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Linear modal instabilities of flow over untapered wings with aspect ratios �' = 4 and15
8, based on the NACA 0015 profile, have been investigated numerically over a range of16
angles of attack, U, and angles of sweep, Λ, at chord Reynolds numbers 100 6 '4 6 400.17
Laminar base flows have been generated using direct numerical simulation and selective18
frequency damping, as appropriate. Several families of unstable three-dimensional linear19
global (TriGlobal) eigenmodes have been identified and their dependence on geometric20
parameters has been examined in detail at '4 = 400. The leading global mode A is associated21
with the peak recirculation in the three-dimensional laminar separation bubble formed on22
the wing and becomes unstable when recirculation reaches O(10%). On unswept wings, this23
mode peaks in themidspan region of thewake andmoves towards thewing tip with increasing24
Λ, following the displacement of peak recirculation; its linear amplification leads to wake25
unsteadiness. Additional amplified modes exist at nearly the same and higher frequencies26
compared to mode A; their dependence on Λ has been documented. The critical '4 has27
been identified and it is shown that amplification increases with increasing sweep, up to28
Λ ≈ 10◦. At higherΛ, all global modes become less amplified and are ultimately stable at the29
maximum considered Λ = 30◦. An increase in amplification of the leading mode with sweep30
was not observed over the �' = 4 wing, where tip vortex effects were shown to dominate,31
with the leading mode at Λ = 30◦ corresponding to a tip-vortex instability.32
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1. Introduction34

Our present concern is with linear global instabilitymechanisms associatedwith unsteadiness35
of laminar three-dimensional separated flows over finite aspect ratio, untapered swept wings36
at low Reynolds numbers. To date, the vast majority of instability studies have focused37
on simplified models of laminar separation with no spanwise base flow component, as38
encountered in flows over two-dimensional profiles, or spanwise homogeneous flow over39
infinite-span wings, both of which have been used as proxies to understand fundamental40
mechanisms of separation in practical fixed- or rotary-wing applications. However, either41
of these approximations fails to address the essential three-dimensionality of the flow field42
(Wygnanski et al. 2011, 2014) and the implications of linear instability of three-dimensional43
separated flow on the ensuing unsteadiness on a finite-span swept wing. Presently there44
exists limited knowledge on linear instability mechanisms associated with three-dimensional45
separation on the wing surface, or a deep understanding of the complex vortex dynamics46
arising from this instability on a finite-span wing, as a function of the aspect ratio (�') and47
angles of attack (U) and sweep (Λ). In fact, there is a void in the literature that employs48
three-dimensional global (TriGlobal) linear instability analysis appropriate for the fully49
inhomogeneous three-dimensional flow field around a finite �' wing at high U. The present50
work aims to close this knowledge gap by documenting modal instability mechanisms and51
their evolution on different wing geometries.52

A review of existing literature on the subject sets the scene for the work performed herein.53
Studies of separation have extensively analysed laminar separation bubbles (LSB) in the54
context of flat plates. Although such bubbles were known to be structurally unstable (e.g.55
Dallmann 1988), Theofilis et al. (2000) showed that the physical mechanism leading to56
unsteadiness and three-dimensionalisation of a nominally two-dimensional LSB, as well as57
to breakdown of the associated vortex, arises from self-excitation of a previously unknown58
stationary three-dimensional global mode. Soon after that, global linear stability theory was59
applied to two-dimensional airfoils (Theofilis et al. 2002) and unswept wings of infinite span60
(Kitsios et al. 2009). Rodríguez & Theofilis (2010) studied structural changes experienced by61
the LSB on a flat plate due to the presence of the unstable stationary three-dimensional global62
mode and established a criterion of ∼ 7.5% backflow for self-excitation of the nominally63
two-dimensional flow. Furthermore, linear superposition of the global mode discovered64
by Theofilis et al. (2000) upon the two-dimensional LSB revealed the well-known three-65
dimensional U-separation pattern (Hornung & Perry 1984; Perry & Chong 1987; Délery66
2013), while the surface streamlines topology induced by the global mode resembled the67
characteristic cellular structures known as stall cells (Moss & Murdin 1968; Bippes & Turk68
1980; Winkelman & Barlow 1980; Weihs & Katz 1983; Bippes & Turk 1984; Schewe 2001;69
Broeren & Bragg 2001), that are observed to form on stalled wings. Finally, Rodríguez &70
Theofilis (2011) have extended this analysis to a real LSB on an infinite span wing, showing71
that the surface streamlines generated by the leading global modes strongly resemble stall72
cells (SC).73

Massively separated spanwise homogeneous flow over stalled wings was studied by He74
et al. (2017a) using global linearmodal and nonmodal stability tools. Flow over three different75
NACA airfoils was analysed at 150 6 '4 6 300 and 10◦ 6 U 6 20◦. A travelling Kelvin-76
Helmholtz (K-H) mode dominating the flow at a large spanwise periodicity length and a77
three-dimensional stationary mode most active as the spanwise periodicity length becomes78
smaller were identified. Nonmodal analysis showed that linear optimal perturbations evolve79
into travelling K-H modes. Secondary instability analysis of the time-periodic base flow80
ensuing linear amplification of the K-H mode revealed two amplified modes with spanwise81
wavelengths of approximately 0.6 and 2 chords. These modes are reminiscent of the classic82
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mode A and B instabilities of the circular cylinder (Barkley & Henderson 1996; Williamson83
1996) although, unlike on the cylinder, the short-wavelength perturbation was the first to84
become linearly unstable. This work showed that SC-like streamline patterns on the wing85
arise from linear amplification of this short-wavelength secondary instability. By contrast86
to the primary instability based scenario proposed by Rodríguez & Theofilis (2011), this87
mechanism could explain the emergence of SC at lower angles of attack.88
Zhang & Samtaney (2016) extended the analysis of He et al. (2017a) to study instability89

of unsteady flow over a NACA 0012 spanwise periodic wing at higher Reynolds numbers,90
400 6 '4 6 1000 at U = 16◦. At '4 = 800 and 1000 these authors identified two91
oscillatory unstable modes corresponding to near-wake and far-wake instabilities, alongside92
a stationary unstable mode, while only one unstable mode was found at the lower '4 = 40093
and 600. Ground-proximity effects on the stability of separated flow over NACA 441594
at low Reynolds numbers were studied using two-dimensional global (BiGlobal) theory95
with consideration of both flat (He et al. 2019c) and wavy ground surfaces (He et al.96
2019b). Finally, Rossi et al. (2018) considered incompressible flow over a NACA 001097
airfoil and a narrow ellipse of the same thickness at a large U of 30◦ (100 6 '4 6 3000)98
documenting multiple bifurcations. The aforementioned efforts have certainly enriched our99
understanding of instabilitymechanisms of spanwise homogeneous flowoverwings of infinite100
span. However, BiGlobal analysis cannot be applied to address the instability of fully three-101
dimensional vortical patterns arising in finite �' wing flows.102
Before discussing the application of the appropriate linear TriGlobal modal analysis, a103

brief review of experimental and numerical work on finite aspect ratio wings is presented.104
Early experimental studies on finite �' wings are summarised in Boiko et al. (1996).105
On three-dimensional swept wings in particular, the presence of significant spanwise flow106
leads to three-dimensional flow structures like the "ram’s horn" vortex (Black 1956). As107
soon as local stall appears on a swept wing, spanwise boundary layer flow alters the stall108
characteristics of sections with attached flow along the span (Harper & Maki 1964). More109
recently, aerodynamic performance of small aspect ratio (�' = 0.5 − 2) wings has been110
studied experimentally (Torres & Mueller 2004) and computationally (Cosyn & Vierendeels111
2006). Taira & Colonius (2009) used three-dimensional direct numerical simulation (DNS)112
to study impulsively translated flat-plate wings (�' = 1− 4) of different planforms at a wide113
range of U and 300 6 '4 6 500. The �', U and Reynolds number were found to have a114
large influence on the stability of the wake profile and the force experienced by the finite115
wing with the flow reaching a stable steady state, a periodic cycle or aperiodic shedding. The116
three-dimensional nature of the flow was highlighted, and tip effects were found to stabilize117
the flow and exhibit nonlinear interaction with the shedding vortices. Even at larger �' = 4118
the flow did not reach two-dimensional von Kármán vortex shedding due to the emergence119
of SC-like patterns. The effects of trapezoidal rather than rectangular planform (Huang et al.120
2015), and larger �' wings (Son & Cetiner 2017) have been considered in more recent121
publications.122
In the general context of vortex dynamics, a large body of experimental and large-scale123

numerical simulation work exists on separated flows over finite �' wings. There are studies124
analysing complex vortex dynamics under unsteady manoeuvres including translation and125
rotation (Kim & Gharib 2010; Jones et al. 2016), surging and plunging (Calderon et al.126
2014; Mancini et al. 2015), pitching (Jantzen et al. 2014; Son & Cetiner 2017; Smith &127
Jones 2020), and flapping (Dong et al. 2006; Medina et al. 2015). These works focused on128
the analysis of large scale flow structures such as leading edge vortices (Gursul et al. 2007;129
Eldredge & Jones 2019) which can augment unsteady vortical lift and offer opportunities for130
flow control (Gursul et al. 2014). However, none of these studies have looked at the global131
instability mechanisms of these flows.132
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In the framework of linear stability analysis of finite wings, works exist that consider133
the entire flow field but typically at low U (that allows the use of streamwise periodicity134
assumption). He et al. (2017b) performed linear global instability analysis using spatial135
BiGlobal eigenvalue problem and linear PSE-3D disturbance equations in the wake of a low136
�' three-dimensional wing of elliptic planform constructed using the Eppler E387 airfoil137
at '4 = 1750. Symmetric perturbations corresponding to the instability of the vortex sheet138
connecting the trailing vortices and antisymmetric perturbations peaking at the vortex sheet139
and also in the neighbourhood of the trailing vortex cores were identified. Edstrand et al.140
(2018a) carried out spatial and temporal stability analysis of a wake and trailing vortex141
region behind a NACA 0012 finite wing at '4 = 1000, U = 5◦ and �' = 1.25, documenting142
seven unstable modes with the wake instability dominating in both temporal and spatial143
analyses. Unlike many stability analysis works focusing only on the vicinity of the tip vortex,144
the full half-span of the wing was considered. BiGlobal stability analysis was employed145
exploiting streamwise homogeneity in the absence of large scale separation at the low U146
considered. This allowed capturing three-dimensional modes with structures in the tip and147
thewake regions. Subsequentwork of Edstrand et al. (2018b) on the same geometry employed148
parabolised stability analysis to guide the design of active flow control for tip vortex based on149
a subdominant instability mode that was found to counter-rotate with the tip vortex. Forcing150
of this mode introduced at the trailing edge was shown to attenuate the tip vortex. Navrose151
et al. (2019) conducted TriGlobal nonmodal stability analysis of a trailing vortex system over152
a flat plate and NACA 0012 wing at U = 5◦, �' = 6 and '4 = 1000. Unlike in earlier studies,153
their fully three-dimensional analysis included the tip vortex and flow over the wing. It was154
shown that the linear optimal perturbation is located near the wing surface and advects into155
the tip vortex region during its evolution, which agrees with the findings of Edstrand et al.156
(2018b). The displacement of the vortex core due to evolution of the optimal perturbation was157
proposed as a possible mechanism behind trailing vortex meandering. All these studies have158
demonstrated that addressing the three-dimensionality of finite wing wake through stability159
analysis allows for enhanced understanding of the underlying physical mechanisms. However,160
the relatively low angles of attack considered in these studies meant that the underlying base161
flows had a relatively simple vortical structure.162
In the framework of our present combined theoretical/numerical and experimental efforts,163

Zhang et al. (2020a) employed DNS to analyse the development of three-dimensional164
separated flow over unswept finite wings at a range of U ('4 = 400, 1 6 �' 6 6).165
The formation of three-dimensional structures in the separated flow was discussed in detail.166
The vortex sheet from the wing tip rolls up around the free end to form the tip vortex which167
at first is weak with its effects spatially confined. As the flow around the tip separates, the tip168
effects extend farther in the spanwise direction, generating three-dimensionality in the wake.169
It was shown that the tip-vortex induced downwash keeps the wake stable at low �', while170
at higher �' unsteady vortical flow emerges and vortices are shed forming closed loops. At171
�' & 4 tip effects slow down the shedding process near the tip, which desynchronizes from172
the two-dimensional shedding over the midspan region, giving rise to vortex dislocation. The173
interactions of the tip vortex with the unsteady wake structures at high U lead to noticeable174
tip vortex undulations. Subsequently, Zhang et al. (2020b) addressed swept wing flows at the175
same conditions. Several stabilisation mechanisms additional to those found in Zhang et al.176
(2020a) were reported for swept wings. At small �' and low Λ, the tip vortex downwash177
effects still stabilise the wake, whereas the weakening of the downwash with increasing178
span allows the formation of unsteady vortex shedding. For higher Λ, the source of three-179
dimensionality was shown to transition from the tip of the wing to midspan where a pair180
of symmetric vortical structures is formed with their mutually induced downward velocity181
stabilising the wake. Therefore, three-dimensional midspan effects leading to the formation182
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of stationary vortical structures allow steady flow formation at higher �' which would not183
be feasible on unswept wings. At higher �' the midspan effects weaken near the tip leading184
to unsteady vortex shedding in the wing tip region. Finally, for high �' and high Λ wings,185
steady flow featuring repetitive formation of the streamwise aligned finger-like vortices along186
the span ensues.187
Despite the substantial improvement in understanding of complex vortical structures that188

recent computational efforts have offered, several key questions remain open and motivate189
the present work. First, the origin of the wake unsteadiness observed in the simulations of190
Zhang et al. (2020a) and those performed herein, remains unexplained and the conjecture191
that this unsteadiness arises on account of a presently unknown flow eigenmode needs to be192
examined. Further, the frequency content and spatial structure of this (and possibly other)193
modes existing in the flow both during the linear regime and at nonlinear saturation needs194
to be documented and classified. Finally, the effects of wing geometry on the global modes,195
especially that of Λ and �', needs to be examined. In order to address these questions,196
we perform linear TriGlobal modal analysis of separated flow over finite three-dimensional197
wings, followed by a brief data-driven modal analysis (Taira et al. 2017) once the leading198
three-dimensional global mode has led the flow to nonlinear saturation.199
Finally, the choice of the flow analysed with respect to its stability deserves some200

discussion. Stability analysis of the mean flow, obtained by time-averaging the unsteady201
periodic flow, has been shown to accurately predict the frequency of the unsteadiness in202
certain types of flows (Barkley 2006; Beneddine et al. 2016). This was explained using203
weakly nonlinear analysis by Sipp & Lebedev (2007), who formulated two conditions in204
terms of the complex constants of the Stuart–Landau equation that must hold for linear205
stability analysis of a mean flow to be relevant. It was demonstrated that these conditions are206
satisfied for the circular cylinder near the critical Reynolds number considered by Barkley207
(2006). A discussion of this point in the context of the present fully three-dimensional flow208
will be presented in the closing chapters, after the main body of results, obtained using base209
flows that numerically satisfy the equations of motion, has been presented.210
The paper is organised as follows. The theory underlying linear modal stability analysis is211

discussed in §2 followed by the explanation of computational setup and numerical methods212
as well as verification of stability analysis tools in §3. Results are reported in §4 starting with213
the discussion of the base flow. Linear global modes and the effects of wing geometry at214
'4 = 400 and U = 22◦ are reported in §4.2. The effects of varying Reynolds number and U215
are considered in §4.3. Finally, the growth of the leading global mode and eventual transition216
to nonlinearity is discussed in §4.4.217

2. Theory218

The flow under consideration is governed by the nondimensional, incompressible Navier-219
Stokes and continuity equations:220

mCu + u · ∇u = −∇? + '4−1∇2u, ∇ · u = 0, (2.1)221

where the Reynolds number, '4 ≡ *∞2/a, is defined by reference to the free-stream velocity,222
*∞, the chord, 2, and the kinematic viscosity, a. The flow field can be expressed on an223
orthogonal coordinate system as a function of the unsteady velocity u = (D, E, F)) and224
pressure225

q(x, C) = (D, E, F, ?)) , (2.2)226
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which are decomposed into a base flow component q̄ and a small perturbation q̃ with unit227
magnitude, such that228

q = q̄ + Yq̃, Y � 1. (2.3)229

The approach followed to obtain steady stable, or stationary unstable base flows will be230
discussed in §3.3. Substituting (2.3) into (2.1), subtracting the base flow at O(1) and231
neglecting O(Y2) terms leads to the linearised Navier-Stokes equations (LNSE)232

mC ũ + ū · ∇ũ + ũ · ∇ū = −∇ ?̃ + '4−1∇2ũ, ∇ · ũ = 0. (2.4)233

For the incompressible flow of interest the pressure perturbation can be related to the velocity234
perturbation through ?̃ = −∇−2(∇· (ū ·∇ũ+ũ ·∇ū)). Now the LNSE can bewritten compactly235
as the evolution operator L forming an initial value problem (IVP)236

mC ũ = Lũ. (2.5)237

For steady basic flows, the separability between time and space coordinates in (2.5) permits238
introducing a Fourier decomposition in time of the general form ũ = û(x)4−8lC . Depending239
on the number of inhomogeneous spatial directions in the base flow analysed and the related240
number of periodic directions assumed, different forms of the ansatz for ũ can be used241
(Theofilis 2003; Juniper et al. 2014). Since the flow in question is fully three-dimensional,242
no homogeneity assumption is permissible. This requires the use of TriGlobal linear stability243
theory, in which both the base flow q̄ and the perturbation ũ are inhomogeneous functions244
of all three spatial coordinates giving the following ansatz245

ũ(G, H, I, C) = û(G, H, I)4−8lC + 2.2.. (2.6)246

Here, û is the amplitude function, and 2.2. is a complex conjugate to ensure real-valued247
perturbations. Substituting (2.6) into (2.5) leads to the TriGlobal eigenvalue problem (EVP)248

Aû = −8lû. (2.7)249

The matrix A results from spatial discretisation of the operator L and comprises of the250
basic state q̄(x) and its spatial derivatives, as well as the Reynolds number as a parameter.251
The TriGlobal EVP (2.7) is solved numerically to obtain the complex eigenvalues l and252
the corresponding eigenvectors û, which are referred to as the global modes. The real and253
imaginary components of the complex eigenvalue l = lA + 8l8 correspond to the frequency254
and the growth/decay rate of the global mode.255

3. Numerical work256

3.1. Geometry and mesh257

The geometry under consideration is an untapered wing based on the symmetric NACA258
0015 airfoil with a sharp trailing edge and a straight cut wing tip. Taking advantage of the259
symmetry of the problem, half of the wing is considered as shown in figure 1. The chord-260
based Reynolds number '4 = 400 is held constant, while the wing sweep (Λ), semi-aspect261
ratio (B�') and angle of attack (U) are varied. Here, we use B�' = 1/22, where 1 is the262
wingspan defined from wing tip to wing tip and 2 is the wing chord.263
It is important to take into account the order of the operations performed to construct a264

swept wing at an angle of attack. First, a two-dimensional mesh was generated and extruded265
along a vector {G, H, I} = {1/2 tanΛ cosU,−1/2 tanΛ sinU, 1/2}. This is equivalent to266
rotating the wing about an axis normal to the symmetry plane and achieves a swept back267
wing without a dihedral angle.268
The computational extent is (G, H, I) ∈ [−15, 20] × [−15, 15] × [0, 15] with the origin269
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Figure 1: Problem setup showing wing and the computational domain. The symmetry
condition is applied at the Back plane. The half wing model is shown in grey and is not to
scale. Light grey indicates the opposite side of the wing when mirrored in the symmetry

plane and is shown for visualisation purpose only.

located at the leading edge of the wing when it is at zero U as shown in figure 1. The half270
wing was meshed using Gmsh (Geuzaine & Remacle 2009), with a structured C type mesh271
around the wing. Macroscopic elements for a typical B�' = 4 straight wing mesh are shown272
in figure 2(0), the closeup in 2(1) shows refinement near the wing. Within each element both273
spectral codes (discussed in §3.2) resolve flow quantities by use of high-order polynomials,274
the degree of which is adjusted until convergence is achieved. Several computational meshes275
having a different number of macroscopic elements were tested with different polynomial276
order ? to ensure spatial and temporal convergence. A combination of 46735 hexahedra277
and prisms as macroscopic elements for an B�' = 4 wing and polynomial order of 5 was278
selected.279
For analysing the effect U, the B�' and Λ are kept constant at B�' = 4 and Λ = 0◦. The280

effects of Λ are analysed at a constant U = 22◦ at which the flow is separated with Λ varied281
between 0◦ and 30◦ for wings of B�' = 4 and 2. Length and velocity are nondimensionalized282
by wing chord 2 and *∞, respectively. Time refers to nondimensional convective time283
normalised by 2/*∞ and the Strouhal number is defined as (C = 5 2 sin(U)/*∞. For modal284
stability results shown in further section, each perturbation component is normalised by285
maximum of all components and the nondimensional angular frequency is defined as lA =286
2c 5 2/*∞.287

3.2. Solvers and boundary conditions288

Direct numerical simulation is used to solve equations of motion using either of the nek5000289
(Fischer et al. 2008) or nektar++ (Cantwell et al. 2015) spectral element codes. The290
incompressible solver in both codes relies on the solution of a Helmholtz equation. In291
nektar++ a Jacobi (diagonal) preconditioner was used. In nek5000 the preconditioning292
strategy is based on an additive Schwarz method (Offermans et al. 2020), which combines a293
domain decomposition method (Fischer 1997) and a coarse grid problem (Lottes & Fischer294
2005). For the coarse grid problem, a direct solution method called XXT (Tufo & Fischer295
2001) is used. For iterative time-stepping, Arnoldi algorithm utilised in the PARPACK library296
was used in nek5000, while the modified Arnoldi method (Barkley et al. 2008) was used297
in nektar++. Time integration method was second order in both codes with backward298
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Figure 2: Computational mesh showing full domain (0) and a close up of the mesh near
the airfoil (1). For clarity only the macroscopic elements are shown, while the internal

field and the mesh resulting from a high-order polynomial fitting are not shown.

differentiation formula (BDF) used in nek5000 and implicit-explicit (IMEX) scheme used299
in nektar++. Both codes were used for computing artificially stationary base flows and to300
perform TriGlobal stability analysis via time-stepping, in order to cross-validate the results301
presented here, as will be discussed shortly.302
In order to close the systems of equations solved, appropriate boundary conditions (BC)303

were prescribed. On the wing boundary, homogeneous Dirichlet (D) boundary condition304
was used for both base flow and perturbation velocity components. On north, south and305
west boundaries uniform free-stream velocity was imposed for the base flow and D for the306
perturbation. On the east and front faces, outflow and robust outflow in nektar++ (Dong307
et al. 2014) were used for the base flow with homogeneous Neumann (N) BC for the308
perturbation. Finally, symmetry BC (N for D, E and D for F) was used for both base flow309
and the perturbation on the back boundary. The base flow solutions obtained by both codes310
were compared to ensure that identical results are achieved. Figure 3 shows good agreement311
in the variation of vertical velocity with time for a given wing geometry between the two312
codes. The average difference between instantaneous values of E produced by two codes is313
3%. For the configurations considered, good agreement between the two codes is achieved314
when using time steps ΔC 6 5 × 10−4 and polynomial orders ? > 5.315
The values of the average lift (�!) and drag (��) coefficients, computed with nektar++316

and presented in table 1, are in agreement with results of Zhang et al. (2020a). Further317
comparisons between results of the CharLES and nektar++ solvers have been presented in318
He et al. (2019a) and Zhang et al. (2020a).319

3.3. Steady state generation and linear global stability analysis320

At conditions at which a steady state exists, the base flow for the analysis is obtained by321
converging the DNS solution in time. Past the first bifurcation, unsteady flow ensues and322
obtaining a steady base flow is not as straightforward. A number of numerical techniques have323
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Figure 3: Comparison of E velocity signal between nek5000 and nektar++ for
(B�',Λ, U, '4) = (2, 0◦, 22◦, 400) at (G, H, I) = (4, 0, 1).

Present results Zhang et al. (2020a)
Case U �! �� �! ��

B�' = 4 12◦ 0.37 0.25 0.36 0.24
22◦ 0.57 0.38 0.58 0.38

B�' = 2 12◦ 0.33 0.24 0.33 0.24
22◦ 0.50 0.36 0.50 0.36

2D 22◦ 0.77 0.46 0.77 0.46

Table 1: Comparison of mean lift and drag coefficients computed with nektar++ over
unswept NACA 0015 wings at '4 = 400 with literature.

been developed for the recovery of steady states at conditions where global linear instability is324
expected. These include approaches based on continuation (Keller 1977), selective frequency325
damping (SFD) (Åkervik et al. 2006), and more recently residual recombination procedure326
(Citro et al. 2017) andminimal gainmarching (Teixeira&Alves 2017). Here the SFDmethod,327
as implemented in nektar++ and nek5000, has been used to compute artificially stationary,328
unstable base states that were used for the subsequent modal analyses. Verification of the329
SFD methodology employed was presented by He et al. (2019a) who recovered accurate330
amplified global modes of a sphere. SFD uses filtering and control of unstable temporal331
frequencies in the flow, the time continuous formulation can be expressed as332 {

¤q = #((q) − W(q − q̄),
¤̄q = (q − q̄)/Δ (3.1)333

334

where q represents the problem unknown(s), the dot represents the time derivative, #(335
represents the Navier-Stokes equations, W ∈ R+ is the control coefficient, q̄ is a filtered336
version of q, and Δ ∈ R+∗ is the filter width of a first-order low-pass time filter (Jordi et al.337
2014). Choice of the parameters W and Δ affects the convergence to the steady-state solution338
when q = q̄. If the dominant mode is known and specified as input one can adjust the filter339
parameters to accelerate convergence.340
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Code ? SFD (4, 0◦) (4, 5◦) (2, 0◦)
nektar++ 5 1 × 10−5 1.5198 + 80.3018 1.6581 + 80.2701 1.6727 + 80.4184
nek5000 5 1 × 10−5 1.5164 + 80.2985 1.6335 + 80.3173 1.6608 + 80.4236
nek5000 5 1 × 10−6 1.5151 + 80.2969 1.6321 + 80.3512 -
nek5000 7 1 × 10−5 - 1.6383 + 80.3501 -

Table 2: Eigenvalue of the least damped global mode for different (B�',Λ) at U = 22◦,
'4 = 400 obtained with different codes, polynomial order ? and level of SFD convergence.

Figure 4: Growth of the perturbation Ê velocity component for (B�',Λ, U) = (4, 5◦, 22◦)
showing the slope. Insert shows the location of the probe point %(G, H, I) = (4, 0, 2).

TriGlobal instability analysis was performed using the time-stepper algorithm and the341
implicitly restarted Arnoldi method with the boundary conditions presented in §3.2. Krylov342
subspace dimensions between 50 and 100 have been used to converge between 6 to 12343
leading eigenmodes within a tolerance of 10−5. For both codes SFD was converged to344
1 × 10−6 − 1 × 10−5.345

3.4. Validation and verification of the linear stability analysis346

Table 2 shows the effect of the polynomial order ? and the extent of SFD convergence on the347
eigenvalues of the least damped global mode for swept and unswept configurations using both348
spectral codes. Overall, very good agreement in terms of the frequency with less than 2%349
difference between the two codes is observed at the same levels of ? and SFD convergence.350
The difference in damping rate is within 2% for unswept cases and is about 15% for the swept351
case. When increasing the ? or using better converged base flows the damping rate of the352
leading mode is substantially higher. It should be noted that due to the high computational353
costs these tests were only conducted using nek5000. At higher resolutions, the agreement354
between the two codes is expected to improve. An equivalent agreement was achieved for355
other cases as well.356
To further validate the global stability analysis, a nonlinear simulation was performed357

with the stationary base flow as initial condition for (B�',Λ, U, '4) = (4, 5◦, 22◦, 400). The358
evolution of the vertical velocity E signal over time is shown in figure 4 for a probe location359
in the wake. The signal first exhibits a period of linear growth with the eventual transition to360
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Figure 5: Effect of U on instantaneous DNS solution shown with isocontours of&-criterion
(& = 1) coloured by streamwise vorticity (−5 6 lG 6 5) at (B�',Λ, '4) = (4, 0◦, 400).

nonlinearity. Corresponding frequency l, obtained with a fast Fourier transform of the time361
signal is 1.69 and the growth rate is 0.350 which are in good agreement with the frequency362
and damping rate of the dominant global mode shown in table 2.363

4. Results364

4.1. Base flows365

The evolution of the flow over the unswept B�' = 4 wing at '4 = 400 obtained by DNS366
with the angle of attack is shown in figure 5. The vortical structure of the three-dimensional367
wake over unswept wings is in agreement with the DNS results of Zhang et al. (2020a).368
With increasing U, the separation location moves closer to the leading edge and the tip vortex369
becomes stronger. For the separated flows at high angles of attack, three regions can be370
identified behind the wing.371
As seen in figure 5, the flow is steady at U = 10◦ with separation occurring at approximately372

two-thirds of the chord and being practically two-dimensional. At U = 14◦, an unsteady wake373
is formed, and the shed vortices are nearly parallel to the trailing edge of the wing. The374
separation location moves upstream to approximately half-chord, and the spanwise region375
of the flow affected by the tip vortex is reduced, with the separation bubble extending376
closer to the tip. At the higher angles of attack of U = 18◦ and 22◦, also shown in figure377
5, the three distinct regions develop (Zhang et al. 2020a). These regions are the wake,378
consisting of spanwise vortices near the symmetry plane, the essentially steady tip vortex,379
and the interaction region between the wake and tip characterised by the braid-like vortices,380
comprised of both streamwise vorticity (lG) and crossflow vorticity (lH). These braid-like381
vortices close the spanwise vortex system by connecting a pair of counter-rotating spanwise382
vortical structures in the wake region forming a closed vortex loop.383
The effect of sweep angle on the flow over the B�' = 4 wing is shown in figure 6.384

As the wing is swept back, the interaction region is moved closer to the wing tip due to the385
increased spanwise crossflow, which results in the tip vortex becoming weaker and noticeably386
less steady. There is a qualitative change in the wake structure as the sweep angle reaches387
Λ = 15◦. The periodic vortices passing through the symmetry plane are no longer visible, and388
the wake now consists of two series of braid-like vortices forming outboard of the midspan,389
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Λ = 0◦

Λ = 5◦

Λ = 10◦

Λ = 15◦

Λ = 30◦

Figure 6: Effect of Λ on instantaneous DNS solution (left column) and steady base flow
after SFD (right column) shown with isocontours of & = 1 for

(B�', U, '4) = (4, 22◦, 400), coloured by streamwise vorticity (−5 6 lG 6 5).

that do not pass through the symmetry plane. The tip vortex is now less pronounced and390
clearly unsteady. At Λ = 30◦ vortices extending from the inboard section of the wing into391
the wake behind the tip are starting to form; these structures are sometimes referred to as392
"ram’s horn" vortices (Black 1956). A "ram’s horn" vortex is generated on the suction side of393
the wing close to the symmetry plane and a stronger counter-rotating vortex emanates from394
the trailing edge as seen in the bottom row of figure 6. For clarity, an additional contour of395
& = 0.1 in transparent is included for Λ = 30◦. These two vortices form a closed structure396
and start to shed far downstream behind the wing.397
The steady base flow that will be used in the subsequent linear stability analysis has been398

converged by SFD and is shown on the right column of figure 6 for the corresponding399
sweep angles. The contours of D̄ = 0 in transparent grey and D̄ = −0.1 in darker grey400
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Λ = 0◦

Λ = 10◦

Λ = 30◦

Figure 7: Same as figure 6 but for B�' = 2 at U = 22◦. For clarity additional contour of
& = 0.1 in transparent is included for Λ = 30◦.

are superimposed upon the contours of & = 1 to indicate the recirculation region. For the401
unswept wing, there is a large separation bubble in the base flow that covers most of the402
span of the wing up to I ≈ 3.8 where the flow remains attached due to the downwash403
induced by the tip vortex. The bubble is largest at the symmetry plane and extends to G ≈ 5404
in the streamwise direction. As the wing is swept back, this maximum in the streamwise405
extent of the recirculation region shifts away from the symmetry plane and towards the tip.406
The conjecture that the spanwise location of maximum recirculation is connected to the407
instabilities of the flow will be examined in what follows. It is likely that a global mode will408
manifest itself at this location. At Λ = 30◦ the flow over most of the wing is steady, as is409
suggested by the fact that the structures of & are identical between instantaneous result and410
SFD base flow as seen in the bottom row of figure 6. For the steady base flow at Λ = 30◦,411
the separation bubble extends nearly all the way to the wing tip and the tip vortex is no412
longer visible. On the inboard side of the wing, a region of attached flow develops, and the413
separation bubble is split in two no longer passing through the symmetry plane. Interestingly,414
the presence of such region of attached flow at the root of a swept wing was also reported415
by Visbal & Garmann (2019) for turbulent flow at much higher Reynolds numbers. Overall,416
a higher angle of sweep has a stabilising effect on the flow. It was shown by Zhang et al.417
(2020b) that, as the sweep is further increased, the flow turns steady beyond Λ ≈ 45◦.418
The effects of sweep are qualitatively analogous on the lower semi-aspect ratio wing419

(B�' = 2, figure 7). For the unswept wing, only one row of braid-like vortices is formed420
compared to the larger aspect ratio wing and there is no clear wake region. The reduced span421
of the wing means that the wake is greatly influenced by the tip effects. Hence, there is not422
enough spanwise separation between the tip and the symmetry plane for spanwise aligned423
vortices to develop. Similar to the B�' = 4 case, horn-like vortices are formed at Λ = 30◦,424
with the flow over most of the wing being steady. In the SFD base flow, the spanwise location425
of the maximum extent of recirculation for the B�' = 2 wing also moves towards the tip;426
however, the spanwise extent of the recirculation region is reduced compared to the B�' = 4427
wing.428

4.2. Linear global modes429

TriGlobal modal linear stability analysis was performed at conditions at which steady flow430
naturally exists or could be computed using the SFD method discussed in §3.3. The effects431
of Reynolds number and angle of attack on leading modes will be discussed in §4.3. Here,432
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C

Figure 8: Modes A, B and C for (B�',Λ, U, '4) = (4, 5◦, 22◦, 400) visualised with
contours of perturbation velocity components at ±0.1. The contours of D̄ = 0 in
transparent grey and D̄ = −0.1 in darker grey indicate the recirculation region.

we first focus on the most unstable conditions of '4 = 400 and U = 22◦, where multiple433
amplified modes exist, and present results of parametric studies of the effects of angle of434
sweep and wing aspect ratio. Due to the computational cost of the SFD method, analysis435
results are shown for a selected number of representative configurations, focusing on the436
most unstable eigenmodes. Global stability results for the B�' = 4 wing at constant U = 22◦437
are shown in figures 8-12.438
Figure 8 shows the three leading flow eigenmodes on the B�' = 4 wing, classified using439

their frequency, phase and spatial structure. These modes, named A, B and C, are plotted440
with contours of the three perturbation velocity components for the same wing geometry of441
(B�',Λ, U, ) = (4, 5◦, 22◦); in each subplot, both a top and a side view of the same mode442
are shown. Mode A is the most unstable for most cases examined and takes the form of443
periodic vortical structures at half-span. As hypothesized in §4.1, it originates at the peak in444
the recirculation regions of the base flow. The structure of mode B is visually similar to A445
but with a streamwise drift. It can be seen that both modes A and B originate at the peaks in446
the recirculation regions of their respective base flows that were shown in figure 6. The D̂ and447
F̂ velocity components of modes A and B have two branches, each associated with the shear448
layer at the top and bottom of the separation bubble, which suggests that these are shear layer449
instabilities. The vertical Ê velocity component of these modes has a chevron-like structure450
when viewed from above. However, the peak of the spatial structure of mode A is located451
near the wing, while the structures of mode B become stronger further away from it. Unlike452
modes A and B that originate at the peaks in the recirculation regions of their respective453
base flows, mode C has structures just inboard or outboard of the maximum recirculation454
as shown in the bottom row of figure 8. The contours of Ê velocity of mode C no longer455
shows a chevron-like pattern, and all velocity components have a row of periodic structures456
at 2 6 I 6 3 that are oblique to the wing.457
Figures 9-11 show the dependence of the frequency and the amplification rate of each of the458
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Λ = 0◦

Λ = 5◦

Λ = 10◦

Λ = 15◦

Figure 9: Spatial structures of mode A at different Λ, on a B�' = 4 wing at a constant
U = 22◦, '4 = 400, visualised with contours of & = 0.5 shown with top and side view
coloured by spanwise vorticity (−5 6 lI 6 5). An arrow indicates the change of the

leading eigenvalue with increasing sweep angle.

Λ = 0◦

Λ = 5◦

Λ = 10◦

Λ = 15◦

Figure 10: Same as figure 9, highlighting mode B.

modes A, B and C on the sweep angle. Figure 12 shows the stable modes present at Λ = 30◦459
which was the highest sweep angle considered. In each of these figures, the eigenvalues of460
a specific mode are highlighted by full symbols and are shown alongside the eigenvalues of461
other modes to aid visual comparison. As in the figures that showed the base flow, contours of462
D̄ = 0 in transparent grey and D̄ = −0.1 in darker grey indicate the recirculation region. The463
spatial structures of the selected group of modes are shown by labelled contours of & = 0.5464
in all figures and (C is defined as (C = lA 2 sinU/2c*∞.465
Figure 9 shows mode A, which is the leading unstable flow eigenmode in the range466

0◦ 6 Λ 6 15◦. The plot of &-criterion of mode A for the unswept wing shows periodic467
vortical structures at half-span. When mirrored in the symmetry plane, the structures of &468
have a necklace-like shapewhen viewed from above. Similar necklace vorticeswere identified469
by Taira & Colonius (2009) in flows over flat plates. Here, such structures are associated470
with the leading global eigenmode of a finite wing at different geometrical conditions. This471
same mode A is the most amplified at Λ = 5◦ and 10◦ as can be seen in figure 9. With sweep,472
the spatial structures of mode A move away from the symmetry plane and towards the tip473
following the spanwise location of the peak recirculation of the base flow. The frequency474
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Λ = 0◦

Λ = 5◦

Λ = 10◦

Λ = 15◦

Figure 11: Same as figure 9, highlighting mode C.

remains within 6% from the unswept case, but the amplification rate increases by 26% from475
unswept to Λ = 10◦. At Λ = 15◦, mode A is still dominant, but the spatial structures show476
some changes. In particular, the lower branch associated with the bottom shear layer is less477
pronounced when looking from the side, and when viewed from the top the structures show478
inboard curvature, associated with the shape of the separation bubble near the tip. This479
might be due to the induced velocity by the tip vortex. Furthermore, under these conditions480
mode A is about 50% less amplified compared to Λ = 0◦, which points to a change in481
the amplification of the leading mode between Λ of 10◦ and 15◦. This is attributed to the482
balance of tip induced and spanwise flow effects with increasing sweep angle. Both the tip483
vortex downwash (Zhang et al. 2020a) and increased angle of sweep (Zhang et al. 2020b)484
were shown to have a stabilising effect on the wake. As Λ increases, the stabilising effects485
of the tip decrease, due to the weakening of the tip vortex observed in the flow, leading to486
mode A being more amplified. As Λ increases further, the spanwise flow becomes stronger487
as discussed in appendix A, and mode A becomes less amplified due to stabilising effect of488
spanwise flow.489
Besides mode A, which is amplified in all four low sweep cases shown, a subdominant490

mode, labelled B shown in figure 10, is also found with the exact same frequency. At Λ = 5◦491
and 10◦, mode B is the second most amplified mode and is the third most amplified for492
Λ = 0◦. As mentioned before, mode B closely resembles mode A however, the structures493
of modes A and B are out of phase and the two modes have different phase velocities and494
wavelengths. Just like with mode A, the spanwise location of the peak of mode B moves495
towards the tip as Λ increases, following the peak recirculation of the respective base flow.496
Mode C, shown in figure 11, has a higher frequency than A and B and nearly the same497

phase velocity as B. Unlike the compact structures of modes A and B, the periodic structures498
of mode C extend further in the spanwise direction. In addition, mode C is not localised at499
the peak of the separation bubble but also has structures concentrated on either side of it as500
in the case of Λ = 0◦ and 10◦ or on both sides as in Λ = 5◦ and 15◦.501
No unstable modes were found in the spectrum of theΛ = 30◦ wing. The least stable mode,502

labelled D, is stationary and damped. The mode structure shown in figure 12 indicates that it503
is a vortical structure that counter rotates with respect to the tip vortex. The mode structures504
follow the direction and spatial location of the spanwise vortices seen in the base flow (figure505
6). The second most unstable mode E shown in the same figure peaks further downstream506
behind the wing with structures showing some resemblance to the wake-like modes A and B507
but also having vortex-like characteristics.508
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Figure 12: Same as figure 9 showing modes D and E for
(B�',Λ, U, '4) = (4, 30◦, 22◦, 400).

Λ = 0◦

Λ = 10◦

Λ = 30◦

Figure 13: Same as figure 9 showing modes A and F on the shorter B�' = 2 wing.

Finally, the lower aspect ratio wing (B�' = 2) is considered at the same U = 22◦. Global509
modes for several sweep angles are shown in figure 13. Similar to B�' = 4 case, the dominant510
mode for Λ = 0◦ and 10◦ is mode A. However, unlike in the higher aspect ratio wing, mode511
A appears to be less amplified at Λ = 10◦, and mode B no longer appears in the spectrum at512
least up to an Kylov subspace dimension of 50. The fact that mode A does not become more513
amplified at Λ = 10◦ over the B�' = 2 wing can be explained by stronger tip effects on the514
shorter wing. At Λ = 30◦, the leading mode, labelled F, is steady and takes the form of a tip515
like instability that was not seen on B�' = 4 wing. Additional low frequency travelling and516
stationary modes are present but are all stable.517
The existence of three families of modes that manifest themselves at a range of geometrical518

configurations is encouraging. Documenting these instabilities at low Reynolds numbers519
offers a basis for theoretically-founded flow control strategies as well as a first step towards520
understanding turbulent flow at higher Reynolds numbers as it is expected that these modes521
will exist at range of Reynolds numbers. Since mode A, which is dominant for most522
configurations, is a shear layer instability related to the separation bubble, flow control523
targeted at the separation bubble could be used to attenuate the formation of wake structures524
observed in §4.1 which result from linear growth and the eventual nonlinear saturation of525
the leading mode as will be shown in §4.4. Theoretically-founded flow control studies based526
on solution of the adjoint TriGlobal EVP are currently underway and will be presented527
elsewhere.528
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4.3. Effects of Reynolds number and angle of attack529

The effect of the Reynolds number on the growth rate and frequency of the leading mode530
is considered at a fixed set of parameters (B�',Λ, U) = (4, 0◦, 22◦). For the cases where531
steady flow exists, the residuals algorithm (Theofilis 2000) was used to extract global mode532
characteristics from the DNS results, while for unstable cases the TriGlobal eigenvalue533
problem was solved numerically. Consistent results were obtained by the two approaches,534
the results of which are shown as data points connected by splines. Figure 14 (a) presents535
the dependence of the amplification rate of mode A on Reynolds number and establishes the536
critical Reynolds number at these conditions, '4crit = 180.3, at which a Hopf bifurcation537
and the onset of wake unsteadiness occur. The frequency of mode A, shown in figure 14 (b),538
increases before reaching a peak at '4crit and decreases afterwards. The growth rate increases539
nearly lineally in the vicinity of '4crit and continues to increase at a lower rate once the flow540
becomes unstable. As in the case of the two-dimensional cylinder flow (Barkley 2006), at the541
bifurcation point the frequency of the leading mode matches the wake shedding frequency542
measured from DNS results, whereas beyond '4crit the frequencies diverge. Mean flow543
stability analysis is needed at Reynolds numbers higher than '4crit to recover the shedding544
frequency as shown in 14(1).545
Next, the Reynolds number is kept constant at the highest value considered presently,546

'4 = 400, and the angle of attack (U) is varied, keeping B�' and Λ constant, in order to547
establish the critical angle of attack (Ucrit) at which the flow becomes unstable; results are548
shown in figure 15. It can be seen that increasing U has a destabilising effect on the flow, the549
critical angle of attack at these parameters being Ucrit = 13.4◦. Moreover, it can be seen that550
the amplification rate of the leading global mode plateaus near U = 22◦, while its frequency551
reduces systematically past the critical angle of attack.552
The association of the leading three-dimensional global mode with peaks in the reversed553

streamwise velocity component of the base flow (D̄rev) seen in figure 9, calls for examination554
of the dependence of the latter quantity on the same two variables used in figures 14 and 15.555
Figure 16 shows the dependence of D̄rev on '4 and U, as a fraction of the free stream velocity.556
In both cases, the maximum reversed flow increases monotonically when either of '4 or U557
is increased. This growth correlates with the linear slope of the l8 curve in the vicinity of558
the bifurcation point in figures 14(0) and 15(0). The values of recirculation corresponding559
to the critical conditions '4crit and Ucrit are 14% and 11%, respectively. As such, these560
values fall within the bracket of predictions for absolute instability, 7.5% 6 D̄rev 6 15%,561
obtained by classic absolute/convective instability analysis (Hammond & Redekopp 1998),562
direct numerical simulation (Rist & Maucher 2002) and global stability analysis (Rodríguez563
& Theofilis 2010) of two-dimensional laminar separation bubble models.564

4.4. Modal analyses in the nonlinear saturation regime565

The evolution of the linearly unstable flows documented in the earlier sections towards566
nonlinearity is examined next at (B�',Λ, U, '4) = (4, 5◦, 22◦, 400). Figure 17 shows the567
time history at a probe located at (G, H, I) = (4, 0, 2), while the full flow fields are visualised568
with & = 1 coloured by streamwise vorticity −5 6 lG 6 5. The resulting flow field (EIG)569
at a time that is well into the nonlinear regime (C = 60) is compared to the initial DNS. At570
early times C < 15, the flow remains nearly identical to the steady SFD-obtained base flow.571
At C ≈ 20, vortical structures emerge at 1 6 I 6 2, corresponding to the spatial locations of572
the peak of the global mode A. As time evolves, nonlinearity takes over with more complex573
structures forming in the wake, as seen at C = 30, with the eventual flow field (C = 60)574
being practically identical to the DNS at corresponding times. The small phase discrepancy575
is because the times at which the EIG and DNS fields are shown do not exactly match, since576
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(0) (1)

Figure 14: Dependence on '4 of growth rate (0) and frequency (1) of the leading global
mode A at (B�',Λ, U) = (4, 0◦, 22◦). The DNS shedding frequency is also shown in (1).

(0) (1)

Figure 15: Variation of growth rate (0) and frequency (1) of the leading global mode A
with U at (B�',Λ, '4) = (4, 0◦, 400).

(0) (1)

Figure 16: Dependence of the maximum reverse streamwise velocity component on '4 at
(B�',Λ, U) = (4, 0◦, 22◦) in (0) and on U at (B�',Λ, '4) = (4, 0◦, 400) in (1). Lines

correspond to a least-squares fit of the data points.

C = 10 C = 20 C = 30 C = 60

DNS

EIG
Figure 17: Growth of the global mode for (B�',Λ, U, '4) = (4, 5◦, 22◦, 400) showing the
time history at point %(G, H, I) = (4, 0, 2) and flow field evolution at selected times. On the

right, the resulting flow field is also compared to the DNS result.
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Method Mode Λ = 0◦ Λ = 5◦
(C l8 (C l8

Base flow EVP 1 (A) 0.090 0.299 0.098 0.350
2 (B) 0.089 0.104 0.098 0.033

Mean flow EVP 1 (IM) 0.140 -0.010 0.141 0.010
2 (WM) 0.155 -0.027 0.157 -0.030

POD/DMD EVP 1 (IM) 0.140 -0.003 0.140 -0.003
2 (WM) 0.160 -0.009 0.160 -0.017

Table 3: Comparison of the frequencies and amplification rates of the first two modes
obtained by different methods for (B�', U, '4) = (4, 22◦, 400).

the mode takes a long time to grow from the steady flow. The corresponding time for the577
DNS for this qualitative comparison was chosen such as to approximately match the peaks578
during nonlinear saturation.579
Table 3 presents a quantitative comparison of the frequencies and amplification rates of the580

leading two modes at different times during the flow evolution: the top two rows show results581
of the stationary base flow, while the middle and lower two rows correspond to the mean582
flow obtained by time-averaging during nonlinear saturation and to data-driven analyses583
performed on snapshots, also taken in the nonlinear regime. A number of observations584
worthy of discussion are made on the basis of these results. Firstly, the growth of the most585
amplified linearly unstable global mode exactly corresponds to the slope of the logarithmic586
derivative of the DNS probe data during linear growth. Secondly, as already seen in figure587
14, modes obtained from mean flow stability analysis (Barkley 2006; Sipp & Lebedev 2007)588
have different frequencies to those of the leading global mode, while their amplification rate589
is close to the theoretically expected value of zero. Thirdly, data-driven analyses (Taira et al.590
2017) using proper orthogonal decomposition (Lumley 1967; Sirovich 1987) and dynamic591
mode decomposition (Schmid & Sesterhenn 2008; Rowley et al. 2009; Schmid 2010) at the592
nonlinear regime, deliver essentially identical results with those of the corresponding mean593
flow stability analysis.594
Figure 18 shows a visual representation of these results, focusing on the spatial structure595

of the leading modes obtained using a base flow that satisfies the equations of motion versus596
their counterparts resulting from mean flow and data-driven stability analyses, all performed597
at (B�',Λ, U, '4) = (4, 5◦, 22◦, 400). Contours of D̄ = 0 in transparent grey and D̄ = −0.1598
in darker grey indicate the recirculation region of the base and mean flows. It can be clearly599
seen that mean flow modes are distinctly different from the amplified base flow modes600
and are qualitatively very similar to the modes obtained by data-driven analysis, namely601
the interaction and wake modes, that will be further discussed in figure 19. In summary,602
conclusions drawn on the basis of mean flow stability analysis of simpler geometries, namely603
that the mean flow stability analysis yields neutrally stable perturbations with the frequency604
of the saturated limit cycle (Barkley 2006; Sipp & Lebedev 2007), are found to carry over in605
the present fully inhomogeneous three-dimensional flow configuration. The linearly unstable606
global modes have essentially different spatial distribution of the amplitude functions, as well607
as different frequencies compared to their counterparts obtained by analysis of the nonlinearly608
saturated flow regime. The role of the linear eigenmodes identified herein is to connect the609
steady laminar flow with the nonlinear saturated counterpart through a modal amplification610
scenario.611
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Base flow Mean flow POD/DMD

Mode 1

Mode 2

Figure 18: Leading modes of base flow, mean flow and data-driven stability analysis for
(B�',Λ, U, '4) = (4, 5◦, 22◦, 400). Isocontours of modes at & = 0.5 coloured by

spanwise vorticity −5 6 lI 6 5.
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Figure 19: Data-driven modal results for (B�',Λ, U, '4) = (4, 5◦, 22◦, 400) showing the
base flow (0), the interaction mode (1) and wake mode (2). Isocontours of base flow at

& = 1 and modes at & = 0.5 coloured by streamwise vorticity −5 6 lG 6 5.

Figure 19 introduces some qualitative features of the stability analysis results in the612
nonlinear saturation regime. The two most interesting structures found in the spectrum and613
corresponding to the mean flow stability analysis results shown in figure 18, are denominated614
the interaction mode (IM) and the wake mode (WM). The IM, shown in figure 19(1), has615
vortical structures in the wake reflecting the curvature of the vortices shed from the wing but616
also has structures corresponding to the interaction region vortices present in the base flow as617
shown in figure 19(0). On the other hand, WM, shown in figure 19(2), is concentrated in the618
wake region with structures near the wing being parallel to it. The evolution of these modes619
with changes in the parameters '4, B�', Λ and U will be discussed in detail elsewhere.620

5. Summary621

Linear modal three-dimensional (TriGlobal) instability analysis of laminar separated flows622
over finite aspect ratio, constant-chord wings has been performed at 100 6 '4 6 400, two623
aspect ratios and a range of angles of attack and sweep.624
Monitoring the unsteady base flows, the following observations were made, as the angle of625

sweep (Λ) increased. When 0◦ 6 Λ < 10◦, the three distinct regions reported by Zhang et al.626
(2020a) were also observed, namely the tip vortex, wake and the interaction regionwith braid-627
like vortices. For 15◦ 6 Λ < 25◦, the braid-like vortices of the interaction region become628
dominant and absorb the tip vortex. Finally, at 25◦ 6 Λ 6 30◦, tip stall and "ram’s horn"629
vortices are present with steady flow over most of the wing. The overall effect of increasing630
sweep is flow stabilisation. In the steady flow generated by SFD, a large separation bubble631
is observed. The spanwise location of the maximum extent of the bubble changes with Λ632
moving towards the tip.633
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Linear TriGlobal instability analysis was used to identify the critical Reynolds number,634
'4crit = 180.3, and critical angle of attack, Ucrit = 13.4◦, on a straight finite wing of635
B�' = 4. A parametric study of the effect of sweep angle conducted at conditions of636
maximum unsteadiness, '4 = 400 and U = 22◦, revealed the existence of three families637
of unstable global modes, denominated A, B and C. Their frequency content and spatial638
structure were documented for a range of Λ and two B�'. The leading Mode A is dominant639
in all cases examined, and its most interesting characteristic is that it originates at the peak640
recirculation zone of the three-dimensional laminar separation bubble formed on the wing.641
The latter is located at half-span for an unswept wing and moves towards the wing tip as642
the angle of attack increases. Mode A follows this spanwise motion of the peak recirculation643
at all conditions examined. Subdominant modes B and C were also discovered; mode B644
has practically the same frequency as A and also peaks at maximum recirculation but has645
a different phase velocity. In contrast to the previous two, Mode C has a higher frequency,646
while its structure is not localised at the maximum recirculation but extends further in the647
spanwise direction.648
Overall, an increase of the sweep angle was found to stabilise the flow as no globally649

unstable modes were found at the maximum consideredΛ of 30◦. The leading mode at thisΛ650
is stable and stationary taking the form of a single vortex tube similar to structures observed651
in the base flow. This suggests that stabilising effects of spanwise flow are significant only652
at Λ & 10◦, whereas, at lower sweep angles, mode A becomes more amplified due to the653
weakening of the tip vortex and the reduction of associated stabilising effects. This is not the654
case for the B�' = 2 wing, where mode A is already less amplified at Λ = 10◦ compared to655
the unswept case, suggesting a monotonic decrease of the amplification rate with Λ. This is656
attributed to the stronger tip effects over the shorter wing. At the highest sweep angle of 30◦657
and B�' = 2, the leading stable mode is a tip instability suggesting that the tip effects are658
stronger than spanwise flow effects even for high Λ on the short wing.659
The origin of thewake unsteadiness observed in the simulations of Zhang et al. (2020a) and660

those performed herein was associated with the unstable global mode A. Exponential growth661
of mode A superposed upon the underlying steady base flow leads to vortical structures662
appearing in the DNS results at the same spatial locations where mode A peaks. As time663
evolves, nonlinearity takes over and more complex structures form in the wake. The variation664
of the leading mode frequency and growth rate with Reynolds numbers above '4crit is found665
to be that predicted by Barkley (2006) on the canonical two-dimensional cylinder: the time-666
averaged mean flow of the finite wing is neutrally stable and yields the shedding frequency667
of the wake.668
To conclude, linear TriGlobal instability analysis revealed the leading eigenmodes of669

this class of flows for the first time. The evolution of these modes with aspect ratio and670
sweep angle was documented. The essential differences between the linear global modes671
identified herein and those resulting from mean flow (or data-driven) stability analysis has672
been discussed. This analysis provides insight into the formation of the unstable wake for the673
range of conditions examined. The results reported here establish a basis for understanding674
flow dynamics and instabilities on finite three-dimensional untapered wings at low Reynolds675
numbers, as a first step towards understanding turbulent flow at higher Reynolds numbers.676
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Figure 20: (0) Top view of (B�',Λ, U) = (4, 5◦, 22◦) wing showing contours of 〈F〉. (1)
Slice from (0) showing streamwise vorticity and velocity vectors (G = 1.5). (c) Magnitude
of spanwise flow towards the root ( ) at a line 0.12 above the wing TE and towards the
tip ( ) at a line 0.12 above the wing LE. (3) Comparison of spanwise flow magnitude
towards the root ( ) and tip ( ) at I = 2 for lines a different heights (H) above the TE.
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Appendix A. Effect of Λ on the spanwise flow on the wing685

Spanwise flow effects are considered by analysing the time-averaged flow for the Λ = 5◦686
wing. Figure 20(0) shows isosurfaces of the time-averaged spanwise component of velocity687
〈F〉 at levels from −0.2 to 0.2, on the (B�',Λ, U, '4) = (4, 5◦, 22◦, 400) wing. A region of688
positive (towards the tip, shown in red) flow is visible at the leading edge (LE) of the wing689
as the sweep angle increases. Above the trailing edge (TE), a region of negative (towards the690
root, shown in blue) flow is seen to peak at I ≈ 2. Figure 20(1) shows the time-averaged691
streamwise vorticity 〈lG〉 behind the wing on the G = 1.5 plane. As noted by Zhang et al.692
(2020a), the vortex sheet emanates from the leading edge and the wing tip. The region of693
negative streamwise vorticity is associated with the roll-up of the wing tip vortex sheet that694
gives rise to the tip vortex, while the roll-up of the LE vortex sheet leads to a region of695
positive streamwise vorticity. It can be seen from the velocity vectors in figure 20(1) that696
these opposing regions of vorticity induce spanwise flow towards the root of the wing in697
the vicinity of the wing TE. The magnitude of this spanwise flow |〈+B?0=〉| over the TE is698
compared to spanwise flow towards the tip above the LE in figure 20(2) on a line parallel to699
the wing and 0.12 above the wing. On the Λ = 5◦ wing, the induced spanwise flow towards700
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the root is comparable in strength to spanwise flow caused by wing sweep from the quarter-701
span and nearly all the way to the wing tip, while this induced spanwise flow is weaker at702
larger Λ values. This trend holds when lines at various heights above the TE are considered,703
as is evident in figure 20(3), where the magnitude of opposing spanwise flow is compared704
at quarter-span (I = 2). As the angle of sweep increases, the strength of the tip vortex, and705
hence spanwise flow towards the root, decreases; by contrast, the spanwise flow at the LE,706
which is opposite in direction, increases with increasing Λ. At Λ = 5◦ the lines describing707
the opposite flow motion intersect, suggesting a balance of spanwise and tip-induced flow708
under these conditions.709
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