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Abstract

We investigate the localization of electro-elastic shear waves traveling along a homoge-

neous piezoelectric supperlattice waveguide with thin electrodes periodically inserted

parallel to the waveguide faces. The transfer matrix between two neighbouring sub-

layers is constructed based on the electrically shorted conditions on the electrodes. A

relationship is established between elastic displacements of the top and bottom faces of

the superlattice when these faces are traction free. When they are clamped a relation-

ship is established between tangential stresses on the two faces. It is shown that due to

the electro-mechanical coupling, waves can be localized at interfaces in the structure

if the electrodes are non-uniformly distributed along the thickness of the piezoelectric

waveguide. The localization of waves significantly increases with the number of non-

symmetrically introduced electrodes between the layers. The results of the paper can

be helpful in the design of narrow band filters or multi-channel piezoelectric filters.

Keywords: piezoelectric, periodic, wave localization, transfer

matrix

1. Introduction

The problem of elastic wave propagation in piezoelectric structures is important

due to extensive applications of piezoelectric materials in smart materials and struc-

tures. Often these structures are made of two or more different constituents arranged

∗Corresponding author
Email addresses: piliposyan@mechins.sci.am (D. Piliposyan), kghazaryan@mechins.sci.am

(K. Ghazaryan), gayane@liverpool.ac.uk (G. Piliposian)

Preprint submitted to Journal of LATEX Templates July 9, 2022



periodically. These include thin film piezoelectric layered structures widely used in

high frequency and performance, low cost, low energy consumption and small size

technologies.

Electro-mechanical coupling in these structures strongly affects the properties of

acoustic waves and leads to new and interesting properties [1, 2, 3, 4, 5]. Piezoelectric

infinite periodic structures often referred to as phononic crystals are especially sensi-

tive to the electric properties of the interfaces [6, 7, 8, 9]. Of particular interest are the

properties of Bloch waves in piezoelectric phononic crystals. Investigation of frequen-

cies of band gaps, standing waves, trapped and slow waves in periodic piezoelectric

structures can lead to new developments in imaging devices and filtering of unwanted

vibrations. Piezoelectric periodic waveguides with full contact interfacial conditions

have been studied extensively [10],[11]. Electrically shorted interfaces represent a sep-

arate problem since they cannot be derived as a particular case from the solutions of

full contact interfacial conditions. In this problems the solutions at interfaces become

connected by degenerate matrices which cannot be inverted. For these problems the

wave properties are represented by only one dispersion equation as opposed to two for

full contact interfaces [12], [5].

Of special interest is the localization of waves in periodic structures which leads

to a spatial decay of the wave amplitudes [13]. Localized modes in layered structures

may have either positive or damaging effects. Wave and vibration localization makes it

possible to control the propagation of waves and vibrations, leading to many new appli-

cations. On the other hand, localization can result in local energy concentrations which

can affect the reliability and durability of engineering applications. In both cases, since

small irregularities can lead to substantial consequences, it is crucial to investigate the

underlying physical mechanisms of mode localization. Using local resonance theory,

a shear wave attenuation in a thin beam with periodically attached local resonators has

been investigated in [14]. The problem of flexural wave localization in a disordered

periodic piezoelectric beam and the effects of several disorder parameters on the local-

ization factor is studied in [15, 16, 17].

Leakage of vibrational energy in piezoelectric devices can cause fluctuations and

degradation of the structure. If this energy is confined in a localized region of a periodic
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structure it would be possible to support the structure at non-vibrating areas and thus

to design low loss and high reliability piezoelectric devices. Energy trapping of elas-

tic waves and its application to piezoelectric devices including thickness vibrational

energy trapped near electroded areas of a piezoelectric plate is investigated in [18].

The investigation of wave propagation in periodic piezoelectric structures have mostly

been carried out for infinite periodicity micro-structures where the Bloch theorem can

be applied to reduce the solution to the problem for a single unit cell. Understanding

acoustic properties of wave propagation in finite periodic media is also vital since the

number of periodic cells is finite in most realistic situations. Wave transmission prop-

erties of periodic microstructures of finite length and the influence of the finite-length

periodicity on the wave transmission characteristics is discussed in [19].

Due to magneto-elastic coupling the periodic modulation of the electro-elastic prop-

erties of materials in the piezoelectric periodic structures made of two or more different

constituents leads to new and exciting features in infinite and finite piezoelectric peri-

odic structures. The same can also be expected in homogeneous or non homogeneous

piezoelectric structures with periodically arranged metasurfaces, inclusions or cracks.

The present paper investigates the oscillatory response of the shear wave transmission

in a piezoelectric waveguide with thin electrodes arranged in a periodic way parallel to

the waveguide top and bottom faces. A transfer matrix approach is adopted to investi-

gate wave and vibration localization.

2. Statement of the Problem and Solution

We consider vibrations of a piezoelectric structure made of a finite stack of period-

ically stratified transversely isotropic hexagonal piezoelectric crystal structure (6mm)

with the crystallographic axes directed along the Oz direction and accupying the region

0 < x < L, −∞ < y < ∞ and −∞ < z < ∞ (Fig.1). The periodic structure consists of

a stack of n cells each containing a pair of layers (s = 1,2) made of the same piezo-

electric material with thicknesses d1 and d2 (d = d1 +d2) and separated by electrodes

of negligible thickness (Fig.1). For an anti-plane problem (∂/∂ z = 0) in quasi-static

approximation the interconnected electro-elastic excitations in a transversely isotropic
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Figure 1: Piezoelectric superlattice made of finite number of cells.

hexagonal piezoelectric crystal are with respect to uz,Ex and Ey [5]

divσσσ = ρ
∂ u
∂ t

, divDDD = 0, curlE = 0, E =−∇ϕ, (1)

σσσ = div(Gu+ e15ϕ), D = ∇(−εϕ + e15u), (2)

σσσ = (σxz, σyz), D = (Dx,Dy), E = (Ex,Ey). (3)

where σxz and σyz are shear stresses, D, E and u = (0,0,u(x,y, t)) are electric displace-

ment, electric field, ϕ is the electric field potential, and the displacement vectors, ε ,

e15, ρ and G are the dielectric permittivity, piezoelectric constant, mass density and

shear modulus respectively, ∇ = (∂/∂x,∂/∂y,0).

Substituting the first relation in (2) into the first equation in (1) and taking into

account the second relation in (2) and the second equation in (1) the anti-plane problem

reduces to the system of the following equations:

c2
∆u− ∂ 2u

∂ t2 = 0, ∆

(e15

ε
u−ϕ

)
= 0, (4)

where c =
√

G0/ρ is the velocity of the shear wave in the medium, G0 = G(1+ χ),

χ =
e2

15
Gε

and ∆≡ ∂ 2

∂x2 +
∂ 2

∂y2 .

Consider partial transmission conditions of electrically shorted and elastically per-
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fect contacts at the interfaces: xn−1 =(n−1)d, x̃= nd+d1, and xn = nd, (n= 1, . . . ,N)

ϕ(xn−1,y, t) = 0, ϕ(x̃,y, t) = 0, ϕ(xn,y, t) = 0, (5)

[σ(xn−1,y, t)] = 0, [u(xn−1,y, t)] = 0, [σ(x̃,y, t)] = 0, [u(x̃,y, t)] = 0, (6)

[σ(xn,y, t)] = 0, [u(xn,y, t)] = 0, (7)

where σ0(x,y, t) = σ0xz(x,y,z) and [·] is a jump of a function across the interfaces.

The solution of (4) for the displacement and the electric field potential can be writ-

ten in the form of plane harmonic wave propagating along the y axis [20]:

us(x,y, t) = u0s(x)ei(ky−ωt), ϕs(x,y, t) = ϕ0s(x)ei(ky−ωt), (8)

where k and ω are real wave number and angular frequency. The solutions for u0s(x)

and ϕ0s(x) are

u0s(x) =C1s sin(qx)+C2s cos(qx), (9)

ϕ0s(x) =C3s sinh(kx)+C4s cosh(kx)+
ε

e
(C1s sin(qx)+C2s cos(qx)) , (10)

and the corresponding expression for the tangential stresses

σ0s(x) = qG0 (C1s cos(qx)−C2s sin(qx))+ ke(C3s cosh(kx)+C4s sinh(kx)) , (11)

where e = e15, s = 1 corresponds to the solutions for x ∈ (xn−1, x̃) and s = 2 for x ∈

(x̃,xn), C1s,C2s,C3s,C4s are arbitrary constants and q = d−1
√

ϑ 2− (kd)2 , where ϑ =

(ωd)/c is the dimensionless frequency of electro-elastic vibrations.

It follows from (9) and (10) that in a one dimensional setting (k = 0) the solu-

tion corresponds to the solutions of the homogeneous waveguide with the piezoelectric

effect present only in the elastic modulus.

Applying the boundary conditions (5) for ϕ0(x) at two consecutive interfaces the

coefficients C3s and C4s can be expressed via C1s and C2s as follows

C3s =
e
ε

cosh(k(x1− x2))(C2s (cos(qx2s)cosh(kx1s)− cos(qx1s)cosh(kx2s))+

+C1s (cosh(kx1s)sin(qx2s)− cosh(kx2s)sin(qx1s))) ,

(12)
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C4s =
e
ε

cosh(k(x1− x2))(C2s (cos(qx1s)sinh(kx2s)− cos(qx2s)sinh(kx1s)) +

+C1s (sin(qx1s)sinh(kx2s)− sin(qx2s)sinh(kx1s))) . (13)

Then from equation (9) and (11) the functions u0s and σ0s can br expressed via arbitrary

constants C1s and C2s in the following matrix form

Us(x) = P(x)C0s, (14)

where

Us(x) =

 u0s(x)

σ0xz(x)

 , P =

α β

γ ξ

 , C0s =

C1s

C2s

 , (15)

and

α = sin(qx), β = cos(qx), (16)

γ = G0qcos(qx)+Q (cosh(kx)(cosh(kx1)sin(qx2)− cosh(kx2)sin(qx1)) −

−sinh(kx)(sinh(kx1)sin(qx2)+ sinh(kx2)sin(qx1))) , (17)

ξ =−G0qsin(qx)+Q (cosh(kx)(cosh(kx1)cos(qx2)− cosh(kx2)cos(qx1)) +

+sinh(kx)(−sinh(kx1)cos(qx2)+ sinh(kx2)cos(qx1))) , (18)

Q =
e2k
ε

csc(k(x1− x2)). (19)

In (19) x1 = xn−1, x2 = x̃ for s = 1 and x1 = x̃, x2 = xn for s = 2. It follows from (14)

that

U1(xn−1) = P(xn−1)C01, U1(x̃) = P(x̃)C01, (20)

U2(x̃) = P(x̃)C02, U2(xn) = P(xn)C02. (21)

From the first equations (20) and (21) the unknown constants C01 and C02 are

C01 = P−1(xn−1)U1(xn−1), C02 = P−2(x̃)U2(x̃). (22)

Substitution (22) into the second equations of (20) and of (21) will eliminate the con-

stants C01 and C02 giving

U1(x̃) = T1U1(xn−1), U2(xn) = T2U2(x̃), (23)
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where T1 = P(x̃)P−1(xn−1) and T2 = P(xn)P−1(x̃) are unimodal transfer matrices in

each sub-domain

Ts =

 t11 t12

t21 t22

 , (24)

with

t11 = t22 =
qcos(dsq)− kχ coth(dsk)sin(dsq)

q− kχcsch(dsk)sin(dsq)
,

t12 =
1

G0(qcsc(dsq)− kχcsch(dsk))
,

t21 =
−G0(sin(dsq)

(
(kχ)2−q2)

)
+2kqχ (coth(dsk)cos(dsq))− csch(dsk))

kχcsch(dsk)sin(dsq)−q
.

Using the continuity condition of the displacement at the interfaces U1(x̃) = U2(x̃)

and relation (22) the propagator matrix can now be constructed as

U2(xn) = MU1(xn−1), (25)

where M = T2T1, M =

m11 m12

m21 m22

 ,

and

m11(ϑ) =
sin(d1q)

(
sin(d2q)

(
k2χ2−q2

)
−2kqS2χ

)
+F1F2

A1A2
,

m12(ϑ) =
F1 sin(d2q)+F2 sin(d1q)

A1A2G0
,

m21(ϑ) =−
G0
((

q2− k2χ2
)
(F1 sin(d2q)+F2 sin(d1q))+2kqχ (F2S1 +F1S2)

)
A1A2

,

m22(ϑ) =
sin(d2q)

(
sin(d1q)

(
k2χ2−q2

)
−2kqS1χ

)
+F1F2

A1A2
,

Fs = qcos(qds)− kχ coth(kds)sin(qds) ,

As = q− kχcsch(kds)sin(qds) ,

Ss = coth(kds)cos(qds)− csch(kds) , s = 1,2.

The matrix of the shear wave field connecting vector fields at the interface of the nth

cell is unimodular [21]. This can be used to write the relationship between the field

vectors at x = 0 and x = Nd = L

U(L) = MNU(0), (26)
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where following Sylvester’s theorem [22] the elements for the matrix Mn can be written

as follows

M11 = m11(ϑ)Sn−1(η)−Sn−2(η), M12 = m12(ϑ)Sn−1(η),

M21 = m21(ϑ)Sn−1(η), M22 = m22(ϑ)Sn−1(η)−Sn−2(η),

where Sn(η) are the Chebyshev polynomials of second kind

Sn(η) =
sin((n+1)φ)

sin(φ)
, cos(φ) = η , η =

1
2

Tr(M) =
1
2
(m11(ϑ)+m22(ϑ)),

which can be calculated using the recurrence relation [22]

Sn(η) = 2ηSn−1(η)−Sn−2(η), n = 0,1,2, .... (27)

2.1. Localisation Modes of a Traction Free Waveguide

Consider now a boundary value problem for traction free top and bottom faces. In

this case the following matrix equation can be imposed:M11 M12

M21 M22

u(0)

0

=

u(L)

0

 . (28)

Equation (28) is equivalent to the following two equations

(m11(ϑ)SN−1(η)−SN−2(η))u(0) = u(L), (29)

m21(ϑ)SN−1(η)u(0) = 0. (30)

It follows also from (26) that relations between x = 0 and x = nd for any n = 1,2, ...,N

can be written asM11 M12

M21 M22

u(0)

0

−
 u(nd)

σ0(nd)

= 0, u(nd)= (m11(ϑ)Sn−1−Sn−2)u(0).

(31)

Equation (30) gives two dispersion equations m21(ϑ) = 0 and SN−1(η) = 0 which

describe curves in the phase-plane (ϑ ,kd), each point of which corresponds a propa-

gating wave in the structure.

If m21(ϑ)= 0 then since M is a unimodular matrix and m11(ϑ)m22(ϑ)−m12(ϑ)m21(ϑ)=
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1 it follows that

m11(ϑ)m22(ϑ) = 1 and η =
λ +λ−1

2
, where λ = m11(ϑ) or λ = m22(ϑ). (32)

Using recurrent relation (27) the following relation can be shown for the Chebyshev

polynomials of second kind:

λSn(η)−Sn−1(η)= λ ((λ +λ
−1)Sn−1(η)−Sn−2(η))−Sn−1(η)= λ (λSn−1(η)−Sn−2(η)) ,

(33)

which can be written as

Pn+1(η) = λPn(η),

where Pn(η) = λSn−1(η)−Sn−2(η).

Taking into account that P1(η) = λ , (S0(η) = 1,S−1(η) = 0) the following identity

can be obtained valid for all integers starting from n = 1

Pn(η) = λ
n.

Hence it follows from (29) that for frequencies ϑ = ϑ0, where ϑ0 are the roots of

m12(ϑ) = 0

u(nd) = λ
nu(0), n = 1,2, ...,N. (34)

2.1.1. The Case of Non-Uniform Distribution of Electrodes

It follows from (32) that λ 6= 1 if m11(ϑ) 6= m22(ϑ), which takes place if d1 6= d2.

Therefore equation (34) shows that at frequencies ϑ = ϑ0, where ϑ0 are the roots

of m21(ϑ) = 0, localisation of elastic shear displacements takes place at the top and

bottom interfaces of the periodic waveguide if the electrodes are non-symmetrically

placed through the waveguide.

2.1.2. The Case of Uniform Distribution of Electrodes

If d1 = d2 the transfer matrices are the same at consecutive interfaces (T1 = T2)

and therefore m11(ϑ) = m22(ϑ), which means λ =±1. This means that symmetrically

arranged electrodes do not support wave localization in the structure.
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2.1.3. Normal Modes of a Traction Free Waveguide

Another possible case in equation (30) is SN−1(η) = 0. This equation has (N −

1) roots in the interval η ∈ (−1,1) which are given by ηm = cos
(
mπN−1

)
, m =

1,2, ...(N − 1). Taking into account that in this case SN−2(ηm) = (−1)m+1 [22] one

can write

u(nd) = (−1)mu(0), n = 1,2, ...,N. (35)

This means that N − 1 shear wave normal modes exist where guided waves are dis-

tributed along the crystal width and have the same magnitude at the top and the bottom

faces.

2.2. Localisation and Normal Modes of a Clamped Waveguide

When the the top and bottom faces of the periodic crystal are clamped u(0) = u(L)

equations (29) and (30) should be replaced by the following two equations:

m12(ϑ)SN−1(η) = 0 (36)

(m22(ϑ)Sn−1(η)−Sn−2(η))σ0(0) = σ0(nd), (37)

σ(nd) = λ
n
σ0(0), n = 1,2, ...N. (38)

In this case the non-symmetric arrangement of electrodes leads to the localization of

the elastic shear stresses at the top and bottom layers if m12(ϑ) = 0. There are also

N−1 normal modes distributed along the crystal width and have the same magnitude

of stresses at the top and the bottom faces which follows from the following relation:

σ0(nd) = (−1)m
σ0(0), n = 1,2, ...,N.

Thus two different families of vibrational modes exist in the piezoelectric supper-

lattice for both fraction free and clamped top and bottom faces. One is a localized mode

which exists only when the electrodes are non-symmetrically inserted through the

thickness of the piezoelectric material (d1 6= d2) and occurs at frequencies m12(ϑ) = 0

and m21(ϑ) = 0. There are also another N−1 normal non-localised vibration modes at

frequencies defined by SN−1(η) = 0 which exist in both cases when the electrodes are

symmetrically (d1 = d2) or non-symmetrically inserted into the piezoelectric waveg-

uide.
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3. Discussion

Numerical calculations have been carried out for a piezoelectric superlattice made

from PZT-4 with material parameters c44 = 2.56 · 1010N/m2, e15 = 12.7C/m2, ε11 =

646 ·10−11F/m and ρ = 7.6 ·103kg/m3 [23].

For a superlattice of a finite width with non-symmetrically inserted electrodes through

the thickness of the piezoelectric crystal (d1 6= d2) for any value of dimensionless wave

number kd and δ = d1/d 6= 0.5 there always are infinite number of discrete spectrum

of eigenfrequencies which correspond to localised vibrations. These eigenfrequen-

cies shown in Figures 2(a,b) are the solutions of dispersion equations m12(ϑ) = 0 and

m21(ϑ) = 0 and at these frequencies m11(ϑ) 6=±1.

(a) (b)

Figure 2: First three modes of dispersion curves of equation a) m12(ϑ) = 0 (clamped top and bottom faces)

and b) m21(ϑ) = 0 (traction free top and bottom faces) for δ = 0.25 (the same for δ = 0.75).

The localization coefficient |λ | for both cases depending on the relative thickness

δ are shown in Figures 3, 4 at different points of the dispersion curves. At equidistant

from the top and bottom interfaces of the supperlattice ϑ ∗(kd,δ ) =ϑ ∗(kd,1−δ ) =ϑ ∗

and λ (ϑ ∗,δ ) = λ (ϑ ∗,1− δ ) = 1 for any root ϑ ∗ of the equations m12(ϑ) = 0 or

m21(ϑ) = 0.

Figure 3, where λ = |m22(ϑ)|, corresponds to the localization of shear stresses for

the supperlattice with clamped top and bottom faces. Figure 4, where λ = |m11(ϑ)|,

corresponds to the localization of elastic displacements for the supperlattice with trac-

tion free top and bottom faces. It follows from (34) and (38) that in the case of λ < 1

the localization of guided waves takes place at the top face of the waveguide and in the
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(a) (b)

Figure 3: Localization coefficients for electro-elastic shear stresses, λ = |m22(ϑ)|, for the supperlattice with

traction free top and bottom faces a) the first frequency mode and b) the second frequency mode.

(a) (b)

Figure 4: Localization coefficients for elastic displacements, λ = |m11(ϑ)|, for the supperlattice with

clamped top and bottom faces a) the first frequency mode and b) the second frequency mode.

case of λ > 1 the waves localise at the bottom face. In the piezoelectric waveguide the

closest electrode from the bottom face is at the distance d1 from it and the closest elec-

trode from the top face is at the distance d2 from it. For a waveguide with traction free

top and bottom faces the amplitudes of shear displacements for the first mode attenuate

from the top layers to the bottom layers if d1/d2 < 1 and from the bottom layers to the

top layers if d1/d2 > 1 (Fig. 3(a)). For the second mode the waves localise at the top

layer for d1/d2 > 1 and at the bottom layer if d1/d2 < 1 (Fig 3(b)).

On the contrary for a waveguide with clamped interfaces for the first mode the

amplitude of shear stresses attenuate from the bottom to the top layers if d1/d2 < 1

and from the top to the bottom layers if d1/d2 > 1 (Fig. 4(a)) and for the second
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mode waves localise at the top of the waveguide if d1/d2 < 1 and at the bottom of the

waveguide if d1/d2 > 1 (Fig. 4(b)) . For a finite waveguide the amplitude of a guided

wave for N ≥ 10 becomes negligibly small at depths of more than a few wavelengths.

The disturbance is therefore strongly confined to layers close to the top or bottom faces

of the waveguide.

Dispersion curves in Fig. 2 define the dependence of normalized frequency on

the dimensionless wave number kd. For fixed values of d the dimensional vibration

eigenfrequency can be calculated using the formula

ω(d) = ϑ

√
G+ e2/ε

d2ρ
. (39)

As it follows from Fig. 3 and Fig. 4 a strong localization of guided waves takes

place at kd = 4 for first modes at ϑ ≈ 6.5 for a clamped waveguide and ϑ ≈ 4.1 for a

traction free waveguide. For d = d1 +d2 = 2∗10−2m these correspond to dimensional

frequencies ω ≈ 0.84 MHz and ω ≈ 0.53 MHz. Typical dimensions between electrodes

in such structures is between d = 10−3m and d = 10−2m. For example in experiments

carried out in [24] for a piezoelectric material inserted with thin electrodes the distance

between electrodes is taken 10−2m.

There is a very strong localization of the guided wave amplitudes depending on the

arrangements of the electrodes through the thickness of the piezoelectric waveguide.

The guided wave localization changes also with the vibration frequency modes and

the dimensionless wave numbers although this dependence is weaker for the second

frequency modes.

In an infinite periodic structure for any values of dimensionless wave number kd the

condition |η | > 1 defines intervals of frequencies called forbidden frequencies where

waves cannot propagate [25]. In the case of infinite periodic structure the problem

of the interfacial effects of the periodic piezoelectric structure was considered in [5]

where it was shown that in the piezoelectric structure with inserted electrodes the for-

bidden frequency intervals of electro-elastic waves defined by the equation |η(ϑ ∗)> 1

have a very weak dependence on the filling coefficient δ . For the finite structure un-

der consideration the localization effect strongly depends on the filling coefficient δ
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at frequencies ϑ ∗ where |η(ϑ ∗) > 1 and stop occurring for symmetrically inserted

electrodes (δ = 0.5).

4. Conclusion

Localization of electro-elastic shear waves takes place in a finite periodically strat-

ified homogeneous piezoelectric structure with periodically inserted electrodes of neg-

ligible width. Two different families of vibrational modes propagate through the piezo-

electric supperlattice for both traction free and clamped top and bottom faces. One of

them is a localized mode which occurs only when the electrodes are non-uniformly

distributed through the thickness of the piezoelectric material. The localisation can be

either of the amplitudes of electro-elestic stresses or elastic displacements depending

on the boundary conditions on the top and bottom faces of the structure. The transfer

matrix between two neighbouring sub-layers is constructed with electrically shorted in-

terfacial conditions. It is shown that due to the electro-mechanical coupling waves can

be strongly localized at interfaces of the structure if the electrods are non-symmetrically

distributed along the thickness of the piezoelectric material. The localization of waves

significantly increases with the numbers of non-symmetrically introduced electrodes

between the layers and disappears if the electrodes are evenly distributed.

Controlling wave propagation properties in finite piezoelectric periodic structures

can be helpful in the design of narrow band filters or multi-channel piezoelectric filters.

The results of this paper can also have applications in designing tunable waveguides

made of layers of identical piezoelectric crystals.

It is worth mentioning, that conventional manufacturing methods for embedding

metals into piezoelectric materials can be difficult due to their high processing tem-

peratures and long curing times of the adhesives applied for bonding the piezoelectric

component to the metal. Manufacturing processes of a fabrication procedure for em-

bedding electrodes into piezoelectric body is presented in [26]. The proposed fabrica-

tion process could be effectively realised for rapid fabrication of functionalized metal

structures which can be used in thermal measurements, energy harvesting, and struc-

tural health monitoring applications. Experimental results for artificially fabricated

piezoelectric plates and rods with electrodes have also been reported in [27] and [28] .
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