Primordial black hole dark matter in the context of extra dimensions



Friedlander, Avi, Mack, Katherine J, Schon, Sarah, Song, Ningqiang ORCID: 0000-0002-3590-2341 and Vincent, Aaron C
(2022) Primordial black hole dark matter in the context of extra dimensions. PHYSICAL REVIEW D, 105 (10). 103508-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

Theories of large extra dimensions (LEDs) such as the Arkani-Hamed, Dimopoulos and Dvali scenario predict a "true"Planck scale M near the TeV scale, while the observed Mpl is due to the geometric effect of compact extra dimensions. These theories allow for the creation of primordial black holes (PBHs) in the early Universe, from the collisional formation and subsequent accretion of black holes in the high-temperature plasma, leading to a novel cold dark matter (sub)component. Because of their existence in a higher-dimensional space, the usual relationship between mass, radius, and temperature is modified, leading to distinct behavior with respect to their four-dimensional counterparts. Here, we derive the cosmological creation and evolution of such PBH candidates, including the graybody factors describing their evaporation, and obtain limits on LED PBHs from direct observation of evaporation products, effects on big bang nucleosynthesis, and the cosmic microwave background angular power spectrum. Our limits cover scenarios of two to six extra dimensions, and PBH masses ranging from 10 to 1021 g. We find that for two extra dimensions, LED PBHs represent a viable dark matter candidate with a range of possible black hole masses between 1017 and 1023 g depending on the Planck scale and reheating temperature. For M=10 TeV, this corresponds to PBH dark matter with a mass of M≃1021 g, unconstrained by current observations. We further refine and update constraints on "ordinary"four-dimensional black holes.

Item Type: Article
Divisions: Faculty of Science and Engineering > School of Physical Sciences
Depositing User: Symplectic Admin
Date Deposited: 15 Jul 2022 14:54
Last Modified: 17 Mar 2024 14:06
DOI: 10.1103/PhysRevD.105.103508
Open Access URL: https://journals.aps.org/prd/abstract/10.1103/Phys...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3158586