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Abstract

Extensions of the Standard Model (SM) with sterile neutrinos are well motivated from the observed
oscillations of the light neutrinos and they have shown to successfully explain the Baryon Asymmetry
of the Universe (BAU) through, for instance, the so-called ARS leptogenesis. Sterile neutrinos can
be added in minimal ways to the SM, but many theories exist where sterile neutrinos are not the
only new fields. Such theories often include scalar bosons, which brings about the possibility of further
interactions between the sterile neutrinos and the SM. In this paper we consider an extension of the SM
with two sterile neutrinos and one scalar singlet particle and investigate the effect that an additional,
thermalised, scalar has on the ARS leptogenesis mechanism. We show that in general the created
asymmetry is reduced due to additional sterile neutrino production from scalar decays. When sterile
neutrinos and scalars are discovered in the laboratory, our results will provide information on the
applicability of the ARS leptogenesis mechanism.

1 Introduction

The discovery of the Higgs boson completed the Standard Model (SM) of particle physics [1, 2]. However,
there are still some loose ends which the SM is unable to connect. For instance the nature of Dark
Matter (DM), the generation of neutrino masses or the observed Baryon Asymmetry of the Universe
(BAU) are open questions which call for an extension of the SM. A very efficient theory framework that
addresses these three questions simultaneously is the extension of the SM with three right-handed (or
sterile) neutrinos. Sterile neutrinos can be introduced explicitly in order to address the observations of
neutrino oscillations, BAU, and DM in a minimal way. An excellent example is given by the so-called
neutrino minimal Standard Model (νMSM) [3, 4, 5], cf. also Ref. [6] for a review.
It was shown by Akhmedov, Rubakov, and Smirnov that the existence of sterile neutrinos can explain the
observed BAU via oscillations between the active and the sterile neutrino sectors [7], which is referred
to as the ARS leptogenesis mechanism. Within this mechanism CP violating interactions between sterile
neutrinos and the active lepton sector result in a lepton number asymmetry in both the sterile and the
active neutrino sector. Sphaleron processes will subsequently convert the lepton asymmetry stored in the
(left-handed) active sector into a baryon asymmetry [8] thus explaining the Baryon Asymmetry of the
Universe. Note that this mechanism, unlike standard thermal leptogenesis [9] or resonant leptogenesis
[10], requires the sterile neutrinos to be non-thermal, i.e. the interaction rate with the active leptons must
be small. Consequently, ARS leptogenesis requires the sterile neutrinos to have GeV-scale masses. See for
example Refs. [11, 12] for recent reviews and Refs. [13, 14] for investigations into the available parameter
space of such models.
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In contrast to adding sterile neutrinos explicitly to the SM, their existence is motivated naturally in non-
minimal extensions of the SM, for instance in models where an additional gauge symmetry is introduced.
For example, when the B − L numbers of the SM fermions are gauged, a U(1)B−L gauge factor is
introduced, together with an additional gauge field and a scalar to make the gauge field massive via
spontaneous symmetry breaking. The existence of sterile neutrinos is required in this model to keep
the theory anomaly-free [15]. In this case an explicit Majorana mass for the sterile neutrinos would be
forbidden, however, it can be introduced dynamically through the same scalar that makes the gauge boson
massive. Extensions of the minimal sterile-neutrino framework, and their effect on (ARS) leptogenesis,
have been discussed in the context of many different theory frameworks: in conformal models [16, 17]; in
B − L extensions [18]; in a Majoron model and axions [19]; in the context of inflatons [20]. Particularly
interesting is the observation that resonant leptogenesis can be possible for heavy neutrinos as light as
500 GeV if their decays are assisted by additional scalars [21].
A smoking gun for a non-minimal neutrino sector would be the discovery of additional scalar resonances
in the laboratory. Scalar particles are searched for extensively at the LHC and excesses in recent data
seem to point toward additional scalar degrees of freedom. The CMS collaboration measured an excess
in diphoton events [22] that could be a scalar resonance at about 96 GeV, compatible with an excess in
bb̄ from LEP, cf. Refs. [23, 24]. Moreover, there are excesses in multi-lepton final states pointing towards
a heavy scalar with a mass of about 270 GeV [25, 26] that is connected to diphoton excesses in many
signal channels pointing toward a resonance at 151 GeV [27]. Last but not least, there are also some
less significant excesses in four-lepton final states with invariant masses around 400 GeV and above [28].
Clearly more data is needed to determine if any of these excesses will turn into a discovery.
In this paper we consider how an additional thermalised scalar would affect the efficiency of the ARS
mechanism to address the BAU. Therefore we extend the SM with two right-handed neutrinos and a
scalar boson, corresponding to an effective model that can in principle explain both neutrino oscillations
and the observed BAU. This model can be interpreted as an extension of the so-called νMSM [4] or as a
B − L symmetric model where the gauge boson is many orders of magnitude heavier than the other SM
extending fields.
This article is structured as follows. In Section 2 we will start with a discussion of the model including the
sterile neutrinos and the additional scalar. Following this, thermal effects of the scalar on the dynamics
of the sterile neutrino will be summarized. Afterwards, the kinetic equations, needed to calculate the
lepton asymmetry, will be reviewed and the effect of an additional scalar will be discussed. Section 2
will end with a discussion on the timescales which are relevant for successful leptogenesis via oscillations.
Section 3 will start with a general discussion on the available parameter space, where general arguments
are used to determine which parameter ranges could lead to non-trivial dynamics. In the remainder of
this section results from explicit calculations will be given. The results can be used to determine how the
additional scalar affects ARS leptogenesis. The article will be wrapped up with our conclusions.

2 Theory framework

We consider a minimal extension of the scalar sector with a real scalar singlet and a minimal extension
of the fermion sector with two right-handed neutrinos (or, analogously, sterile neutrinos). The latter are
motivated and constrained by the observed neutrino oscillations and we also consider LHC constraints on
scalar resonances for the former, both of these constraints limit the model parameters at zero temperature.
As we want to study early Universe cosmological implications of this framework, we also include finite
temperature effects.

2.1 The Model

For concreteness we introduce B − L symmetry with a corresponding U(1)B−L gauge factor that is
spontaneously broken at an energy scale far above the electroweak scale. In this model the field content
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beyond the SM is given by three additional sterile neutrinos Ni, i = 1, 2, 3 and a complex scalar singlet
S that carries twice the charge of Ni under the B − L symmetry (typically lepton number 2). For the
sake of minimality we make two assumptions: the third sterile neutrino N3 is decoupled and does not
contribute to our discussion; the gauge boson corresponding to the B − L symmetry can be neglected,
e.g. because its gauge couplings are sufficiently small or its mass is much larger than the other particle’s
masses. This leaves us with a real scalar boson S and two sterile neutrinos.
In this scenario the following Yukawa terms can be added to the Lagrangian of the SM:

LY = −FαiL̄αHNi −
1

2
YijSN̄

c
iNj + (h.c.) . (1)

Above, H is the SM Higgs field, Lα are the left-handed lepton doublets with α = e, µ, τ and Ni with
i = 1, 2 are the right-handed neutrinos that couple to S with Yukawa-like coupling matrix Y . F is a
Yukawa-like coupling matrix describing the interactions between the right-handed neutrinos, the lepton
doublet, and the Higgs boson. We work in a basis where the mass matrix of the sterile neutrinos is
diagonalized, i.e. the Yukawa matrix Y is a diagonal matrix. We remark at this point that in this model
the lightest active neutrino is exactly massless due to the decoupled third sterile neutrino N3.
The scalar potential in our model can be expressed as

V (S,H) = −1

2
µ2
SS

2 − µ2
HH

†H +
1

4
λSS

4 + λH(H†H)2 +
1

2
λSHH

†HS2 , (2)

where the µi are mass parameters and the λi are coupling constants of the scalar fields S and H, where
the former is a real scalar field and the latter is the complex isospin doublet of the SM Higgs boson.
Notice that terms that are odd in S can be neglected because of the B − L symmetry.
The scalars S and H can develop non-zero vacuum expectation values (vevs) when µ2

i > 0:

〈S〉 = v0
S , 〈H〉 =

 0

1√
2
vEW

 , (3)

As long as the mixing between the new scalar and the Higgs is small, the physical Higgs is dominated by
the neutral component of the doublet H, with vEW = 246 GeV. As H has isospin and hypercharge, this
leads to spontaneous breaking of the electroweak symmetry as in the SM.

2.2 Parametrisation

The scalar sector contains two independent parameters that will be relevant for our discussion below: the
scalar-Higgs coupling λSH and the scalar self-coupling λS . When the scalars S and H develop non-zero
vevs, Dirac (MD) and Majorana (MM ) mass matrices emerge for the neutrinos:

MD = F · vH , MM = Y · v0
S . (4)

In the type I seesaw approximation the small neutrino mass is given by M2
D/MM . Notice, however, that

lepton number is broken in this setup only when the trace of MM is non-zero. Diagonalisation of the
mass matrix yields the physical eigenstates, which are linear combinations of the interaction fields. We
anticipate the requirement from leptogenesis for the sterile neutrinos to be quasi degenerate in masses,1

and introduce the parametrisation:
M± = M0

N (1± α) . (5)

1The leptogenesis mechanism requires the mass splitting between the sterile neutrinos to be small, i.e. the sterile neutrino
masses to be highly degenerate. This is true for the ARS mechanism and also for resonant leptogenesis, see refs. [29, 30] for
an extended discussion.
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m1 m2 m3 sin2 θ12 sin2 θ13 sin2 θ23

0 eV 8.68× 10−3 eV 5.03× 10−2 eV 0.307 0.0218 0.545

Table 1: Variables of the νMSM model, light neutrino observables from the Particle Data Group 2020 [31]

The parameter α parametrises the mass difference of the two heavy neutrinos at zero temperature, and
for α� 1 we have M− = |Y11|v0

S ' |Y22|v0
S = M+ (in the basis where MM is diagonal) such that we can

approximate the masses for both sterile neutrinos M± via the zero-temperature mass

M0
N = Y v0

S , (6)

where we introduced the new parameter Y = (|Y11| + |Y22|)/2 which can be used instead of M0
N . This

yields the two parameters M0
N (or Y ) and α, which are independent for α� 1.

The Yukawa coupling F can be parametrised in a bottom-up and completely general way, based on
observable low-energy data, the so-called Casas-Ibarra parametrisation for a 3 + 2 neutrino sector [32].
For this parametrisation we use the following input parameters: the three neutrino mixing angles θij , the
three active neutrino masses mi, the two heavy neutrino mass eigenvalues (parametrised by M0

N and α)
and the four phases ξ, η, δ and ω. The mixing angles and active neutrino masses are known from neutrino
experiments [31], see Table 1.
In order to compare our model to the ARS leptogenesis mechanism in the νMSM we fix the phases to
the values used in Ref. [33]: ξ = 1, ω = π/4, δ = 7π/4 and η = π/3. We remark that we checked that
random variations of the internal parameters within the 1σ limits of the experimental measurements lead
to O(1) modifications in entries of the Yukawa coupling matrix F .
In summary, in our model there are a total of five parameters that are free within certain limits, namely:
Y , α, v0

S , λS and λSH . We will discuss the constraints on these parameters below.

2.3 Constraints

Here we list the considered zero-temperature constraints on the masses of the scalar from the LHC and
on the mixing between active and sterile neutrinos. Limits from Early Universe cosmology on the sterile
neutrino masses will also be discussed.

Sterile neutrinos: Active-sterile neutrino mixing is constrained from precision measurements of the
PMNS matrix, cf. Ref. [34]. Our use of the Casas-Ibarra parametrisation and the considered masses
M0
N ≤ 100 GeV renders the resulting mixing parameters small compared to current limits.

For M0
N < 1 GeV, the decays of N during the recombination period releases entropy into the thermal

bath and impacts Big Bang Nucleosynthesis, which in general places strong limits on the mixing and mass
parameters and requires in particular M0

N ≥ O(0.1) GeV [11].
On the other hand, it has been shown that decaying heavy neutrinos with masses O(30) MeV [35] and
sterile neutrinos that interact with additional scalars can alleviate the Hubble tension [36]. We will limit
our discussion to M0

N ≥ 0.1 GeV in the following.

Scalar bosons: Additional scalar degrees of freedom that decay into pairs of gauge bosons have been
searched for at the LHC, cf. e.g. the CMS report in Ref. [37]. Non-observation restricts these particles
to have masses above a few TeV with current data. On the other hand, the recent LHC data includes
excesses in the four-lepton invariant mass spectra that hint at additional resonances around 700 GeV
[38, 39]. Even more convincing signals have been reported for some time now in non-resonant multi-
lepton channels [40] and recently in diphoton channels with associated production [27], which point at
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scalar bosons with masses around the electroweak scale. We therefore conclude that scalars with masses
around the TeV scale are well motivated.
The measurement of the SM Higgs boson at 125 GeV limits its possible mixing with other scalar degrees
of freedom. For the example of a single additional scalar resonance, this mixing can be constrained via
precision measurements of the Higgs boson, and also with direct searches. Current constraints limit the
sine of the mixing angle to O(0.1) [41]. The mixing angle and λSH are related via

sinα = λSH
vEW v

0
S

M2
S −M2

h

(7)

where Mh = 125 GeV is the mass of the observed Higgs boson. If we assume that Mh �MS '
√

2λSv
0
S ,

the limit on scalar mixing thus constrains

λSH ≤ 2× 0.1λS
v0
S

vEW
, (8)

which implies that for v0
S > O(10) × vEW the interaction between the Higgs fields and S can be strong,

without affecting experimental constraints on the scalar-Higgs mixing. As we shall see below we will
consider v0

S ≥ 106, such that this limit can be met even if λS � 1.

2.4 Finite Temperature effects

In the early Universe both the scalar S and the Higgs are in the symmetric phase, therefore, if µ2
i > 0, none

of the particles have explicit mass terms. As discussed above, the scalars S and H can develop non-zero
vacuum expectation values, which happens at a specific time in the early Universe, i.e. at TEW ' 140 GeV
for the Higgs boson, corresponding to the electroweak phase transition and sphaleron freezeout. The S
symmetry breaking occurs at the temperature TS . For concreteness, we assume that this temperature is
identical to the vev of S, i.e. TS = v0

S . We implemented the time-dependent vev for S through a numerical
approximation of the Heaviside-theta function:

vS(z) = v0
S ·

1

e−2k(z−TEW /v0S) + 1
, (9)

with k = 105. Furthermore, z = TEW /T is used as “time” variable. We remark that we do not implement
a similar time-dependence for vEW as we only consider temperatures above TEW , where vEW = 0.
We notice that for z < 1 or, equivalently, T > TEW , the Higgs field remains in the unbroken phase, there
is thus no mixing between the two scalars. Any mixing induced after electroweak symmetry breaking
does not affect ARS leptogenesis.
In general particles receive a thermal mass from their interactions with the thermal bath. In particular,
the scalar S can be thermalised via its interactions with the Higgs field for λSH being sufficiently large,
its thermal mass at one loop is given by

MS(T )2 = 2λS(vS(T ))2 +
1

4
λST

2 +
1

6
λSHT

2 , (10)

with vS(T ) defined through Eq. (9). The first term corresponds to the zero temperature mass MS(T =
0) = M0

S in the limit where λSH is negligible. In the following we shall approximate it as follows:

M0
S =

√
2λSv

0
S . (11)

This is an excellent approximation for λS � vEW
vS

λSH , and we require vS ≥ 106 GeV and λSH ≥ 10−4 as
discussed below.
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Figure 1: Processes equilibrating N through S.

When the scalar S is in equilibrium with the thermal bath the sterile neutrinos can also obtain a thermal
mass from their Yukawa interactions with S [16]:

(M2
N (T ))ii = (Y · Y )iivS(T )2 +

2

3

1

8
(Y · Y )iiT

2 (12)

for i = 2, 3. With vs(T ) defined through Eq. (9). We remark that these thermal masses do not affect the
Casas-Ibarra parametrisation, which is defined at zero temperature.

2.5 Leptogenesis

Leptogenesis relies on the existence of processes that fulfil the three Sakharov conditions: they must
be out-of-equilibrium, they have to violate CP and they have to violate lepton number. The Sphaleron
interactions then translate the lepton asymmetry in the active neutrino sector into a baryon asymmetry.
In models with 3 active neutrinos and 2 sterile neutrinos, a lepton asymmetry can be produced via
oscillations between the active and the sterile neutrino sectors [33], where the dominant interaction is
given by the Higgs boson-mediated process Nt→ Lt, with L the lepton doublets, and t the top quark.
The dynamics of the active leptons and right-handed neutrinos are determined via the kinetic equations,
which describe the evolution of sterile neutrinos of each helicity ρN and ρN̄ as well as the evolution of the
SM leptons. For convenience we consider the chemical potential µα with lepton flavor α = e, µ, τ , instead
of the number densities for each particle and anti-particle species. The chemical potentials µα depend on
the specific momentum modes x = k/T , which makes solving them rigorously extremely difficult.
Fortunately, under the assumption that the sterile neutrino densities are proportional to the equilibrium
density, i.e. ρN = RN · ρeq the kinetic equations can be simplified by taking the thermal average, corre-
sponding to k = 2T , without significantly affecting the numerical precision [33]. Note that, like the full
kinetic equations, this approximation also conserves the total lepton number, which we explicitly checked.
With these approximations the kinetic equations, in terms of x = k/T and z = TEW /T , can be written
as [33, 42]:

dRN
dz

T 2
EW

M0z
=− i[〈H0

N 〉+ 〈VN 〉, RN ]− 3

2
〈γdN 〉{F †.F,RN − 1}+ 2〈γdN 〉F †.(A− 1).F

−
〈γdN 〉

2
{F †.(A−1 − 1).F,RN}+ ΓS (13)

dµα
dz

T 2
EW

M0z
=− γdν (T )[F.F †]αα tanh(µα)

+
γdν (T )

4

((
1 +

2

cosh(µα)

)[
F.RN .F

† − F ∗.RN̄ .F T
]
αα

− tanh(µα)
[
F.RN .F

† − F ∗.RN̄ .F T
]
αα

)
(14)

with z = TEW /T , related to time and through the Hubble constant, H = 1
2t = T 2

M0
, with M0 = 7.12 ×

1017GeV. The time derivative is thus related to the z derivative as; ∂
∂t =

T 2
EW
M0z

∂
∂z . Definitions of γdN and
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γdν , coming from the Nt → Lt interactions can be found in ref. [33]. Note that 〈 〉 denotes the thermal
averaging, for all terms ∼ 1/k this corresponds to k → 2T in the Maxwell-Boltzmann approximation. By
taking the complex conjugate of the kinetic equation of RN the kinetic equation of RN̄ can be obtained
straightforwardly.
The kinetic equations used in this paper, like the Boltzmann equations, are valid for relativistic systems
close to equilibrium [43]. A full calculation requires the use of so-called Kadanoff-Baym equations, how-
ever, it was shown that in the context of thermal leptogenesis the Boltzmann equations are actually able
to predict the lepton asymmetry relatively well, see e.g. Ref. [44]. Considering the uncertainty in the
predicted BAU due to the other simplifications we have imposed on the kinetic equations, we deem it
sufficient to use the kinetic equations as stated above to estimate the BAU.

H0
N is the free Hamiltonian

√
k2 + (M0

N )2
ii · δij . VN is the effective potential and contains the medium

effects. As mentioned before the tree level mass M0
N is defined as

(M0
N )ii = YiivS(z) , (15)

with vS(z) defined in Eq. (9). We remark that we are using Maxwell-Boltzmann statistics throughout,
unless stated otherwise, thus ρeq = e−x.
VN is the effective potential of the sterile neutrinos, which describes the interaction with the plasma, is
given by

VN =
NDT

2

16k
F †F +

(MN (T ))2

2k
=
NDT

2

16k
F †F +

2

3

T 2

16k
Y · Y , (16)

with k = 2T in the thermal averaged approximation. Whereas the first term comes from interactions of
the sterile neutrino within the SM bath and is included with the νMSM formalism [33], the second term
is due to interactions with the scalar.
The interaction terms in Eq. (1) and Eq. (2) introduce processes that connect the sterile neutrinos with
the thermal bath, as shown in Fig. 1. These are the scalar decay (and inverse decay) process (a), t-channel
N -scalar boson scattering (b), and s-channel N -Higgs boson scattering (c). We notice that the process
(c) occurs only after S symmetry breaking and is proportional to the product (Y λSH)2 (and is further
suppressed by a factor (T/mS)4 for T < mS), while the process (b) is proportional to Y 4. The decay
process (a) on the other hand is proportional to Y 2, which makes it the dominant process for Y, λSH � 1,
such that we neglect the other terms in the following.
We remark that the U(1)B−L gauge boson brings about further interactions between the sterile neutrinos
and the SM fermions. If the gauge boson is massless prior to S symmetry breaking N will be in thermal
equilibrium at early times. In the following, we shall assume that the gauge boson has interaction rates
that are sufficiently suppressed, for instance through a combination of tiny couplings or large gauge boson
masses, such that RN = 0 for times that are early compared to the timescale where the ARS leptogenesis
mechanism is efficient.
The process (a) adds a new term to the kinetic equations, which corresponds to sterile neutrino production
from the decays of the scalar S. While S is thermalised with the SM particles, it can act as a source for
N and N̄ production, via its decay [20, 45]

ΓS =
Y · Y
16π

1

ρeq(x)

MS(z)2

TEW

z

x2

∫ ∞
y0

ns(y)dy , (17)

with y0 = x + z2

4x
M2
s

T 2
EW

and ns(y) = e−y, i.e. also here the equilibrium density is approximated by the

Maxwell-Boltzmann distribution.
We remark here that we consider only production of sterile neutrinos of momentum k = 2T , which is
fixed through the parameter x in Eq. (17). Sterile neutrino distributions from scalar decay that are not
Boltzmann-like should lead to very similar results, since this is the most relevant momentum mode for
the ARS mechanism.
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The source term in Eq. (17) depends on the coupling parameters, Y, λS , λSH and v0
S through the thermal

mass MS(T ) (or MS(z)). Notice that the same process contributes to ρN̄ , which is accounted for with a
factor 1/2, compared to the decay rate stated in ref. [16]. We remark that this term also acts as a sink
for the sterile-neutrino sector through inverse decays, N̄ cN → S. However, in the following we consider
sterile neutrinos to be out of equilibrium, such that inverse decay can be neglected. If the scalar-sterile
neutrino interaction would equilibrate long before Sphaleron freeze-out the sterile neutrino sector washout
would remove any produced asymmetry.

2.6 Time-scales

It is useful to consider the time scales for understanding the dynamics of leptogenesis [42]. Within ARS
leptogenesis there are several important timescales, as we discuss below.

Sphaleron freeze-out: The possibly most important time scale is set by the Sphaleron freeze-out tem-
perature, which happens around T ∼ TEW . In terms of our time variable z this temperature corresponds
to z = 1. In order to have efficient Baryon Asymmetry production from the lepton asymmetry in the
active sector, lepton asymmetry must be produced before Sphaleron freeze-out. Any lepton asymmetry
produced after Sphaleron freeze-out is irrelevant for the BAU. The total baryon asymmetry is given by

Y∆B = −28

79
(Y∆Le + Y∆Lµ + Y∆Lτ ) , (18)

where the Y∆α correspond to the asymmetries for leptons `α.

S symmetry breaking: At the temperature TS the scalar S develops its vev v0
S , and as discussed

above we assume for simplicity that TS = v0
S . This implies that at the time zS = TEW /TS = TEW /v

0
S the

sterile neutrinos and the scalar receive bare masses as defined in Eq. (6) and Eq. (11), respectively. We
remark that S can remain thermalised until z = 1 as is discussed below.

Oscillations: Another relevant timescale is related to the oscillations within the sterile neutrino sector;
tosc. Due to small mass splitting between the two heavy sterile neutrinos each sterile neutrino propagates
at a slightly different speed through the plasma; this results in a phase shift between the two sterile
neutrinos, which is crucial for developing the lepton asymmetry. This timescale, defined by the time it
takes to build up an O(1) phase difference, can be defined as a function of z as

1 =

∫ tosc

0

∆M2

4T
dt , (19)

where we introduced the sterile neutrino thermal mass splitting:

∆M2 = |(MN1(T ))2 − (MN2(T ))2| . (20)

We notice that the absolute sterile neutrino mass splitting depends on the temperature, such that zosc
has to be evaluated via Eq. (19) as a time-dependent quantity.
We remark that for z � zosc the oscillations become increasingly fast, and solving the full differential
equations becomes computationally expensive. Following [42] we solve the full calculations up to z =
Nzosc, and for zosc < z ≤ 1 only the diagonal parts of the differential equation are solved. This is
done by setting all off-diagonal components of the right hand side of eq. (14) to zero at z = zosc. The
factor N = 20 is chosen such that Baryon Asymmetry agrees within 0.5% to the full calculations, as was
explicitly checked for benchmark point A in Table 2.
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α = 0.1 α = 10−3

α = 10−8 α = 10−8

Figure 2: Parameter space with limits from successful leptogenesis as discussed in the text, in the projection Y
and yS . Areas where the process (a) (S → NN) starts thermalising the sterile neutrinos are shown by the blue
color, considering λS = 10−1, 10−3 10−5. Areas where the active-sterile oscillations occur after Sphaleron freeze-out
are shown by the pink color. The green area denotes where zS > zosc. The black hashed corner indicates sterile
neutrino masses MN ≥ 100 GeV, and the dashed line corresponds to MN = 0.1 GeV. Plotted are the benchmark
points A, C and D, cf. Table 2. For the lower right panel, M0

S = 10 TeV was fixed. Throughout, λSH = 10−3 is
fixed.

3 Analysis and results

In the following we consider sterile neutrino masses below the electroweak scale, i.e. M0
N ≤ 100 GeV. Such

masses are too small to allow for the standard thermal leptogenesis or resonant leptogenesis to produce
the observed Baryon Asymmetry. Instead, we will focus on the so-called ARS leptogenesis mechanism,
where the asymmetry is produced through oscillations between the active and sterile neutrino sectors.

3.1 Discussion of the parameter space

Among the five model parameters, the limits in Eq. (8) allow for reasonably large mixing, e.g. λSH ∼ λS
is allowed for MS ≥ O(1) TeV and v0

S ≥ O(10) TeV. We therefore consider λS and λSH to be free
parameters. The other three parameters, α, Y , v0

S , are subject to a number of constraints, following the
considerations below.

Dominant scalar decay process: We remind ourselves that we assume the dominant N interaction
with the thermal bath to be given by process (a), S → N̄N . This process is only kinematically allowed
if the induced thermal mass of the scalar is larger than the thermal mass of the sterile neutrinos, and in
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particular Eq. (17) is only correct, if MN �MS . Therefore, our kinematic equations are valid if and only
if
√
λs � y. On the other hand, when the process S → NN̄ is kinematically forbidden one would have to

consider the processes (b) and (c) of N -scalar scattering instead, cf. Fig. 1, which is beyond the scope of
our discussion.

Out-of-equilibrium N : In Eq. (17) we neglected the inverse decays, which implies that the sterile
neutrinos have to have small number densities and thus be out of equilibrium. Explicitly, we chose
the condition ρN/ρeq < 0.15 at z = 1. This choice is conservative: our numerical estimations, for
some parameter choices, show that inverse decays are numerically negligible up to RN ∼ 0.5. The two
considerations above give conditions on both v0

S and Y , as functions of λS . These constraints are contained
in the blue areas in Fig. 2, for different values of λS and fixed λSH = 10−3.

Early oscillations: As discussed above, active-sterile oscillations need to happen before Sphaleron
freeze-out, such that the phase difference between the sterile neutrinos can create a Lepton asymmetry in
the active sector that can be translated into a baryon asymmetry. Since Sphalerons freeze-out at z = 1
the oscillations need to produce an order one phase shift before this time, which requires for the oscillation
time: zosc < 1. For different values of the mass splitting α this condition constrains on Y and v0

S through
the definition of the thermal mass in Eq. (12). The regions where oscillations are too slow are denoted
by the pink areas in Fig. 2.

Relativistic N : Sterile neutrinos must remain relativistic up to z = 1, such that the two helicity states
of the sterile neutrino remain distinct. Moreover, N being relativistic also suppresses the amount of
decays N → LH, compared to the 2 → 2 interaction, thus validating neglecting this decay throughout.
These considerations limit the sterile neutrino masses to mN ≤ TEW . This implies that the black hashed
area in Fig. 2 is nonphysical.

Thermalised scalar: Our kinetic equations, as well as the decay rate into sterile neutrinos, make the
implicit assumption that S is in thermal equilibrium with the thermal bath for vS ≥ T ≥ TEW . For these
temperatures the dominant interactions between S and the SM is given by the SSH†H term in Eq. (2).
We compute the interaction rate for the process H†H ↔ SS as:

Γ = σn(T ) , (21)

where n ∝ T 3 is the density of scalar bosons in the thermal plasma and σ ∝ λ2
SH/T

2 is the thermal
cross section for this process. We evaluate the thermal cross section with the simplifying assumptions of
massless Higgs bosons, and all external scalars having energies E = 2T . With this, and neglecting the
finite mass MS ,2 the reaction rate is identical to the Hubble rate under the condition

λSH > 2.4 · 10−7

√
T

GeV
. (22)

Since we know that relevant dynamics require T not to be too much larger than Tosc, let us consider
T ≤ 104·TEW . The assumption that S is thermalised for z ≥ 10−4 thus yields the condition: λSH ≥ 3·10−4.
In the following we shall always consider values for λSH , such that the condition in Eq. (22) is met.

Time of scalar symmetry breaking: We have to consider the ordering of the two times zS and zosc.
The parameter choice zS > zosc indicates that S symmetry breaking occurs relatively late, and that the
sterile neutrino dynamics are dominated by their thermal mass rather than a fixed mass as is the case in
the νMSM. This area is shown by the green areas in the upper panels of Fig. 2. The parameter choice
zS < zosc is expected to be dynamically closer to the νMSM.

2The interaction rate drops quickly for T ≤MS due to phase space suppression. This is accounted for in the definition of
the S decay rate into sterile neutrinos Eq. (17).
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Points α 〈S〉[GeV] y λS Y∆B remarks

A 10−8 107.5 10−6.5 10−2 5.04× 10−11 equivalent to νMSM

B 10−1 103.5 10−6 10−5 ∼ 0 Within yellow area

C 10−8 107 10−6 10−2 4.96× 10−11 relevant production of N

D 10−8 106.5 10−5.5 10−2 1.46× 10−11 large production of N

E 10−8 108 10−6.5 10−9 2.5× 10−10 “enhancement”

Table 2: Considered parameter space points A,B,C and D. The parameters are the relative mass splitting α, the
sterile neutrino Yukawa coupling Y , the zero-temperature vev of the scalar singlet v0

S , the scalar singlet self coupling
λS . Given are the produced Baryon Asymmetry of the Universe Y∆B for each point, where the scalar-Higgs coupling
λSH = 10−3 has been fixed.

3.2 Successful leptogenesis

It is important to realise that the process (a), cf. Eq. (17), creates sterile neutrinos and sterile anti-
neutrinos in equal numbers and therefore by itself does not produce any asymmetry in the sterile sector.
However, this process acts as a source for sterile neutrinos and thus increases RN and RN̄ , which affects
the lepton asymmetry production in the active sector via the kinetic equations. For the discussion below
we define a number of benchmark parameter points, listed in tab. 2, that correspond to different parameter
space regions where successful leptogenesis is possible in principle.

A: The limit of the νMSM: First, we consider the kinetic equations in Eq. (14) only, and use a fixed
mass for the sterile neutrinos M0

N = 10 GeV, α = 10−8, which corresponds to the case considered in
Ref. [33]. Solving the kinetic equations the total baryon asymmetry with the initial conditions RN = 0,
RN̄ = 0, µα = 0, RN (z), RN̄ (z) and µα(z), we find the value Y∆B = −28

79Y∆Ltot = 5.05×10−11. This value
differs by a factor of about four from the results in [33], namely YB = 2.73× 10−10, which we checked is
due to the different set of neutrino parameters.
Next we consider the benchmark point A, as defined in Table 2, with the choice of TS � TEW . The small
Yukawa coupling Y makes the thermal contributions to the sterile neutrino mass negligible for z ∼ zosc,
compared to its vev-induced mass of 10 GeV. This benchmark point corresponds to the limiting case
where the scalar interactions are negligible, and indeed the resulting asymmetry is identical to the one
evaluated above.

B: Late S symmetry breaking: The case where the scalar S develops its vev after the onset of
neutrino oscillations defines zS > zosc. This, combined with the above discussed conditions show that
only benchmark points with large relative mass splitting, small v0

S , and relatively large Yukawa couplings
can at least in principle generate an asymmetry, cf. the left panel of Fig. 2. These parameters result
in small sterile neutrino masses after the electroweak symmetry breaking, which in turn suppresses the
magnitude of the Yukawa matrix F . As analytic estimates from Ref. [7] make us expect, the resulting
baryon asymmetry from benchmark point B is consistent with zero, within computational uncertainties,
cf. Table 2.

C, D: Early S symmetry breaking: Early breaking of the symmetry related to S implies zS < zosc.
In this regime the sterile neutrino mass is generally dominated by the zero temperature mass, i.e. it is
temperature independent in very good approximation, and the oscillations are controlled by M0

N = Y v0
S

for T < v0
S . The dynamics are very similar to that of the νMSM, except for the additional N production

via the process (a). The boundary of the blue area in the four panels of Fig. 2 indicates where N
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Figure 3: Production of the sterile neutrino density RN as a function of the time parameter z for the benchmark
points A, C, D. The orange and blue line denotes total N production and N production via process a, respectively.
The green line denotes sterile neutrino production from νMSM dynamics. The vertical dashed lines indicate the
time where S decays are relevant, the dashed-dotted lines correspond to z = zosc = 0.028.

production from S decays increases the abundance of sterile neutrinos in the thermal bath to the point,
where inverse decays become relevant. Parameter space points that are in the white area and close to the
boundary with the blue area are expected to have enhanced production of sterile neutrinos.
The benchmark point C with M0

N = 10 GeV is close to this boundary for λS = 10−3 and we notice
that the resulting asymmetry is slightly reduced, compared to the result from benchmark point A. For
comparison we also show the benchmark point D, which is inside the blue area and has a further reduced
asymmetry compared to C. Notice that, strictly speaking, the point D violates our assumption that the
sterile neutrino densities are negligible. Estimates for the predicted BAU when inverse decay is included
show that for moderate sterile neutrino production the suppression of lepton asymmetry production is
actually reduced. This is a consequence of the reduced sterile neutrino abundance due to the inclusion of
inverse decays. However, to fully understand the dynamics in the blue region more precise calculations are
required, ideally including the momentum dependence or for example including more production channels,
which is beyond the scope of this work.

3.3 The effect of enhanced N production

We noticed above that leptogenesis can be successful only in the white regions of the parameter space, and
that quantitative differences to the νMSM are to be expected only when N production is not negligible,
on the other hand, we expect that too large N production will suppress the asymmetry production.
Therefore we inspect the parameter space points that are at the boundary between the white and the
blue area in Fig. 2 more closely.

Evolution of RN : The evolution of the sterile neutrino density RN with z for the benchmark points A,
C and D, is shown in Fig. 3, wherein the blue line denotes production only via S decays while the orange
line includes the complete kinetic equations. (Notice that the evolution of RN̄ is almost identical, apart
from phase differences and from the relatively tiny difference that makes the asymmetry parameters.)
The figure shows that for the benchmark points A and C the sterile neutrino density RN remains below
the equilibration limit of 0.15 at z = 1. The point D, however, reaches equilibration for z ' 10−3,
which renders its result unphysical as the inverse decays have been neglected. We observe that the main
production of sterile neutrinos through scalar decay occurs for T ∼ O(0.1)Ms(z), this region is denoted
by the dashed grey lines in plots. For comparison the oscillation timescale is also shown in the plots as
the dash-dotted lines.

Varying the scalar vev: As discussed above, in the limit of large vev and early S symmetry breaking,
we reproduce the results of the νMSM. Considering the effect of increased N production, we keep the
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Figure 4: Baryon asymmetry production as a function of the S vacuum expectation value v0
S . Left: The three lines

correspond to fixed sterile neutrino masses M0
N = 1, 10, 50 GeV. The S self coupling has been fixed to λS = 10−3.

Right: The three lines correspond to S self couplings λS = 10−5, 10−3, 10−1. The sterile-neutrino mass has been
fixed to M0

N = 10 GeV. For this figure λSH = 10−3 has been fixed.
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Figure 5: Total baryon asymmetry production as a function of the sterile neutrino mass M0
N . The three lines
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α = 10−8. See text for more details.
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Figure 6: Scalar zero-temperature mass versus sterile neutrino zero-temperature mass. Under the assumption of a
value for v0

S , successful leptogenesis limits the two masses above the corresponding colored line.

zero temperature neutrino mass M0
N fixed and vary v0

S , which implies that Y co-varies with the vev as
M0
N/v

0
S .

The left panel of Fig. 4 shows three lines for fixed MN = 1, 10, 50 GeV, for each MN the self-coupling
λS = 10−3 is fixed. The right panel shows three lines for fixed λS = 10−5, 10−3, 10−1, and M0

N = 10 GeV
is fixed. In both panels λSH = 10−3 is used. Both panels show that the asymmetry is reduced for smaller
v0
S .

The figure shows clearly how the asymmetry converges towards a fixed value when the interaction rate
drops below some critical threshold. Conversely the asymmetry drops with decreasing v0

S due to increased
washout from additional sterile neutrino production through S decays for increasing Y . The onset of the
asymmetry reduction depends on the value of Y , as shown in the left panel, as well as the scalar mass
MS , as shown in the right panel.

Varying the sterile neutrino mass: Here we consider the effect of varying sterile neutrino mass on
the total baryon asymmetry production for different benchmark points. Therefore we consider pairs of
parameters (v0

S , Y ) that are on a line parallel to the blue boundary in Fig. 2. We parametrise this line as

log(v0
S) = 2 log(Y ) + Li , (23)

where we fix Li = 20, 18.5, 17.5, which is, respectively, far away, close to, and inside the blue area for
λS = 10−2. We pick parameter points on these lines for 1 GeV ≤M0

N ≤ 100 GeV, and we fix λSH = 10−3

and α = 10−8 for definiteness.
The resulting baryon asymmetry for each mass is shown in Fig. 5, where the lines L1, L2, L3 are denoted
by the blue, orange, and green line, respectively, and where we show the result for the νMSM with the
red line for comparison. The figure shows clearly how the distance from the blue boundary determines
the amount of washout and thus reduces the asymmetry production.
The enhancement for M0

N ∼ 60 GeV can be explained as follows: increasing M0
N also increases the Yukawa

coupling between the sterile and active sector (through Casas-Ibarra parametrization), which increases the
oscillation speed and therefore the asymmetry production. However, at some point the Yukawa coupling
becomes so large that sterile neutrinos start to thermalise with the SM bath, and the resulting washout
again reduces the produced asymmetry.

3.4 Discussion

Implications of successful leptogenesis: We have seen that the dominant effect of additional scalars,
in the parameter ranges discussed, is increased washout, such that successful leptogenesis imposes strong
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constraints on the possible values of Yukawa couplings Y , scalar self couplings λS , and the vev v0
S .

Parameters that do not interfere with the leptogenesis mechanism are tiny Yukawa couplings with Y ≤
O(10−7) and/or large vevs with v0

S ≥ O(108) GeV, which corresponds to the decoupling limit. Conversely,
combinations of parameters where Y and v0

S are both very small lead to very small M0
N and thus to

oscillations that are too slow to generate an appreciable asymmetry before Sphaleron freeze out.
The domain with moderate vevs below the decoupling limit 106 GeV ≤ v0

S ≤ 108 GeV and Yukawa
couplings Y ≥ 10−7 warrants further scrutiny. In general also in this domain the generated asymmetry is
reduced compared to the decoupling limit. For a fixed value of v0

S we can define the limiting value for λS
(or equivalently M0

S)3 where the generated asymmetry is half that of the asymmetry in the decoupling
limit. This allows us to define a minimum scalar mass for each sterile neutrino mass, for which leptogenesis
is successful. The resulting limits are shown in Fig. 6, where the colored lines correspond to different
values for v0

S .
This figure can be intrepreted as follows. If scalar particles and sterile neutrinos are discovered, and their
masses are below one of the colored lines, the corresponding vev has to be larger, or leptogenesis is not
successful. As an example, consider M0

S = 270 GeV as motivated by the LHC multi-lepton anomalies
[25, 26]. Our findings imply that the corresponding M0

N has to be smaller than 1 GeV or 12 GeV if
v0
S = 106 or v0

S = 107, respectively. If N with larger masses are discovered, this implies v0
S ≥ 108 GeV, or

that the BAU has to be generated in another way.

Generalisation to multiple scalars: Here we considered the extension of the SM with sterile neutrinos
and a single scalar field. In scenarios where the SM is extended with sterile neutrinos and n scalar singlet
fields the sterile neutrinos can be even more connected to the thermal plasma, the zero-temperature
masses of the sterile neutrinos and the sterile neutrino source terms are given by, respectively,

M0
N =

∑
i

Yiv
0
Si , ΓSi =

Yi · Yi
16π

1

ρeq(x)

MSi(z)
2

TEW

z

x2

∫ ∞
y0i

ns(y)dy , (24)

where Yi and vSi are the Yukawa coupling and vev of the scalar Si. The ΓSi are relevant for our discussion
if and only if Si is thermalised and its mass M0

Si
is comparable to the oscillation time, TEW /zosc.

This brings the additional degree of freedom to increase the zero-temperature mass of the sterile neutrinos
without increasing the washout, if a dominant contribution stems from a non-thermalised or very heavy
scalar. This is comparable to allowing for Majorana mass terms. In general we expect that in these
scenarios the resulting asymmetry will be reduced by additional washout.

Enhanced asymmetry production: A limited enhancement of the produced BAU is found for ex-
tremely small values of λS , relatively small values of Y and large values of v0

S , i.e. inside the blue area
in fig. Fig. 2. The enhancement seems to occur when the timescales of scalar decays and sterile neutrino
oscillations coincide. As an explicit example we discuss benchmark point E, see Table 2, for this point
the BAU is enhanced by about 10% compared to the decoupling limit; from respectively 2.34× 10−10 in
the decoupling limit to 2.5× 10−10 for benchmark point E. This enhancement occurs for rather large RN
production (RN2 ∼ O(1) at z = 1). Thus, for a proper calculation of the BAU, inverse decay processes
should be taken into account. As discussed before, this will reduce the predicted enhancement, according
to our estimates the enhancement is in fact almost completely removed. We consider it unlikely that the
enhancement will increase significantly in a full treatment when for example other momentum modes or
inverse decays are taken into account properly.
Furthermore, we noticed that the sterile neutrino thermal mass (cf. Eq. (12)) increases the oscillations
in the sterile sector, which in turn enhances the asymmetry production in the active one. However, in

3We remark that the mass M0
S is obtained from diagonalising the scalar mass matrix, which includes an off-diagonal

entry proportional to λSHv
0
SvEW . The condition that S is thermalised, λSH ≥ O(10−4) then gives a lower limit for M0

S for
λS < vEW /v

0
SλSH .
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regions of parameter space where this effect is relevant, it is overcompensated by the enhanced washout
from scalar decays. If these two effects could be separated, a significant enhancement of the asymmetry
production would be possible. One way of separating these two effects is to have the time of S symmetry
breaking after the onset of oscillations, zS > zosc. Parameters that realise this are denoted by the green
area in Fig. 2. However, they all lead to thermalisation of N .
In general, the asymmetry production is enhanced when the sterile neutrinos are more degenerate in mass.
However, the asymmetry production can also be enhanced without strong mass degeneracy when three
flavors of sterile neutrinos are considered, as discussed in e.g. Ref. [46].
Another way that allows to separate zero-temperature sterile neutrino mass, finite temperature sterile
neutrino oscillations, and the scalar decay into sterile neutrinos is given by a combination of thermalised
and non-thermalised scalars, as discussed above. However, this goes beyond the scope of this work.

Time of scalar symmetry breaking: For our numerical evaluation we have set the time scale TS at
which the S symmetry breaks and vS(T ) ' v0

S equal to the vev itself: TS = v0
S . The time of symmetry

breaking can be evaluated analytically if the field content of the theory is fixed, as is done for the case of
the SM, for instance in Ref. [47]. From these arguments we expect that the time of symmetry breaking
is proportional to

TS ∝
v0
S√
λS

(25)

while the proportionality factors involve ratios of masses of possible additional field content. It is worth
pointing out that, in the case of the SM, the energy scale of the symmetry breaking time 1/TEW < vEW .
For our numerical evaluations we find that the exact time of symmetry breaking is irrelevant, as long as
it occurs before the relevant time scales of leptogenesis. In particular, symmetry breaking has to occur
before the oscillations, which take place typically at Tosc = O(0.01)TEW . Therefore the corresponding
energy scale of TS > 104 GeV is sufficient not to introduce numerical effects on the asymmetry calculation.

4 Conclusions

Sterile neutrinos are well motivated from the light neutrino oscillations and they have been shown to
successfully explain the Baryon Asymmetry of the Universe (BAU) through so-called ARS leptogenesis.
Sterile neutrinos can be added in theories that include also other new fields, such as scalar bosons, which
brings about the possibility of further interactions between the sterile neutrinos and the SM.
In this paper we considered an extension of the SM with two sterile neutrinos and one scalar singlet field
in order to study the robustness of the ARS leptogenesis mechanism with respect to scalar extensions.
We took into account constraints from the light neutrino parameters and also discussed limits on the
scalar sector from LHC searches. We investigated the effect that the thermalised scalar has on the ARS
leptogenesis mechanism.
We found that in our model the BAU of the νMSM is reproduced when the vev is at least as large as
O(108) GeV and the Yukawa and scalar self couplings are at most of O(10−6), which we refer to as the
decoupling limit. In most of the remaining parameter space the thermalised scalar leads to enhanced
sterile neutrino production at early times, resulting in a reduction of the predicted BAU compared to
the decoupling limit. A small enhancement of the BAU of O(10%) is present for parameters close to the
decoupling limit, i.e. v0

S ∼ 108 GeV and for scalar and heavy neutrino masses around and below the weak
scale, respectively.
Our results are general for models with scalar singlets and with extended gauge sectors, provided that the
additional field content does not thermalise the sterile neutrinos at any point of the Universe’s history.
They can also be generalised to models with more than one scalar field, in which case the sterile neutrino
zero-temperature mass and the scalar decay rate are sums over the scalar field content. In such models
the zero-temperature sterile neutrino mass could be dominated by a scalar that is not thermalised, such
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that the Yukawa couplings in the sterile neutrino masses can be different from those in the decay rate of
the thermalised scalar.
Our results can be useful when sterile neutrinos and scalar particles are discovered in the laboratory, such
that their masses and the Yukawa coupling are known. In this case it is possible to infer whether or not
the ARS mechanism is a valid possibility to create the BAU, or if another mechanism has to be invoked.
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