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ABSTRACT In the real world, many optimization problems have such levels of uncertainty and complexity
that a single objective function cannot represent all the characteristics of the considered system. Hence, multi-
objective optimization algorithms are needed to account for multiple aspects of the problem, represented by
multiple objective functions, to achieve reasonable and useful results through the optimization procedure.
In this paper, we introduce the multi-objective version of a recently-developed single-objective metaheuristic
algorithm known as Atomic Orbital Search (AOS), which will be called Multi-Objective Atomic Orbital
Search (MOAOS). To this end, the general aspects and main searching loop of the AOS algorithm are
modified to make it capable of dealing with problems with multiple objectives. For the performance
evaluation of this algorithm, the mathematical benchmark problems ZDT and DTLZ, alongside several
real-world engineering design problems and the CEC- 2020 MMO test problems, are utilized. Based on
the results obtained in this study, we can conclude that MOAOS is capable of producing either superior
or closely comparable results when evaluated in competition with alternative state-of-the-art metaheuristic
methods.

INDEX TERMS Atomic orbital search (AOS), multi-objective optimization, metaheuristic, mathematical
benchmark, real-world engineering problems.

I. INTRODUCTION
One of the main capabilities of the human brain is to rec-
ognize the ‘best’ choice and achieve it accordingly. How-
ever, we are also aware that identifying all the conditions
which lead to the best solution to a problem is extremely
difficult or impossible in many cases. Therefore, rather than
‘globally optimal’ solutions to a problem, in many scenarios,
‘sufficiently satisfactory’ solutions can be practically and
effectively used. Optimization seeks to improve the overall
performance of a system in reaching a point (or points)
at which the optimal behavior of the system is achieved.
Optimization has two main aspects: (1) the considered min-
imization (or maximization) problem, and (2) the utilized
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search method. In many cases, optimization procedures focus
on convergence (i.e., reaching an optimal point) while their
overall behavior and the role of utilized algorithms are
generally less investigated. In this regard, developing novel
optimization algorithms, implementing methodical improve-
ments to the existing ones, and hybridizations enable us
to achieve algorithms with a better performance which can
lead to considerable enhancements in the overall behavior
of the optimization procedure. Metaheuristic algorithms are
high-level procedures in which the minimization (or maxi-
mization) of an objective function is considered for reaching
the best optimal solution in dealing with complicated prob-
lems by means of upper-level searching methods. Genetic
Algorithm (GA) [1], Differential Evolution (DE) [2], [3],
Stochastic Paint Optimizer (SPO) [4], Chaos Game Opti-
mization (CGO) [5], Ant colony Optimization (ACO) [6],
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Particle Swarm Optimizer (PSO) [7], Atomic Orbital Search
(AOS) [8], Dynamic Water Strider Algorithm (DWSA) [9],
Flow Direction Algorithm (FDA) [10], Crystal Structure
Algorithm (CryStAl) [11], and Material Generation Algo-
rithm (MGA) [12] are some of the well-formulated meta-
heuristic optimization algorithms which have contributed to
solving a wide range of problems across different fields of
science and technology [13]–[25].

In general, depending on the total number of objective
functions, optimization problems can be categorized into two
main types, namely ‘single-objective’ and ‘multi-objective’
problems. In many of the previously-discussed optimization
problems, only one aspect of the problem was to be mini-
mized (or maximized), subject to specific constraints given
in the problem. In dealing with real-world problems, relying
on one specific aspect of an optimization problem cannot
guarantee the optimal behavior of the considered system.
Considering multiple aspects of the system for incorpora-
tion into the optimization procedure can enhance the system
behavior. Therefore, in recent decades, many multi-objective
optimization algorithms have been proposed by researchers in
the communities of computer science and applied mathemat-
ics. Examples include the Non-Dominated Sorting Genetic
Algorithm, known as NSGA and NSGAII [26] developed
based on the Genetic Algorithm (GA) [27], Multi-Objective
PSO called MOPSO [28], Multi-Objective Strength Pareto
EvolutionaryAlgorithm (SPEA2) [29],Multi-ObjectiveACO
calledMOACO [30], andMulti-Objective Simulated Anneal-
ing called MOSA [31]. Mirjalili, et al. [32] proposed the
Multi-Objective Ant Lion Optimizer (MOALO), in which
a repository is used to hold non-dominated Pareto opti-
mum solutions. Based on Multi-Verse Optimizer (MVO),
Mirjalili, et al. [33] introduced Multi-Objective Multi-Verse
Optimizer (MOMVO); then, the findings were compared
quantitatively and qualitatively to those of previously-
introduced algorithms, demonstrating the utility of MOMVO
in handling a variety of problems. Mirjalili, et al. [34] pro-
posed the Multi-objective Salp Swarm Algorithm (MSSA),
revealing that it can approach Pareto optimum solu-
tions with a high level of convergence and coverage.
Chen, et al. [35] developedMulti-Objective Ant Colony Sys-
tem (MOACO) based on a co-evolutionary multiple pop-
ulations model that optimizes execution time and cost.
In other studies, the authors utilized MOACO to solve
the multi-objective airline crew rostering problem and
the economic emission dispatch (EED) problem, respec-
tively [36], [37]. Zhan, et al. [38] proposed a novel method
of co-evolution named Multiple Populations for Multi-
ple Objectives (MPMO). The uniqueness of MPMO is
that it enables us to solve multi-objective optimization
problems simply by associating each population with a
single objective. In this research, PSO was used for
each population, and a co-evolutionary multi-swarm PSO,
known as CMPSO, based on the MPMO approach, was
developed. Subsequently, for many-objective optimiza-
tion, the authors combined co-evolutionary particle swarm

optimization with a bottleneck objective learning (BOL)
technique. To increase the quality of archived solutions,
a solution reproduction technique comprising both an elitist
learning strategy (ELS) and a juncture learning strategy (JLS)
was created [39].

To solve the job-shop scheduling problem (JSSP),
Liu, et al. [40] introduced a new multiple population
for multiple objectives (MPMO) framework based on GA
called MPMOGA. Based on their results, the authors
asserted that MPMOGA outperformed comparable algo-
rithms such as NSGA-III, Stochastic ranking algorithm
(SRA), and green GA (GGA). Liu, et al. [41] proposed a
Multi-Objective framework for Many-Objective (Mo4Ma)
optimization, transforming the many-objective space into a
multi-objective space. Tejani, et al. [42] proposed Multi-
Objective Heat Transfer Search (MOHTS) for structural
optimization problems. After a number of runs, obtained
results were compared to those of other optimizers exist-
ing in the literature, such as the multi-objective ant sys-
tem, multi-objective ant colony system, and multi-objective
symbiotic organism search, demonstrating that the pro-
posed algorithm outperformed its competitors. Subse-
quently, Kumar, et al. [43] suggested a modified version of
MOHTS for truss mass minimization and nodal displacement
maximization. Tejani, et al. [44] developed Multi-Objective
Adaptive Symbiotic Organisms Search (MOASOS) for solv-
ing truss optimization problems.

Multi-Objective Teaching–Learning-based Optimization
(MOTLBO) [45], Multi-Objective Thermal Exchange Opti-
mization (MOTEO) [46], Multi-Objective Hybrid Heat
Transfer Search and Passing Vehicle Search optimizer
(MOHHTS–PVS) [47], Multi-Objective Heat Transfer
Search with modified Binomial Crossover (MOHTS-BX)
[48], Multi-Objective Plasma Generation Optimization
(MOPGO) [49], Multi-Objective Crystal Structure Algo-
rithm (MOCryStAl) [50], Multi-objective Forest Optimiza-
tion Algorithm (MOFOA) [51] and Competitive Mechanism
Integrated Multi-objective Whale Optimization Algorithm
with Differential Evolution (CMWOA) [52] are some well-
known algorithms which have been developed for dealing
with multiple objective functions.

Given that the recently-introduced single-objective opti-
mization algorithm Atomic Orbital Search (AOS) has turned
out to be a promising metaheuristic by outperforming many
existing algorithms [8], here we introduce its multi-objective
version called MOAOS. Similar to AOS, the new method
MOAOS is inspired by the principles of quantum mechanics,
particularly the circulation of electrons around the nucleus of
atoms. Here, to evaluate the capability of MOAOS in dealing
with multi-objective optimization problems, the mathemati-
cal benchmarks (ZDT and DTLZ) are considered, followed
by examining its performance in dealing with real-world
engineering problems.

The remainder of this paper is organized as follows.
Section II presents the mathematical details of the proposed
Multi-Objective AOS optimization algorithm (MOAOS).
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Section III describes the results and discussion of the study,
including performance metrics, experimental setup, discus-
sion of the ZDT and DTLZ test functions, and a set of
different engineering design problems including the four-bar
truss, welded beam, disk brake, and speed reducer design
problems, as well as the CEC-2020MMO test problems [53].
Finally, Section IV concludes this research.

II. THE PROPOSED MULTI-OBJECTIVE ATOMIC ORBITAL
SEARCH (MOAOS) OPTIMIZATION ALGORITHM
A. ATOMIC ORBITAL SEARCH (AOS)
In an atom, an orbital is an area around the nucleus where
electrons are likely to be found. There is a certain probability
for each of the electrons around the nucleus to be found at a
certain distance from the nucleus. In other words, the atomic
orbital is a mathematical function that determines the position
as well as the wave-like behavior of an electron or a pair of
electrons in an atom. This function can be used to calculate
the probability of the presence of an electron in an atom in
certain areas around the nucleus. Furthermore, it can be used
to plot a three-dimensional diagram of the probability of the
presence of electrons in such regions. In particular, atomic
orbitals may be explained by the orbital function, especially
in the case of a single electron in a set of electrons around a
single atom. As a recently-proposed metaheuristic algorithm,
AOS was developed based on the atomic orbital concept
in quantum mechanics in which the movement of electrons
around the nucleus of an atom is utilized for formulating a
search algorithm. In the first step of AOS, an initialization
process is conducted in which the initial position of the
candidate solutions, which mimics the electrons around the
nucleus, are determined as follows:

X = [X1 X2 · · · Xi · · · Xm]T

=



x11 x21 · · · x j1 · · · xd1

x12 x22 · · · x j2 · · · xd2
...

...
...

. . .
...

x1i x2i · · · x ji · · · xdi
...

...
...

. . .
...

x1m x2m · · · x jm · · · xdm


,

{
i = 1, 2, . . . ,m.
j = 1, 2, . . . , d .

(1)

x ji (0) = x ji,min + R
(
x ji,max − x

j
i,min

)
,{

i = 1, 2, . . . ,m.
j = 1, 2, . . . , d .

(2)

where m denotes the initial number of electrons as candidate
solutions; x ji (0) is the initial values of decision variables;
d represents the dimension of the optimization problem;
x ji,min and x

j
i,max represent the lower and upper bounds of the

jth decision variable concerning the ith electron (candidate

solution); and R is a random number distributed uniformly
in the range [0, 1].

The objective function values for each candidate solution
are calculated which represent the energy levels of electrons
around the nucleus as follows:

E = [E1 E2 · · · Ei · · · Em]T , i = 1, 2, . . . ,m. (3)

where E represents the energy level of the atom which
includes the objective function values of candidate solutions
(electrons), and Ei denotes the specific energy level of the ith

electron (candidate solution).
In the AOS algorithm, the well-known quantum staircase

analogy [54] is utilized as the critical characteristic of the
main searching loop where a number of n imaginary layers
are generated for positioning electrons around the nucleus of
the atom. A Probability Density Function (PDF) based on
Gaussian distribution is formulated for dispersing the elec-
trons (candidate solutions) around the nucleus and position-
ing these candidates at each of the imaginarily-created layers
based on their energy levels. Electrons with lower energy
levels (better objective function values) are positioned in the
inner layers, while those with higher energy levels (worse
objective function values) are positioned in the outer layers.
The schematics of these theoretical concepts are presented in
Fig. 1(a) and (b); the mathematical representation of dispers-
ing electrons in the imaginary layers is given below:

X k =
[
X k1 X k2 · · · X ki · · · Xnp

]T

=



x11 x21 · · · x j1 · · · xd1

x12 x22 · · · x j2 · · · xd2
...

...
...

. . .
...

x1i x2i · · · x ji · · · xdi
...

...
...

. . .
...

x1p x2p · · · x jp · · · xdp


,


i = 1, 2, . . . , p.
j = 1, 2, . . . , d .
k = 1, 2, . . . , n.

(4)

Ek =
[
Ek1 E

k
2 · · · E

k
i · · · E

n
p

]T
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(5)

where X ki represents the ith electron positioned in the k th

layer; p denotes the overall number of candidates positioned
in the k th layer; n represents the total number of imaginary
layers; and Eki is the energy level of the ith candidate in the
k th layer.

For each imaginary layer around the nucleus, and also for
the atom, the binding state and binding energy are calculated
as follows (binding energy is the energy required to remove
an electron from its shell, i.e. its binding state):

BSk =

∑p
i=1 X

k
i

p
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(6)
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BEk =

∑p
i=1 E

k
i

p
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(7)

BS =

∑m
i=1 Xi
m

, i = 1, 2, . . . ,m. (8)

BE =

∑m
i=1 Ei
m

, i = 1, 2, . . . ,m. (9)

where BSk and BEk represent the k th layer’s binding state
and binding energy, respectively; BS and BE represent the
atom’s binding state and the binding energy, respectively; X ki
andEki represent the position vector and energy level of the i

th

candidate positioned in the k th imaginary layer, respectively;
and Xi and Ei represent the position vector and energy level
of the ith candidate, respectively.
Based on the principles of quantummechanics, the electron

with the best objective function value inside the k th layer
is determined as LEk which denotes the electron with the
lowest energy level in the layer. Similarly, the electron with
the best objective function value in the atom is determined as
LE which denotes the electron with the lowest energy level
around the nucleus of the atom.

The position updating process for the candidate solutions
in the imaginary layers around the nucleus of the atom is
determined using the quantum staircase analogy in which
photons, magnetic fields, and interaction with other particles
can excite an electron by absorbing or emitting energy (see
Figure 1(c)). Photon Rate (PR) is defined as a factor for
determining the interaction of photons with electrons, and ϕ
is a random number generated for each candidate solution,
representing the probability of the interaction of photons with
electrons (for ϕ ≥ PR). For every electron inside the imagi-
nary layers, if Eki ≥ BEk , the energy emission is determined
and the position updating is performed as follows:

X ki+1 = X ki +
αi (βiLE − γiBS)

k
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(10)

where X ki and X ki+1 represent the now and then position
vectors of the ith candidate inside the k th imaginary layer,
respectively; and αi, βi, and γi are random vectors in the range
(0, 1) to determine the amount of emitted energy.

On the other hand, for every electron inside the imaginary
layers, if Eki < BEk , the energy absorption is determined and
the position updating is conducted as follows:

X ki+1 = X ki + αi
(
βiLEk − γiBSk

)
,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(11)

where X ki and X ki+1 represent the now and then position
vectors of the ith candidate inside the k th imaginary layer;
and αi, βi, and γi are random vectors in the range of (0, 1)
to determine the amount of absorbed energy.

In situations that ϕ < PR, the movements of elec-
trons are based on the magnetic fields of interactions with
other particles, so the position updating process is expressed

as follows:

X ki+1 = X ki + ri,

{
i = 1, 2, . . . , p.
k = 1, 2, . . . , n.

(12)

where X ki and X ki+1 represent the now and then position
vectors of the ith candidate inside the k th imaginary layer; and
ri is a random number in the range (0, 1). The pseudo-code
of AOS is presented in Fig. 1(d); furthermore, the flowchart
of this algorithm is shown in Fig. 2.

B. MULTI-OBJECTIVE ATOMIC ORBITAL SEARCH (MOAOS)
AOS was designed to solve single-objective optimization
problems and cannot be directly used to tackle multi-
objective challenges. As a result, a multi-objective variant
of AOS, denoted by MOAOS, is presented in this study for
solving multi-criterion optimization problems.

Traditionally, heuristic algorithms are used to find and
store Pareto optimal solutions. However, such solutions are
difficult to identify when there are significant variations.
Hence, a range of alternative approaches to discovering and
storing Pareto optimal solutions have been discussed in the
literature. In order to overcome this difficulty, and inspired
by the MOPSO algorithm, the MOAOS algorithm contains
three multi-objective optimization mechanisms as follows:

(1) Archive Mechanism: It serves as a storage module for
storing or restoring derived Pareto optimal solutions.
The archive is controlled by a single controller, which
determines which solutions are added to the archive and
when it is full. The number of solutions that can be
saved in the archive is limited. The archive’s occupants
are compared to the non-dominated solutions devel-
oped so far during each iteration. It is not allowed
to enter the archive if at least one member in the
archive dominates the new solution. If the new solution
dominates at least one existing solution in the archive
by omitting the one already in the archive, it may be
included in the archive. If the new and archive solutions
do not dominate each other, the new solution is added
to the archive.

(2) Grid mechanism: It is an effective technique for
enhancing non-dominated solutions in the archive.
If the archive overflows, the grid technique will be
used to rearrange the object space’s division and dis-
cover the most occupied area, allowing one of the solu-
tions to be eliminated. To increase the diversity of the
final approximated Pareto optimal front, the additional
member should be added to the least crowded segment.
The potential of removing a solution increases as the
number of possible solutions in the hypercube grows.
If the archive is full, the busiest sections are chosen
first, and a solution from one of them is removed ran-
domly to make room for the new one. When a solution
is placed outside the hypercubes, a special case arises.
All segments in this scenario are expanded to fit the
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FIGURE 1. Atomic Orbital Search Algorithm (AOS). (a & b) Imaginary layers around the nucleus and the position of electrons based on Probability
Density Function (PDF). (c) Absorption and emission of energy by electrons around the nucleus of an atom. (d) The Pseudo-code of the Atomic Orbital
Search (AOS). (adapted from [8]).

most recent solutions. As a result, the segments of
alternative solutions can also be changed.

(3) Leader Selection Mechanism: Solutions in a multi-
objective search space are compared with this
mechanism. The search leaders guide the other search
candidates to possible areas of the search space to
obtain a solution that is close to the global optimum.
As stated previously, the archive contains only the
best non-dominated solutions, and the leader selec-
tion mechanism chooses the least crowded portions of
the search space and presents the best non-dominated
answers.

The selection for each hypercube is made using a roulette-
wheel approach with the following probability:

Pi =
C
Ni

(13)

where C is a constant number greater than one, and N is the
variety of acquired Pareto optimal answers in the ith section.

Less-crowded hypercubes have a larger probability of sug-
gesting new leaders, as can be seen from Eq. (13). When the
number of obtained solutions in the hypercube is reduced,
the probability of selecting a hypercube to select leaders
from increases. MOAOS’s convergence is ensured by the fact
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FIGURE 2. Flowchart of the Atomic Orbital Search (AOS) algorithm [8].

that its search for optimal solutions is based on the same
mathematical model. In order to achieve optimal solutions
using AOS, it has been demonstrated that search agents
must change positions suddenly in the beginning stages of
optimization and gradually in the end stages. According
to Van den Bergh and Engelbrecht (2006), this tendency
ensures that the algorithmwill eventually reach its destination
in the search space. The MOAOS algorithm incorporates
all of AOS’s features, thus all of the search agents oper-
ate in the same manner when exploring or exploiting the
search space. The most significant distinction is that MOAOS
searches around a group of archive members, whereas AOS
stores and improves only the finest solutions available. The

computational complexity of MOAOS is of O(MN 2) where
N is the number of individuals in the population and M
is the number of objectives. In comparison to NSGA-II,
MOAOS and MOPSO consume more memory due to the use
of archives to store the best non-dominated solutions. The
pseudo-code of MOAOS is presented in Fig. 3.

III. RESULTS AND DISCUSSION
The efficiency of the suggested approach was evaluated using
various performance measures and case studies, including
unconstrained and constrained bi- and tri-objective mathe-
matical problems and real-world engineering design prob-
lems. The ability of a range of popular multi-objective
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FIGURE 3. Pseudo-code of the Multi-Objective Atomic Orbital
Search (MOAOS) algorithm.

optimizers to handle problems with non-convexity and
non-linearity was tested using these problems and mathemat-
ical functions.

A. PERFORMANCE METRICS
To evaluate the results of the algorithms, the following four
metrics are used:

1. Generational Distance (GD) represents the overall sum
of the adjacent distances of candidate solutions associated
with different achieved sets using multiple algorithms. It is
considered an intelligent indicator for evaluating the con-
vergence characteristics of metaheuristic algorithms with

multiple objectives.

GD =

(
1
npf

npf∑
i=1

dis2i

) 1
2

(14)

2. Spacing (S) is a measure of the total distance between
candidates associated with different achieved sets by means
of multiple algorithms.

S =

(
1
npf

npf∑
i=1

(
di − d̄

)2) 1
2

, d̄ =
1
npf

npf∑
i=1

di (15)

3. Maximum Spread (MS) represents the spread of can-
didates among other achieved sets by considering distinct
optimal choices.

MS =

√√√√ 1
m

m∑
i=1

[
min

(
f maxi ,Fmaxi

)
−max(f mini ,Fmini )

Fmaxi − Fmini

]2
(16)

4. Inverted Generational Distance (IGD) is a precise mea-
sure for the performance estimation of Pareto front approx-
imations utilizing the results of multiple many-objective
optimization algorithms.

IGD =

√√√√ n∑
i=1

d2i

 /n (17)

5. Hypervolume (HV) is an indicator which has been used
by the community since 2003. The hypervolume of a set of
solutions measures the size of the portion of the objective
space that is dominated by those solutions as a group. In gen-
eral, hypervolume is favored because it captures in a single
scalar both the closeness of the solutions to the optimal set
and, to some extent, the distribution of solutions across the
objective space.

B. EXPERIMENTAL SETUP
MOPSO, MOALO, MOMVO, MOSPEA2, and MONSGA2
were compared to MOAOS in order to identify the best
figure of a collection of Pareto optimal solutions. The ini-
tial parameters of all described algorithms are summarized
in Table 1. It is worth mentioning that each experiment
employed 100 populations and a maximum of 1000 itera-
tions. As illustrated in Table 2 and Appendix, the proposed
algorithm was tested in 25 diverse case studies, including ten
unconstrained and constrained mathematical problems, eight
real-world engineering design problems, and ten CEC-2020
benchmark tests.

C. DISCUSSION OF THE ZDT AND DTLZ TEST FUNCTIONS
In this section, the numerical results of the proposed algo-
rithm, namely MOAOS, alongside those of the alternative
algorithms are presented. Regarding performance metric GD
which is presented in Table 3, it can be concluded that the
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TABLE 1. Parameters setting of all algorithms.

TABLE 2. Multimodal benchmark functions with fixed dimensions.

proposed algorithm is capable of outranking the other meta-
heuristic algorithms in five of the considered 7 benchmark
problems.

Tables 4 and 5 present the results of different meth-
ods considering performance metrics IGD and MS, respec-
tively. The proposed MOAOS algorithm can outrank the

TABLE 3. The statistical results of the ZDT and DTLZ benchmark functions
for performance metric GD.

TABLE 4. The statistical results of the ZDT and DTLZ benchmark functions
for performance metric IGD.

other methods in four of the seven cases regarding metric
IGD while this algorithm demonstrates better performance
considering metric MS in which the MOAOS outranks the
other algorithms in most of the investigated cases. True and
obtained Pareto fronts for the ZDT problems are shown
in Fig. 4.

Concerning performance metric S, which is demonstrated
in Table 6, MOAOS can provide better results in dealing
with ZDT1, ZDT2, ZDT3, and ZDT6, while for the other
problems, its results are very competitive.

In Figs. 4 and 5, the true and obtained Pareto fronts for the
DTLZ problems using MOAOS are presented in which the
capability of the algorithm in providing better solutions with
closer distances to the Pareto front is observable.

D. ENGINEERING DESIGN PROBLEMS
In this section, the capability of the proposed multi-
objective approach MOAOS is evaluated in dealing with
several real-world engineering design problems. These
problems include the four-bar truss design, welded beam
design, disk brake design, and speed reducer design
problems.
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FIGURE 4. True and obtained Pareto fronts for the DTLZ problems.

1) FOUR-BAR TRUSS DESIGN PROBLEM
In the 4-bar truss design [55], two objectives (structural vol-
ume f1 and displacement f2) are considered to be minimized.
As illustrated in Fig. 6, this problem has four design variables

x1 to x4 corresponding to the cross-sectional area of members
1 to 4. The equations of this example are given below:

Minimize: f1 (x) = 200(2x1 +
√
2x2 +

√
x3 + x4) (18)
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FIGURE 5. True and obtained Pareto fronts for the DTLZ problems (continued from the previous figure).

Minimize: f2(x) = 0.01
(
2
x1

)
+

(
2
√
2

x2

)
− (2
√
2/x3)+ (2/x1))

1 ≤ x1 ≤ 3, 1.4142 ≤ x2 ≤ 3

1.4142 ≤ x3 ≤ 3, 1 ≤ x4 ≤ 3 (19)

2) WELDED BEAM DESIGN PROBLEM
The welded beam design problem was first introduced by
Ray and Liew [56] with four constraints and two objectives,
namely the fabrication cost f1 and beam deflection f2 of a

welded beam. As shown in Fig. 7, this problem has four
design variables: the thickness of the weld x1, the length of
the clamped bar x2, the height of the bar x3, and the thickness
of the bar x4.

Minimize: f1 (x) = 1.10471x21x2 + 0.04811x3x4(14+ x2)

(20)

Minimize: f2 (x) = 65856000/(30× 106x4x33 ) (21)

where: g1 (x) = τ − 13600 (22)

g2(x) = σ − 30000 (23)

g3 (x) = x1 − x4 (24)
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TABLE 5. The statistical results of the ZDT and DTLZ benchmark functions
for performance metric MS.

TABLE 6. The statistical results of the ZDT and DTLZ benchmark functions
for performance metric S.

FIGURE 6. Schematic view of the four-bar truss.

g4 (x) = 6000− P

0.125 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10, 0.125 ≤ x4 ≤ 5 (25)

where: q = 6000
(
14+

x2
2

)
(26)

D =

√
x22
4
+
x1 + x23

4

FIGURE 7. Geometric specifications of the welded beam.

FIGURE 8. Schematic view of the disk brake.

FIGURE 9. Schematic view of the speed reducer.

J = 2

(
x1x2
√
2

(
x22
12
+
x1 + x23

4

))
(27)

α =
6000
√
2 x1x2

(28)

β = Q
(
D
J

)
(29)

3) DISK BRAKE DESIGN PROBLEM
Ray and Liew [56] proposed the disc brake design problem,
which has five constraints and two objectives to be mini-
mized, namely the stopping time f1 and brake mass f2 of
the disc brake. As illustrated in Fig. 8, this problem has five
design variables: the inner radius of the disc x1, the outer
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TABLE 7. The statistical results of the engineering design problems for
performance metric GD.

TABLE 8. The statistical results of the engineering design problems for
performance metric IGD.

TABLE 9. The statistical results of the engineering design problems for
performance metric MS.

radius of the disc x2, engaging force x3, and the number of
friction surfaces x4. The equations of this example are given

TABLE 10. The statistical results of the engineering design problems for
performance metric S.

below:

Minimize: f1(x) = 4.9(10)(−5)(x22 − x
2
1 )(x4 − 1) (30)

Minimize: f2(x) = (9.82(10)(6)))(x22−x
2
1 )/(x

3
2−x

3
1 )x4x3)

(31)

g1(x) = 20+ x1 − x2 (32)

g2(x) = 2.5+ (x4 + 1)− 30 (33)

g3(x) = x3/(3.14(x22 − x
2
1 )

2)− 0.4 (34)

g4(x) = (2.22(10)−3x3(x32 − x
3
1 ))

/(x22 − x
2
1 )

2
− 1 (35)

g5(x) = 900− 2.66(0.01x3x4(x32 − x
3
1 )

/(x22 − x
2
1 )

2)

55 ≤ x1 ≤ 80, 75 ≤ x2 ≤ 110

1000 ≤ x3 ≤ 3000, 2 ≤ x4 ≤ 20 (36)

4) SPEED REDUCER DESIGN PROBLEM
In the speed reducer design problem [57] (see Fig. 9), weight
f1 and stress f2 are the two objectives to be minimized.
There are seven design variables: gear face width x1, teeth
module x2, the number of teeth of a pinion x3 (integer vari-
able), distance between bearings 1 (x4), the distance between
bearings 2 (x5), the diameter of shaft 1 (x6), and the diameter
of shaft 2 (x7) as well as eleven constraints. The equations of
this example are presented below:

Minimize: f 1 (x) = 0.7854x1x22 (3.3333
(
x23 + 14.9334x3

)
. . .− 43.0934)− 1.508x1(x26 + x

2
7 ) (37)

Minimize: f 2(x) = (
√
(745x4/x2x3)

2
+ 19.9e6)/(0.1x36 )

(38)

where: g1 (x) = 27/(x1x22x3)− 1 (39)

g2 (x) = 397.5/(x1x22x
2
3 )− 1 (40)

g3 (x) = (1.93x34/(x2x3x
4
6 )− 1 (41)

g4 (x) = (1.93x35/(x2x3x
4
7 )− 1 (42)
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g5 (x) =
(√

(745x4/x2x3)
2
+ 16.9e6

)
/(110x36 )− 1 (43)

g6 (x) =
(√

(745x4/x2x3)
2
+ 157.5e6

)
/(85x37 )− 1 (44)

g7 (x) = (x2x3/40)1 (45)

τ =

√
α2 + 2αβ

( x2
2D

)
+ β2 (46)

σ =
504000

x4x23
(47)

tmpf = 4.013

(
30
(
106

)
196

)
(48)

P = tmpf

√√√√(x23
(
x64
36

))(
1−x3

(√
(30/48)
28

))
(49)

Table 7 presents the statistical results of MOAOS and
the other algorithms in dealing with the engineering design
problems using performance metric GD. It can be seen that
MOAOS can outrank the alternatives in most of the cases,

FIGURE 10. True and obtained Pareto fronts for the engineering design problems (BNH, CONSTR, DISK BRAKE, and 4-BAR TRUSS).
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FIGURE 11. True and obtained Pareto fronts for the engineering design problems (WELDED BEAM, OSY, SPEED REDUCER, and SRN).

except for the P6: OSY, for which the result of this method is
still competitive.

Considering performance metric IGD in dealing with the
engineering design problems (Table 8), MOAOS is capable
of calculating better results in comparison with MOMVO,
MOALO, and MOPSO in 7 of the 8 problems, while for
problem P7: SPEED REDUCER, the results of MOAOS are
very close to those of the other algorithms.

Tables 9 and 10 present the results of the competing meth-
ods concerning performance metrics MS and S, respectively,
for the considered engineering design problems. According
to the results, the proposed method MOAOS can outrank the
other algorithms in 7 of the 8 cases regarding performance
metric MS. Furthermore, this algorithm demonstrates better

performance considering metric S, that is MOAOS outranks
the other algorithms in most cases.

In Figs. 10 and 11, true and obtained Pareto fronts for
the considered engineering design problems are presented
in which the capability of the algorithm in providing bet-
ter solutions with a closer distance to the Pareto fronts is
noticeable.

E. DISCUSSION OF THE CEC-2020 MMO TEST PROBLEMS
The potential of the suggested multi-objective method,
MOAOS, to deal with a variety of CEC-2020 problems
is evaluated in this section. The details of the MMO test
functions are presented in [53]. The features of the MMO
test problems are linear, non-linear, convex, and concave
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FIGURE 12. True and obtained Pareto fronts for the CEC-2020 problems M1-M5.

problems. The true and obtained Pareto fronts for the CEC-
2020 problems M1-M5, as well as problems M6-M10, are
presented in Figs. 12 and 13, respectively. As can be seen
from these figures, the differences between the true and
obtained pareto fronts are very small. For all the given exam-
ples, the final solutions obtained by the present algorithm are
along the curve of true results, while for the other methods,
there are some differences between these results for all of the
ten examples.

The statistical results for performance metric S are pre-
sented in Table 11. The best average result for 7 examples
belongs to MOAOS while the next place belongs to MOPSO
with just two best average values.MONSGA2 could find only

one best average while the other methods could not find even
one. Regarding standard deviation, the present method can
find 4 best results while it is two for MOPSO which ranked
it in the second place.

The statistical results for performance metricMS are sum-
marized in Table 12. As can be seen, 9 out of 10 best average
results are found by the MOAOS method. This is 5 when
the standard deviation is considered. All other methods find
the worse values for both indices. The statistical results
for metric IGD are presented in Table 13 where the new
method can find 10 and 8 best average and standard devia-
tion values, respectively. Two other best standard deviation
values are obtained by MOSPEA2. Considering metric GD,
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FIGURE 13. True and obtained Pareto fronts for the CEC-2020 problems M6-M10.

TABLE 11. The statistical results of the CEC-2020 problems for
performance metric S.

TABLE 12. The statistical results of the CEC-2020 problems for
performance metric MS.
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TABLE 13. The statistical results of the CEC-2020 problems for
performance metric IGD.

TABLE 14. The statistical results of the CEC-2020 problems for
performance metric GD.

TABLE 15. The statistical results of the CEC 2020 problems for
performance metric HV.

according to Table 14, MOAOS finds seven best average
values while in the cases of using MOPSO, MONSGA2, and
MOSPEA2, each algorithm can find only one best average
value. Similarly, for the best standard deviation, 5 best values

are obtained by MOAOS. In Table 15, the statistical results
for performance metric HV are presented. The total number
of best average and standard deviation values for the ten
examples for MOAOS is 8 and 7, respectively, which is the
best performance compared to the other methods.

IV. CONCLUSION
In this paper, the multi-objective version of a recently-
proposed single-objective metaheuristic algorithm, namely
Atomic Orbital Search (AOS), was developed. To develop
this new algorithm, called Multi-Objective Atomic Orbital
Search (MOAOS), the general aspects and the main searching
loop of AOS were modified to make the new algorithm capa-
ble of dealing with problems with many objectives. For the
performance evaluation of this algorithm, the mathematical
benchmark problems ZDT and DTLZ, alongside a range of
real-world engineering design problems were utilized. Con-
cerning performancemetricGD for the ZDT and DTLZ prob-
lems, it was shown that the proposed algorithm was capable
of outranking the other metaheuristic algorithms in five of
the seven benchmark problems. By considering performance
metrics IGD and MS for the ZDT and DTLZ problems, the
proposed MOAOS algorithm can outrank the other methods
in four of the seven cases regardingmetric IGD.MOAOS also
demonstrated better performance considering metric MS by
outranking its competitors in most cases.

Concerning the engineering design problems, the proposed
algorithm, MOAOS, could outrank the other algorithms in
seven of the eight cases regarding metricMS, while it demon-
strated better performance considering metric S for which
MOAOS outranked the other algorithms in most of the cases.
Concerning the true and obtained Pareto fronts for the con-
sidered ZDT, DTLZ, and the engineering design problems,
MOAOS was capable of providing better solutions with a
closer distance to the Pareto front.

Concerning the CEC 2020-problems, various statistical
indices were investigated. It was shown that for all of these
indices, the maximum number of best average and best stan-
dard deviation values belonged to the proposed algorithm.

As future research, potential applications of MOAOS to
solving problems across other fields of science and engi-
neering will be explored where its capabilities in deal-
ing with more challenging optimization problems will be
examined.

APPENDIX
CONSTRAINED MULTI-OBJECTIVE TEST PROBLEMS
A. CONSTR
There are two constraints and two design variables in this
problem, which have a convex Pareto front.

Minimize f1 (x) = x1 (A.1)

Minimize f2 (x) = (1+ x2)/x1 (A.2)

where g1 (x) = 6− (x2 + 9x1) (A.3)

g2 (x) = 1+ (x2 − 9x1)

0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 5 (A.4)
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B. SRN
Srinivas and Deb [47] suggested a continuous Pareto optimal
front for the following problem:

Minimize f1 (x) = 2+ (x1 − 2)2 + (x2 − 1)2 (A.5)

Minimize f2 (x) = 9x1(x2 − 1)2 (A.6)

where g1(x) = x21 + x
2
2 − 255 (A.7)

g2 (x) = x1 − 3x2 + 10

− 20 ≤ x1 ≤ 20, −20 ≤ x2 ≤ 20 (A.8)

C. BNH
Binh and Korn [58] were the first to propose this problem as
follows:

Minimize f1(x) = 4x21 + 4x22 (A.9)

Minimize f2(x) = (x1 − 5)2 + (x2 − 5)2 (A.10)

where g1(x) = (x1 − 5)2 + x22 − 25 (A.11)

g2(x) = 7.7− (x1 − 8)2 − (x2 + 3)2

0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 3 (A.12)

D. OSY
Osyczka and Kundu [59] proposed five distinct regions for
the OSY test problem. There are also six constraints and six
design variables to consider as follows:

Minimize f1(x) = x21 + x
2
2 + x

2
3 + x

2
4 + x

2
5 + x

2
6 (A.13)

Minimize f2(x) = [25(x1 − 2)2 + (x2 − 1)2 + (x3 − 1)

+ (x4 − 4)2 + (x5 − 1)2] (A.14)

where g1 (x) = 2− x1 − x2 (A.15)

g2(x) = −6+ x1 + x2 (A.16)

g3(x) = −2− x1 + x2 (A.17)

g4(x) = −2+ x1 − 3x2 (A.18)

g5(x) = −4+ x4 + (x3 − 3)2 (A.19)

g6(x) = 4− x6 − (x5 − 3)2 (A.20)

0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5

0 ≤ x4 ≤ 6, 1 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10

(A.21)
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