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Abstract 

In the experiment, we observed such a phenomenon: the alternating normal force changes the 

vibration state of a friction system. A single-degree-of-freedom mathematical model was used in this 

paper to discuss the effects of a constant and alternating normal force on the stick-slip vibration 

characteristics for different dynamic and static friction coefficients. Under the condition that the 

applied constant normal force continues to increase, the vibration amplitude of the system, the 

amplitude of the limit cycle, and the adhesion time of the system increase. When the difference 

between the dynamic and static friction coefficients (DSFCs) is small, the system has a complete and 

clear limit cycle. When the dynamic friction coefficient is reduced, the difference between DSFCs 

increases, and the limit cycle of the system is deformed. The friction system has more abundant 

dynamic vibration characteristics under an alternating normal force than a constant normal force. The 

vibration state of the system presents a single-cycle stick-slip vibration when the alternating normal 

force excites the multi-order harmonic response of the friction system, and the excitation frequency 

of the alternating normal force is the same as the main response frequency of the system with the 

highest energy or the low-order even-order main frequency. In contrast, the system exhibits various 

vibration modes when the excitation frequency of the alternating normal force is dissimilar to the 

main frequency of the system's highest energy response or is consistent with the odd-order main 

frequency. In addition, increasing the difference between DSFCs or using very high excitation 

frequencies and excitation amplitudes increases the likelihood of the system entering a chaotic 

vibration state. 
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1 Introduction 

As a vibration phenomenon with significant nonlinear characteristics, stick-slip is an 

important aspect of friction-induced vibration [1-3]. For a single-degree-of-freedom (DoF) system, 

the stick-slip phenomenon occurs when the coefficient of static friction is higher than the 

coefficient of kinetic friction [4,5]. Stick-slip vibration can have positive effects, i.e., the stick-slip 

vibration of a string instrument can produce beautiful music [6], or a friction damper can help 

reduce vibration [7]. However, stick-slip vibration typically has adverse effects, such as the 

groaning noise of a brake system [8,9]. 

In recent years, many scholars have carried out multi-angle studies on the stick-slip 

phenomenon. Popp et al. [10] used a discrete model with low degrees of freedom and discovered 

the potential bifurcation and chaos of the stick-slip system. Velde et al. [11] proposed a 

mathematical model of the stick-slip phenomenon caused by deceleration. They verified that 

deceleration motion caused stick-slip and analyzed the influence of different parameter 

combinations, e.g., the damping coefficient, deceleration, stiffness, on predicting the occurrence of 

stick-slip. Li et al. [12] used the mass-damper-spring system to study the influence of the lateral 

runout of the elastic disk on the in-plane stick-slip vibration characteristics. Numerical simulation 

results showed that the contact separation of the disk and the slider significantly affected the stick-

slip vibration and exhibited nonlinear dynamic behavior. Lisowski et al. [13] studied a two-degree-

of-freedom nonlinear torsional model with elastic barriers. They showed that this torsional friction 

behavior can affect the characteristics of the friction system. 

And Pascal et al. [14] established a two-DoF model considering dry friction and harmonic 

loads and discussed the stability of the three motion trajectories. Wang et al. [15] experimentally 

analyzed the influence of different damping alloys as friction pair materials on stick-slip vibration; 

the results showed that Mn-Cu damping alloys and aluminum alloys provided the best suppression 

of stick-slip oscillations. The study also revealed different wear behaviors and clarified the 

correlation between different wear behaviors and the stick-slip oscillations. Nakano [16] examined 

the conditions for stick-slip occurrence based on a single-DoF system with Coulomb friction and 

expressed the difficulty of stick-slip occurrence by two dimensionless parameters. These results 



show that velocity, damping coefficient, stiffness, load and other parameters can affect the stick-

slip vibration. 

The use of low-DoF models to explore the effects of various parameters on system vibration 

characteristics has been widely adopted in previous studies [10,17-22]. McMillan [17] explored 

the effects of conveyor belt speed and initial conditions on the induced squeal by using a spring-

mass-conveyor belt single-DoF model. Marin et al. [18] studied the effects of some main 

parameters on the phase-plane and phase-space motion states of the stick-slip vibration of the 

single-DoF and two-DoF models through standard circuit simulation software. Oestreich et al. [19] 

studied the effect of simple harmonic excitation frequency on system bifurcation and chaos through 

a single-DoF model. The results showed that changing external excitation frequency changed the 

dynamics of period-doubling bifurcation to chaos. 

Both numerical simulation and experimental studies have shown that the difference between 

DSFCs is related to the unstable mechanism of frictional motion [23-28]. Ozaki et al. [23] carried 

out a numerical analysis of stick-slip instability using a single-DoF model. The authors verified 

that a change in the friction coefficient had a substantial impact on stick-slip instability and 

discussed the system’s dynamic characteristics, such as the quality, stiffness, and driving speed. 

On the other hand, Lee et al. [24] experimentally investigated the effects of tangential contact 

stiffness, volume stiffness, relative sliding velocity, and the difference between DSFCs on the 

intensity and frequency of stick-slip. The test results showed that the intensity and frequency of 

stick-slip during low-speed braking were substantially affected by all factors. 

Researchers have discussed the stick-slip vibration mechanism and the influence of various 

factors on stick-slip vibration using theoretical analyses and experimental studies. However, most 

of these studies used the ideal state of the friction system variables, whereas the parameters change 

in real time under actual working conditions. For example, the external load of the friction system 

changes dynamically [29]. Simplifying the variables to the ideal state is convenient for research, 

and the results are more consistent. However, the conclusions are only suitable for guiding 

theoretical research and may not be applicable to practical conditions. 

The normal force is the excitation input of frictional self-excited vibration and has a crucial 

influence on the vibration characteristics [30-34]. And any slight changes of normal force may 

cause changes in the vibration characteristics. Maegawa et al. [35] studied the effects of non-

uniform normal loads on the precursory events of stick-slip vibration by means of experiments and 



numerical simulation. Pilipchuk et al. [36] designed a two-degree-of-freedom experimental device 

considering the effects of gravity and geometric nonlinearity and established a corresponding 

mathematical model. The influence of the normal force and the speed of the moving belt on the 

dynamic characteristics of the system during the braking process were explored. The experimental 

results showed that under the influence of the above two factors, the dynamic response of the 

system underwent a qualitative transition, namely the appearance of the densifying spectral bend 

in the final stages of the deceleration process, and this phenomenon could be regarded as an 

indicator of the appearance of squeal. The results calculated by the mathematical model had a good 

qualitative match with the experimental results. Liu and Ouyang [37] designed a two-degree-of-

freedom test rig too in which the varying normal force was coupled with the tangential friction-

induced vibration of a pin in sliding contact with a rotating disc. The disc surface was treated to 

possess sectors of different friction properties, and this was found to be capable of reducing the 

stick-slip vibration of the pin. 

And Krallis et al. [38], Papangelo et al. [39] and Pasternak et al. [40] investigated the impact 

of changing normal forces on stick-slip vibration through a single-DoF mathematical model. To 

expand, Krallis et al. [38] and Papangelo et al. [39] discussed the critical conditions for the 

transition between general sliding friction vibration and stick-slip vibration of the friction system 

on the basis of keeping the static friction coefficient equal to the dynamic friction coefficient. And 

the influence of parameters such as the amplitude and frequency of the normal force on the critical 

conditions for the transition of these two states was studied. Pasternak et al. [40] were more inclined 

to explore how to apply alternating normal forces to eliminate or reduce stick-slip vibration, that 

is, to change from a stick-slip vibration state to a general sliding friction state. The scope of these 

papers is between the general sliding friction vibration state and the stick-slip vibration state, and 

does not consider that the application of alternating normal force will cause the stick-slip vibration 

to evolve into a more complex vibration of multiple vibrations state and chaotic vibration state. 

Few studies have reported the stick-slip vibration characteristics of friction systems under 

dynamic loads. Therefore, research on the influence and mechanism of an alternating normal force 

on the stick-slip vibration characteristics can provide theoretical support and guidance for 

minimizing the damage caused by stick-slip vibration under actual working conditions. Therefore, 

this paper uses a discrete mathematical model to investigate the effect of real-time varying dynamic 

loads and different friction coefficients on the stick-slip vibration characteristics. The results are 



compared with the stick-slip vibration behavior of a system under a constant force. The dynamic 

load is designed as a normal force that changes according to the sine law, and different amplitudes 

and frequencies of the normal force are evaluated in the simulation. The time-domain and 

frequency-domain characteristics of the stick-slip vibration of the friction system under an 

alternating normal force are evaluated using bifurcation diagrams, phase-space diagrams, 

spectrograms, and Poincaré diagrams for different excitation amplitudes and excitation frequencies 

to determine the potential vibration states of the system. 

2 Single-degree-of-freedom mathematical model 

This paper uses the classic undamped single-DoF lumped-mass model to analyze the influence 

of the alternating normal force on stick-slip vibration. A qualitative analysis is carried out of the 

dynamic characteristics of the system's stick-slip vibration under an alternating normal force. It 

should be pointed out that the friction disk in the test equipment (Fig. 1) is in rotation and thus the 

motion of the mass block is largely in one (circumferential) direction, which can be modeled as a 

translation. As shown in Fig. 2, the concentrated mass m is connected to the fixed wall by a spring of 

stiffness k1 and is simultaneously subjected to the normal force FN and the frictional force between 

the rigid conveyor belt and the mass moving at a constant speed v0. It is assumed that the mass and 

the conveyor belt remain in contact without separation. Since this article focuses on the influence of 

the alternating normal force on the stick-slip vibration performance of the friction system, the basic 

parameters in the single-DoF model are set to constants ( m=1 kg, k1=1 N/m, v0=1 mm/s) except the 

normal loading force FN. The parameters were selected based on theoretical research [10]. The 

Coulomb friction model with constant dynamic and static friction coefficients is used to determine 

the influence of the alternating normal force on the stick-slip motion. Among various influencing 

factors, the friction coefficient has the most considerable effect on the vibration behavior [23-28]. 

Since it is impossible to evaluate if the friction coefficient has a considerable effect on the vibration 

behavior of the system under an alternating normal force, we select two groups of dynamic and static 

friction coefficients. The first group includes the static friction coefficient μs=0.4 and the dynamic 

friction coefficient μk=0.2; the second group consists of the static friction coefficient us=0.4 and the 

dynamic friction coefficient μk=0.1. The simulation calculation is conducted using MATLAB 

software. The influences of the excitation amplitude (Fω) and the excitation frequency (ω) of the 

alternating normal force on the stick-slip vibration are investigated.  



 
Fig. 1 The test device: (a) object picture and (b) schematic diagram 

 
Fig. 2 The single-DoF mathematical model 

According to Newton's second law, the dynamic equation of a single-DoF system in the x-

direction is expressed as:  

1 fmx k x F+ =                               （1） 

The friction force Ff is the product of the friction coefficient and the normal contact force FN 

between the mass m and the conveyor belt, where Ff =μFN 

0 sin( )NF F F tω ω= +                           （2） 

The ode45 solver in MATLAB is used to solve the time-domain response signal of the system. 

Due to the interface stick-slip dynamic behavior of the system, the switch model algorithm [41] is 

used to solve the response of the non-smooth system. It is assumed that the relative speed between 

the mass and the conveyor belt is vr; its expression is shown in Eq. (3): 

0 = rv v x−                                 （3） 

If rv ς> , where ς  is the set minimum error value (10-6), relative sliding occurs between the 

friction block and the conveyor belt, and the system is in the slip state. The expression of the dynamic 



friction force Ff-slip is shown in Eq. (4): 

f slip k NF Fµ− =                              （4） 

If rv ς<  and the spring force is less than the friction force, the mass and the conveyor belt 

remain relatively static, and the friction system is in the stick state. The static friction force Ff-stick is 

the combination of the spring force and the maximum static friction force Fmf-stick. Two conditions can 

occur, as shown in Eq. (5): 

1

s

 
=

- s
 
 gn( )  >

mf stick
f stick

N r mf stick

Spring fok rce
Spring f

x F
F

F ce Forvµ
−

−
−

≤



               （5） 

3 Test equipment, results and discussion 

3.1 Test equipment and parameters 

The experiment is conducted on the CETR-UMT-3 multifunctional friction and wear testing 

machine using a typical pin-disk surface contact mode. The equipment consists of a test device and a 

signal acquisition device. The friction block sample and the friction disk sample are attached to the 

test device with a friction block clamp and friction disk clamp, respectively. The friction block 

consists of composite material, with dimensions of 9 mm × 9 mm × 15 mm and roughness of 0.4 μm. 

The friction disc is forged steel with a diameter of 25 mm, a thickness of 3 mm, and roughness of 

0.06 μm. The friction radius between the friction block and the friction disc, i.e., the distance between 

the two components, is 6.1 mm. The normal force and friction force during the test are measured by 

the built-in two-dimensional force sensor (sensitiveness: 0.025 N; range 5~500 N) inside the CETR, 

and the data are stored in the computer that controls the CETR machine. The tangential vibration 

velocity of the friction block is measured by a laser vibrometer (model: Polytec PDV-100; sensitivity: 

8 mv/mm/s; range: ±500 mm/s; frequency response: 0.5~22 kHz). The measured data are collected 

by an 8-channel data acquisition instrument (DH5922N), and the sampling frequency is 10 kHz. The 

normal, tangential, and radial vibration acceleration signals of the friction block are measured by a 

three-dimensional acceleration sensor (model: KISTLER 8688A50; sensitiveness: 100 mV/g; 

frequency response: 0.5~5 kHz), and the measured data are collected by the 8-channel data acquisition 

instrument; the sampling frequency is 10 kHz. The test is conducted in a dry environment under 

standard atmospheric pressure (room temperature: 24~27℃; relative humidity: 60 ±10%). 

The test is divided into two parts. First, a constant normal force of 160 N, 180 N, and 200 N is 

applied. Second, an alternating normal force is applied with the following parameters: median force 

F0=180 N, amplitude Fω=20 N, and excitation frequencies of 0.25 Hz, 0.5 Hz, 1 Hz, and 2 Hz (the 

relationship between the excitation frequency f and the excitation angular frequency ω is: f=ω/2π).In 



the process of test, the rotation speed of the friction disc remains constant at 2.5 rpm, the duration of 

each group of tests is 2 minutes, and each set of tests is repeated 3 times. 

3.2 Test results and discussion 

The tangential velocity signal measured by the laser vibrometer is integrated in the frequency 

domain to obtain the tangential displacement signal. Figure 3 shows the phase diagrams of the system 

in the stable phase of 50 s-52 s under three constant normal forces. The velocity in the stick stage is 

not constant, but there are slight fluctuations due to the inevitable jitter of the test equipment during 

the test. Under the condition that the applied constant normal force continues to increase, the 

displacement of the system in the stick state increases. After the displacement reaches the maximum 

value, it decreases, and with the rapid decrease in speed, the displacement increases rapidly. Since the 

rotation speed of the friction disc is constant, the greater the normal force, the greater the frictional 

force of the friction interface is. Thus, the system must accumulate more tangential elastic potential 

energy to overcome the frictional force. Therefore, since the maximum static friction of the interface 

has not been exceeded by the elastic potential energy, the tangential displacement of the system 

continues to increase, and more kinetic energy is accumulated for release in the slip phase. As a result, 

the speed amplitude of the system increases in the slip phase, corresponding to an increase in the 

amplitude of the middle limit cycle, as shown in Fig 3. 

 
Fig. 3 The phase diagram of the system under a constant force (a) 160 N, (b) 180 N, (c) 200 N [42] 

Figure 4 shows the tangential vibration acceleration signal and the root-mean-square (RMS) 

value of the system in the stable phase of 50 s-52 s under the constant normal force. The tangential 

acceleration signal of the system exhibits periodic relatively constant values and peaks. When the 

acceleration is zero, the friction block and the friction disc are in a relatively static state, and a sudden 

change in acceleration means that the friction block and the friction disc are in a sliding state. Under 

the constant normal force, the acceleration amplitude depends on the magnitude of the applied normal 

force. The greater the applied normal force is, the greater the acceleration amplitude is, i.e., the system 

is transitioning to a more intense stick-slip vibration state. The acceleration RMS increases with an 

increase in the normal force. 



 
Fig. 4 (a) Acceleration signal and (b) acceleration RMS value of the system under a constant force 

Figure 5 exhibits the phase diagram in the stable phase of 50 s-55 s under the four excitation 

frequencies. The amplitude of the limit cycle of the system is significantly lower under the alternating 

normal force than the constant normal force, and the shapes of the limit cycle are different. Limit 

cycles exist in the system at excitation frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz, but the form is 

different. This result shows that the system exhibits periodic stick-slip motion in these three states, 

but the motion patterns are different. There is no limit cycle at an excitation frequency of 2 Hz, and 

the motion trajectories are complex. Figure 5 exhibits that the motion state changes from stable 

periodic stick-slip vibration to irregular vibration as the frequency of the applied alternating force 

increases. 

 

Fig. 5 The phase diagram of the system under an alternating force (a) 0.25 Hz, (b) 0.5 Hz, (c) 1 Hz, (d) 2 Hz 



Fig. 6 shows the tangential vibration acceleration signal and the RMS value of the acceleration 

when the system is in the stable phase of 50 s-55 s under the four excitation frequencies. At excitation 

frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz, a phenomenon similar to that of applying a constant normal 

force is observed, i.e., the tangential acceleration signal of the system exhibits relatively constant 

values interrupted by periodic peaks, and the system is in the stick-slip-stick vibration state. However, 

the difference is that the stick-slip vibration period becomes shorter, and the magnitude of the 

vibration reduces with an enlargement in the excitation frequency. The RMS values are similar at 

excitation frequencies of 0.25 Hz, 0.5 Hz, and 1 Hz (Fig. 6(b)), indicating similar vibration intensities 

of the system. In contrast, the tangential vibration acceleration signal of the system is more complex 

at an excitation frequency of 2 Hz, exhibiting a more chaotic vibration signal. Thus, the acceleration 

of RMS value is significantly higher at 2 Hz than at the other three excitation frequencies, indicating 

that the vibration intensity and shape of the system are not solely stable stick-slip vibrations. Figure 

6 indicates that increasing the excitation frequency of the alternating normal force causes the system 

to change from stable stick-slip vibration to unstable friction vibration. 

 

Fig. 6 (a) Acceleration signal and (b) acceleration RMS value of the system under the alternating force 

4 The stick-slip vibration characteristics obtained from a single-degree-of-

freedom theoretical model 

4.1 The stick-slip vibration characteristics of the system under a constant normal force 

The first set of dynamic and static friction coefficients (μs=0.4, μk=0.2) is selected to research 

the stick-slip vibration characteristics of the system under a constant normal force. Figure 7 exhibits 

the phase diagram and bifurcation diagram under different constant normal forces. The external 

normal force gradually increases from 10 N to 40 N in steps of 5 N. As the constant normal force 

increases, stick-slip vibration appears in the system, and the amplitude of the limit cycle of the stick-



slip vibration increases sequentially. It is manifest from Fig. 7(b) that under the condition that the 

normal force keeps increasing, the balance point of the mass block produces a slight offset, whose 

value is calculated according to Eq. (6). Under the condition that the normal force keeps increasing, 

the offset and the amplitude of the mass increase. The reason is that an increase in the normal force 

increases the maximum static friction force, inducing the system to generate a greater spring force to 

get over the static friction force. The force ultimately promotes an increase in the adhesion time of 

the mass, which stores and releases more energy in a single cycle. 

1/s k Nx F kµ=                               （6） 

The differential equations of the system are solved by MATLAB's ode45 solver. The initial 

parameter values are different; therefore, the system requires a different number of steps to reach a 

stable state. In this paper, the duration of each calculation is 100π s, and the results of the first 300 s 

are shown in the graph. Only the data after t1 (62.8 s) are selected for the frequency-domain analysis 

to prevent an influence of the initial value on the analysis of the system motion state. Figure 8 exhibits 

the time-domain and frequency-domain signals of the stick-slip vibration of the friction system under 

normal forces of 20 N and 25 N. 

Under a constant normal force, the time-velocity curve of the mass shows a constant single-

periodic motion state, and as the normal force increases, the amplitude and period of the system 

vibration increase. The frequency spectrum of the vibration velocity in t1~300 s exhibits that the 

fundamental frequency of the system response reduces with an increase in the normal force. When 

the normal force is 20 N (25 N), the system produces a multi-order harmonic response with a 

fundamental frequency of 0.0855 Hz (0.0738 Hz). Table 1 lists the fundamental frequencies of the 

system responses under different constant normal forces. As the normal force increases, the 

fundamental frequency of the vibration response decreases, and the vibration period of the system 

increases. 

 
Fig. 7 (a) Phase diagram and (b) bifurcation diagram of the system under different constant forces  



 
Fig. 8 (a) Vibration velocity time-domain signal and (b) FFT analysis results of the friction system under constant 

forces of 20 N and 25 N 

Table 1 The basic frequency of the stick-slip vibration response of the friction system under different constant 

normal forces 

Normal force /FN 
Response fundamental 

frequency 
Normal force / FN 

Response fundamental 

frequency 

10 N 0.1243 Hz 30 N 0.0661 Hz 

15 N 0.1010 Hz 35 N 0.0583 Hz 

20 N 0.0855 Hz 40 N 0.0505 Hz 

25 N 0.0738 Hz — — 

 

Figure 9 shows the displacement-velocity two-dimensional phase diagram of the mass, the three-

dimensional phase-space diagram expanded according to the motion cycle (the polar diameter and 

polar angle of the two-dimensional polar coordinate system, respectively, represent the displacement 

and the motion period, and the Z axis represents the speed), and the Poincaré cross-section based on 

the projection of the three-dimensional phase-space trajectory on a plane with a polar angle of π and 

parallel to the Z-axis (O in the figure represents the pole of the polar coordinates, and θ represents the 

polar angle). The Poincaré cross-section diagram is used to distinguish the periodic motion, quasi-

periodic motion, chaotic motion, and other motion behaviors of the system according to the dynamic 



differential equations of nonlinear systems. Under the constant normal force, the motion state of the 

system shows stable single-periodic stick-slip vibration. The two-dimensional phase diagram 

indicates a single-periodic limit cycle, which is expanded in the three-dimensional phase-space with 

only one motion trajectory; thus, only one point is shown in the Poincaré cross-section in Fig. 9(c). 

Therefore, under the constant forces of 20 N and 25 N, the mass exhibit single-periodic stick-slip 

motion. 

 
Fig. 9 (a) Phase diagram, (b) phase-space diagram, and (c) Poincaré cross-section diagram of the system 

under different normal forces 

4.2 The stick-slip vibration characteristics of the system under an alternating normal force 

Figure 10 shows the bifurcation and corresponding Lyapunov exponent of the displacement of 

the mass with the frequency of excitation at a median alternating normal force of F0=25 N and an 

amplitude of Fω=5 N. As the excitation frequency increases, the mass exhibits multiple motion states, 

such as chaos, single-periodic vibration, and multi-periodic vibration. According to the criterion of 

Lyapunov exponent for periodic, chaotic, and other forms of motion of the system [43,44], the 

bifurcation diagram is divided into seven regions. In regions 'I', 'III' and 'V', the motion state of the 

system is disordered; in regions 'II', 'IV', and 'VI', the system is in a single-periodic motion state; in 

region 'VII', the system exhibits multiple motion states. Bifurcation phenomena are observed near 

critical points, such as sudden boundary changes and jumps. For example, when the excitation 

frequency is 0.62 rad/s (the critical point of regions 'II' and 'III'), the single-periodic motion state of 

the mass block suddenly changes. 



 
Fig. 10 (a) Bifurcation diagram and (b) corresponding Lyapunov exponent diagram of the system 

displacement with the excitation frequency at an excitation amplitude of 5 N 

Further, we discuss the stick-slip vibration characteristics of the friction system for different 

frequencies. An excitation frequency of ω=0.27 rad/s is selected in the chaotic stage, and ω=0.5 rad/s 

is selected in the single-periodic stage, and ω=0.69 rad/s and ω=1.65 rad/s are chosen in multiple 

vibration stage. 

Figure 11 displays the phase diagram, phase-space diagram, and Poincaré cross-section diagram 

of the stick-slip vibration of the friction system at different frequencies. At ω=0.27 rad/s, a single 

limit cycle with multiple loops is observed in the phase diagram. As the calculation time increases, 

the number of loops increases, and the phase-space trajectory becomes more chaotic. Multiple 

discrete points are observed, and the system is in chaotic stick-slip motion at this time. At ω=0.5 rad/s, 

the phase diagram exhibits a single-periodic limit cycle, the phase-space diagram has only one 

trajectory, and only one point is visible in the Poincaré cross-section diagram. Under these 

circumstances, the system is in a single-periodic stick-slip motion state. At ω=0.69 rad/s, the system 

is in a two-periodic vibration state. The phase diagram and phase-space diagram show an additional 

trajectory, and the Poincaré cross-section diagram exhibits two discrete points. At ω=1.65 rad/s, the 

Poincaré cross-section depicts a straight line, and the system is in a quasi-periodic stick-slip state. 



 

Fig. 11 (a) Phase diagram, (b) phase-space diagram, and (c) Poincaré cross-section diagram of the system for 

different excitation frequencies 

Figure 12 shows the external excitation signal, vibration velocity signal, and fast Fourier 

transform (FFT) analysis results of the system for four excitation frequencies. The value of t1 is the 

same in Fig. 12 and Fig. 8. In Fig. 12(c), the left Y-axis depicts the FFT results of the speed signal, 

and the right Y-axis shows the stress vibration frequency (dashed line). The friction system produces 

multiple main response frequencies at an excitation frequency of 0.27 rad/s and a frequency of 0.0430 

Hz. The highest response frequency of the system is 0.0725 Hz, and the vibration behavior of the 

mass is complex. At 0.5 rad/s, the friction system produces a multi-order harmonic response with a 

fundamental frequency of 0.0796 Hz. At this time, the excitation frequency is consistent with the 

response frequency of the system with the highest energy, and the system is in a single-cycle stick-



slip state (Fig. 10). At 0.69 rad/s, the excitation frequency is 1.5 times of the response frequency of 

the system with the highest energy. At this time, the system is in a two-periodic stick-slip state. At 

1.65 rad/s, the excitation frequency is in keeping with the third-order vibration frequency component 

of the system’s response fundamental frequency, and the system is in a quasi-periodic stick-slip 

motion state. 

 
Fig. 12 (a) Normal force time-domain diagram, (b) velocity time-domain diagram, and (c) frequency spectrum 

diagram of the system for different excitation frequencies 

Further, we select an excitation frequency in each region in Fig. 10 and calculate the response 

frequency of the system with the highest energy. The frequency data are exhibited in Table 2. The 

excitation frequency of 0.67 rad/s in area 'III is greater than the highest response frequency but less 

than the second-order response frequency of the system. The value is three-half of the main frequency 



of the highest response of the system. At this time, area 'III' is the transition area between the single-

periodic stick-slip motion areas 'II' and 'IV'. In area 'IV', the excitation frequency is 1 rad/s, which is 

consistent with the second-order response frequency of the system. The system is in a single-periodic 

stick-slip state. In region 'V', the excitation frequency is 1.7 rad/s, which is consistent with the third-

order response frequency of the system. However, Fig. 10 exhibits that the system is in a multi-

periodic stick-slip motion state at this time. In area 'VI', the excitation frequency is 2.25 rad/s, which 

is consistent with the fourth-order response frequency of the system; the system is still in a single-

periodic stick-slip motion state. In area 'VII', the excitation frequency is 3.15 rad/s, which is equal to 

the fifth-order response frequency of the system. As the excitation frequency increases, the system 

goes through different vibration states, including single cycle, multi-periodic, quasi-periodic, and 

chaotic vibration states. 

Table 2 Response frequency of the system for different excitation frequencies 

 Area 
Excitation  

frequency ω（rad/s） 

Excitation 

frequency（Hz） 

The main frequency with 

the highest energy

（Hz） 

Median force：25 N 

Excitation 

amplitude：5 N 

 

I 0.20 0.0318 0.0732 

II 0.52 0.0828 0.0828 

III 0.67 0.1066 0.0720 

IV 1.00 0.1592 0.0796 

V 1.70 0.2706 0.0902 

VI 2.25 0.3581 0.0901 

VII 3.15 0.5013 0.1003 

These results show that the condition of the system is chaotic vibration when the excitation 

magnitude is constant, the excitation frequency does not cause a harmonic response of the system, 

and the excitation frequency is not a multiple of the main frequency of the system with the highest 

energy response. When the excitation frequency causes a harmonic response of the system, the system 

is in a single-cycle motion state if the excitation frequency is in keeping with the main frequency of 

the system with the highest energy response or an even-order multiple (second-order, fourth-order) 

of the main frequency. The system can have various vibration states if the frequency is the same as 

the dominant frequency of the highest odd-order (third-order) of the system, or the excitation 

frequency is greater than the dominant frequency of the higher-order (fifth-order) response of the 



system. 

 
Fig. 13 (a) Bifurcation diagram and (b) corresponding Lyapunov exponent diagram of the system displacement 

with the excitation frequency at an excitation amplitude of 10 N 

Figure 13 shows the bifurcation and corresponding Lyapunov exponent of the displacement with 

the excitation frequency for an excitation amplitude of Fω=10 N. Increasing the excitation amplitude 

increases the displacement extremum of the bifurcation diagram of the system, which agrees with the 

results in Fig. 7. The bifurcation diagram is divided into three regions, and the main frequency of the 

system response at different excitation frequencies is analyzed. The results are listed in Table 3. In 

area 'I', the excitation frequency is selected as 0.15 rad/s for analysis. This excitation does not cause 

a harmonic response of the system and is less than the main frequency response of the system with 

the highest energy. The motion state of the system is disordered. In area 'II', the excitation frequency 

is selected as 0.55 rad/s for analysis. The excitation frequency is in keeping with the dominant 

frequency of the system’s highest energy response, and the system is in a single-periodic stick-slip 

state. Two excitation frequencies (1.35 rad/s and 4.15 rad/s) are selected in area 'III' for analysis. At 

1.35 rad/s, the excitation frequency is equal to the third-order response frequency of the system; at 

4.15 rad/s, the excitation frequency is in keeping with the seventh-order response frequency of the 

system. In area 'III', the motion state of the system changes from the stable single-periodic motion in 

the previous stage to a variety of motion states including chaotic motion. The periodic motion regions 



and the chaotic regions can also be clearly distinguished from the Lyapunov exponent diagram (Fig 

13). These results indicate that an increase in the excitation amplitude of the alternating normal force 

increases the area where the system is in multiple vibration states; the system is more likely to be in 

a state of chaotic motion. 

Table 3 Response frequency of the system for different excitation frequencies 

 Area 
Excitation  

frequency ω（rad/s） 

Excitation 

frequency（Hz） 

The main frequency with 

the highest energy

（Hz） 

Median force：25 N 

Excitation 

amplitude：10 N 

I 0.15  0.0239 0.0743 

II 0.55 0.0875 0.0875 

III 
1.35 0.2149 0.0716 

4.15 0.6605 0.1247 

The influence of the excitation amplitude value on the system motion state is analyzed for an 

excitation frequency of 0.5 rad/s. The bifurcation diagram of the mass displacement response is shown 

in Fig. 14. The bifurcation graph is divided into two regions. In region 'I', the system is in a multi-

periodic stick-slip motion state, and the excitation frequency does not cause a higher energy response 

frequency of the system. In region 'II', the system is in a single-periodic stick-slip motion status, and 

the excitation frequency is in keeping with the response frequency of the system with the highest 

energy (see Table 4 for the details). 

 

Fig. 14 Bifurcation diagram of the system displacement with the excitation amplitude value at an excitation 

frequency of 0.5 rad/s 



Table 4 Response frequency of the system for different excitation amplitudes 

 Area 
Excitation amplitude 

Fω（N） 

Excitation frequency 

ω（Hz） 

The main frequency with 

the highest energy（Hz） 

Median force：25 N 

Excitation frequency： 

0.5 rad/s 

I 0.8 0.0796 0.0756 

II 
5.0 0.0796 0.0796 

10.0 0.0796 0.0796 

Figure 15 exhibits the bifurcation diagram of the displacement response of the mass with the 

excitation amplitude at an excitation frequency of 1.65 rad/s. Similarly, the bifurcation graph is 

divided into three regions. The vibration form of the friction system is more complex for the excitation 

frequency of 1.65 rad/s than of 0.5 rad/s. In area 'I', the system is in a state of multi-periodic stick-

slip motion. At this time, the external excitation frequency does not cause a multi-order harmonic 

response of the system and a higher energy response of the main frequency. In area 'II', the system is 

in a single-periodic stick-slip state, and the excitation frequency is equal to the fourth-order response 

frequency of the system. The displacement response of the mass undergoes abrupt changes and 

increases at the critical points of regions 'II' and 'III'. In area 'III', the system is in a variety of vibration 

states prior to a normal force of 13.1 N. Subsequently, the system begins to bifurcate into two motion 

states, which can be approximated as a combination of two multi-periodic motions. 

Different excitation amplitude values in area 'III' are chosen to calculate the response frequency 

of the system, as listed in Table 5. A state of motion exists where the excitation frequency stimulates 

the harmonic response of the system and is in keeping with the third-order response frequency. A 

harmonic response whose excitation frequency does not affect the system is also observed, resulting 

in a state of motion in keeping with the highest response frequency of the system. In addition, the 

friction system also has a two-periodic-like motion state in which two multi-periodic motions are 

combined, and the excitation frequency of the system is in keeping with the second-order response 

frequency of the system. At the same excitation amplitude, increasing the excitation frequency 

complicates the system's vibration form, and it becomes more difficult to transition to a single-

periodic stick-slip state. 



 

Fig. 15 Bifurcation diagram of the system displacement with the excitation amplitude at an excitation frequency 

of 1.65 rad/s 

Table 5 Response frequency of the system for different excitation amplitudes 

 Area 
Excitation amplitude 

Fω（N） 

Excitation frequency 

ω（Hz） 

The main frequency with 

the highest energy（Hz） 

Median force：25 N 

Excitation frequency：

1.65 rad/s 

I 1.0 0.2626 0.1472 

II 2.8 0.2626 0.1313 

III 

4.2 0.2626 0.0875 

5.1 0.2626 0.0875 

7.5 0.2626 0.0915 

8.5 0.2626 0.0875 

10.0 0.2626 0.2626 

11.5 0.2626 0.2626 

14.0 0.2626 0.1313 

5 Influence of an alternating normal force on the system vibration characteristics 

for different friction coefficients 

5.1 The stick-slip vibration characteristics of the system under a constant normal force 

Figure 16 exhibits the phase diagram and bifurcation diagram of the vibration response of the 

friction system under different constant normal forces for the coefficients μs=0.4 and μk=0.1. As the 

normal force increases, a slight deviation of the system equilibrium point occurs in the positive 



tangential direction, and the vibration amplitude of the mass limit cycle increases. In addition, the 

displacement of the mass shows a significant increase in the negative tangential direction (minimum 

point of displacement). It is manifest from Fig. 16(a) that the vibration form of the friction system 

does not change significantly when the constant normal force is changed. However, the motion form 

of the mass of the friction system changes after increasing the difference between the dynamic and 

static friction coefficients from (μs=0.4, μk=0.2) to (μs=0.4, μk=0.1). The reason is that an increment 

in the difference between DSFCs increases the negative displacement of the mass, affecting the 

compression state of the tangential spring as the mass changes from the slip state to the stick state. 

When the external force generated by the spring is much greater than the dynamic friction force, the 

mass has faster acceleration in the positive tangential direction, increasing the speed of the mass, as 

shown in Fig. 16(a). 

 
Fig. 16 (a) Phase diagram and (b) bifurcation diagram of the system vibration response under different constant 

normal forces 

Figure 17 exhibits the time-domain diagram and frequency-spectrum diagram of the vibration 

velocity of the friction system at normal forces of 20 N and 25 N. Increasing the difference between 

DSFCs does not change the motion state; the system has the stick and slip motion states. At a normal 

force of 20 N (25 N), the system’s vibration response frequency is a multi-order harmonic response 

with a fundamental frequency of 0.0738 Hz (0.0637 Hz). Figure 18 shows the phase diagram, phase-

space diagram, and Poincaré cross-section diagram of the vibration response of the friction system 

under the two normal forces. The phase diagram exhibits a single limit cycle, and the phase-space 

diagram depicts a single motion trajectory, but the limit cycle and phase-space trajectory are slightly 

deformed. The Poincaré cross-section diagram shows only one discrete point. 



 
Fig. 17 (a) Time-domain diagram and (b) frequency spectrum diagram of the system vibration response under a 

constant normal force  

 

Fig. 18 (a) Phase diagram, (b) phase-space diagram, and (c) Poincaré cross-section diagram of the system under a 

constant normal force 

5.2 The stick-slip vibration characteristics of the system under an alternating normal force 

Figure 19 shows the bifurcation and corresponding Lyapunov exponent of the vibration response 

of the mass of the friction system with the excitation frequency for coefficients μs=0.4 and μk=0.1. 



The median force is F0=25 N, and the excitation amplitude is Fω=5 N. When the difference between 

DSFCs (μs=0.4, μk=0.1) is increased, the vibration state of the system is similar to that at μs=0.4 and 

μk=0.2, exhibiting periodic motions and chaotic vibration states. However, the chaotic vibration range 

is significantly increased, and this phenomenon can be seen more clearly from the Lyapunov exponent 

diagram. In Fig. 10(b), there are regions where the Lyapunov exponent is continuously equal to zero, 

while in Fig. 19(b) there are only a few points where the Lyapunov exponent is equal to zero, that is, 

most of the frequency range under study leads to a Lyapunov exponent greater than zero. When the 

excitation frequency is in the range of 0.32 rad/s-0.78 rad/s, the system exhibits two distinct regions 

of vibration magnitudes. When the excitation frequency is within the range of 0 rad/s-0.32 rad/s and 

0.78 rad/s-5 rad/s, the range of the vibration magnitude changes slightly. The excitation frequencies 

of 0.51 rad/s, 1.25 rad/s, and 3.98 rad/s are selected for further analysis. 

 
Fig. 19 (a) Bifurcation diagram and (b) corresponding Lyapunov exponent diagram of the vibration displacement 

of the friction system with the excitation frequency at an excitation amplitude of 5 N 

Figure 20 shows the phase diagram, phase-space diagram, and Poincaré cross-section diagram 

of the mass motion of the friction system for excitation angular frequencies of 0.51 rad/, 1.25 rad/s, 

and 3.98 rad/s. At 0.51 rad/s, a single limit cycle with multiple loops occurs in the phase diagram, and 

the phase-space trajectory shows very chaotic conditions. The Poincaré cross-section diagram shows 

irregularly distributed points. Under these circumstances, the system is in a chaotic vibration state. 



At 1.25 rad/s, there is a stable three-loop limit cycle in the phase diagram of the friction system; 

correspondingly, there are three motion trajectories in the phase-space diagram and three discrete 

points on the Poincaré cross-section diagram. At this time, the system is in a three-periodic vibration 

state. The vibration type of the friction system at 3.98 rad/s is similar to that at 0.51 rad/s. There is a 

single limit cycle with multiple loops in the phase diagram, and the phase-space trajectory is chaotic. 

Multiple discrete points are randomly distributed in the Poincaré cross-section diagram, and the 

system is in a state of chaotic vibration. 

 
Fig. 20 (a) Phase diagram, (b) phase-space diagram, and (c) Poincaré cross-section diagram of the system for 

different excitation frequencies 

Figure 21 shows the normal force time-domain diagram of the friction system, the vibration 

velocity time-domain signal, and the FFT analysis results for excitation frequencies of 0.51 rad/s, 

1.25 rad/s, and 3.98 rad/s. The meaning of t1 in Fig. 21 is consistent with that in Fig. 8, and the details 

of the graph in Fig. 21(c) are consistent with that in Fig. 8(c). At an excitation frequency of 0.51 rad/s, 

the excitation frequency does not cause a harmonic response of the system, and the system has 

multiple response main frequencies. At 1.25 rad/s, the excitation frequency stimulates a multi-order 

harmonic response of the system and is consistent with the third-order response frequency of the 



friction system. At 3.98 rad/s, although the excitation frequency stimulates a multi-order harmonic 

response of the system, it is equal to the high-order response of the system, and the vibration state of 

the system is disordered. Increasing the difference between the friction coefficients from (μs=0.4, 

μk=0.2) to (μs=0.4, μk=0.1) results in the deformation of the limit cycle of the mass movement and an 

increase in the range in which the system is in a state of chaotic vibration. 

 

Fig. 21 (a) Normal force time-domain diagram, (b) velocity time-domain diagram, and (c) frequency spectrum 

diagram of the system for different excitation frequencies 

Figure 22 shows the bifurcation diagram of the displacement response of the mass with the 

excitation amplitude at an excitation frequency of 0.5 rad/s. The bifurcation graph is decomposed into 

four sections: 'I', 'II', 'III', and 'IV'. In area 'I', the system diverges from a single cycle to multiple 

cycles and finally enters a chaotic state as the excitation amplitude enhances. The excitation amplitude 

values of 1.8 N, 2.8 N, and 3.6 N are chosen to calculate the response frequency of the system. In 

area 'I', the external excitation frequency does not cause a higher response frequency of the system 

(see Table 6), and the system remains in a state of chaotic motion. In area 'II', the system has a smaller 

vibration amplitude. The excitation amplitude values of 5.8 N, 6.9 N, and 7.8 N are chosen to calculate 

the response frequency of the system. At this time, the external excitation frequency does not produce 



a harmonic response and a higher energy response frequency (see Table 6) of the system. In area 'III', 

the system enters a single-cycle motion state, and the external excitation frequency is consistent with 

the response frequency of the system with the highest energy (see Table 6). As the excitation 

amplitude value further increases, the system bifurcates into a two-period motion state in area 'IV', 

and the external excitation frequency remains the same as the response frequency of the system with 

the highest energy. These results show that increasing the difference between DSFCs increases the 

likelihood of the system being in a multi-period vibration state or chaotic motion state. When the 

excitation amplitude value is very large, the system may branch into a multi-periodic vibration state, 

even if the external excitation frequency is consistent with the main response frequency of the system 

with the highest energy. 

 

Fig. 22 Bifurcation diagram of the system displacement with the excitation amplitude at an excitation frequency 

of 0.5 rad/s 

Table 6 Main response frequency of the system for different excitation amplitudes 

 Area 
Excitation amplitude  

Fω（N） 

Excitation frequency

（Hz） 

The main frequency with 

the highest energy（Hz） 

Median force：25 N 

Excitation frequency：

0.5 rad/s 

I 

1.8 0.0796 0.0637 

2.8 0.0796 0.0637 

3.6 0.0796 0.0637 

II 

5.8 0.0796 0.2188 

6.9 0.0796 0.0637 

7.8 0.0796 0.1591 



III 

8.9 0.0796 0.0796 

10.5 0.0796 0.0796 

12.6 0.0796 0.0796 

IV 14.2 0.0796 0.0796 

Further, we discuss the influence of the change of friction coefficient on the stick-slip vibration 

characteristics of the system under the action of alternating normal force, and select F0=25 N, the 

excitation amplitude Fω=5 N, the excitation frequency ω=2.5 rad/s. The static friction coefficient is 

kept constant at 0.4, and the kinetic friction coefficient increases from 0.05 to 0.4. The bifurcation 

diagram of the system vibration displacement response with the dynamic friction coefficient is shown 

in Fig 23. It can be seen that with the increase in the kinetic friction coefficient, the vibration 

displacement response of the system gradually evolves from an irregular chaotic motion state to a 

periodic motion state, and the larger the kinetic friction coefficient is, the more obvious this 

periodicity is. In the region where the coefficient of kinetic friction is less than 0.077, the fluctuation 

range of the displacement response is much larger than in other regions. These results show that 

increasing the difference between DSFCs increases the likelihood of the system being in chaotic 

motion state. 

 
Fig. 23 Bifurcation diagram of system displacement response with dynamic friction coefficient 

6 Conclusion 

The experiments demonstrated that an alternating normal force changed the vibration state of 

the system. We selected two sets of dynamic and static friction coefficients and used a single-DoF 

model to investigate the influence of the normal force on the vibration characteristics of the system. 

The system had more abundant dynamic vibration characteristics under an alternating normal force 



than a constant normal force. Furthermore, the effects of different excitation amplitudes and 

excitation frequencies on the alternating normal force on the system’s vibration characteristics were 

obtained. The main conclusions are as follows: 

1. For both sets of dynamic and static friction coefficients, as the constant normal force increased, 

the vibration amplitude of the system, the amplitude of the limit cycle, and the adhesion time of the 

system increased. When the difference between DSFCs was small, the system had a complete and 

clear limit cycle. Reducing the coefficient of dynamic friction led to an increase in the difference 

between DSFCs, and the limit cycle of the system was deformed. 

2. Under the influence of changing excitation frequency and excitation amplitude, the system 

might be in a single-periodic, multi-periodic, and chaotic stick-slip vibration state. When the external 

excitation frequency caused a harmonic response of the system and was consistent with the system's 

highest energy response frequency or coincided with the low-order even-order (second-order, fourth-

order) main frequency, the system was in a single-cycle stick-slip vibration state. When the excitation 

frequency was different from the system's highest energy response frequency, or when the excitation 

frequency was in keeping with the odd-order main frequency of the system, the system could enter 

various vibration states. In addition, when the excitation frequency and excitation amplitude were 

very too high, the system could enter multiple vibration states earlier. 

3. Under the influence of changing excitation frequency and excitation amplitude, the system 

was more likely to enter a chaotic vibration state or period-doubling bifurcation state when there was 

a large difference between DSFCs. 
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