weights inside are not.
The log weights can be calculated recursively as

logw
(θ,i)
1:t = logw

(θ,i)
1:t−1 + log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
, (26)

so

d

dθ
logw

(θ,i)
1:t =

d

dθ
logw

(θ,i)
1:t−1 +

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
, (27)

where

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)
+

d

dθ
log p

(
yt|x(θ,i)

t−1

)
− d

dθ
log q

(
x
(θ,i)
t |x(θ,i)

t−1 , θ, yt

)
. (28)

So, if we can differentiate the single measurement likelihood, transition model and proposal, we
can calculate (an approximation to) the derivative of the log-likelihood for the next time step, thus
recursively approximating the log-likelihood derivatives for each time step. While this is true, there
are some challenges involved, which we now discuss in turn.

If the particle filter is using the transition model as the dynamics (as in (10)), the likelihood in the
weight update does not explicitly depend on θ and we might initially suppose that d log σ/dθ = 0.
If this were the case, an induction argument using (27) would show that the weight derivatives were
always zero and therefore give an approximation of zero for the gradient of the likelihood for θ.
This seems intuitively incorrect. Indeed, the flaw in this reasoning is that, in fact, the likelihood

(somewhat implicitly) does depend on θ since x
(θ,i)
t depends on θ. Applying the Chain Rule gives

d

dθ
log p

(
yt|x(θ,i)

t

)
=

d

dx
log p (yt|x)

∣∣∣∣
x=x

(θ,i)
t

d

dθ
x
(θ,i)
t . (29)

Since x
(θ,i)
t is a random variable sampled from the proposal, we use the reparameterisation trick [27]:

we consider the derivative for a fixed random number seed. More precisely, let ϵ
(i)
t be the vector

of standard N (0, 1) random variables used when sampling from the proposal such that, if ϵ
(i)
t is

known, then x
(θ,i)
t is a deterministic function (that can be differentiated) of x

(θ,i)
t−1 . We then consider

d

dθ
p (y1:t|θ) =

d

dθ

∫
p (y1:t, ϵ1:t|θ) dϵ1:t (30)

=

∫
d

dθ
p (y1:t, ϵ1:t|θ) dϵ1:t (31)

≈ 1

N

N∑
i=1

d

dθ
p
(
y1:t|ϵ(i)1:t, θ

)
(32)

where ϵ
(i)
1:t ∼ p(ϵ1:t) is considered fixed and, most importantly, (32) then involves differentials that

can be calculated.
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As a simple example, consider sampling from the dynamics with a random walk proposal and θ
being the standard deviation of the process noise. This is such that

x
(θ,i)
t = x

(θ,i)
t−1 + θϵ

(i)
t (33)

so

d

dθ
x
(θ,i)
t =

d

dθ
x
(θ,i)
t−1 + ϵ

(i)
t (34)

which can be calculated recursively and then used to calculate (29).
More generally, the derivatives of the weight are non-zero and, to calculate these derivatives, we

have to propagate the particle derivatives dx
(θ,i)
t /dθ.

4 Calculating the derivatives

In order to propagate the derivatives of the particle weights we need to calculate:

• The particle derivatives,

dx
(θ,i)
t

dθ
. (35)

• The derivatives of the proposal pdfs,

d

dθ
log q

(
x
(θ,i)
t |x(θ,i)

t−1 , θ, yt

)
. (36)

• The derivatives of the prior log pdfs,

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)
. (37)

• The derivatives of the single measurement likelihood log pdfs,

d

dθ
log p

(
yt|x(θ,i)

t−1

)
. (38)

In this section, we show how to calculate these derivatives in turn.

4.1 Derivative of New Particle States

We now describe how to calculate dx
(θ,i)
t−1 /dθ. Suppose the proposal takes the following form:

q
(
x
(θ,i)
t |x(θ,i)

t−1 , θ, yt

)
(39)

= N
(
x
(θ,i)
t ;µ

(
x
(θ,i)
t−1 , θ, yt

)
, C
(
x
(θ,i)
t−1 , θ, yt

))
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where µ (.) and C (.) are functions of the old particle state, the measurement and the parameter.
Such a generic description can articulate sampling from the prior, or defining a proposal using a
Kalman filter with the predicted mean and covariance given by the motion model.

If we sample the proposal noise ϵ
(i)
t ∼ N (·; 0, InX

) in advance, the new particle states can be
written as a deterministic function

x
(θ,i)
t = f(x

(θ,i)
t−1 , θ, yt, ϵ

(i)
t )

≜ µ(x
(θ,i)
t−1 , θ, yt) +

√
C(x

(θ,i)
t−1 , θ, yt)× ϵ

(i)
t . (40)

We would like to compute the derivative of this w.r.t. the parameter. Care must be taken however,

since x
(θ,i)
t−1 is itself a function of θ (if a different θ was chosen, a different x

(θ,i)
t−1 would have been

sampled).

dx
(θ,i)
t

dθ
=

d

dθ
f(x

(θ,i)
t−1 , θ, yt, ϵ

(i)
t ) (41)

=
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

dθ

dθ
(42)

=
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ
. (43)

Note that df/dθ in (41) is not the same as ∂f/∂θ in (42) — see Appendix A for the distinction.
Note also that the terms here are matrix-valued in general: ∂f/∂xi

t−1 is an nX × nX matrix, and
dxi

t−1/dθ and ∂f/∂θ are nX × nΘ matrices.

Also note that for t ≥ 2, x
(θ,i)
t−1 implicitly depends on x

(θ,i)
t−2 , which itself depends on θ. Hence we

need the total derivative dx
(θ,i)
t−1 /dθ.

4.2 Derivative of Proposal

To differentiate the log proposal pdf, we note that we can write it as

log q
(
x
(θ,i)
t |x(θ,i)

t−1 , θ, yt

)
= Q

(
x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t

)
(44)

where (dropping the fixed values ϵ
(i)
t and yt for notational convenience)

Q
(
x
(θ,i)
t−1 , θ

)
≜ log q

(
f(x

(θ,i)
t−1 , θ)|x

(θ,i)
t−1

)
(45)

= logN
(
f(x

(θ,i)
t−1 , θ);µ(x

(θ,i)
t−1 , θ), C(x

(θ,i)
t−1 , θ)

)
(46)
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where we emphasise again that we assume the proposal is Gaussian. We then get

d

dθ
Q(x

(θ,i)
t−1 , θ) =

∂

∂f
logN (f ;µ,C)

(
df

dθ
+

dµ

dθ
+

dC

dθ

)
(47)

=
∂

∂f
logN (f ;µ,C)

(
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

)

+
∂

∂µ
logN (f ;µ,C)

(
∂µ

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂µ

∂θ

)

+
∂

∂C
logN (f ;µ,C)

(
∂C

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂C

∂θ

)
. (48)

where we denote µ = µ(x
(θ,i)
t−1 , θ) and C = C(x

(θ,i)
t−1 , θ) for brevity. The derivatives of logN (f ;µ,C)

are given in Appendix C.

4.3 Derivative of the Prior

We now describe how to calculate d
dθ log p

(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)
. Let

P (x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t ) ≜ log p

(
f
(
x
(θ,i)
t−1 , θ, yt, ϵ

(i)
t

)
|x(θ,i)

t−1 , θ
)

(49)

= logN
(
f
(
x
(θ,i)
t−1

)
; a
(
x
(θ,i)
t−1 , θ

)
,Σ(θ)

)
(50)

where here we assume that the transition model has additive Gaussian noise that is independent of

x
(θ,i)
t−1 . Then

d

dθ
P (x

(θ,i)
t−1 , θ) =

∂

∂f
logN (f ; a,Σ)

(
∂f

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂f

∂θ

)

+
∂

∂a
logN (f ; a,Σ)

(
∂a

∂x
(θ,i)
t−1

dx
(θ,i)
t−1

dθ
+

∂a

∂θ

)

+
∂

∂Σ
logN (f ; a,Σ)

(
∂Σ

∂θ

)
. (51)

where we denote that a = a
(
x
(θ,i)
t−1 , θ

)
and Σ = Σ(θ) for brevity. Note that this makes clear that

since the realisation of the sampled particles, x
(θ,i)
t , are, in general, dependent on θ, (51) includes

dx
(θ,i)
t−1

dθ . Also note that these derivatives of logN (f ; a,Σ) are evaluated at a(x
(θ,i)
t−1 ) (the prior mean)

and not at µ (the proposal mean) as was the case in (48).

4.4 Derivative of the Likelihood

We now describe how to calculate d
dθ log p

(
yt|x(θ,i)

t−1

)
. Let

L(x
(θ,i)
t , θ, yt) ≜ log p

(
yt|x(θ,i)

t , θ
)

(52)

= logN
(
yt;h(x

(θ,i)
t , θ), R(θ)

)
(53)
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where we assume that the likelihood is Gaussian with a variance that is independent of x
(θ,i)
t . Then

d

dθ
L
(
x
(θ,i)
t , θ, yt

)
=

∂

∂h
logN (yt;h,R)

(
∂h

∂x
(θ,i)
t

dx
(θ,i)
t

dθ
+

∂h

∂θ

)

+
∂

∂R
logN (yt;h,R)

dR

dθ
(54)

where we denote h = h(x
(θ,i)
t , θ) and R = R(θ) for brevity.

5 Resampling for a Differentiable Particle Filter

Unlike a standard particle filter, we also need to resample the weight derivatives

d

dθ
w

(θ,i)
1:t (55)

as well as the particle derivatives

d

dθ
x
(θ,i)
t . (56)

Let

c
(θ,i)
t =

∑i
j=1 w

(j,θ)
1:t∑N

j=1 w
(j,θ)
1:t

, (57)

be the normalised cumulative weights and the index sampled for particle i be given by

κi = κ
(
νit , w

1:N
1:t

)
=

N−1∑
j=0

[
νit > c

(j,θ)
t

]
(58)

where νit ∼ Uniform((0, 1]) are independent for each particle and time step. Note that the particle
indices are sampled according to a Categorical distribution giving a Multinomial resampler, where
each index is resampled with probability proportional to its weight. Other resampling schemes are
possible and could reduce the variance of any estimates.

The resampled weights are set to be the same as each other, while preserving the original sum:

x
′(θ,i)
t = x

(θ,κi)
t , (59)

w
′(θ,i)
1:t =

1

N

N∑
j=1

w
(θ,j)
1:t . (60)

From (60), it is clear that

d

dθ
w

′(θ,i)
1:t =

1

N

N∑
j=1

d

dθ
w

(θ,j)
1:t . (61)
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In order to convert this to log weights, applying the Chain Rule gives

d

dθ
logw

′(θ,i)
1:t =

1

N

1

w
′(θ,i)
1:t

N∑
j=1

w
(θ,j)
1:t

d

dθ
logw

(θ,j)
1:t (62)

=

N∑
j=1

w̃
(θ,j)
1:t

d

dθ
logw

(θ,j)
1:t (63)

where w̃
(θ,j)
1:t are the normalised weights.

To get the particle gradient note that (where κ is differentiable),

d

dθ
x
′(θ,i)
t =

∂

∂κ
xt

(
θ, κ

(
νit , w

1:N
1:t

)) ∂

∂θ
κ
(
νit , w

1:N
1:t

)
+

d

dθ
xt

(
θ, κ

(
νit , w

1:N
1:t

))
(64)

Since ∂κ/∂θ = 0 except where

νit = c
(θ,j)
t for some i, j = 1, . . . , N (65)

then

d

dθ
x
′(θ,i)
t =

d

dθ
x
(θ,κi)
t (66)

almost surely, so the derivative is obtained by taking the derivative of the parent particle.

5.1 Discontinuities after a Resampling Realisation

Sampling with CRN results in a “deterministic” function f(θ) i.e. evaluating the function twice re-
sults in the same output. Sampling without CRN would result in different outputs. A discontinuity
occurs in the estimate of the log-likelihood in Figure 1 (a) when two values of θ cause a different
resampling realisation to occur. On one side of the discontinuity, for some range of values of θ, the
resampling happens at the same times and all particles have the same parents at all resampling
events: the particles for different values of θ all share a single family tree. When θ is changed to
the other side of the discontinuity the resampling realisations change and so the family tree also
changes. Since the approximation to the likelihood (and its gradient) is a function of the family
tree, the change in family tree results in a discontinuity in the likelihood approximation.

The best approach to limiting these discontinuities is to come up with a high-performance
proposal. This is exemplified when comparing results obtained using the prior with those obtained
using the optimal proposal (which can, in some settings, be derived using a Kalman Filter). We
choose such a simple example to demonstrate this point. Suppose that the state is a single real
number, with a motion model which is a random walk with zero initial mean and the standard
deviation of both the initial state and each subsequent propagation is θ. Given the state, the
measurements are not dependent on θ and are equal to the target state plus errors of known and
fixed variance, R:

p (x1) = N
(
x1; 0, θ

2
)
, (67)

p (xk | xk−1, θ) = N
(
xk;xk−1, θ

2
)
, (68)
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p (yk | xk, θ) = N (yk;xk, R) . (69)

We show in Appendix B how to calculate the mean and covariance of the optimal proposal for each
particle xi

t−1, as well as the necessary derivatives.
We run Algorithm 1 and compute an estimate of the log-likelihood and associated gradient

across a range of 500 values of θ, equally spaced from 1 to 4. The true value is θ=2. We consider
N = 2000 and T = 250 observations.

The log-likelihood and gradient of the log-likelihood w.r.t. θ, at each instance of θ, can be seen
in Figures 1 (a) and (b), respectively. Figures 1 (c) and (d) are zoomed in instances of these plots
that include results from the Kalman Filter, two runs of multinomial resampling (to indicate the
difference in results when running the simulation twice) and CRN resampling. From looking at
Figure 1 (a), there are no obvious differences in the graphs of the log-likelihood for the estimates
given by the Kalman Filter and the estimates produced by the particle filter when using different
combinations of the prior and optimal proposal with using CRN and multinomial resampling.
However, there is a notable difference when comparing the gradient of the log-likelihood w.r.t.
θ. Using the prior as the proposal results in large discontinuities in the estimate when compared
with the optimal proposal. Figures 1 (c) and (d) show that using CRN and the optimal proposal
produces piece-wise continuous estimates. This is in contrast to using multinomial resampling where
there a lot of fluctutations are apparent. We therefore advocate using an optimal proposal, or an
approximation to such a proposal, in conjunction with CRN resampling. A good proposal will
minimise the variance of the incremental weights at the current timestep. The process of selecting
a good proposal can be time consuming but, as outlined in [33], can be critical in obtaining good
results in other contexts.

We also note that, while optimisation algorithms are likely to be sensitive to discontinuities, we
are focused on sampling θ and using MCMC to correct for the disparity between the proposal and
the target.

6 Differentiable Particle Filters

6.0.1 Soft Resampling

Soft resampling was introduced in [34] and utilised in [24] and considers an approximation which

involves drawing from the distribution q(n) = αw
(θ,i)
1:t + (1 − α)1/N , with α ∈ [0, 1], representing

a trade-off parameter. If α = 1, regular resampling is used and if α = 0 the algorithm performs
subsampling. The new weights are calculated by

w
′(θ,i)
1:t =

w
(θ,i)
1:t

αw
(θ,i)
1:t + (1− α)1/N

. (70)

This gives non-zero estimates of the gradient because the dependency on the previous weights is
maintained. By changing α, this method trades resampling quality for biased gradient estimates.

6.0.2 Gumbel Softmax

The Gumbel-Max trick [35] provides a way to sample a variable, z, from a categorical distribution
that contains class probabilities, πx. If we assume the categorical samples are one-hot vectors, z
can be sampled by

z = onehot (argmaxi {Gi + log (πi)}) (71)
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Algorithm 1: Particle Filter

Input: θ, y1:T
1 Initialise: xi

0,
d
dθx

i
0, log(w

i
0),

d
dθ log(w

i
0)

2 for t = 1, . . . , T do
3 If necessary, resample xi

t−1, log(w
i
1:k−1), dx

i
t−1/dθ, d log(w

i
1:t−1)/dθ as described in

Section 5.
4 Sample the new particles xi

t and calculate the partial derivatives

∂

∂θ
f(xi

t−1, θ),
∂

dxi
t−1

f(xi
t−1, θ),

.
5 Get the proposal mean, µ(xi

t−1) and covariance, C(xi
t−1) for each particle xi

t−1, as well
as their derivatives

∂

∂θ
µ(xi

t−1),
∂

xi
t−1

µ(xi
t−1),

∂

∂θ
C(xi

t−1),
∂

xi
t−1

C(xi
t−1),

6 seen in Section 4.1.

7 Get the particle gradients d
dθx

i
t using Subsection 4.1.

8 Get the derivatives of the prior, proposal and likelihood using Subsections 4.2, 4.3, 4.4.

9 Evaluate the new log weights logwi
1:k and log weight derivatives d

dθ logw
i
1:t using (26)

and (27), respectively.

10 end

11 Evaluate the final log likelihood, log p(y1:T |θ), and associated derivative, d
dθ log p(y1:T |θ),

using (16) and (25), respectively.

14



(a) (b)

(c)

(d)

Figure 1: Plots of the log-likelihood (a), gradient of the log-likelihood w.r.t. θ (b), a zoomed in
section of the log-likelihood plot (c) and associated gradient (d). All plots: The true values given
from the Kalman Filter (black), particle filter using reparameterisation trick resampling (red) and
multinomial resampling (blue and orange).
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where xi = Gi + log(πi) and Gi are independently sampled from Gumbel(0, 1). The summation in
(71) is similar to the reparametrisation trick which is described previously however the argmax func-
tion is not differentiable. The work outlined in [36] and [37] describes a differentiable approximation
to argmax called softmax which is defined to be

z =
exp

(
xk

λ

)∑n
i=1 exp

(
xi

λ

) . (72)

The temperature parameter, λ, is defined by the user and controls how closely the resulting Gumbel-
softmax distribution approximates the categorical distribution.

6.0.3 Optimal Transport

A fully differentiable particle filter is described in [38] that resamples by using Optimal Transport
ideas seen in [39]. The method ensures stability by having unbiased gradient estimates whilst
adding a little bias in the log-likelihood. The method needs additional hyper-parameters and runs
in O(N2) time complexity so can be computationally expensive.

6.0.4 Fisher’s identity to calculate gradient of log-likelihood

As described in section 1, [16] recursively computes the gradient of the log-likelihood using Fisher’s
Identity, which can be summarised as follows:

d

dθ
log p (y1:t|θ) =

1

p (y1:t|θ)
d

dθ
p (y1:t|θ) (73)

=
1

p (y1:t|θ)
d

dθ

∫
p (y1:t, x1:t|θ) dx1:t (74)

=
1

p (y1:t|θ)

∫
d

dθ
p (y1:t, x1:t|θ) dx1:t (75)

=

∫
p (y1:t, x1:t|θ)
p (y1:t|θ)

d

dθ
log p (y1:t, x1:t|θ) dx1:t (76)

=

∫
p (x1:t|y1:t, θ)

d

dθ
log p (x1:t, y1:t|θ) dx1:t (77)

≈ 1

N

N∑
i=1

w̃
(θ,i)
1:t

d

dθ
log p

(
x
(θ,i)
1:t , y1:t|θ

)
︸ ︷︷ ︸

α
(θ,i)
n

(78)

Note that we can calculate the term inside the sum recursively as follows:

α(θ,i)
n = α

(θ,i)
n−1 +

d

dθ
log p

(
yt|x(θ,i)

t−1

)
+

d

dθ
log p

(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)
, (79)

where log p
(
x
(θ,i)
t |x(θ,i)

t−1 , θ
)
is the derivative of the prior and d

dθ log p
(
yt|x(θ,i)

t−1

)
is the derivative of

the log-likelihood (see (8), (4.3) and (4.4), respectively).
Recent work in [40] has outlined how to calculate this in the framework of Pytorch [41] without

having to modify the forward pass. They include a “stop-gradient” operator that stops the gradients
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of the weights flowing into the resampling distribution. Much like the method described in this
paper, minimal changes to the particle filtering algorithm need to be employed.

References [16] and [17] focus on having an unbiased estimator of the gradient of the log likeli-
hood: we approximate with the gradient of the logarithm of the expectation whereas they calculate
the expectation of the gradient of the logarithm. A feature of our approximation, perhaps sur-
prisingly, is that it uses all samples from all iterations whereas the approach in [16] and [17] is
recursively calculated along the trajectory of each particle. If, as is likely, the particle trajectories
are degenerate, the approach in [16] and [17] will have a limited ability to use the diversity of states
early in the trajectory to inform the gradient estimate. In short, we perceive that choosing between
using the two approximations becomes a bias-variance trade-off.

7 Estimation of parameters

If we have a prior, p (θ), for which the likelihood, p (y1:T |θ), or log-likelihood2 can be calculated,
we can run p-MCMC to estimate p (θ|y1:T ) ∝ p (θ) p (y1:T |θ). The gradient of the log-posterior of θ
is given by

∇ log p(θ|y1:t) = ∇ log p(θ) +∇ log p(y1:t|θ), (80)

where ∇ log p(θ) is the gradient of the log-prior and ∇ log p(y1:t|θ) is the gradient of the log-
likelihood. If we know ∇ log p(θ|y1:t), it is possible to guide proposals to areas of higher probability
within π(θ).

7.1 Hamiltonian Monte Carlo

HMC is a gradient based algorithm which uses Hamilton’s equations to generate new proposals.
Since it uses gradients, it is better at proposing samples than a random-walk proposal. It was first
developed in the late 1980s [42] and in the last decade it has become a popular approach when
implementing MCMC [9]. In the following section we give a high level conceptual overview of HMC
and direct the reader to [43] for a more thorough explanation. Hamilton’s equations are a pair
of differential equations that describe a system in terms of its position and momentum where the
potential of the system is defined by U = − log(π(θ)). HMC introduces a momentum vector m
which moves samples at θ on a trajectory to θ′. The total energy or Hamiltonian of a system can
be expressed as H(θ,m) = U(θ)+K(m), and is comprised of the sum of the Kinetic energy K(m),
which is dependent on where in the parameter space the samples are, and the potential energy
U(θ), which is independent on the momentum m.

Hamilton’s equations describe how the system evolves as a function of time and are:

dθ

dt
=

∂H

∂m
,
dm

dt
= −∂H

∂θ
. (81)

The joint density is

p(θ,m) ∝ exp(−H(θ,m)) = exp(−U(θ)) · exp(−K(m))

= p(θ)p(m), (82)

2The log-likelihood is likely to be more stable numerically.
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therefore θ and m are independent samples from the joint density so m can be sampled from any
distribution. For simplicity a Gaussian is often used, and we make that choice here.

Many numerical integration methods exist which discretise Hamilton’s equations and can be seen
in [44] with the leapfrog method being the go-to method for HMC. Leapfrog is a symplectic method
which means the Hamiltonian remains close to its initial value, though not equal to it exactly, as
the system is simulated. This means samples are generated with a high accept/reject ratio so the
target is explored efficiently. Leapfrog is also a reversible method which allows detailed balance to be
maintained. Finally, Leapfrog is a low-order method which uses relatively few gradient evaluations
per step and is therefore computationally cheap. Algorithm 1 is run every time a gradient evaluation
is made within the Leapfrog numerical integrator. We note that the Pseudocode for Algorithm 1
is specific to the problem described in section 5.1 but can be easily applied to other models.

The samples generated are governed by a predetermined number of steps L of size ϵ, decided
by the user. HMC is highly sensitive to the choice of these parameters, particularly L. If too
large, computation time can be wasted as the trajectory can end close to where it started and, if
too small, the proposal can exhibit random-walk behaviour. In some cases it has been shown that
randomising L can be beneficial to avoid periodicities in the underlying Hamiltonian dynamics [45].

7.2 No-U-Turn sampler

NUTS [10] is an extension of HMC which adaptively finds the optimal number of leapfrog steps to
take, for a given stepsize, and therefore eliminates the need to tune this number. NUTS does this
by sampling from a trajectory of generated states in such a way that detailed balance holds. We
outline how this trajectory is built in Section 7.2.1 and describe the stopping criteria in Section
7.2.2. Sections 7.2.3 and 7.2.4 outline how to sample from the generated trajectory and why detailed
balance holds, respectively. We also provide relevant further details in Section 7.2.5.

7.2.1 Generating a trajectory

NUTS generates samples both forwards and backwards in time from the initial state θ0 using
leapfrog, by first sampling an initial momentum m0. To ensure reversibility, a Bernoulli trial with
probability 0.5 is undertaken to pick an initial direction d (either forwards +ϵ, or backwards −ϵ)
after which a leapfrog step is taken. Until a U-turn is detected, a new direction is then sampled
after every 2j leapfrog steps where j, initialized to zero, is incremented by one after selecting a new
direction. In doing so, NUTS builds a full binary tree of height j where the number of steps taken
between tests for a U-turn is double the amount taken since the previous such test and each leaf
node represents states along the trajectory.

7.2.2 Testing for U-turns

The doubling process described above stops when the position and momentum states at the far left
(θ−,m−) and far right (θ+,m+) of the tree satisfy either of the following conditions:(

θ+ − θ−
)
·m− < 0 or

(
θ+ − θ−

)
·m+ < 0. (83)

These conditions are met when the trajectory begins to double back on itself, i.e. begins to U-turn.
When building a trajectory, once one of these conditions is satisfied the current subtree being built
is discarded, and a sample from the resulting full tree (without the discarded subtree) is taken. This
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process of discarding means that any state in the tree can move to any other state without breaching
the U-turn: This is important with respect to ensuring that detailed balance is maintained.

7.2.3 Drawing a Sample from the Trajectory

In the original description of NUTS, slice sampling was undertaken to sample a new state from the
trajectory. This was done to account for the fact that by using leapfrog, the Hamiltonian dynamics
are approximated by numerical integration. Practically, an auxiliary variable, u, is introduced which
is sampled uniformly between 0 and H(θ0,m0). Once a U-turn is detected (and the relevant subtree
has been discarded) a sample is then uniformly selected from the states which satisfy: H(θ,m) > u.
This effectively prevents samples being selected for which the dynamics were poorly modelled (and
therefore would have had a poor acceptance probability had HMC been used).

7.2.4 Pertinent Elements of the Proof

In following the steps above, the algorithm satisfies detailed balance and is therefore a valid MCMC
proposal. For a complete description we point the reader to Section 3.1.1 in [10]. However we
summarise the more pertinent points here.

For reversibility, a pair of states (θ,m) and (θ′,m′) must be able to transition to each other. We
require that the subset of states that could be transitioned to B, where B is a subset of a potentially
larger set of all states observed C, to satisfy:

p(B, C|θ,m) = p(B, C|θ′,m′) (84)

This is true if the states in NUTS are generated deterministically, i.e. through doubling the number
of states. In this instance there will always be a series of directions that will produce the required
tree. Furthermore, by discarding the samples in the subtree being generated which contain a U-turn
we remove the possibility of extending the sequence of states such that it contains pairs of states
for which the transition is possible from one to the other but not in the other direction.

7.2.5 Further details

The numerical integrator used to simulate the Hamiltonian dynamics is chosen to preserve the
geometric structure of the dynamics, i.e. has a unit determinant. NUTS uses the leapfrog method,
like HMC, which has this property. As a result, NUTS avoids the situation where, due to numerical
errors, some states in the trajectory are unlikely to be sampled.

To avoid excessively large trees, which can result from choosing too small a stepsize, it is
necessary to upper bound the tree depth. To find a reasonable initial stepsize we used the heuristic
approach in [10] though we do not use dual averaging to automatically tune ϵ between NUTS
iterations. We also elect to not adapt the mass matrix and set the mass matrix to be the identity
matrix. However, we anticipate adaption could improve performance.

Similarly to HMC, were NUTS able to run with an exact integrator, all the states would be
equally likely to be sampled. As the leapfrog step is volume-preserving, running HMC and NUTS
does not require computing of determinants related to the Jacobian. Since using CRN in calculating
the gradient from a particle filter results in gradients that are a deterministic function of the
parameter, we note that these Jacobian terms still cancel (and we do not need to integrate over the
possible dynamic states).
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An alternative approach to the slice sampling step is to use multinomial sampling where each
leaf node in the tree is attributed a transition probability. This approach is performed in the
probabilistic programming language Stan [11]. While we have not used this approach in this work
we believe it should be considered in the future.

The pseudo-code for p-HMC and p-NUTS can be seen in Algorithm 2. We implement the
Algorithms 1 and 3 in [10] for HMC and NUTS respectively and note that each time a gradient
evaluation is made during the leapfrog step, we run Algorithm 1.

7.3 Metropolis-Adjusted Langevin Algorithm (MALA)

MALA is a M-H proposal that includes gradient information about the log-posterior (as seen in [22]):

θ′ = N

(
θ +

1

2
Γ∇ log p(θ|y1:T ),Γ

)
, (85)

where Γ = γ2Id, and γ is the stepsize. In a similar way to [21], we run the algorithm with different
stepsizes and chose the one that provides an acceptance rate of around 0.3 in the stationary phase.
Although we have presented MALA as an independent proposal it is a special case of HMC when
L = 1.

Algorithm 2: Particle - HMC or NUTS

Input: θ0, y1:T , M , L
1 ℓ(θ), ∇L(θ) = Run Algorithm 1
2 ϵ = Find Reasonable ϵ(θ0)
3 for i = 1 to M do
4 HMC = Algorithm 1 in [10] or
5 NUTS = Algorithm 3 in [10]

6 end
7 Function Leapfrog(θ, m, y1:T , ∇L(θ)):
8 m′ = m + 0.5 · ϵ · ∇L(θ)
9 θ′ = θ + ϵ · m′

10 ℓ(θ), ∇L(θ)′ = Run Algorithm 1
11 m′ = m′ + 0.5 · ϵ · ∇L(θ)′
12 return θ′, m′, ℓ(θ)′, ∇L(θ)′

8 Numerical Experiments

8.1 Linear Gaussian State Space Model

We consider the Linear Gaussian State Space (LGSS) model seen in Section 4 of [46] which is given
by

xt | xt−1 ∼ N
(
xt;ϕxt−1, σ

2
v

)
, (86)

yt | xt ∼ N
(
yt;xt, σ

2
e

)
, (87)
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where θ = {ϕ, σv, σe} are parameters with prior densities Normal(0, 1), Gamma(1, 1) and Gamma(1, 1),
respectively. The “optimal” proposal is used (see (12)) and can be derived from the properties of
(86) and (87). This results in

q (xt|xt−1, yt) = N
(
xt;σ

2
[
σ−2
e yt + σ−2

v ϕxt−1

]
, σ2
)
, (88)

with σ−2 = σ−2
v + σ−2

e .
The weights are updated using (13), which can be shown to be

w
(θ,i)
1:t = N

(
yt;ϕxt, σ

2
v + σ2

e

)
w

(θ,i)
1:t−1. (89)

8.1.1 Results

First, we compare the different differentiable particle filters described in section 6 in terms of
computational run-time and the MSE between the true and inferred values of θ = {ϕ, σv} in the
LGSSM described in (86) and (87). The true values of ϕ and σv are 0.7 and 1.2 respectively. We
use NUTS as the proposal and run with different numbers of particles, N , and observations, T ,
over M = 50 MCMC iterations. The results are presented in Table 1 with the MSE and the time
taken in seconds being averages over 10 runs (with different random number seeds).

Using CRN and FI (Fisher’s identity) consistently results in the lowest time taken to complete
the different experiments. One reason for this is that minimal changes to the resampling step are
introduced when compared to the other methods in Table 1. When T = 25 and T = 100, using
CRN results in the lowest MSE when running with N = 32, 64 and 128 and N = 16, 32, 64,
and 128, respectively. Using optimal transport resampling results in lower MSE estimates in some
experiments but the computation time is considerably higher than CRN and FI.

Next, we compare the different proposals outlined in section 7. It has been explained previously
that using NUTS eliminates the need to manually select the length parameter, L, in HMC by
adaptively choosing this parameter at every iteration. Therefore it is likely that NUTS will make
more than one target evaluation per iteration so is more computationally costly than MALA,
where only one evaluation is made, and HMC with certain values for L. We therefore include the
number of gradient evaluations as well as the average MSE between the true and inferred values of
θ = {ϕ, σv, σe} and the computation time in seconds for the LGSSM described in (86) and (87).
The true values of ϕ, σv and σe are 0.7, 1.2 and 1, respectively. The setup of the experiment was as
follows: T = 100, M = 10, N = 512 and 1024 and CRN resampling was used. Table 2 exemplifies
the benefit of NUTS over HMC in not having to optimise the number of steps, L: NUTS obtains
a lower MSE in a shorter run-time than HMC.

Finally, we show results when using NUTS and CRN resampling and present a commonly used
diagnostic to determine if three independent chains that had different initial starting values for θ =
{ϕ, σv, σe} have converged. The particle filter was initialised with N = 750, T = 250 observations,
M = 500 (with the first 100 discarded as burn-in) and the true values were θ = [0.7, 1.2, 1]. The
trace plots and density plots of the accepted samples of θ can be seen on the left and right of Figure
2 (a), respectively. These plots give an indication of how well the chains have converged to their
stationary distribution. Figure 2(b)-(d) shows the 1-dimensional histograms, plotted using [47], for
the same three chains and the uncertainties associated with these estimates of θ. The mean estimate
of θ from the three chains is [0.67, 1.23, 1.04]. A numerical method for determining if multiple chains
have converged is the Gelman-Rubin diagnostic [48] which compares the variances between chains.
It is a commonly used diagnostic in the probabilistic programming language Stan [11] (where it
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N = 512 N = 1024
T (Secs) MSE NGE T (Secs) MSE NGE

MALA 4.342 0.306 9 6.288 0.300 9

H
M

C

L2 3.70 0.36±0.01 18 14.21 0.36±0.02 18
L4 7.26 0.31±0.02 36 32.34 0.31±0.04 36
L6 11.39 0.27±0.03 54 57.84 0.26±0.06 54
L8 18.86 0.25±0.05 72 54.18 0.25±0.07 72
L10 24.46 0.22±0.06 90 103.80 0.23±0.08 90

NUTS 35.77 0.23±0.08 106 69.91 0.19±0.07 66

Table 2: The time taken in seconds, number of gradient evaluations (NGE) and MSE and standard
deviation of θ = {ϕ, σv, σe} in the LGSS model for different numbers of N and MCMC proposals.
T = 100 observations, M = 10 MCMC iterations and CRN resampling was used. The results were
averaged over 10 runs using different random number seeds.

is referred to as R̂) to ascertain if the sampler has correctly sampled from the posterior. Stan’s
documentation states an R̂ value below 1.05 passes their internal diagnostic check. The calculated
Gelman-Rubin for parameters for ϕ, σv and σe where 1.0091, 1.007 and 1.0094, respectively.

8.2 Stochastic Volatility Model

Stochastic volatility (SV) models are widely used to evaluate financial securities and prices [49], as
the variance of the latent process changes over time and is not constant. This is modelled with the
state xt being proportional to the observation noise. More specifically, we use the same model as
seen in [46], which is defined as follows:

x0 ∼ N
(
x0;µ,

σ2
v

1− ϕ2

)
, (90)

xt+1 | xt ∼ N
(
xt+1;µ+ ϕ (xt − µ) , σ2

v

)
, (91)

yt | xt ∼ N (yt; 0, exp (xt)) , (92)

where θ = [µ, ϕ, σv] are parameters with prior densities Normal(0, 1), Normal(0, 1) and Gamma(2, 10),
respectively. The log-returns (observations), yt, are modelled using the formula,

yt = 100 log

[
st

st−1

]
= 100 [log (st)− log (st−1)] (93)

where st is the price. We note that the data used here is real data and is the daily closing prices of
the NASDAQ OMXS30 index, i.e., a weighted average of the 30 most traded stocks at the Stockholm
stock exchange. The data is extracted from Quandl3 for the period between January 2, 2012 and
January 2, 2014.

We use the prior as the proposal (see (10)), which is such that the incremental log weight
becomes

log σ
(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
= log p

(
yt|x(θ,i)

t

)
, (94)

and the associated gradient is

d

dθ
log σ

(
x
(θ,i)
t , x

(θ,i)
t−1 , θ

)
=

d

dθ
log p

(
yt | x(θ,i)

t−1

)
. (95)

3The data can be downloaded from https://data.nasdaq.com/data/NASDAQOMX/OMXS30
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(a)

(b) (c)

(d)

Figure 2: (a) The trace plots (left) and density estimates (right) of three independent chains with
different initial starting positions for θ. The horizontal black lines indicate the true values. (b)-(d)
1-Dimensional corner plots of the three independent chains seen in Figure 2 for the LGSS model.
The black lines indicate the true values.
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8.2.1 Results

It is here we compare the different proposals outlined in section 7 when inferring the parameters
of the stochastic volatility model outlined in (90) - (92). Each simulation was initialised with the
same values of θ, N = 5000, T = 500 observations, M = 5000 MCMC iterations with the first 2000
discarded as burn-in and CRN resampling.

The first and second rows of figure 3 shows the histograms and trace plots of the accepted values
of σv, respectively. These plots give a visual indication of how well each of the samplers perform but
should not be solely used to asses convergence. Table 3 outlines a number of MCMC diagnostics
that determine if the sampler has converged to equilibrium. They include the mean of the posterior
samples which on its own is not very informative, especially if the parameter being inferred is not
known.

By looking at the trace plots, it is evident that for MALA and some values of L in HMC, there
is a lot of serial correlation between consecutive draws. This results in the parameter space being
poorly explored. However using NUTS can be seen to have the least serial correlation between
MCMC draws. This observation is backed up by looking at the third row, which shows auto-
correlation function (ACF) plots for the same simulations. These plots show the auto-correlation
for a Markov chain up to a user-specified number of lags, which in this case is chosen to be 100. An
ideal ACF plot is large at short lags but quickly drops towards zero. For MALA and a number of
the HMC simulations the ACF plots do not reach 0 within the specified 100 lags. The Integrated
Auto-Correlation Time (IACT) is a measure of the area under the ACF plot. The aim is to minimise
this value since it gives an indication of the mixing within the Markov chain: IACT estimates the
number of iterations it takes to draw an independent sample. It is evident by looking at Table 3
that using NUTS results in lower IACT scores for parameters µ and σv and is comparable with
HMC with L = 6 for ϕ.

The effective sample size (ESS) is also shown in Table 3. This gives an indication of the number
of independent samples it would take to have the same estimation power as a set of auto-correlated
samples: larger values for ESS are to be preferred. Much like the IACT scores for parameters µ
and σv, NUTS provides better results than the other samplers and is slightly worse than HMC with
L = 6 for ϕ.

As explained previously, randomising the L parameter within HMC can avoid periodicities in the
underlying Hamiltonian dynamics. To do this we draw an L value from an exponential distribution
with a mean parameter of 2.5. To ensure this value is an integer we round up. It is evident
when looking at Table 3, randomising the L parameter in HMC provides better results for µ when
compared with HMC with fixed L but is still worse than NUTS.

The mean estimates of θ differ slightly in each simulation to those presented in [46], which were
[−0.23, 0.97, 0.15]. We believe this disparity stems from [46] using the same particle filter but a M-H
random walk proposal for the parameters. However, when a reparameterised model (described on
page 29 of [46]) is used, they obtain estimates equal to [−0.16, 0.96, 0.17], which are very similar to
those seen in Table 3 when using NUTS, [−0.17, 0.96, 0.18].

8.3 Lorenz-63

The Lorenz-63 model is a 3-dimensional (Nx) dynamical system widely used in data assimilation [50]
that uses ordinary differential equations to propagate a state. The model has a state variable which
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Figure 3: Columns: Simulations using MALA, HMC with different L, RHMC and NUTS. First
row: Histograms of posterior estimate of σv. Second row: Trace plots of σv and the red horizontal
line is the estimated mean. Third row: ACF plots for σv with lag = 100.

MALA HMC RHMC NUTS
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

M
e
a
n µ -0.27 -0.12 0.01 -0.34 -0.01 -0.16 -0.20 -0.24 -0.16 -0.30 -0.17 -0.16 -0.17

ϕ 0.95 0.97 0.94 0.96 0.97 0.96 0.96 0.95 0.95 0.96 0.93 0.96 0.96
σv 0.19 0.13 0.23 0.18 0.14 0.16 0.18 0.19 0.2 0.17 0.23 0.19 0.18

IA
C
T µ 131 173 190 182 164 192 154 125 163 167 174 101 66

ϕ 125 158 175 100 98 139 35 68 79 73 144 63 36
σv 148 191 181 111 137 173 44 74 89 81 146 66 35

E
S
S µ 15 5 1 2 8 1 12 16 4 11 1 30 50

ϕ 3 2 2 25 15 8 94 59 37 42 18 75 89
σv 2 1 2 26 6 6 71 50 34 44 16 55 102

Acc. rate 0.35 0.73 0.81 0.73 0.87 0.83 0.70 0.66 0.76 0.68 0.70 0.53 0.86

Table 3: IACT, ESS and mean estimates of θ in the SV model and the acceptance probability of
the different algorithms. The same value of ϵ was used for each simulation of HMC, RHMC and
NUTS, N = 1000, M = 5000 and CRN resampling was used.

is propagated with:
dx

dt
= σ(y − x),

dy

dt
= x(r − z)− y,

dz

dt
= xy − bz, (96)

where σ = 10, r = 28, b = 8/3, which represent the Prandtl number, the Rayleigh number and the
physical dimensions of the layer respectively. This model is commonly used in meteorology and
oceanography due to its non-linear chaotic behaviour. The assimilation cycle length is dt = 0.05
time units in every experiment. This corresponds to 50 integration time steps which are performed
with a 4th-order Runge-Kutta algorithm.
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HMC NUTS
L2 L4 L6 L8 L10

C
R
N MSE 0.42 0.40 0.19 0.17 0.18 0.12

Time (s) 98 360 1458 4860 5250 1560

G
S MSE 0.36 0.51 0.59 0.59 0.21 0.21

Time (s) 83 644 1900 6600 12900 1255

S
R MSE 0.39 0.33 1.2 3.5 0.67 0.20

Time (s) 119 617 2141 9180 52200 869

Table 4: Mean square errors (for the σQ parameter) and computational times for different MCMC
proposals and resampling schemes. The same value of ϵ was used for each simulation of HMC and
NUTS, N = 500, M = 10, T = 50

We are interested in the following model:

xt | xt−1 ∼ N (xt;M(xt−1),Q) (97)

yt | xt ∼ N (yt;Hxt,R) (98)

where M is the Lorenz propagation and H is the observational model. The parameters in the model
and their prior densities are θ = {Q,R} and Normal(0, 1) and Normal(0, 1), respectively. The
observational model, H, is a Ny×Nx matrix where Ny represents the dimension of the observations
with Ny < Nx. The motivation for having a partially observable model is to evaluate our proposed
method in a realistic environment. We use the prior as the proposal as described in (10). The true
values of the parameters are as follows: Nx = 3, Nx = 2, Q = σQINx and R = σRINy where INx

and INy
are Nx ×Nx and Ny ×Ny identity matrices, respectively. σQ and σR are both set to 1.2.

8.3.1 Results

For this example we compare HMC with different L and NUTS when using the different differen-
tiable particle filters described in section 6 in terms of the computational run-time and the MSE
between the true and inferred values of θ = σQ. Note we do not include results for MALA and
RHMC proposals because we make use of the HMC and NUTS implementations provided by Py-
Torch [41].

Each simulation was initialised with the same values of θ, N = 500, T = 50 observations, M = 10
MCMC iterations using CRN, Gumbel-Softmax resampling (GS) and Soft-resampling (SR). Note
we do not include results for OT resampling due to the computation time being excessive. We also
note that running the experiments on a GPU did not significantly reduce the computation time.

It is evident when looking at Table 4 that using NUTS and CRN resampling yields the lowest
MSE. One explanation for Gumbel-softmax and soft-resampling giving worse results than CRN is
because these functions are approximations of multinomial-resampling which is unbiased. We note
that fine tuning α and λ in (70) and (71), respectively may result in more accurate estimates of θ.

9 Conclusion

We have outlined how to extend the reparameterisation trick to use common random numbers when
performing the resampling step in a particle filter. This limits the discontinuities encountered when
calculating gradients that are used in HMC and NUTS to propose new parameters within p-MCMC.
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We have applied these algorithms to three problems and show that using NUTS in this context
can improve the mixing of the Markov chain compared to using MALA or HMC. We also compare
different methods for resampling and show that using CRN resampling can produce more accurate
estimates in shorter run time.

Although we have only included the methods for estimating the derivatives of Gaussian models,
we note that our method could be applied to other models as long as the derivatives can be
calculated. Considering a variety of different models would be a sensible direction for future work.

In this piece of work we have not included any analysis using Hessian information about the log-
posterior within MCMC proposals, as was considered in [21]: This is due to the generic complexity
of having to compute the second-order partial and full derivatives of the equations seen in sections
3 and 4. An estimate of the state-dependent Hessian matrix could be made, using the gradients
estimated in (80), via the Gaussian Process construction provided in [51]. Hence, an avenue for
future work is to include the resulting Hessian matrix in the proposal (85), along the lines of what
was done in [21], or as the mass matrix within NUTS. Doing so could provide additional performance
gains over those reported herein.

An interesting direction for future work would involve a broader comparison of algorithms, that
differ from p-MCMC, which can be applied to parameter estimation in SSMs. These include but
are not limited to SMC2 [52], Nudging the Particle Filter [53] and the Nested Particle Filter [54].

The nested particle filter and SMC2 have two layers of SMC method: one (an SMC sampler
with Nθ particles) estimates the pdf over the static parameters, θ, and the other (a particle filter
with Nx particles) considers the dynamic states. The difference between the two methods is that
the nested particle filter runs in a purely recursive manner. A detailed comparison of the nested
particle filter and SMC2 can be seen in [54] but the computational complexity of both methods is
O(NθNxT ), just like the methods described in this paper (assuming we ran for Nθ MCMC steps).
Future work would sensibly include a comparison with these alternative methods.

In [53] particles are nudged towards regions of the state space where the likelihood is deemed
to be high. They also apply this method to the particle Metropolis-Hastings algorithm [2] and
outline how gradient nudging steps can be used within the framework of differentiable likelihoods
and automatic differentiation libraries. This would be applicable to the methods proposed in this
work with the potential to offer improvements in performance.

We also note that there is a trade-off between the theoretical concerns related to convergence
and the empirical performance achieved. An avenue for future work would be to derive proofs
related to the regularity properties of the estimated derivatives considered in this paper.
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Appendices

A Partial versus total derivatives

To try to avoid confusion, we use the partial derivative ∂/∂θ to mean the derivative by only changing
that function argument, and the total derivative d/dθ to mean also changing the other arguments
depending on it, i.e. if θ is a scalar,

d

dθ
f(a(θ), θ) ≜ limh→0

f(a(θ + h), θ + h)− f(a(θ), θ)

h
(99)

∂

∂θ
f(a(θ), θ) ≜ limh→0

f(a(θ), θ + h)− f(a(θ), θ)

h
. (100)
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B Differentiating a Kalman Filter

We have a transition kernel and a measurement model as follows, where θ is a parameter vector:

p(x′|x, θ) = N (x′; a(x, θ), Q(x, θ)) (101)

p(y|x′, θ) = N (y;h(x′, θ), R(x′, θ)). (102)

Applying an Extended Kalman Filter gives a proposal for x′ of the form

q(x′|x, θ, y) = N (x′;µ(x, θ, y), C(x, θ, y)). (103)

We wish to calculate the derivatives∂µ∂x ,
∂µ
∂θ ,

∂C
∂x ,

∂C
∂θ . The standard Kalman filter equations are

S(x, θ) = H(a(x, θ), θ)Q(x, θ)H(a(x, θ), θ)T (104)

+R(a(x, θ), θ)

K(x, θ) = Q(x, θ)H(a(x, θ), θ)TS(x, θ)−1 (105)

µ(x, θ, y) = a(x, θ) +K(x, θ)(y − h(a(x, θ), θ)) (106)

C(x, θ) = Q(x, θ)−K(x, θ)H(a(x, θ), θ)Q(x, θ) (107)

where

H(a, θ) =

(
∂hi

∂aj
(a, θ)

)
ij

(108)

is the Jacobian of the measurement function evaluated at the prior mean. We would like to differ-
entiate these with respect to x and θ but the measurement model is defined in terms of the prior
mean a(x). Let

h̃(x, θ) = h(a(x, θ), θ) (109)

H̃(x, θ) = H(a(x, θ), θ) (110)

R̃(x, θ) = R(a(x, θ), θ). (111)

Then

S(x, θ) = H̃(x, θ)Q(x, θ)H̃(x, θ)T + R̃(x, θ) (112)

K(x, θ) = Q(x, θ)H̃(x, θ)TS(x, θ)−1 (113)

µ(x, θ, y) = a(x, θ) +K(x, θ)(y − h̃(x, θ))) (114)

C(x, θ) = Q(x, θ)−K(x, θ)H̃(x, θ)Q(x, θ). (115)
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To compute the derivatives of these from the derivatives in a, applying the chain rule gives

∂h̃

∂x
(x, θ) = H(a(x, θ), θ)

∂a

∂x
(x, θ) (116)

∂h̃

∂θ
(x, θ) = H(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂h

∂θ
(a(x, θ), θ) (117)

∂R̃

∂x
(x, θ) =

∂R

∂a
(a(x, θ), θ)

∂a

∂x
(x, θ) (118)

∂R̃

∂θ
(x, θ) =

∂R

∂a
(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂R

∂θ
(a(x, θ), θ) (119)

∂H̃

∂x
(x, θ) =

∂2h

∂a2
(a(x, θ), θ)

∂a

∂x
(x, θ) (120)

∂H̃

∂θ
(x, θ) =

∂2h

∂a2
(a(x, θ), θ)

∂a

∂θ
(x, θ) +

∂2h

∂a∂θ
(a(x, θ), θ) (121)

Hence to evaluate the derivatives of (114) and (115), we need

a(x, θ),
∂a

∂x
,
∂a

∂θ
,Q(x, θ),

∂Q

∂x
,
∂Q

∂θ
(122)

from the transition model and

h(a, θ),
∂h

∂a
,
∂h

∂θ
,
∂2h

∂a2
,
∂2h

∂a∂θ
,R(a(x), θ),

∂R

∂a
,
∂R

∂θ
(123)

from the measurement model. From this we apply the product rule and the inverse derivative in
Appendix D.1.

C Derivatives of multivariate log normal

If

N (x;µ,C) =
exp

(
− 1

2 (x− µ)TC−1(x− µ)
)√

|2πC|
(124)

then

∂

∂x
logN = −C−1(x− µ) (125)

∂

∂µ
logN = C−1(x− µ) (126)

∂

∂C
logN = −1

2

(
C−1 − C−1(x− µ)(x− µ)TC−1

)
. (127)
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D Matrix derivatives

D.1 Derivative of a matrix inverse

Suppose U is an N×N invertible matrix with N×N derivative with respect to θr given by dU/dθr.
Then

∂(U−1)

∂θr
= −U−1

(
∂U

∂θr

)
U−1. (128)

If θ is an R-dimensional vector, d(U−1)/dθ is an N ×N ×R tensor with slice r given by (128).

D.2 Derivative of a matrix square root

Suppose that A is the matrix square root of C, i.e.

C = AA. (129)

Applying the product rule gives

∂C

∂θ
= A

∂A

∂θ
+A

∂A

∂θ
(130)

hence

∂A

∂θ
=

1

2
A−1 ∂C

∂θ
. (131)
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