Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles



He, Donglin ORCID: 0000-0002-5512-8162, Zhang, Linda ORCID: 0000-0003-3841-544X, Liu, Tao ORCID: 0000-0001-6763-6271, Clowes, Rob, Little, Marc A ORCID: 0000-0002-1994-0591, Liu, Ming ORCID: 0000-0003-0008-1480, Hirscher, Michael ORCID: 0000-0002-3143-2119 and Cooper, Andrew I ORCID: 0000-0003-0201-1021
(2022) Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles. Angewandte Chemie, 134 (32).

Access the full-text of this item by clicking on the Open Access link.

Abstract

<jats:title>Abstract</jats:title><jats:p>Porous materials that contain ultrafine pore apertures can separate hydrogen isotopes via kinetic quantum sieving (KQS). However, it is challenging to design materials with suitably narrow pores for KQS that also show good adsorption capacities and operate at practical temperatures. Here, we investigate a metal–organic cage (MOC) assembled from organic macrocycles and Zn<jats:sup>II</jats:sup> ions that exhibits narrow windows (&lt;3.0 Å). Two polymorphs, referred to as <jats:bold>2α</jats:bold> and <jats:bold>2β</jats:bold>, were observed. Both polymorphs exhibit D<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub> selectivity in the temperature range 30–100 K. At higher temperature (77 K), the D<jats:sub>2</jats:sub> adsorption capacity of <jats:bold>2β</jats:bold> increases to about 2.7 times that of <jats:bold>2α</jats:bold>, along with a reasonable D<jats:sub>2</jats:sub>/H<jats:sub>2</jats:sub> selectivity. Gas sorption analysis and thermal desorption spectroscopy suggest a gate‐opening effect of the MOCs pore aperture. This promotes KQS at temperatures above liquid nitrogen temperature, indicating that MOCs hold promise for hydrogen isotope separation in real industrial environments.</jats:p>

Item Type: Article
Divisions: Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 12 Jul 2022 15:33
Last Modified: 04 Sep 2023 02:57
DOI: 10.1002/ange.202202450
Open Access URL: https://onlinelibrary.wiley.com/doi/10.1002/ange.2...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3158308