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Abstract. A representation of an n-vertex graph G is implicit if it
assigns to each vertex of G a binary code of length O(logn) so that
the adjacency of two vertices is a function of their codes. A necessary
condition for a hereditary class X of graphs to admit an implicit representation
is that X has at most factorial speed of growth. This condition, however,
is not sufficient, as was recently shown in [10]. Several sufficient conditions
for the existence of implicit representations deal with boundedness of
some parameters, such as degeneracy or clique-width. In the present
paper, we analyze more graph parameters and prove a number of new
results related to implicit representation and factorial properties.
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1 Introduction

A representation of an n-vertex graph G is implicit if it assigns to each vertex of G
a binary code of length O(log n) so that the adjacency of two vertices is a function
of their codes. The idea of implicit representation was introduced in [11]. Its
importance is due to various reasons. First, it is order-optimal. Second, it allows
one to store information about graphs locally, which is crucial in distributed
computing. Finally, it is applicable to graphs in various classes of practical or
theoretical importance, such as graphs of bounded vertex degree, of bounded
clique-width, planar graphs, interval graphs, permutation graphs, line graphs,
etc.

To better describe the area of applicability of implicit representations, let us
observe that if graphs in a class X admit an implicit representation, then the
number of n-vertex labelled graphs in X , also known as the speed of X , must be
2O(n logn), since the number of graphs cannot be larger than the number of binary
words representing them. In the terminology of [5], hereditary classes containing
2Θ(n logn) n-vertex labelled graphs have factorial speed of growth. The family of
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factorial classes, i.e. hereditary classes with a factorial speed of growth, is rich
and diverse. In particular, it contains all classes mentioned earlier and a variety
of other classes, such as unit disk graphs, classes of graphs of bounded arboricity,
of bounded functionality [1], etc. The authors of [11], who introduced the notion
of implicit representation, ask whether every hereditary class of speed 2O(n logn)

admits such a representation.
Recently, this question was answered in the negative in [10] by proving the

existence of a factorial class of bipartite graphs that does not admit an implicit
representation. This negative result raises the following question: if the speed is
not responsible for implicit representation, then what is responsible for it?

Looking for an answer to this question, we observe that most positive results
on implicit representations deal with classes where certain graph parameters are
bounded. In an attempt to produce more positive results, in Section 3 we analyze
more graph parameters and in Section 4 we reveal new classes of graphs that
admit an implicit representation.

In spite of the negative result in [10], factorial speed remains a necessary
condition for an implicit representation in a hereditary class X , and determining
the speed of X is the first natural step towards deciding whether such a representation
exists. A new result on this topic is presented in Section 5. All relevant preliminary
information can be found in Section 2.

2 Preliminaries

All graphs in this paper are simple, i.e. undirected, without loops or multiple
edges. The vertex set and the edge set of a graph G are denoted V (G) and E(G),
respectively. The neighbourhood of a vertex x ∈ V (G), denoted N(x), is the set
of vertices adjacent to x, and the degree of x, denoted deg(x), is the size of its
neighbourhood. The codegree of x is the number of vertices non-adjacent to x.

As usual, Kn, Pn and Cn denote a complete graph, a chordless path and a
chordless cycle on n vertices, respectively. By nG we denote the disjoint union
of n copies of G.

The subgraph of G induced by a set U ⊆ V (G) is denoted G[U ]. If G does
not contain an induced subgraph isomorphic to a graph H, we say that G is
H-free and that H is a forbidden induced subgraph for G. A homogeneous set is
a subset U of V (G) such that G[U ] is either complete or edgeless.

A graph G = (V,E) is bipartite if its vertex set can be partitioned into
two independent sets. A bipartite graph given together with a bipartition of its
vertex set into two independent sets A and B will be denoted G = (A,B,E).
The bipartite complement of a bipartite graph G = (A,B,E) is the bipartite

graph G̃ := (A,B, (A×B)−E). By Kn,m we denote a complete bipartite graph
with parts of size n and m. The graph K1,n is called a star. The bi-codegree of

a vertex x in a bipartite graph G = (A,B,E) is the degree of x in G̃.
Given two bipartite graphs G1 = (A1, B1, E1) and G2 = (A2, B2, E2), we say

that G1 does not contain a one-sided copy of G2 if all induced occurrences of G2

in G1 have the vertices of A2 in the same part of G1.
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2.1 Graph classes

A class of graphs is hereditary if it is closed under taking induced subgraphs. It
is well known that a class X is hereditary if and only if X can be described by a
set of minimal forbidden induced subgraphs. In this section, we introduce a few
hereditary classes that play an important role in this paper.

Motivated by the negative result in [10], which proves the existence of a
factorial class of bipartite graphs that does not admit an implicit representation,
we focus on hereditary subclasses of bipartite graphs. In particular, we study
monogenic classes of bipartite graphs, i.e. classes defined by a single forbidden
induced bipartite subgraph. The results in [2] and [13] provide a complete dichotomy
for monogenic classes of bipartite graphs with respect to their speed. This
dichotomy is presented in Theorem 1 below, where S1,2,3 and Ft,p are the graphs
represented in Figure 1.

t
t
t
t

t
t
t

�
��

@
@@

t t t t
d
p p p
�
�
�
�

�
�
�
�

A
A
A
A

C
C
C
C tt t t

d
p p p
�
�
�
�

�
�
�
�

A
A
A
A

C
C
C
C

x1 . . . xt y1 . . . yp

Fig. 1. The graphs S1,2,3 (left) and Ft,p (right)

Theorem 1. For a bipartite graph H, the class of H-free bipartite graphs has
at most factorial speed of growth if and only if H is an induced subgraph of one
of the following graphs: P7, S1,2,3 and Ft,p.

2.2 Tools

Several useful tools to produce an implicit representation have been introduced
in [3]. In this section, we mention two such tools, and generalise one of them.

The first result deals with the notion of locally bounded coverings, which can
be defined as follows. Let G be a graph. A set of graphs H1, . . . ,Hk is called
a covering of G if the union of H1, . . . ,Hk coincides with G, i.e. if V (G) =
k⋃
i=1

V (Hi) and E(G) =
k⋃
i=1

E(Hi).

Theorem 2. [3] Let X be a class of graphs and c a constant. If every graph G ∈
X can be covered by graphs from a class Y admitting an implicit representation
in such a way that every vertex of G is covered by at most c graphs, then X also
admits an implicit representation.

The second result deals with the notion of partial coverings and can be stated
as follows.
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Theorem 3. [3] Let X be a hereditary class. Suppose there is a constant d and a
hereditary class Y which admits an implicit representation such that every graph
G ∈ X contains a non-empty subset A ⊆ V (G) with the properties that G[A] ∈ Y
and each vertex of A has at most d neighbours or at most d non-neighbours in
V (G)−A. Then X admits an implicit representation.

Next we provide a generalisation of Theorem 3 that will be useful later.

Theorem 4. Let X be a hereditary class. Suppose there is a constant d and a
hereditary class Y which admits an implicit representation so that every graph
G ∈ X contains a non-empty subset A ⊆ V (G) with the following properties:

(1) G[A] ∈ Y,
(2) V (G) − A can be split into two subsets B1 and B2 with no edges between

them, and
(3) every vertex of A has at most d neighbours or at most d non-neighbours in

B1 and at most d neighbours or at most d non-neighbours in B2.

Then X admits an implicit representation.

Proof. Let G be an n-vertex graph in X . We assign to the vertices of G pairwise
distinct indices recursively as follows. Let {1, 2, . . . , n} be the index range of
G, and let A, B1, and B2 be the partition of V (G) satisfying the conditions
(1)-(3) of the theorem. We assign to the vertices in A indices from the interval
{|B1|+1, |B1|+2, . . . , n−|B2|} bijectively in an arbitrary way. We define indices
of the vertices in B1 recursively by decomposing G[B1] and using the interval
{1, 2, . . . , |B1|} as its index range. Similarly, we define indices of the vertices in
B2 by decomposing G[B2] and using the interval {n−|B2|+1, n−|B2|+2, . . . , n}
as its index range.

Now, for every vertex v ∈ A its label consists of six components:

1. the label of v in the implicit representation of G[A] ∈ Y;
2. the index of v;
3. the index range of B1, which we call the left index range of v;
4. the index range of B2, which we call the right index range of v;
5. a boolean flag indicating whether v has at most d neighbours or d non-

neighbours in B1 and the indices of those at most d vertices;
6. a boolean flag indicating whether v has at most d neighbours or d non-

neighbours in B2 and the indices of those at most d vertices.

For the third and the fourth component we store only the first and the last
elements of the ranges, and therefore the total label size is O(log n). The labels
of the vertices in B1 and B2 are defined recursively.

Note that two vertices can only be adjacent if either they have the same left
and right index ranges or the index of one of the vertices is contained in the left
or right index range of the other vertex. In the former case, the adjacency of the
vertices is determined by the labels in the first components of their labels. In
the latter case, the adjacency is determined using the information stored in the
components 5 and 6 of the labels.
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In the context of bipartite graphs, Theorem 4 can be restated as follows.

Theorem 5. Let X be a hereditary class of bipartite graphs. Suppose there is
a constant d and a hereditary class Y which admits an implicit representation
so that every graph G ∈ X contains a non-empty subset A ⊆ V (G) with the
following properties:

(1) G[A] ∈ Y,
(2) V (G) − A can be split into two subsets B1 and B2 with no edges between

them, and
(3) every vertex of A has at most d neighbours or at most d non-neighbours in the

opposite part of B1 and at most d neighbours or at most d non-neighbours
in the opposite part of B2.

Then X admits an implicit representation.

3 Graph parameters

It is easy to see that classes of bounded vertex degree admit an implicit representation.
More generally, bounded degeneracy in a class provides us with an implicit
representation, where the degeneracy of a graph G is the minimum k such that
every induced subgraph of G contains a vertex of degree at most k.

Spinrad showed in [14] that bounded clique-width also yields an implicit
representation. The recently introduced parameter twin-width generalizes clique-
width in the sense that bounded clique-width implies bounded twin-width, but
not vice versa. It was shown in [6] that bounded twin-width also implies the
existence of an implicit representation.

The notion of graph functionality, introduced in [1], generalizes both degeneracy
and twin-width in the sense that bounded degeneracy or bounded twin-width
implies bounded functionality, but not vice versa. As we mentioned earlier,
graphs of bounded functionality have at most factorial speed of growth. However,
whether they admit an implicit representation is wide-open. To approach this
question, in Section 3.1 we analyse a parameter intermediate between twin-width
and functionality. Then in Section 3.2, we introduce one more parameter.

3.1 Symmetric difference

Let G be a graph. Given two vertices x, y, we define the symmetric difference
of x and y as the number of vertices in G− {x, y} adjacent to exactly one of x
and y, and we denote it by sd(x, y). We define the symmetric difference sd(G)
of G as the smallest number such that any induced subgraph of G has a pair of
vertices with symmetric difference at most sd(G).

In [1], it is shown that bounded clique-width implies bounded symmetric
difference and a number of classes of bounded symmetric difference are identified.
Below we show that symmetric difference is bounded for Ft,p-free bipartite
graphs (see Figure 1 for an illustration of Ft,p). These classes have unbounded
clique-width for all t, p ≥ 2. To show that they have bounded symmetric difference,
we assume without loss of generality that t = p.
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Theorem 6. For each t ≥ 2, every Ft,t-free bipartite graph G = (B,W,E) has
symmetric difference at most 2t.

Proof. It is sufficient to show that G has a pair of vertices with symmetric
difference at most 2t. For two vertices x, y, we denote by dd(x, y) the degree
difference |deg(x) − deg(y)| and for a subset U ⊆ V (G), we write dd(U) :=
max{dd(x, y) : x, y ∈ U}. Assume without loss of generality that dd(W ) ≤
dd(B) and let x, y be two vertices in B with dd(x, y) = dd(B), deg(x) ≥ deg(y).

Write X := N(x)−N(y). Clearly, dd(B) ≤ |X|. If |X| ≤ 2, then sd(x, y) ≤
4 ≤ 2t and we are done.

Now assume |X| ≥ 3. Since dd(X) ≤ dd(W ) ≤ dd(B) ≤ |X|, the set X
contains two vertices p and q with dd(p, q) ≤ 1. Then sd(p, q) ≤ 2t, since
otherwise both P := N(p) − N(q) and Q := N(q) − N(p) have size at least
t, in which case x, y, p, q together with t vertices from P and t vertices from Q
induce the forbidden graph Ft,t.

Symmetric difference is also bounded in the class of S1,2,3-free bipartite
graphs, since these graphs have bounded clique-width [12]. For the remaining
class from Theorem 1, i.e. the class of P7-free bipartite graphs, boundedness of
symmetric difference is an open question.

Conjecture 1. Symmetric difference is bounded in the class of P7-free bipartite
graphs.

We also conjecture that graphs of bounded symmetric difference admit an
implicit representation and verify this conjecture for the classes of Ft,p-free
bipartite graphs in Section 4.

Conjecture 2. Any class of graphs of bounded symmetric difference admits an
implicit representation.

3.2 One more parameter

Let us say that a class X of bipartite graphs is double-star-free if there is a
constant p such that no graph G in X contains an unbalanced copy of 2K1,p, i.e.
an induced copy of 2K1,p in which the centres of both stars belong to the same
part of the bipartition of G. In particular, every class of double-star-free graphs
is Ft,p-free for some t, p.

We will say that a class X of graphs is of bounded double-star partition
number if there are constants k and p such that the vertices of every graph in
X can be partitioned into at most k homogeneous subsets so that the edges
between any pair of subsets form a bipartite graph that does not contain an
unbalanced copy of 2K1,p.

Classes of bounded double-star partition number have been defined in the
previous paragraph through two constants, k and p. By taking the maximum
of the two, we can talk about a single constant, which can be viewed as a
graph parameter defining the family of classes of bounded double-star partition
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number. This parameter has never been formally defined in the literature. Our
motivation is based on the results in [4], where the author identifies ten minimal
hereditary classes of graphs, which, in our terminology, have unbounded double-
star partition number. One of them is the class S of star forests in which the
centers of all stars belong to the same part of the bipartition. One more class
is the class of bipartite complements of graphs in S. Moreover, S and the class
of bipartite complements of graphs in S are the only two minimal hereditary
classes of bipartite graphs of unbounded double-star partition number.

Theorem 7. [4] A hereditary class X of bipartite graphs is of bounded double-
star partition number if and only if X excludes a graph from S and the bipartite
complement of a graph from S.

Our interest to this parameter is due to the fact that any class of bounded
double-star partition number admits an implicit representation, as we show in
Section 4.

4 Implicit representations

In this section, we identify a number of new hereditary classes of graphs that
admit an implicit representation.

4.1 Ft,p-free bipartite graphs

In this section we show that Ft,p-free bipartite graphs admit an implicit representation
for any t and p. Together with Theorem 6 this verifies Conjecture 2 for these
classes.

Without loss of generality we assume that t = p and split the analysis into
several intermediate steps. The first step deals with the case of double-star-free
bipartite graphs.

Theorem 8. Let G = (A,B,E) be a 2K1,t-free bipartite graph. Then G has a
vertex of degree at most t− 1 or bi-codegree at most (t− 1)(t2 − 4t + 5).

Proof. Let x ∈ A be a vertex of maximum degree. Write Y for the set of
neighbours of x, and Z for its set of non-neighbours in B (so B = Y ∪ Z).
We may assume |Y | ≥ t and |Z| ≥ (t − 1)(t2 − 4t + 5) + 1, since otherwise we
are done.

Note that any w ∈ A is adjacent to fewer than t vertices in Z. Indeed, if
w ∈ A has t neighbours in Z, then it must be adjacent to all but at most t− 1
vertices in Y (since otherwise a 2K1,t appears), so its degree is greater than that
of x, a contradiction.

We now show that Z has a vertex of degree at most t − 1. Pick members
z1 . . . zt−1 ∈ Z in a non-increasing order of their degrees, and write Wi for
the neighbourhood of zi. Since G is 2K1,t-free and deg(zi+1) ≤ deg(zi), for all
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1 ≤ i ≤ t − 2, |Wi+1 − Wi| ≤ t − 1. It is not difficult to see that in fact,

|Wi+1 −
i⋂

s=1
Ws| ≤ (t− 1)i, and in particular, |Wt−1 −

t−2⋂
i=1

Wi| ≤ (t− 1)(t− 2).

With this, we can compute an upper bound on the number of vertices in Z
which have neighbours in Wt−1: by the degree condition given above, each vertex

in Wt−1 ∩
t−2⋂
i=1

Wi is adjacent to no vertices in Z other than z1, . . . , zt−1. Each of

the at most (t−1)(t−2) vertices in Wt−1−
t−2⋂
i=1

Wi has at most t−2 neighbours in

Z other than zt−1. This accounts for a total of at most (t−1) + (t−1)(t−2)2 =
(t− 1)(t2− 4t+ 5) vertices which have neighbours in Wt−1, including zt−1 itself.
By assumption on the size of Z, there must be a vertex z ∈ Z which has no
common neighbours with zt−1. Since 2K1,t is forbidden, one of z and zt−1 has
degree at most t− 1, as claimed.

An immediate implication of this result, combined with Theorem 5, is that
double-star-free bipartite graphs admit an implicit representation.

Corollary 1. The class of 2K1,t-free bipartite graphs admits an implicit representation
for any fixed t.

Together with Theorem 2 this corollary implies one more interesting conclusion.

Corollary 2. Classes of graphs of bounded double-star partition number admit
an implicit representation.

In the context of bipartite graphs, this corollary together with Theorem 7
implies the following generalization of Corollary 1.

Corollary 3. Any class of bipartite graphs excluding a star forest and the bipartite
complement of a star forest admits an implicit representation.

Our next step towards implicit representations of Ft,t-free bipartite graphs
deals with the case of F 1

t,t-free bipartite graphs, where F 1
t,t is the graph obtained

from Ft,t by deleting the isolated vertex.

Theorem 9. The class of F 1
t,t-free bipartite graphs admits an implicit representation.

Proof. It suffices to prove the result for connected graphs (this follows for instance
from Theorem 2). Let G be a connected F 1

t,t-free bipartite graph and let v be a
vertex of maximum degree in G. We denote by Vi the set of vertices at distance
i from v.

First, we show that the subgraph G[V1∪V2] admits an implicit representation.
To this end, we denote by u a vertex of maximum degree in V1, by U the
neighbourhood of u in V2, W := V2 − U , and V ′1 := V1 − {u}.

Let x be a vertex in V ′1 and assume it has t neighbours in W . Then x has
at least t non-neighbours in U (due to maximality of u), in which case the t
neighbours of x in W , the t non-neighbours of x in U together with x, u and
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v induce an F 1
t,t. This contradiction shows that every vertex of V ′1 has at most

t − 1 neighbours in W , and hence the graph G[V ′1 ∪ W ] admits an implicit
representation by Theorem 5.

To prove that G[V ′1 ∪ U ] admits an implicit representation, we observe that
this graph is 2K1,t-free. Indeed, if the centers of the two stars belong to V ′1 , then
they induce an F 1

t,t together with vertex v, and if the centers of the two stars
belong to U , then they induce an F 1

t,t together with vertex u. Therefore, the
graph G[V1 ∪V2] can be covered by at most three graphs (one of them being the
star centered at u), each of which admits an implicit representation, and hence
by Theorem 2 this graph admits an implicit representation.

To complete the proof, we observe that every vertex of V2 has at most t− 1
neighbours in V3. Indeed, if a vertex x ∈ V2 has t neighbours in V3, then x has
at least t non-neighbours in V1 (due to maximality of v), in which case the t
neighbours of x in V3, the t non-neighbours of x in V1 together with x, v, and
any neighbour of x in V1 (which must exist by definition) induce an F 1

t,t.

Now we apply Theorem 3 with A = {v} ∪ V1 ∪ V2 to conclude that G admits
an implicit representation, because every vertex of A has at most t−1 neighbours
outside of A.

The last step towards implicit representations of Ft,t-free bipartite graphs is
similar to Theorem 9 with some modifications

Theorem 10. The class of Ft,t-free bipartite graphs admits an implicit representation.

Proof. By analogy with Theorem 9 we consider a connected Ft,t-free bipartite
graph G, denote by v a vertex of maximum degree in G and by Vi the set of
vertices at distance i from v. Also, we denote by u a vertex of maximum degree
in V1, by U the neighbourhood of u in V2, W := V2 − U , and V ′1 := V1 − {u}.

Let x be a vertex in V ′1 and assume it has t neighbours and one non-neighbour
y in W . Then x has at least t non-neighbours in U (due to maximality of u), in
which case the t neighbours of x in W , the t non-neighbours of x in U together
with x, y, u and v induce an Ft,t. This contradiction shows that every vertex of
V ′1 has either at most t − 1 neighbours or at most 0 non-neighbours in W , and
hence the graph G[V ′1 ∪W ] admits an implicit representation by Theorem 5.

To prove that G[V ′1 ∪U ] admits an implicit representation, we show that this

graphs is F̃ 1
t,t-free. Indeed, if the centers of the two stars of F̃ 1

t,t belong to V ′1 ,

then F̃ 1
t,t together with vertex v induce an Ft,t, and if the centers of the two stars

of F̃ 1
t,t belong to U , then F̃ 1

t,t together with vertex u induce an Ft,t. Therefore,
the graph G[V1 ∪ V2] can be covered by at most three graphs, each of which
admits an implicit representation, and hence by Theorem 2 this graph admits
an implicit representation.

To complete the proof, we observe that every vertex of V2 has either at most
t − 1 neighbours or 0 non-neighbours in V3. Indeed, if a vertex x ∈ V2 has t
neighbours and one non-neighbour y in V3, then x has at least t non-neighbours
in V1 (due to maximality of v), in which case the t neighbours of x in V3, the t
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non-neighbours of x in V1 together with x, y, v, and any neighbour of x in V1

induce an Ft,t.
Finally, we observe that if a vertex x ∈ V2 has t neighbours in V3, then V5

(and hence Vi for any i ≥ 5) is empty, because otherwise an induced Ft,t arises
similarly as in the previous paragraph, where vertex y can be taken from V5.
Now we apply Theorem 5 with A = {v} ∪ V1 ∪ V2 to conclude that G admits an
implicit representation. Indeed, if each vertex of V2 has at most t−1 neighbours
in V3, then each vertex of A has at most t − 1 neighbours outside of A, and if
a vertex of V2 has at least t neighbours in V3, then Vi = ∅ for i ≥ 5 and hence
every vertex of A has at most t − 1 neighbours or at most 0 non-neighbours in
the opposite part outside of A.

4.2 One-sided forbidden induced bipartite subgraphs

In the context of bipartite graphs, some hereditary classes are defined by forbidding
one-sided copies of bipartite graphs. For instance, the class of star forests in which
the centers of all stars have the same colour, say black, is defined by forbidding
a P3 with a white center. Very little is known about implicit representations
for classes defined by one-sided forbidden induced bipartite subgraphs. It is
known, for instance, that bipartite graphs without a one-sided P5 admit an
implicit representation. This is not difficult to show and also follows from the
fact P6-free bipartite graphs have bounded clique-width and hence admit an
implicit representation (note that P6 is symmetric with respect to swapping the
bipartition). Below we strengthen the result for one-sided forbidden P5 to one-
sided forbidden Ft,1, where again F 1

t,1 is the graph obtained from Ft,1 by deleting
the isolated vertex.

Lemma 1. The class of bipartite graphs containing no one-sided copy of F 1
t,1

admits an implicit representation.

Proof. Let G = (U, V,E) be a bipartite graph containing no copy of F 1
t,1 with

the vertex of largest degree in U . Let u be a vertex of maximum degree in U .
We split the vertices of V into the set V1 of neighbours and the set V0 of non-
neighbours of u. Consider a vertex x ∈ U such that x has a neighbour in V1

and a neighbour in V0 and denote by V10 the set of non-neighbours of x in V1

and by V01 the set of neighbours of x in V0. We note that |V01| ≤ |V10|, since
deg(x) ≤ deg(u). Besides, |V10| < k, since otherwise k vertices in V10, a vertex
in V01 and a common neighbour of u and x (these vertices exist by assumption)
together with u and x induce a forbidden copy of F 1

t,1. Therefore, x has at most
k − 1 non-neighbours in V1 and at most k − 1 neighbours in V0.

Now we define three subsets A,B1, B2 as follows:

A is the set of vertices of U that have non-neighbours both of x in V1 and
in V0,
B1 consists of V1 and the vertices of U that have neighbours only in V1,
B2 consists of V0 and the vertices of U that have neighbours only in V0.
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With this notation, the result follows from Theorem 5.

Theorem 11. The class of bipartite graphs containing no one-sided copy of Ft,1
admits an implicit representation.

Proof. Let G = (U, V,E) be a connected bipartite graph containing no one-sided
copy of Ft,1 with the vertex of largest degree in U . Let v be a vertex in V and
let Vi the set of vertices at distance i from v. Then the graph G1 := G[V1 ∪ V2]

does not contain a one-sided copy of F̃ 1
t,1 with the vertex of largest degree in

V1, since otherwise together with v this copy would induce a one-sided copy of
Ft,1 with the vertex of largest degree in U . Therefore, by Lemma 1 the graph
G1 admits an implicit representation.

For any i > 1, the Gi := G[Vi ∪ Vi+1] does not contain a one-sided copy
of F 1

t,1 with the vertex of largest degree in Vi (for odd i) or with the vertex
of largest degree in Vi+1 (for even i), since otherwise together with v this copy
would induce a one-sided copy of Ft,1 with the vertex of largest degree in U .
Therefore, by Lemma 1 the graph Gi admits an implicit representation for all
i > 1. Together with Theorem 2 this implies an implicit representation for G.

For larger indices of one-sided forbidden Ft,p the question remains open.
Moreover, it remains open even for one-sided forbidden 2P3. It is interesting
to note that if we forbid 2P3 with black centers and all black vertices have
incomparable neighbourhoods, then the graph has bounded clique-width [7]
and hence admits an implicit representation. However, in general the clique-
width of 2P3-free bipartite graphs is unbounded and the question of implicit
representation for one-sided forbidden 2P3 remains open.

5 Factorial properties

We repeat that bounded functionality implies at most factorial speed of growth.
Whether the reverse implication is also valid was left as an open question in
[1]. It turns out that the answer to this question is negative. This is witnessed
by the class Q of induced subgraphs of hypercubes. Indeed, in [1] it was shown
that Q has unbounded functionality. On the other hand, it was proved in [8]
that there exists an implicit representation for Q and, in particular, the class
is factorial; in fact, a result from recent work [9] implies that, more generally,
the hereditary closure of Cartesian products of any finite set of graphs admits
an implicit representation. These results however are non-constructive and they
provide neither explicit labeling schemes, nor specific factorial bounds on the
number of graphs. Below we give a concrete bound on the speed of Q.

Theorem 12. There are at most n2n n-vertex graphs in Q.

Proof. Let Qn denote the n-dimensional hypercube, i.e. the graph with vertex
set {0, 1}n, in which two vertices are adjacent if and only if they differ in exactly
one coordinate. To obtain the desired bound, we will produce, for each labelled
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n-vertex graph in Q, a sequence of 2n numbers between 1 and n which allows
us to retrieve the graph uniquely.

As a preliminary, let G ∈ Q be a connected graph on n vertices. By definition
ofQ, G embeds into Qm for some m. We claim that, in fact, G embeds into Qn−1.
If m < n, this is clear. Otherwise, using an embedding into Qm, each vertex of
G corresponds to an m-digit binary sequence. For two adjacent vertices, the
sequences differ in exactly one position. From this, it follows inductively that
the n vertices of G all agree in at least m− (n−1) positions. The coordinates on
which they agree can simply be removed; this produces an embedding of G into
Qn−1. Additionally, by symmetry, if G has a distinguished vertex r, we remark
that we may find an embedding sending r to (0, 0, . . . , 0).

We are now ready to describe our encoding. Let G ∈ Q be any labelled
graph with vertex set {x1, . . . , xn}. We start by choosing, for each connected
component C of G:

– a spanning tree TC of C;
– a root rC of TC ;
– an embedding ϕC of TC into Qn−1 sending rC to (0, 0, . . . , 0).

Write Ci for the component of xi. We define two functions p, d : V (G) →
{1, . . . , n} as follows:

p(xi) =

{
i, if xi = rCi ;

j, if xi 6= rCi , and xj is the parent of xi in TCi .

d(xi) =

{
1, if xi = rCi ;

j, if xi 6= rCi , and ϕ(xi) and ϕ(p(xi)) differ in coordinate j.

One easily checks that the above maps are well-defined; in particular, when
xi is not a root, the embeddings of xi and of its parent do, indeed, differ in
exactly one coordinate. The reader should also know that the value of d on the
roots is, in practice, irrelevant – setting it to 1 is an arbitrary choice.

We now claim that G can be restored from the sequence p(1), d(1), . . . , p(n),
d(n). To do so, we first note that this sequence allows us to easily determine
the partition of G into connected components. Moreover, for each connected
component, we may then determine its embedding ϕC into Qn−1: ϕC(rC) is by
assumption (0, 0, . . . , 0); we may then identify its children using p, then compute
their embeddings using d; we may then proceed inductively. This information
allows us to determine the adjacency in G as claimed, and the encoding uses 2n
integers between 1 and n as required.

Problem 1. Find specific implicit representation for the classQ of induced subgraphs
of hypercubes.
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