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Abstract

The importance of soils to society has gained increasing recognition over the past
decade, with the potential to contribute to most of the United Nations’ Sustain-
able Development Goals (SDGs). With unprecedented and growing demands for
food, water and energy, there is an urgent need for a global effort to address the
challenges of climate change and land degradation, whilst protecting soil as a
natural resource. In this paper, we identify the contribution of soil science over
the past decade to addressing gaps in our knowledge regarding major environ-
mental challenges: climate change, food security, water security, urban develop-
ment, and ecosystem functioning and biodiversity. Continuing to address
knowledge gaps in soil science is essential for the achievement of the SDGs.

However, with limited time and budget, it is also pertinent to identify effective
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1 | INTRODUCTION

By the end of the decade, the United Nations (UN)
Agenda for Sustainable Development - the 17 Sustain-
able Development Goals (SDGs) - are intended to be
substantively realized (United Nations, 2015). Although
only six SDGs mention the word “soil” in their descrip-
tions, the importance of maintaining productive soils for
sustainable development has been increasingly recog-
nized by scientists and policymakers (Banwart, 2011;
IPBES, 2018; Keesstra et al., 2016). This is largely due to
the fact that soils are an essential nexus between differ-
ent spheres of the terrestrial environment, facilitating a
diverse array of important functions, such as producing
food, purifying water, sequestering carbon, safeguarding
energy, supporting critical infrastructure, providing
acreage for development and supplying raw materials
(Blum, 2005).

In response to an emerging need to better understand
soils as key deliverers of these vital services, the make-up
of the soil science research community has been trans-
formed. Soil science has arguably shifted from a disci-
pline largely concerned with the fundamental mechanics
of soil systems (soil physics, soil biology, soil chemistry,
soil hydrology, etc.), to one more focused on confronting
contemporary environmental challenges (Hartemink &
McBratney, 2008). The importance of, and need to under-
stand, the components of soil systems has not been made

and other domains.

methods of working that ensure the research carried out leads to real-world
impact. Here, we suggest three strategies for the next decade of soil science, com-
prising a greater implementation of research into policy, interdisciplinary part-
nerships to evaluate function trade-offs and synergies between soils and other
environmental domains, and integrating monitoring and modelling methods to
ensure soil-based policies can withstand the uncertainties of the future.

« We highlight the contributions of soil science to five major environmental
challenges since 2010.

« Researchers have contributed to recommendation reports, but work is rarely
translated into policy.

« Interdisciplinary work should assess trade-offs and synergies between soils

« Integrating monitoring and modelling is key for robust and sustainable
soils-based policymaking.

biodiversity, climate change, ecosystems, food security, sustainable development goals,
urban development, water security

redundant, but more and more fundamental soil science
is being translated into applied “real-world” solutions.

This shift in the identity of soil science has arguably
motivated soil scientists to work with a more diverse
array of environmental disciplines (Hou, Bolan, Tsang,
Kirkham, & O'Connor, 2020). As a result of partnering
with neighbouring (and sometimes tangential) fields, soil
science has become enriched with new methodological
capabilities, transformed analytical techniques and more
holistic solutions to address the issues of the day.

In this paper, we begin by spotlighting some of the
work that soil scientists have carried out over the past
decade to confront grand global challenges, including cli-
mate change, food security, water security, urban devel-
opment, and ecosystem functioning and biodiversity. In
each of these themes, there are still unanswered research
questions and knowledge gaps, and a number of papers
in recent years have sought to compile these into a mani-
festo for soil science (Adewope et al., 2014; Blum, 2006;
Rodrigo-Comino et al., 2020). This paper does not aim to
embellish these lists. With less than 10 years to go before
the SDGs are intended to be achieved, and with finite
resources and budget available, we believe that now is
the time to consider not what should be researched, but
how soil science can best ensure that the research that
has been, and continues to be, carried out can support
global efforts to secure sustainable development by 2030.
We will suggest three “ways of working”, including
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(a) implementing research in policy and practice;
(b) working across disciplines to evaluate function trade-
offs and synergies between soils and other environmental
domains; and (c) integrating monitoring and modelling
methods to ensure that soils-based legislation is resilient.

2 | 2010-2020: THE
CONTRIBUTIONS OF SOIL SCIENCE
TO FIVE GRAND CHALLENGES

2.1 | Climate change

There is a growing recognition that soils have a crucial
role in mitigating climate change, such as reducing meth-
ane and nitrous oxide emissions and sequestering carbon
that would otherwise end up in the atmosphere (Paustian
et al., 2016; Smith, 2012; Smith, 2016). This has led to the
development of high-profile, global initiatives such as
“4p1000~, an international political effort launched at the
2015 COP21 summit in France to preserve and increase
soil organic carbon stocks, improve food security and
help tackle climate change (Chabbi et al., 2017; Rumpel
et al., 2018; Soussana et al., 2019). Almost 50 governments
and local authorities with hundreds of private and public
sector partners are participating in this initiative.

Several studies in the past decade have sought to esti-
mate global soil organic carbon sequestration potential.
The Intergovernmental Panel on Climate Change (IPCC)
recently collated these estimates (Smith et al., 2019;
Smith et al., 2020a) and found the global potential for soil
organic carbon sequestration to be within the range of
1.3-5.1 GtCO,e year ', although the full range reported
in the literature is wider (0.4-8.6 GtCO,e year ') (Bossio
et al., 2020; Fuss et al., 2018). This wide range is, in part,
a reflection of the variable efficacy of different soil man-
agement practices to sequester organic carbon, and the
non-linear decline of sequestration rates as fresh soil
organic carbon steady state is reached (Amundson
et al., 2015). In addition, there is vast potential for the
sequestration of soil inorganic carbon as secondary car-
bonates and bi-carbonates (Lal, 2019). For instance, a
recent study showed that although biochar addition can
expand soil organic carbon stocks, it can also increase the
dissolved inorganic carbon content in soils (Shi
et al., 2020).

Cultural, economic and physical barriers constrain the
capacity for soils to mitigate climate change, demonstrat-
ing the need for the soil science community to articulate
the benefits of carbon sequestration in order to achieve
maximum societal impact and acceptance (Amundson &
Biardeau, 2018). However, accurately quantifying soil
organic carbon sequestration potential is also confronted

by the difficulties in monitoring, reporting and verifying
(MRV) changes in soil organic carbon stocks, because
these changes are relatively small and slow, and thus diffi-
cult to detect against large background stocks (Smith
et al., 2020b). In the past decade, soil organic carbon MRV
platforms harnessing new capabilities have been proposed.
Amongst these are long- and short-term field experiments,
well-calibrated models, state-of-the-art spatial datasets,
spatial soil survey data, activity data and remote sensing
(Smith, Soussana, et al., 2020b). Moreover, detailed MRV
protocols are being developed, such as the Food and Agri-
culture Organisation's (FAO's) recarbonization of global
soils (RECSOIL) programme (FAO, 2019a).

Measuring soil organic carbon has, until recently,
generally entailed destructive sampling, soil processing,
and wet chemical analysis or dry combustion. However,
research in the past decade has focused on developing
non-destructive methods to measure soil organic carbon
both in the laboratory and in the field. These methods
rely mainly on reflectance of light by the soil in the mid-
(4,000-600 cm ") and near- to short-wave infrared region
(2,000-2,500 nm). The concentration of soil organic car-
bon can be estimated from these spectral measurements
by comparing them with spectral libraries derived from
samples on which soil properties have been determined
by traditional laboratory methods and reflectance
measurements (Smith, Soussana, et al., 2020b). The
ultimate aim of these innovations has been to obtain
low-cost, scientifically validated, field-based tools for
the non-destructive measurement of soil organic car-
bon (Dhawale et al., 2015; Hutengs, Ludwig, Jung,
Eisele, & Vohland, 2018; Tang, Jones, & Minasny,
2019). Although these tools are helping with the deter-
mination of soil organic carbon state, further rigorous
testing is required to establish their reliability in deter-
mining soil organic carbon change.

The past decade has also witnessed advances in
remote sensing, by deploying unmanned aerial vehicles
(UAV), aeroplanes and satellite infrastructures to detect
changes in soil properties. Although these can infer
changes in soil organic carbon through vegetation
change, remote sensing technology that can directly mea-
sure soil organic carbon is yet to be developed (Smith,
Soussana, et al., 2020b). Hyperspectral imagery can be
interpreted directly in combination with spectral libraries
for quantification of soil organic carbon for the top
centimetre of bare soil (Gomez, Lagacherie, &
Bacha, 2012; Jaber, Lant, & Al-Qinna, 2011), or by using
multivariate imagery to map bare soil patterns to indicate
soil organic carbon or soil class differences (Gallo
et al., 2018; Rogge et al., 2018).

Furthermore, new-generation soil organic carbon
models have been developed since 2010 to complement
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traditional models. These represent soil organic carbon
turnover with pseudo first-order decay approaches with a
range of soil organic carbon pools, controls on turnover
times, and decomposition pathways (Smith et al., 2018).
In particular, these new models include an explicit
description of microbes, mineral-surface interactions,
vertical transport, nutrient controls and plant interac-
tions (Smith et al., 2018). It is unclear whether these will
lead to more accurate predictions, but there are some
processes for which pool-based models are unsuitable,
and microbially explicit representations are required.
These include soil priming (Georgiou, Koven, Riley, &
Torn, 2015), microorganism mortality (Georgiou,
Abramoff, Harte, Riley, & Torn, 2017), and the leaching
and stabilization of dissolved organic carbon (Dwivedi,
Riley, Torn, Spycher, & Maggi, 2017).

Although most of the recent research on soils and cli-
mate change has focused on climate mitigation, under-
standing the role of soils in climate change adaptation
has also progressed. Management of soil organic carbon,
erosion control, soil-borne diseases, and the prevention
and reversal of topsoil salinization have been promoted
as actions for climate change adaptation (Dagar, Sharma,
Sharma, & Singh, 2016; Qadir, Noble, & Chartres, 2013;
UNCTAD, 2011). Because these soil management mea-
sures are used to address land degradation, and because
restoring degraded land helps to improve resilience to cli-
mate change, sustainable soil management has been
championed as essential for climate change adaptation.

2.2 | Food security

Of the 5 billion hectares of agricultural land used for
crops (1.5 billion hectares) and livestock (3.5 billion hect-
ares), one-third of this total area is classified as degraded
(FAOQ, 2015a). Almost 70% of total freshwater withdrawal
is used for irrigation, and one-third of all anthropogenic
greenhouse gas emissions are attributed to agricultural
activities (Crippa et al.,, 2021). Global agriculture pro-
duces enough food to feed 10 billion people, yet as much
as 30% of food is wasted globally (Lal, 2017). Therefore,
judicious use of food, and a change in dietary preferences
in favour of more plant-based diets, has been increasingly
encouraged. Rather than expanding the land area under
agriculture, work over the past decade has explored pro-
ducing “more from less”, by enhancing eco-efficiency of
both soil and water, and reducing waste.

Since 2016, improved cropping systems have been
studied worldwide, marking a shift from using soils as a
substrate to produce food, towards a multiple-goal pro-
duction system: producing food while improving soil
quality. Widespread adoption of soil restorative measures

to enhance soil organic carbon content and reduce ero-
sion are critical for achieving food and nutritional secu-
rity, particularly in developing countries (Evans,
Quinton, Davies, Zhao, & Govers, 2020; Oliver &
Gregory, 2015; Rojas, Achouri, Maroulis, & Caon, 2016;
Tittonell, 2015). Over the past decade, soil science has
focused on recycling biomass to build soil organic carbon
content to improve soil health (Oliver & Gregory, 2015;
Scharlemann, Tanner, Hiederer, & Kapos, 2014), with
“soil health” here being defined as “the vitality of a soil
in sustaining the socio-ecological functions of its
enfolding land” following Janzen, Janzen, and
Gregorich (2021), but see Baveye (2021) for a critical
analysis of soil health definitions. For example,
implementing zero-till farming, in conjunction with crop
residue mulching and cover cropping, has been found to
enhance topsoil health (Knapp & van der Heijden, 2018).
Improving soil organic carbon content has also been
identified conceptually to enrich soil biodiversity and
human health (Wall, Nielsen, & Six, 2015), as well as
increase drought resilience through enhancing green
water supply (i.e., the water stored in soil and available
for plant uptake) in the root zone (Marasco et al., 2012;
Sposito, 2013). Transformative advancements in soil biol-
ogy have demonstrated that maintaining soil organic car-
bon content is critical to the rhizosphere microbiome
(Berendsen, Pieterse, & Bakker, 2012), which, in turn,
has been shown to drive plant productivity in
agroecosystems. For example, Wei et al. (2015) showed
that resident soil bacterial communities can significantly
reduce the invasion success of pathogens into host plants.
Recent work by Ball, Hargreaves, and Watson (2018)
has shown the importance of the soil-society nexus for
improving food system sustainability. Their framework,
involving three types of connections, includes: (a) direct
connections that enhance soil awareness for innovative
management, such as organic, no-till or conservation
agriculture; (b) indirect connections between soil, food
and ecosystem services that can be promoted through
home gardening and education (Edmondson et al., 2020;
Lal, 2020a); and (c) temporal connections that draw on
past usage of soil to raise awareness among policymakers
(Evans, Vis, Dunning, Graham, & Isendahl, 2021).

2.3 | Water security

Over the past decade, scientists have investigated
approaches to boost water use efficiency, through either
plant-based interventions, which are beyond the scope of
this paper, or water-management strategies. A significant
advancement has been to test and develop measures to
retain water within the soil by improving soil organic
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carbon content. Long-established techniques such as
mulching and cover cropping (Li, Zhao, Gao, Ren, &
Wu, 2018; Wheeler & Marning, 2019) have been comple-
mented with innovations such as using wetting agents
(e.g., surfactants) and wax-degrading bacteria to reduce
soil water-repellence (Saji, 2020), and developing soil
conditioners composed from natural (e.g., cellulose,
starch, yeast, chitosan) and biodegradable waste products
(Saha, Rattan, Sekharan, & Manna, 2020). Although
these novel advancements have been trialled, continued
investment is required to validate their effectiveness
across a wider array of land-use and climatic contexts.
Groundwater depletion is a rapidly increasing problem
globally (Hohne, Esterhuyse, Fourie, Gericke, &
Esterhuyse, 2020). To meet increasing demand, several
strategies have been developed over the past decade to effi-
ciently manage groundwater conditions (Chatterjee
et al., 2020). Artificial groundwater recharge has been per-
formed through water harvesting structures, by collecting
surface runoff, and increasing infiltration through a com-
bination of dry wells, percolation tanks and/or bank infil-
tration recharge, while preventing water-quality decrease
(Ahirwar, Malik, Ahirwar, & Shukla, 2020; Sandoval &
Tiburan, 2019). This has been upscaled by the deployment
of remote sensing and geographic information system
(GIS) techniques to precisely identify suitable sites to
enhance groundwater recharge potential, through ana-
lysing relevant factors such as geomorphology, geology,
slopes, land use and drainage characteristics (Chandra,
Singh, Tiwari, Panigrahy, & Kumar, 2015; Khan, Govil,
Taloor, & Kumar, 2020; Machiwal, Jha, & Mal, 2011).
Remote sensing has also been used to detect terrestrial
water cycling through the detection of changes in Earth's
gravitational field (Feng, Shurn, Zhong, & Pan, 2018;
Rodell et al., 2007). These data monitoring efforts are
essential for ensuring the efficient management of ground-
water recharge, and to avoid the failure of aquifer systems.
Quantifying spatiotemporal variations in green and blue
water is a mainstay of ensuring water security. Here, ‘blue
water’ is defined as the proportion of water resources stored
in rivers, lakes and groundwater that is directly available to
humans, whereas “green water” is the water stored in soil
and available for plant uptake, following Menzel and Mat-
ovelle (2010). Over the past decade, soil scientists have capi-
talized on major advances in data acquisition and
modelling to make an inventory of the spatial distribution
of the planets water supply (Chawla, Karthikeyan, &
Mishra, 2020; Obade & Moore, 2018). With these data, and
the development of models that link hydrological processes
with other environmental, social and economic factors, soil
scientists are now better equipped to investigate and quan-
tify water security in terms of scarcity and vulnerability
(Bagheri & Babaeian, 2020), and to support integrated water

resource management from a holistic perspective (Babel,
Pandey, Rivas, & Wahid, 2011; Mahdavi, Bagheri, &
Hosseini, 2019). This data revolution has catalysed the
development of several machine learning methods that can
forecast the effect of environmental and climate change on
future water and pollutant fluxes (Morellos et al., 2016;
Yamag, Sker, & Negis, 2020). In addition, soil scientists are
working more closely with critical zone scientists to
advance current understanding of subsurface water stocks
and dynamics (Hahm et al., 2019). For example, recent
developments in ground-based gradiometry now allow for
more accurate monitoring of subsurface structures and their
associated water storage (Parsekian, Singha, Minsley,
Holbrook, & Slater, 2014). As well as these technological
advancements, the introduction of simplified water indices
to indicate water scarcity (Chawla et al., 2020; Veettil &
Mishra, 2016) has made it possible for both policymakers
and public stakeholders to better understand the need to
pay greater attention to water security in the future (Babel,
Shinde, Sharma, & Dang, 2020).

2.4 | Urban development

Over the past decade, issues relating to, or originating
from, urban soils have been addressed in various assess-
ments, resulting in the development and implementation
of different innovations, technologies and strategies
(Barthel et al., 2019; Biasi, Colantoni, Ferrara, Ranalli, &
Salvati, 2015; European Commission, 2015; Salvati,
Zambon, Chelli, & Serra, 2018). There has been a rapidly
increasing interest in urban soils, such as through the
activity of the “Soils of Urban, Industrial, Traffic and
Mining Areas (SUITMA) working group” (Burghardt,
Morel, & Zhang, G-.L., 2015). By assessing the state of
urban soils, soil scientists have conceived various strate-
gies to improve soil structure and enhance water infiltra-
tion and retention (Kalantari, Ferreira, Keesstra, &
Destouni, 2018; Kumar & Hundal, 2016). These include
traditional strategies such as tillage to alleviate soil com-
paction (Environmental Protection Agency, 2011), and
more state-of-the-art approaches such as bioremediation
to decrease soil contamination and enhance soil biodiver-
sity (Environmental Protection Agency, 2011; Sarwar
et al., 2017). The application of soil amendments, such as
compost, and the installation of blue-green infrastruc-
tures has also been tried (Kumar & Hundal, 2016).
Blue-green infrastructure is a multifunctional network of
natural and designed areas, comprising water bodies,
green spaces and open spaces (Ghofrani, Sposito, &
Faggian, 2017). Yet, all of these remediation and restora-
tion strategies bring some challenges. For instance, the
excavation and removal of contaminated soil can be
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highly or even prohibitively expensive, especially if
required over a large area.

Nature-based solutions (NBS) are now being widely
adopted to specifically address decades of unsustainable
spatial planning policies in urban areas (European
Commission, 2015; Pan et al., 2018). Mitigating soil deg-
radation in urban environments using NBS is both inno-
vative (Goldenberg, Kalantari, & Destouni, 2018;
Kalantari, Ferreira, Deal, & Destouni, 2019a) and also
cost-effective, and it simultaneously provides environ-
mental, social and economic benefits that can help
achieve numerous SDGs (European Commission, 2015;
Jaramillo et al., 2020; Seifollahi-Aghmiuni, Nockrach, &
Kalantari, 2019). For example, street trees, parks and wet-
lands have been shown to intercept dust and toxins,
sequester carbon (Jonsson, Page, & Kalantari, 2019),
buffer flooding and prevent soil degradation (Jaramillo
et al., 2020). In addition, straw mulches (Rodrigo-Comino
et al., 2019), vegetative filter strips (Pan et al., 2018) and
natural vegetation covers (e.g., green roofs and walls) are
important NBS that reduce storm-water runoff and pre-
vent soil erosion in urban areas. Technosols constructed
from city waste, such as compost or chipped wood, pro-
vide many ecosystem services and contribute to circular
economies (Grard et al., 2018).

Demonstrating the benefits of NBS in urban environ-
ments through proof-of-concept experiments is critical for
underpinning their inclusion in urban planning (Kalantari
et al., 2019b). Once implemented, their continuous main-
tenance requires long-term labour inputs, mostly at the
community level (Ferreira, Walsh, Blake, Kikuchi, &
Ferreira, 2017). Because soils are central to supporting
many urban NBS, soil scientists are beginning to enjoy
increasing levels of engagement in urban planning, and
are working alongside stakeholders, local communities,
authorities, architects and construction companies to
ensure that soils are sustainably managed and preserved
in urban environments (Keesstra et al., 2016).

2.5 | Ecosystem functioning and
biodiversity

Over the past decade, the soil science community has trans-
ferred an understanding of soils into natural capital and
ecosystem service frameworks (Dominati, Patterson, &
Mackay, 2010; Haines-Young & Potschin, 2012; Robinson,
Lebron, & Vereecken, 2009). One of these frameworks is
the System of Environmental and Economic Accounts
(SEEA) (Obst, Hein, & Edens, 2016; United Nations,
2012a), which, by providing satellite green accounts along-
side Gross Domestic Product (GDP) accounts (United
Nations, 2012a), considers the soil as one of seven natural

resources. The added value these frameworks bring to GDP
accounting is the recognition that natural resources are not
free or limitless, and that they can constrain the economy,
if not carefully managed. Yet, some have argued that com-
bining data on soil resources with natural capital and eco-
nomic activity indicators is one of the least developed areas
of the SEEA, which has led to more efforts from soil scien-
tists to address this gap over the past decade (Obst, 2015).

Adopting a systems approach emphasizes the impor-
tance of monitoring multiple ecosystem cycles to under-
pin reporting frameworks, including soil formation and
erosion, soil carbon gains and losses, soil nutrient release
and loss, and soil water and energy balance (Amundson
et al., 2015; Robinson et al., 2017). Advances in both
modelling (Borrelli et al., 2017) and monitoring (Panagos,
Meusburger, Ballabio, Borrelli, & Alewell, 2014) over the
past decade have rendered this approach feasible. They
have also demonstrated a way forward for addressing one
of the key challenges identified in the Intergovernmental
Technical Panel on Soils (ITPS) report: the need for
“state” and “trend” monitoring of soils (ITPS, 2015).
Although the development of an SEEA-style soil moni-
toring and modelling framework is an end in itself for
policymaking, it is also important for providing an under-
standing of soil change.

Accounting for change in soil biodiversity and func-
tion remains a substantial challenge in soil science, yet
has received significant investment over the past decade.
Due to the large variety of soil organisms, ranging from
microorganisms to invertebrates and vertebrates, surveys
on soil biodiversity require specific tools and methods
depending on which group of organisms is studied.
Transformative advances in omics have revealed the
breadth and distribution of organisms in soils
(Prosser, 2015), which are vital for ecosystem functioning
(Crowther et al., 2019; Delgado-Baquerizo et al., 2018),
and their development in soil science represents a major
achievement.

Over the past decade, sequencing and informatics
technologies have forged ahead, such that the retrieval of
full genomes of previously unknown soil organisms is
now becoming more common (Nesme et al., 2016). How-
ever, the contribution of soil organisms to health and
well-being services has often been overlooked. Most anti-
biotics in use today were extracted from soil organisms in
the 1940s-60s (Lewis, 2013), and the first new antibiotic
to be identified for decades was recently extracted from
soil (Ling et al., 2015).

Innovations in technology are therefore prompting
scientists to revisit soils for biomedical and biotechnologi-
cal resources (Lewis, 2012), and molecular technologies,
which uncover previously unknown soil microbial spe-
cies and functions, provide many new opportunities in
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this regard (Hover et al., 2018). More generally, these
technologies allow for a better appreciation of the specific
mechanistic roles of soil biodiversity in regulating wider
ecosystem services such as nutrient recycling and storage
(Hartman, Ye, Horwath, & Tringe, 2017), greenhouse gas
regulation (Hester et al., 2018) and plant productivity
(Carrion et al., 2019). Linking soil biodiversity to a natu-
ral capital framework is therefore fundamentally impor-
tant, and remains to be achieved, in SEEA. Significant
challenges remain in how to assimilate the vast amounts
of globally obtained molecular information, and experi-
mentally determined ecological interactions between
organisms, into both soil process and wider ecosystem
service models. Here, advances in digital technologies for
biodiversity data synthesis (Choi et al., 2016), modelling
and dissemination (Vétrovsky et al., 2020), coupled with
detailed biogeochemical investigation of the functional
relevance of new genes under environmental change con-
texts, provide much scope for future exploration and dis-
covery. In concert, a better understanding of how soil
biodiversity interacts to deliver multiple ecosystem bene-
fits, win-wins and trade-offs, offers the potential for new
ways to both monitor soil health and also move towards
more sustainable approaches to manage and optimize
soil multifunctionality in the face of environmental
change (Rillig et al., 2019).

Ecosystem service models continue to progress
(Bagstad, Semmens, Waage, & Winthrop, 2013), but the
incorporation of soil functions and feedbacks remains an
area warranting further attention if we are to better
understand the impacts of land use, pollution and climate
change. Recent work has improved the understanding of
linkages between soil attributes, functions and ecosystem
service provision (Adhikari & Hartemink, 2016). How-
ever, incorporating this understanding into ecosystem
service modelling has been slow. Some have pointed out
that the majority of ecosystem service models only
account for a single soil function (Greiner, Keller, Grét-
Regamey, & Papritz, 2017). Failing to represent multiple
functions of soil is a weakness given that a key role of
ecosystem service models is to account for multiple ser-
vices, and understand their relationships, trade-offs and
synergies. Recent work has attempted to address this,
such as the Soil QUality InDex (SQUID), which assesses
the provision of 16 different soil-based ecosystem services
(Drobnik, Schwaab, & Grét-Regamey, 2020), soil function
assessment methods (Greiner et al., 2017) and the Soil
Navigator decision support system (Debeljak et al., 2019).
However, most of the more widely used models fail to
appropriately incorporate benefits from soils or soil deg-
radation processes, while low availability of spatial soil
data often leads to land cover data being used as a proxy
(Adhikari & Hartemink, 2016). Although biophysical
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information is informative in itself, translating changes
in resources into economic impacts is an important goal
for natural capital accounting, yet to be achieved.

Attempts have been made to account for economic
costs at the national scale (e.g., Graves et al.,, 2015),
which tend to rely on first-order cost evaluation. How-
ever, recent work has tried to use models to link soil deg-
radation to the global economy (Sartori et al., 2019). This
work goes “beyond the use of “first-order’ cost evaluation
and captures the ‘second-round’ effects of structural eco-
nomic change that arise owing to shifts in primary
resources, particularly the land factor” (Sartori
et al., 2019). It provides proof of concept for realising a
full benefit chain, from soil monitoring and modelling,
through to economic impact assessment.

3 | TOWARDS 2030: AN
INTEGRATED AGENDA FOR
SUSTAINABILITY

There are less than 10 years to go before the SDGs are
intended to be achieved. At this critical juncture, it is pivotal
to step back and analyse the work that soil scientists should
do to contribute towards the realization of these goals.
There have been a number of papers in recent years that
have synthesized the research questions left outstanding in
soil science and made calls to the community to tackle
them (Adewope et al., 2014; Blum, 2006; Rodrigo-Comino
et al., 2020). These have been useful for prescribing research
agendas, justifying research rationale, and securing funding
for new highlight topics and foci areas. As important as this
process is, we argue that it cannot catalyse real-world
impact alone. Therefore, in this section of the paper, we do
not suggest which specific topics soil scientists should
research next, but begin an important dialogue around how
soil scientists can best ensure that their research over the
next decade can best support global efforts to secure sus-
tainable development by 2030.

3.1 | Implementing research in policy
and practice

This paper has summarized the research advances made
over the past decade in soil science with respect to five
critical areas. It is important to ask how this research has
been utilized to drive sustainable development. Figure 1
presents a timeline of some of the global initiatives
towards which soil scientists have contributed over the
past decade. These can be divided crudely into four cate-
gories: (a) guidance documents and recommendations;
(b) status reports; (c) expert group collaborations and public
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FIGURE 1

Timeline highlighting contributions of soil science to international policy and legislation, guidance and recommendation reports,

status reports, and collaboration and public awareness campaigns across five major environmental challenges over the past decade. (1) United
Nations Conference on Trade and Development, 2011; (2) Environmental Protection Agency, 2011; (3) Global Soil Biodiversity Initiative, 2021;

(4) European Commission, 2011; (5) United Nations, 2012a; (6) Food and Agriculture Organisation (FAO), 2012; (7) United Nations, 2012b;

(8) European Commission, 2012; (9) FAO, ; (10) European Union, 2014; (11) 4 Per 1000, 2021; (12) FAO, 2015a; (13) European Commission, 2015;
(14) FAO, 2015b; (15) FAO, 2015c; (16) United Nations, 2015; (17) FAO, 2016; (18) United Nations Convention to Combat Desertification, 2017
(19) Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018; (20) European Court of Auditors, 2018;

(21) European Commission, 2018; (22) Intergovernmental Panel on Climate Change (IPCC), 2019; (23) Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services, 2019; (24) FAO, 2019b; (25) European Union, 2020; (26) European Commission, 2019; (27) European
Commission, 2020a; (28) European Commission, 2020b; (29) European Commission, 2020c; (30) European Commission, 2021a; (31) European
Commission, 2021b; (32) European Commission, 2021c [Color figure can be viewed at wileyonlinelibrary.com]

awareness campaigns; and (d) policy and legislation. It
demonstrates that the majority of activities have either
focused on compiling evidence for reports on the state of
the world's soils, or making recommendations on how best
to manage and conserve them. Although these types of pub-
lications are important for conveying the outcomes of scien-
tific research, their capacity to manifest real-world impact is
relatively weak in comparison to concrete policy and legis-
lation, of which there are very few examples to highlight.
Effective translation of research into concrete legislation
is essential for achieving sustainable development by 2030.
Catalysing action requires a national or regional action plan,
which reconciles local/national policy agendas and global
assessments. An example of this is the new European Green
Deal, which represents an ideal opportunity for soil scientists
to directly influence the policy agenda, as the European
Commission aspires to make the EU the first climate-neutral
continent by 2050 through implementing a “Climate Law”
(Figure 1) (Montanarella & Panagos, 2021). In order to com-
ply, it is likely that Member States will also conceive and
implement national policies over the next decade. This high-
lights the need to promote closer and more sustained

working relationships between soil scientists and
policymakers at national and international levels.

Effective partnerships between soil scientists and
policymakers cannot be manifested overnight, but the
response to the COVID-19 pandemic, at the very least, dem-
onstrated that science-informed policies can be tabled and
implemented efficiently if a significant impetus is present. It
therefore seems incumbent that soil scientists will need to
tailor their approach to convey urgency and capture the
attention of policymakers (Lal, 2020b). Although the publi-
cation of status reports and guidance documents can sup-
port this, it is also worthwhile to consider recent examples
of environmental legislation. In the case of reducing plastic
pollution, for example, the development of UK legislation,
in part, followed an outreach documentary film and similar
public engagement activities. These were largely
spearheaded by non-scientist individuals with a sizeable
public following, working closely with scientists (Davison
et al., 2021). The question for the next decade, therefore, is
to whom should soil scientists turn to stimulate public con-
sciousness about the challenges facing soil resources and
the importance of sustainable soil management?
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3.2 | Integrating research agendas

Agenda 2030 comprises goals for the biosphere, societies
and their economies. Achieving (and perhaps more
importantly, continuing to achieve) all 17 of the SDGs is
a large task, but arguably the greatest challenge is coordi-
nating action so that the delivery plans for one goal do
not outcompete or nullify the potential to achieve others.
Recently, research has examined the trade-offs and syner-
gies between the SDGs, whether some goals act as prereq-
uisites for others, and how perceived trade-offs can be
transformed into virtuous cycles of sustainable develop-
ment (Kroll, Warchold, & Pradhan, 2019; Scherer
et al., 2018; Singh et al., 2018).

Throughout the decade, there will be more lessons to
learn about the ways to identify and convert trade-offs
to synergies, and these should inspire new ways of collab-
orating within and beyond soil science. With limited time
and resources allocated to soil science departments, the
first step here is to develop new and efficient methods to
monitor and evaluate the trade-offs and synergies
between functions across soil and other terrestrial/
marine systems. A seemingly minor but important shift
in our future nexus thinking here is a move from consid-
ering “soil functions” or “soil ecosystem services” to
acknowledging that life depends on an array of functions
and services that are delivered by an integrated
terrestrial-marine ecosystem, of which soil is a vital part.
This perspective shifts away from one focused on deliver-
ing all ecosystem functions and services in soils simulta-
neously, to one which considers how these are delivered
across the wider terrestrial environment. For example,
urban food grown using novel (soil-less) growing tech-
niques (e.g., soil simulants, hydroponics, bioarchitecture)
may help lessen the burden on soils to deliver on growing
food demands and allow those most degraded to undergo
extensive restoration treatment. The essential step, there-
fore, is to establish the role of soils in the wider ecosys-
tem, which will require sustained collaboration between
soil scientists and the wider environmental sciences.

The infrastructure to accommodate these more strate-
gic and collaborative networks has started to be developed
(see Figure 1). On the ground, for example, Critical Zone
Observatories (CZOs) host international and multi-
disciplinary expertise that encompass atmospheric, soil,
ecological, biological, hydrological and geological sciences
(Banwart, 2011). Likewise, light houses and living labora-
tories (Evans, 2021) have also been established to better
connect innovation, practitioners and scientists. More
broadly, open cloud infrastructure has enabled researchers
to share methods, training resources, data analysis toolKkits
and associated computer codes (Blair et al., 2019). More-
over, open access publishing has enabled greater
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availability, accessibility and transparency of research out-
puts (Laakso et al., 2011). Supplementing these initiatives
has been the development of publicly available global
databases that not only allow researchers to share data,
but standardize them for the benefit of the wider commu-
nity (Benaud et al., 2020).

3.3 | Reactive and proactive soil science
Ultimately the SDGs, the European Green Deal and envi-
ronmental targets at the national level are both reactive
and proactive programmes for the future. They are reac-
tive in the sense that they each acknowledge current
challenges, shortfalls, disequilibria and inequalities, and
seek to rectify these issues. They are also proactive
because they consider how these pressures and demands
will evolve over time. If soil science is to support and help
achieve these national and international agenda, it is
vital that researchers are armed with both a reactive and
proactive strategy. In essence, this entails a balanced
approach between responding reactively to existing chal-
lenges (e.g., monitoring and restoring degraded soils) and
developing the foresight to predict how soils may respond
to future perturbations (e.g., climate change). In practice,
a critical objective is to link communities in monitoring
and modelling across soil science.

The relationship between empirical and model-
derived data should be considered as symbiotic. The inev-
itable spatial and temporal limitations of observational
data indicate a need for model data, whereas empirical
data are crucial to both model development and valida-
tion. Both observations and models are required to
understand and quantify the current state of the soil sys-
tem, and to forecast future trajectories and magnitudes of
soil change (Robinson, 2015) in order to inform planning
and mitigation measures (or state and trend monitoring).
This challenge is highlighted in previous sections of this
paper in relation to MRV difficulties and the attempts to
overcome such issues through combining heterogeneous
empirical and model datasets. Addressing this challenge
is critical to ensure that the contribution of soils to sus-
taining Earth system functions is accounted for, and
weaknesses in Earth system models are identified
(Fatichi et al., 2020). More fundamentally, it is required
for furthering scientific advancement of our understand-
ing of the soil system, such as feedbacks (Robinson
et al., 2019).

Another challenge will be to generate effective and
harmonized map products. Recent advances in cloud
computing provide huge potential to address this chal-
lenge (Hollaway et al., 2020), including greater data stor-
age and discovery, additional computational capacities
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for model development, and coupling and uncertainty
analyses. Integration of datasets creates the potential for
geostatistical and machine learning approaches in rela-
tion to water and pollution, urban planning and other
environmental disciplines (Avanzi et al., 2019; Padarian &
McBratney, 2020). It also provides the basis for multi-
goals research, such as developing cropping systems that
boost food production, improving soil quality, storing car-
bon in soils, and reducing the use of pesticides. By
linking monitoring and modelling in soil science in this
way, we can both react to the present-day demands
placed on soils and scope out the challenges of the future.

Soil Sc

1Ience

4 | CONCLUSION

Over the past decade, the importance of soils for realising
the United Nations' Sustainable Development Goals has
been widely demonstrated. Soil scientists have increasingly
foregrounded the roles that soils play in combatting grand
global challenges such as climate change, food and water
security, urban development and ecosystem functioning,
and have acknowledged their connectedness. These chal-
lenges place strong pressures on the long-term health and
functioning of the biosphere. In spite of advancements in
the past decade, there still remains a large number of
knowledge gaps and research questions. In this paper, we
have not set out an itinerary of questions for further
research, rather we have argued for three ways of working
that will best support global efforts to secure sustainable
development by 2030. Implementing research into policy
and practice is a key, yet so far under-achieved, objective.
Clearly, much of this depends on the actions of
policymakers, but soil scientists should acknowledge their
responsibility over the next decade to build strategic relation-
ships with them in order to support policy delivery, whilst
considering innovative ways of engaging public conscious-
ness about the challenges facing soils. It is also important
that soils-based policies are sufficiently coordinated with
those in other environmental domains. Here we suggest that
specific collaborations between soil scientists and other disci-
plines to evaluate the trade-offs and synergies between soils
and the wider environment are key. Finally, if policies for
the future are to be built, it is important that soil scientists
consider how soils will change and what issues they will face
over time. Modelling can assist with this, and thus it is also
vital to sustain and enhance soil monitoring programmes, on
which the foundations of our models are based.
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