A novel similarity-based status characterization methodology for gear surface wear propagation monitoring



Feng, Ke, Ni, Qing, Beer, Michael ORCID: 0000-0002-0611-0345, Du, Haiping and Li, Chuan
(2022) A novel similarity-based status characterization methodology for gear surface wear propagation monitoring. TRIBOLOGY INTERNATIONAL, 174. p. 107765.

[img] Text
A novel similarity-based status characterization methodology for gear surface wear propagation monitoring.pdf - Author Accepted Manuscript

Download (1MB) | Preview

Abstract

The gearbox is a vital component for rotating machinery and has been used in many critical engineering applications. Surface wear is a common but inevitable phenomenon during the lifespan of the gearbox. Its propagation can result in some catastrophic failures and cause unexpected economic loss. Therefore, it is vital to evaluate the degradation process of the gear system caused by surface wear propagation in order to make reliable predictive maintenance-based decisions to ensure the safe operation of the gearbox transmission system. The vibration analysis technique is a prevailing tool for rotating machine condition monitoring. However, research on vibration-based gear wear monitoring is relatively rare as the dynamic interactions between gear surface wear and gear system dynamic characteristics would produce complex gear dynamic responses and vibration features. Therefore, this paper presents a novel similarity-based status characterization methodology for gear wear monitoring. In this proposed methodology, a novel gear wear monitoring indicator is developed to evaluate gear tooth contact characteristics at different wear severities, which could significantly benefit gear systems' health management. The effectiveness of the proposed method for gear wear propagation process monitoring is presented and proven through a series of run-to-failure tests with different lubrications and operational conditions.

Item Type: Article
Uncontrolled Keywords: Gearbox, Surface wear, Vibration analysis, Wear progression, Status characteristics
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Symplectic Admin
Date Deposited: 21 Jul 2022 15:29
Last Modified: 05 Jul 2023 01:30
DOI: 10.1016/j.triboint.2022.107765
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3159075