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We present ongoing investigations of the first-order confinement transition of a composite dark
matter model, to predict the resulting spectrum of gravitational waves. To avoid long autocorrela-
tions at the first-order transition, we employ the Logarithmic Linear Relaxation (LLR) density of
states algorithm. After testing our calculations by reproducing existing results for compact U(1)
lattice gauge theory, we focus on the pure-gauge SU(4) theory related to the Stealth Dark Matter
model.
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1. Introduction

Standard Markov-chain Monte Carlo techniques have proven to be an invaluable tool in modern
theoretical physics. However there are situations in which these standard techniques fall short, and
alternatives such as density of states approaches may perform better. These include lattice field
theory studies of first-order phase transitions, where uncontrollable autocorrelations can result from
the difficulty of tunnelling between the two coexisting phases on large lattice volumes.

In this work we are interested in the gravitational-wave signatures that arise from such first-
order phase transitions in composite dark matter models. In particular, we consider the Stealth
Dark Matter model being investigated by the Lattice Strong Dynamics Collaboration [1–3]. This is
an SU(4) gauge theory coupled to four fermions that transform in the fundamental representation
of the gauge group. While these fundamental fermions would be electrically charged, the resulting
‘dark baryon’ formed by them would be an electroweak-singlet scalar particle.

In addition to guaranteeing the stability of a massive dark matter candidate through an ana-
logue of baryon number conservation, the symmetries of Stealth Dark Matter strongly suppress
its scattering cross section in direct-detection experiments [1, 2], especially for heavy dark matter
masses 𝑀DM & 1 TeV. Collider searches for Stealth Dark Matter also become challenging for such
heavy masses [4, 5], which motivates ongoing work [3, 6, 7] investigating the possibility that such
models could be constrained or discovered by future gravitational-wave observatories.

At the high temperatures of the early universe, the ‘dark gluons’ and ‘dark fermions’ would
exist in a deconfined plasma, and as the universe cools the model would transition to a confined
phase. For sufficiently heavy fermions (relative to the confinement scale), this phase transition
would be first order and would therefore generate a stochastic background of gravitational waves,
which space-based observatories such as LISA will search for [8].

In this proceedings we report on ongoing work applying the Logarithmic Linear Relaxation
(LLR) density of states algorithm [9, 10] to analyze pure-gauge SU(4) Yang–Mills theory, which
can be considered the ‘quenched’ limit of Stealth Dark Matter corresponding to infinitely heavy
fermions. Pure-gauge theory is convenient for the LLR algorithm, which is challenging to apply
to systems with dynamical fermions [11]. The SU(𝑁) Yang–Mills confinement transition is known
to be first order for 𝑁 ≥ 3, with significantly stronger transitions for 𝑁 ≥ 4 [12]. This makes the
SU(4) theory a promising first target for application of the LLR algorithm, which future work could
extend either to the SU(3) case relevant for QCD or to 𝑁 ≥ 5 to explore the large-𝑁 limit.

We begin in the next section by summarizing the LLR algorithm. In Section 3 we discuss how
we tested our LLR code by reproducing some results for compact U(1) lattice gauge theory from
Ref. [10]. Then we present initial results from our ongoing LLR analyses of the SU(4) Yang–Mills
confinement transition in Section 4, wrapping up in Section 5 with a brief overview of the next steps
we have planned.

2. Algorithm to determine the density of states

In SU(𝑁) lattice Yang–Mills theories, observables are defined by

〈O〉 = 1
𝑍

∫
D𝜙 O(𝜙) 𝑒−𝑆 [𝜙] 𝑍 =

∫
D𝜙 𝑒−𝑆 [𝜙] , (1)
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with 𝜙 the set of field variables and 𝑆[𝜙] the lattice action. In standard techniques the idea is to
approximate this extremely high-dimensional path integral by sampling a modest number of field
configurations according to a probability ∝ 𝑒−𝑆 [𝜙] .

Here our aim is to calculate the density of states

𝜌(𝐸) =
∫

D𝜙 𝛿(𝑆[𝜙] − 𝐸) (2)

and use it to rewrite Eq. 1 as a one-dimensional integral over the energy,

〈O(𝛽)〉 = 1
𝑍 (𝛽)

∫
d𝐸 O(𝐸) 𝜌(𝐸) 𝑒𝛽𝐸 𝑍 (𝛽) =

∫
d𝐸 𝜌(𝐸) 𝑒𝛽𝐸 . (3)

The challenge now lies in determining the density of states 𝜌(𝐸). The algorithm we are using to do
this is called Logarithmic Linear Relaxation (LLR) [9, 10]. The procedure is the following: First
we define the reweighted expectation value

〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎) =
1
𝑁

∫
D𝜙 (𝐸 − 𝐸𝑖) \𝐸𝑖 , 𝛿 𝑒

−𝑎𝑆 [𝜙] =
1
𝑁

∫ 𝐸𝑖+ 𝛿
2

𝐸𝑖− 𝛿
2

d𝐸 (𝐸 − 𝐸𝑖) 𝜌(𝐸) 𝑒−𝑎𝐸 , (4)

𝑁 =

∫
D𝜙 \𝐸𝑖 , 𝛿 𝑒

−𝑎𝑆 [𝜙] =

∫ 𝐸𝑖+ 𝛿
2

𝐸𝑖− 𝛿
2

d𝐸 𝜌(𝐸) 𝑒−𝑎𝐸 , (5)

where 𝐸𝑖 are a set of fixed energy values, \𝐸𝑖 , 𝛿 is the modified Heaviside function (1 in the interval
𝐸𝑖 ± 𝛿

2 and 0 everywhere else), and for now ‘𝑎’ is just a free parameter not to be confused with the
lattice spacing.

Next we set the reweighted expectation value 〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎) to zero and rewrite the integral
using the trapezium rule:

〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎) =
1
𝑁

∫ 𝐸𝑖+ 𝛿
2

𝐸𝑖− 𝛿
2

d𝐸 (𝐸 − 𝐸𝑖) 𝜌(𝐸) 𝑒−𝑎𝐸 (6)

=
1
𝑁

𝛿

2

(
( 𝛿
2
)𝑒−𝑎 (𝐸𝑖+ 𝛿

2 ) 𝜌(𝐸𝑖 +
𝛿

2
) + (−𝛿

2
)𝑒−𝑎 (𝐸𝑖− 𝛿

2 ) 𝜌(𝐸𝑖 −
𝛿

2
)
)
+ O(𝛿3) = 0.

Now we rewrite the exponential 𝑒±𝑎 𝛿
2 and the density 𝜌(𝐸𝑖 ± 𝛿/2) as a Taylor series expansion, and

neglect O(𝛿2) terms by considering 𝛿 → 0:

0 =

(
𝜌(𝐸𝑖) +

𝛿

2
d𝜌(𝐸)

d𝐸

���
𝐸=𝐸𝑖

) (
1 − 𝑎

𝛿

2

)
−
(
𝜌(𝐸𝑖) −

𝛿

2
d𝜌(𝐸)

d𝐸

���
𝐸=𝐸𝑖

) (
1 + 𝑎

𝛿

2

)
=

(
−𝜌(𝐸𝑖)𝑎 + d𝜌(𝐸)

d𝐸

���
𝐸=𝐸𝑖

− 𝜌(𝐸𝑖)𝑎 + d𝜌(𝐸)
d𝐸

���
𝐸=𝐸𝑖

)
𝛿

2
(7)

=⇒ 𝑎 =
1

𝜌(𝐸𝑖)
d𝜌(𝐸)

d𝐸

���
𝐸=𝐸𝑖

=
d ln(𝜌(𝐸))

d𝐸

���
𝐸=𝐸𝑖

. (8)

We now have an interpretation of 𝑎 as the derivative of the logarithm of the density of states, and a
way to obtain 𝜌(𝐸) within each interval 𝐸𝑖 ± 𝛿

2 by numerically integrating values of 𝑎(𝐸𝑖).
A key feature of this algorithm is that the derivative in Eq. 8 is determined without taking

differences. As Ref. [13] reviews, this makes it possible to exponentially suppress errors, enabling
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the calculation of the density of states 𝜌(𝐸) over many orders of magnitude with nearly constant
relative uncertainties.

To compute 𝑎 for a given 𝐸𝑖 , we solve the equation 〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎) = 0 using the Robbins–
Monro algorithm [10]:

𝑎 (𝑛+1) = 𝑎 (𝑛) + 12
𝛿2(𝑛 + 1)

〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎 (𝑛) ), (9)

which has a fixed point at the correct value of 𝑎 = 𝑎 (𝑛+1) = 𝑎 (𝑛) . For the evaluation of the reweighted
expectation value 〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎 (𝑛) ) standard importance-sampling Monte Carlo techniques are
used, but with the weight 𝑒−𝑎 (𝑛)𝑆 rather than the usual 𝑒−𝑆 .

The use of the modified Heaviside function \𝐸𝑖 , 𝛿 in Eq. 4 implies that we reject all Monte
Carlo updates that would produce a configuration with an energy outside of 𝐸𝑖 ± 𝛿

2 . This can lead
to low acceptance rates for small energy intervals 𝛿. An alternative is to use a smooth Gaussian
window function instead of this hard cut-off [11, 13]:

〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎) =
1
𝑁

∫
d𝐸 (𝐸 − 𝐸𝑖) exp

[
− (𝐸 − 𝐸𝑖)

2𝛿2

]
𝜌(𝐸) 𝑒−𝑎𝐸 . (10)

In our work we experiment with both of these options.

3. Checking the compact U(1) transition

To test our implementation of the LLR algorithm, we first reproduce results from a previous
study of 4d pure-gauge U(1) theory, Ref. [10]. The action of this model is

𝑆 = −𝛽
∑︁

𝑥,`<a

cos(\`a (𝑥)), (11)

with \`a (𝑥) = \` (𝑥) + \a (𝑥 + ˆ̀) − \` (𝑥 + â) − \a (𝑥). Here 𝛽 = 1
𝑔2

0
with 𝑔2

0 the bare gauge coupling,
the sum runs over all lattice sites, and \` (𝑥) ∈ [−𝜋; 𝜋] is the compact variable of the link attached
to lattice site 𝑥 in direction ˆ̀.

We ran our LLR calculations using a lattice volume 𝑉 = 84, with an energy interval size of
𝛿 = 0.001/𝑉 and 𝑁Jackknife = 10 independent runs of the Robbins–Monro algorithm for each energy
interval. For this U(1) case, we use the hard energy cut-off of Eq. 4, meaning that we reject every
Monte Carlo update that would produce a lattice configuration with an energy outside the interval
𝐸𝑖 ± 𝛿

2 . As illustrated by Fig. 1, our results for the values of 𝑎 are consistent with the results from
Ref. [10], given the different 𝛿 employed in each case. This provides confidence that our underlying
implementation of the LLR algorithm is working correctly.

Using these results for 𝑎, and choosing 𝛽 = 0.9965 close to the critical value for compact U(1)
lattice gauge theory, we obtain the probability density 𝑃𝛽 (𝐸) = 𝜌(𝐸)𝑒𝛽𝐸 shown in Fig. 2. For
the reconstruction of the density of states 𝜌 from the values of 𝑎 in this case, we used a simple
trapezium rule numerical integration. The distribution in Fig. 2 has a clear double-peak structure,
signalling the coexistence of the two phases at the first-order bulk phase transition. From this plot
we can directly read off the latent heat Δ𝐸/(6𝑉) ≈ 0.047 as the separation between the two peaks.
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Figure 1: Comparing results for 𝑎 obtained for compact U(1) pure-gauge theory. The left plot is from
Ref. [10], for lattice volumes 𝑉 between 84 and 204 and energy intervals of size 𝛿 = 0.0011457/𝑉 . The right
plot displays consistent values calculated by us for 𝑉 = 84, 𝛿 = 0.001/𝑉 and 𝑁Jackknife = 10.

Figure 2: Probability density 𝑃𝛽 (𝐸) = 𝜌(𝐸)𝑒𝛽𝐸 (omitting uncertainties) for compact U(1) lattice gauge
theory, using lattice volume 𝑉 = 84, energy interval size 𝛿 = 0.001/𝑉 , and 𝛽 = 1.007565 close to the critical
value.

4. SU(4) Yang–Mills confinement transition

We now proceed to apply the LLR algorithm to SU(4) Yang–Mills theory. The action is

𝑆 = −𝛽
∑︁

𝑥,`<a

ReTr
(
𝑈`a (𝑥)

)
, (12)

with the plaquette𝑈`a (𝑥) = 𝑈` (𝑥)𝑈a (𝑥 + ˆ̀)𝑈†
` (𝑥 + â)𝑈†

a (𝑥). Here 𝛽 = 8
𝑔2

0
, with 𝑔2

0 the bare gauge
coupling, the sum runs over all lattice sites and 𝑈` (𝑥) is the SU(4)-valued link variable of the link
attached to lattice site 𝑥 in direction ˆ̀.

We implemented the LLR algorithm in a fork of Stefano Piemonte’s LeonardYM software.1 In
addition to supporting SU(𝑁) Yang–Mills theories with arbitrary 𝑁 , LeonardYM also offers efficient
MPI+OpenMP data parallelism. However, because we use sweeps of overrelaxation updates in the
full SU(4) group [14] to calculate the reweighted expectation value 〈〈𝐸 − 𝐸𝑖〉〉 𝛿 (𝑎 (𝑛) ) for every

1github.com/spiemonte/LeonardYM; github.com/FelixSpr/LeonardYM

See also github.com/milc-qcd/milc_qcd/issues/44
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Figure 3: SU(4) results for 𝑎 vs. the energy density 𝐸/𝑉 , for a lattice of size 𝑉 = 123 × 6 and an interval
size of 𝛿 = 0.01/𝑉 . The error bars estimated by performing 𝑁Jackknife = 4 independent runs per interval are
very small.

Robbins–Monro iteration, we are currently not parallelizing the lattice volume. This is due to the
appearance of the global energy 𝐸 in these updates, for both the hard energy cut-off of Eq. 4 and the
Gaussian window of Eq. 10. At present we obtain sufficient parallelism from running 𝑁Jackknife = 4
independent calculations for each energy interval. Switching from overrelaxation to hybrid Monte
Carlo updates in the future would allow data parallelism to be added, which may be necessary to
reach lattice volumes too large for a single core to handle.

The largest volume we have considered so far is 𝑉 = 123 × 6, with an energy interval size of
𝛿 = 0.01/𝑉 and 𝑁Jackknife = 4 samples per energy interval. Figure 3 shows our results for 𝑎 from
roughly 700 energy intervals spanning the range 8 . 𝐸/𝑉 . 15. In these calculations we use the
Gaussian window function of Eq. 10, as opposed to the hard cut-off we implemented for the U(1)
case. The smoother window helps to keep acceptance rates reasonably high—around 70%, much
larger than we obtained using a hard cut-off.2

From the results for 𝑎 shown in Fig. 3, we compare two methods to reconstruct the density of
states 𝜌(𝐸). The first of these is the same simple trapezium rule numerical integration we employed
in the U(1) case. The second fits the results to simple polynomials, which Refs. [17, 18] argue is a
more robust way to quantify and control systematic uncertainties from the reconstruction. Because
𝜌(𝐸) = 𝜌(−𝐸), only odd powers of 𝐸 are included in the 𝐿-term fit function 𝑎𝐿 (𝐸), which is then
integrated and exponentiated to obtain the density of states:

𝑎𝐿 (𝐸) =
𝐿∑︁
𝑖=1

𝑐𝑖𝐸
2𝑖−1 −→ 𝜌𝐿 (𝐸) = exp

[
𝐿∑︁
𝑖=1

𝑐𝑖

2𝑖
𝐸2𝑖

]
, (13)

normalized such that 𝜌𝐿 (0) = 1. We choose to include 𝐿 = 8 terms in our fits by varying 𝐿 and
monitoring the resulting 𝜒2/dof.

2It may also be possible to improve acceptance rates when using a hard cut-off by more cleverly constructing the
overrelaxation updates [15, 16].
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Figure 4: Energy interval containing the maximum value of 𝑃𝛽 (𝐸) = 𝜌(𝐸)𝑒𝛽𝐸 vs. 𝛽, for 123 × 6 lattices,
comparing two different methods of reconstructing the density of states from the results for 𝑎 in Fig. 3. The
rapid change around 𝛽 ≈ 10.4 corresponds to the SU(4) bulk transition.

At present we see no significant difference between these two ways of reconstructing the density
of states from our results for 𝑎. This is illustrated by Fig. 4, in which we plot the energy interval
containing the maximum value of the probability density 𝑃𝛽 (𝐸) = 𝜌(𝐸)𝑒𝛽𝐸 across a broad range
of 9.5 ≤ 𝛽 ≤ 11. We consider this quantity because our SU(4) results do not yet produce any
two-peaked probability distributions like that in Fig. 2 for the U(1) case. We therefore identify
pseudo-critical couplings by observing where the single peak in the distribution 𝑃𝛽 (𝐸) moves most
rapidly as 𝛽 changes.

In Fig. 4 we are able to resolve only a single pseudo-critical region corresponding to the SU(4)
bulk transition with 10.2 . 𝛽bulk . 10.5. Based on results from Ref. [19], which also uses the
Wilson action Eq. 12, we expect 𝑁𝑡 = 6 to produce 𝛽𝑐 ≈ 10.8 for the physically relevant confinement
transition, well separated from this bulk transition. It is possible that the 123 × 6 lattices we have
considered so far are simply too small to reveal the expected first-order confinement transition. In
addition, Ref. [19] also finds a latent heat Δ𝐸/𝑉 ≈ 0.004 for 163 × 6 lattices, which may be too
small to resolve using our current energy interval size 𝛿 = 0.01/𝑉 .3 These considerations provide
some clear next steps for our work, which we discuss in the next section.

5. Outlook and next steps

In this proceedings we have presented our progress applying the LLR density of states algorithm
to investigate first-order transitions in lattice gauge theories. Standard Markov-chain importance-
sampling techniques can suffer from long autocorrelations at such first-order transitions, which we
aim to avoid by instead analyzing the density of states. We have successfully tested our methods by
reproducing results from Ref. [10] for the first-order bulk transition of compact U(1) lattice gauge
theory. Motivated by the Stealth Dark Matter model and the stochastic spectrum of gravitational
waves that would result from a first-order dark-sector confinement transition in the early Universe,
our ongoing work focuses on SU(4) Yang–Mills theory.

3This latent heat can be contrasted with Δ𝐸/𝑉 ≈ 0.28 from Fig. 2 for the U(1) bulk transition.
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So far our SU(4) computations with lattice volumes up to 123 × 6 suffice only to resolve the
bulk transition, which for 𝑁𝑡 = 6 is well separated from the first-order confinement transition of
interest [19]. We are currently improving our analyses by reducing the size of the energy intervals,
to 𝛿 = 0.001/𝑉 . To continue considering only hundreds (and not thousands) of independent energy
intervals, this requires focusing our calculations on a smaller range of energies around 𝐸/𝑉 ≈ 13.
In a similar vein, we will also analyze larger 𝑁3

𝑠 × 𝑁𝑡 lattice volumes, both increasing 𝑁𝑠 with fixed
𝑁𝑡 to study the thermodynamic limit and increasing 𝑁𝑡 with fixed aspect ratio 𝑁𝑠/𝑁𝑡 to extrapolate
to the continuum limit. Once we have resolved the first-order confinement transition, we will be
able to predict observables such as the latent heat and interface tension that affect the resulting
spectrum of gravitational waves.

Following the completion of this work, we will also be in a good position to generalize our
studies beyond SU(4) Yang–Mills theory. For example, it may be interesting to turn to the weakly
first-order confinement transition of SU(3) Yang–Mills theory corresponding to quenched QCD.
We can also consider SU(𝑁) theories with 𝑁 ≥ 5 to investigate the behavior of this transition in
the large-𝑁 limit. A more ambitious future target would be to explore the challenge of including
fermion fields in LLR density of states calculations, which would allow us to consider the full
Stealth Dark Matter model as in Ref. [3]. In all of these cases, the presence of first-order transitions
gives us reason to expect LLR density of states analyses to provide an advantage over standard
importance sampling.

Acknowledgments: We thank Kurt Langfeld, Paul Rakow, David Mason, James Roscoe and
Johann Ostmeyer for helpful conversations about the LLR algorithm. We also thank Georg Bergner
and Stefano Piemonte for advice about LeonardYM. Numerical calculations were carried out at
the University of Liverpool. DS was supported by UK Research and Innovation Future Leader
Fellowship MR/S015418/1 and STFC grant ST/T000988/1.
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