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Abstract 

The gearbox is a vital component for rotating machinery and has been used in many critical 

engineering applications. Surface wear is a common but inevitable phenomenon during the 

lifespan of the gearbox. Its propagation can result in some catastrophic failures and cause 

unexpected economic loss. Therefore, it is vital to evaluate the degradation process of the gear 

system caused by surface wear propagation in order to make reliable predictive maintenance-

based decisions to ensure the safe operation of the gearbox transmission system. The vibration 

analysis technique is a prevailing tool for rotating machine condition monitoring. However, 

research on vibration-based gear wear monitoring is relatively rare as the dynamic interactions 

between gear surface wear and gear system dynamic characteristics would produce complex 

gear dynamic responses and vibration features. Therefore, this paper presents a novel 

similarity-based status characterization methodology for gear wear monitoring. In this 

proposed methodology, a novel gear wear monitoring indicator is developed to evaluate gear 
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tooth contact characteristics at different wear severities, which could significantly benefit gear 

systems' health management. The effectiveness of the proposed method for gear wear 

propagation process monitoring is presented and proven through a series of run-to-failure tests 

with different lubrications and operational conditions. 

Keywords: Gearbox, surface wear, vibration analysis, wear progression, status characteristics. 

1 Introduction 

Gearbox, a critical component for rotating machinery, has many distinguished merits, such as 

stable operation quality, high transmission efficiency, and accurate transmission ratio. Thanks 

to the advantages above, the gearbox is widely used as the transmission system in various heavy 

industry applications such as vehicles, wind turbines, ships, and helicopters [1, 2]. However, 

the gearbox often operates in adverse working conditions in industrial practice [3, 4]. The harsh 

operation conditions make gear wear inevitable during the whole gear’s service life [5-7]. 

When gear wear develops to a certain degree of severity, it can induce severe gear failures such 

as tooth surface spall and tooth broken, which could destroy the whole gear transmission 

system and cause unexpected economic loss. Therefore, monitoring and predicting gear wear 

progression is crucial for the health management of gearbox transmission systems [8]. 

In practice, the wear debris/particle analysis technique is a prevalent way for gear surface wear 

evaluation and monitoring. Wear particle concentration has been recognized as an indicator to 

assess a machine's overall wear/degradation condition. Particle size, distribution, and shape can 

effectively reveal wear mechanisms [9]. However, wear particle analysis is usually 

implemented offline, which could be costly and time-consuming. Besides, wear particles 

cannot directly reveal instant changes in gear dynamic characteristics/features, which have 

close relationships with the running status of the gearbox. In contrast, compared with wear 

particle analysis, gear vibration signals reflect instant gear dynamic features when they are 

measured [10]. Thus, vibration analysis can be utilized for permanent and intermittent 
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monitoring. Therefore, vibration analysis has the potential to be a more suitable tool for 

assessing gear wear in real-time.  

In general, vibration-based machinery prognostics and health management consist of four 

critical parts: (1) acquisition of vibration signal; (2) construction of vibration health indicator; 

(3) division of health stages of the machinery; and (4) remaining useful life (RUL) prediction 

of the machinery [11], among which the health indicator construction and remaining useful life 

prediction are two main research objectives. The research for health indicator construction [12, 

13] aims to develop health indicators to better reveal the degradation progression, while the 

research for RUL prediction [14-16] targets to develop regression models to obtain RUL 

through the established map between the health indicator and RUL, which contributes to 

scheduling predictive maintenance strategies to ensure a safe and reliable operation of 

machinery [17]. To the best of our knowledge, most of the existing research for machinery 

prognostics mainly study either health indicator construction or prediction model due to their 

research focus differences [18, 19]. Similarly, we merely focus on one of these two objectives. 

In the process of machinery health management, the health indicator is the prerequisite of 

machinery prognostics, since the final predicted RUL is obtained by the prediction model 

through developing a map between the health indicator and RUL [19]. A good health indicator 

can significantly simplify the prognostic modeling, reduce the computation burdens, and help 

generate accurate prognostic results. Therefore, this paper focuses on the health indicator 

construction, and developing health indicators to monitor gear wear propagation is the main 

research objective of this work. In the following, the current research progresses on vibration-

based gear wear monitoring will be reviewed and discussed, from the view of health indicator 

construction. 

Vibration analysis techniques have been well developed and widely applied for monitoring 

common gear failures, such as gear breakages and gear cracks [20]; in contrast, vibration-based 
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techniques/indicators for gear wear analysis and monitoring are relatively rare.  One reason is 

that the dynamic interactions between gear surface wear and gear system dynamic 

characteristics would produce complex gear dynamic responses and vibration features, which 

brings significant challenges to extracting the corresponding vibration features induced by gear 

wear and developing specific vibration analysis approaches for wear identification and 

monitoring [21]. Therefore, it is necessary to develop effective vibration-based techniques for 

gear wear monitoring, which could bring significant benefits to the health management of gear 

systems. 

Up to date, the existing vibration-based surface wear monitoring techniques are pretty general 

and limited. For example, the study  [22] revealed that gear tooth wear might lead to an 

amplitude increment of the gear tooth meshing harmonics, and the amplitudes of higher-order 

gear meshing harmonics are a credible way of detecting incipient uniform wear. Similarly, the 

magnitude of quefrencies in cepstrum and gear meshing harmonics in the frequency spectrum 

were utilized in Ref. [23] to evaluate the gear wear process. However, the average engaging 

tooth profile will continue deviating further from the ideal gear involute profile in the gear wear 

propagation process, but the changes are not determined in the tooth meshing harmonics. The 

change behaviors of gear meshing harmonics could vary considerably; besides, some gear 

meshing harmonics may keep increasing in a certain period,  but a decreasing trend occurs in 

the following duration. Thereby, all the meshing harmonics of gears which have significant 

energy were considerated in [5], then the sideband ratio (SBR) was extended and modified into 

two new gear wear monitoring indicators: one is averaged logarithmic ratio (ALR), and the 

other one is moving averaged logarithmic ratio (mALR). The proposed ALR can be used to 

indicate the severity of accumulated wear. mALR reflects the instant gear state changes. The 

performances of the two gear wear indicators were evaluated by two sets of tests that have 

different initial tooth surfaces. Recently, Ref. [24, 25] applied the modulation signal bispectrum 
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to vibrations and motor current signals for gear wear monitoring; corresponding experiments 

validated the effectiveness of the proposed methods. 

From the above literature review, it can be seen that most of the exiting techniques for gear 

wear monitoring are developed based on the general characteristics existing in the time and 

frequency domains, which might have limited ability to reveal the unique system degradation 

status caused by gear surface wear propagation progression. Moreover, the distinctive 

interactions and coupling effects between gear surface wear and dynamic responses make the 

measured vibrations have significant nonlinear and nonstationary characteristics. The 

nonlinearity and nonstationarity of vibrations bring considerable challenges to effective gear 

wear monitoring. Besides, most of the existing techniques are valid for one wear mode. 

However, multiple wear mechanisms exist and interact with each other during the gear wear 

progression in industry practices. Consequently, it will lead to the existing techniques losing 

effectiveness in tracking gear wear propagation in actual industrial scenarios. Therefore, it is 

vital to develop more reliable and practical methodologies for monitoring and assessing the 

surface wear progression in gear systems. 

With consideration of the nonlinear vibration characteristics induced by the coupling effects 

between gear surface wear and gear dynamics, the approach of measuring the complexity of 

gear systems can be an effective and efficient tool to indicate the gear wear process. Thus, this 

paper proposes a similarity-based status characterization methodology to monitor and assess 

gear wear propagation. More specifically, the relationships between gear wear tribological 

features and vibration characteristics tied to unique gear system kinematics are investigated 

first. Then based on the achieved understanding of gear mechanisms, a novel gear wear 

indicator is developed to assess the complexity of gear systems caused by gear wear 

progression. This novel gear wear indicator can effectively reveal the tooth surface degradation 
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status caused by the gear wear process, providing valuable information to gear systems' health 

management and bringing significant benefits to industry practice. 

To conclude, the main contributions of this paper are summarized as follows: 

1) The relationships of gear surface wear, gear dynamics, and vibration characteristics are 

comprehensively investigated. This investigation reveals the impacts of gear wear 

progression on vibration characteristics from machine mechanism views, which 

significantly benefits the health indicator constructions for monitoring gear wear 

progression. 

2) A novel gear wear monitoring indicator is developed based on the analysis of measured 

vibrations. This novel gear wear indicator can accurately capture the wear-induced 

morphology characteristics’ changes. Moreover, unlike the existing studies, which are 

effective for one wear mechanism, the novel indicator is valid and effective for multiple 

gear wear mechanisms. 

3) Natural wear propagation tests under different lubrication and operating conditions are 

arranged to verify the effectiveness of the proposed methodology. Also, comparisons with 

the traditional indicators are included in this paper to show the proposed indicator’s 

superiority in assessing surface wear propagation progression. 

The following sections of this paper are structured as follows: the impacts of gear wear on 

vibration characteristics and the complexity of gear transmission systems are introduced in 

Section 2; The proposed similarity-based status characterization methodology for gear wear 

monitoring is introduced in Section 3; Section 4 demonstrates the superiority of the developed 

method over traditional indicators/techniques with two kinds of measurements from laboratory 

gear rig under different lubrication conditions. Conclusions are drawn in Section 5. 
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2 Wear effects on vibration characteristics 

2.1 Relationship between gear wear and vibrations 

In general, gear wear progression affects the gear tooth durability in two directions: (1) in the 

direction normal to the gear tooth surface; gear wear can reduce the gear tooth thickness and 

introduce geometric deviation from the ideal involute profile, due to sliding motions. It usually 

is in millimeter-level, which can be called macro-wear; (2) meanwhile, the morphology on gear 

surface will change significantly during gear wear progression, which tends to be quantified by 

surface roughness; in general, the surface morphology change is at micrometer-level, called 

micro-wear [26]. Macro-wear is usually caused by abrasion. In contrast, all gear wear modes 

involve micro-wear progression, such as abrasion, fatigue pitting, corrosive wear, etc.  

 
Figure 1 Gear tooth change induced by gear wear progression 

In theory, macro-wear is distributed uniformly on each gear tooth, resulting in an increase in 

gear meshing harmonics [22, 27]. However, in practice, there will be different wear 

propagation rates exiting among these teeth due to the manufacturing error and lubrication 

contamination, which brings in differences of geometric deviation to each tooth. During gear 

wear progression, the dynamic load alternation during the wear process reduces this kind of 

tooth-to-tooth difference to some extent. The tooth-to-tooth differences conduce the occurrence 
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and changes of sidebands around gear meshing harmonics [5]. While gear meshing harmonics 

and their sidebands are the deterministic components of vibrations. That means the macro-wear 

propagation could lead to a noticeable change in deterministic components signal.  

Micro-wear corresponds to the surface morphology change during its progression. In gear’s 

service lifespan, the tooth surface degradation usually involves multi-wear mechanisms [28]. 

Each wear mechanism can bring noticeable changes to gear surface morphology. Moreover, 

the dominant wear mechanism might vary due to the alteration of contact pressure distribution, 

lubrication quantity and quality, operating conditions, and surface roughness [9, 26, 28]. Thus, 

compared with macro-wear, monitoring the micro-wear progression can provide more reliable 

and valuable information to the gear system's health management. Therefore, investigating the 

vibration characteristics, which can reveal micro-wear propagation progression, are vital and 

deserve more attention from the research community and industry. 

Considering its unique characteristics, the micro-wear has negligible effects on the 

deterministic vibration signal unless it is exceptionally severe like the macro-wear. Thus, it is 

challenging to develop effective techniques/indicators to extract useful features for tracking 

micro-wear progression. As for the gear transmission system, there are inevitable sliding 

motions between the meshing gear pairs. The sliding behaviors and friction on the gear surface 

asperity contact can produce vibrations. This kind of vibration signal is a random signal, and 

its nature depends on several factors, such as operation conditions, lubrication status, and micro 

surface morphology of the gear surface [29]. The progression of gear wear can result in a 

change of gear asperity contact and affect gear sliding vibration characteristics. Therefore, 

some recently published research [27, 29] suggests that micro-wear, resulting in tooth surface 

morphology change, has noticeable effects on the sliding vibration. For instance, as introduced 

in Ref. [27], the progression of gear wear would cause an increase in surface roughness of the 

engaging gear pairs; consequently, the magnitude of the sliding vibration will increase 
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accordingly, as shown in Figure 2. Thus, based on the above discussions and analysis, sliding 

vibration-based analysis has the potential to be a promising approach for monitoring micro-

wear propagation. 

 
Figure 2 An example to show the connection between the progression of gear wear and sliding vibrations [27] 

To conclude, the wear effect on vibration characteristics can be summarized and demonstrated 

in Figure 3. 

 
Figure 3 Wear effects on vibration signal: macro-wear and micro-wear 

2.2 Extraction of sliding vibrations 

Gear surface morphology closely relates to the sliding vibrations, as introduced above; thus, 

analyzing the wear-induced sliding vibration can significantly benefit the gear wear 

progression monitoring. However, in the measured vibrations, the dominant components are 

G
ea

r 
w

ea
r 

pr
og

re
ss

io
n 

Macro-wear 

Micro-wear 

Sliding direction 

Changes in deterministic signal 

Changes in random signal 



10 
 

deterministic signals generated by the gear meshing and shaft rotating behaviors. Thus, it is 

necessary to exclude the deterministic components and extract the sliding vibrations from the 

measured vibrations. 

In theory, the measured vibration signal 𝑦𝑦(𝑡𝑡) from gearbox transmission system is the product 

of convoluting an impulse response signal ℎ(𝑡𝑡) and an excitation signal 𝑥𝑥(𝑡𝑡): 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) ∗ ℎ(𝑡𝑡) (1) 

As for the gear transmission system, the dominant excitation signal closely relates to the 

rotating speed of the input and output shaft and the corresponding drive trains. The main 

excitation vibration signal usually is composed of discrete frequency components. In addition 

to the excitation signal (also namely forcing signal), the structural responses of the gearbox, 

corresponding to the natural frequencies of the system and the impulse responses, also exist in 

the acquired vibration signal, as less systematic (almost random) vibrations [30]. The 

discrete/random separation (DRS) algorithm is to explore and investigates the inherent 

relations of the vibration signal with the delayed version of itself. A high inherent correlation 

is anticipated between the vibration signal to be analyzed and the delayed version of itself if 

there is a deterministic vibration signal component in the measurements. In contrast, a low 

correlation would be expected if the dominant component of the measurement is a random 

signal. This information can help separate the gear vibration signal's random and deterministic 

components. Figure 4 shows the calculation procedure of the DRS transfer function.  
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Figure 4 Schematic demonstration of the calculation process of the DRS transfer function [31] 

The fundamental theories and equations of the DRS technique are presented as follows. As for 

the gearbox transmission system, 𝐻𝐻1 estimator is used to define its transfer function 

𝐻𝐻1(𝑓𝑓) = 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)⁄ (2) 

where 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) is the cross-spectrum 

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) = ℑ{𝑦𝑦(𝑡𝑡)}ℑ∗{𝑥𝑥(𝑡𝑡)} (3) 

and 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) is the auto-spectrum 

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) = ℑ{𝑥𝑥(𝑡𝑡)}ℑ∗{𝑥𝑥(𝑡𝑡)} (4) 

Note: ℑ denotes the Fourier transfer, and the complex conjugate is represented by ∗ in the 

superscript. 

In the DRS’s transfer function, the non-delayed vibration signal is defined as the input signal 

𝑥𝑥(𝑡𝑡), and its corresponding delayed version is set as the output signal 𝑦𝑦(𝑡𝑡). A process of 

averaging is implemented to boost the calculation of the transfer function: 

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) =
1
𝑁𝑁
�ℑ{𝑦𝑦𝑖𝑖(𝑡𝑡)}ℑ∗{𝑥𝑥𝑖𝑖(𝑡𝑡)}
𝑁𝑁

𝑖𝑖=1

(5) 

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) =
1
𝑁𝑁
�ℑ{𝑥𝑥𝑖𝑖(𝑡𝑡)}ℑ∗{𝑥𝑥𝑖𝑖(𝑡𝑡)}
𝑁𝑁

𝑖𝑖=1

(6) 
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The inverse Fourier transform algorithm helps transfer the achieved transfer function from the 

domain of frequency to the domain of time: 

ℎ(𝑡𝑡) = ℑ−1{𝐻𝐻1(𝑓𝑓)} (7) 

The achieved transfer function can help filter the originally measured vibrations. After the 

filtration, the random components of the measured vibrations can be gained, which contains 

rich information of the gear surface morphology. 

A. Cyclostationarity of vibration caused by gear wear 

Through the separation of deterministic and random signals via DRS, the random components 

of vibrations can be obtained. However, in the random vibrations, the sliding-induced 

vibrations are still mixed with background noise. Moreover, the energy of sliding vibration is 

weak, resulting in valuable features easily being submerged into noise. Thus, the random signal 

after filtering through DRS should be further processed so that the surface morphology-related 

vibration components (sliding induced vibrations) can be appropriately represented. 

The unique gear system kinematics is shown in Figure 5. The periodic gear mesh behavior (in 

Figure 5(a)) and contact force of engaging gears (in Figure 5(b)) produce a periodic sliding 

velocity corresponding to the gear mesh frequency, as demonstrated in Figure 5(c). The sliding 

velocity is zero at the gear pitch line and increases linearly as the gear mesh point departs from 

the pitch line. The varying sliding velocity and periodic contact force could generate an 

amplitude modulation to the sliding vibrations, as shown in Figure 5(d). The carrier signal is 

the random vibration from the engaging gears' surface asperity contacts. And the amplitude 

modulating frequency corresponds to the gear mesh behaviors. Thus, the micro surface wear 

should be correlated to the second-order cyclostationarity at the gear mesh cyclic frequency. In 

other words, second-order cyclostationary (CS2) phenomena exist in the sliding induced 

random signal. Therefore, the cyclostationary analysis tools have the potential to benefit micro-

wear monitoring. 
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Figure 5 Second-order cyclostationary (CS2) signal generation from periodic contact force and the meshing gear 
sliding velocity; (a) the number of tooth pairs in contact; (b) approximate contact force; (c) approximate sliding 
velocity; (d) possible amplitude-modulated random signal (CS2) generated from varying sliding velocity (N = 

number of teeth on the gear) [29]. 
 

In theory, the second-order moment of cyclostationarity of measured vibration signal 𝑧𝑧(𝑥𝑥) can 

be recognized as an instantaneous autocorrelation function with 𝑇𝑇 cyclic period [32]: 

𝑅𝑅𝑥𝑥𝑥𝑥(𝑡𝑡, 𝜏𝜏) = 𝑅𝑅𝑥𝑥𝑥𝑥(𝑡𝑡 + 𝑇𝑇, 𝜏𝜏) = 𝐸𝐸{𝑧𝑧(𝑡𝑡 + 𝜏𝜏 2⁄ )𝑧𝑧(𝑡𝑡 − 𝜏𝜏 2⁄ )} (8) 

where 𝐸𝐸{∙}  denotes the ensemble average operator; 𝜏𝜏  is the time-lag. The autocorrelation 

function’s Fourier coefficients correspond to the cyclic autocorrelation function, which are: 

𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏,𝛼𝛼) = �𝑅𝑅(𝑡𝑡, 𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 (9) 

where the cyclic frequency defines as 𝛼𝛼. In Eq. (9), it can be seen that the cyclic autocorrelation 

function denotes the Fourier coefficients of 𝛼𝛼 for a time-lag signal 𝑅𝑅(𝑡𝑡, 𝜏𝜏). Based on Eq. (8), 

the spectral correlation, one of the powerful CS2 analysis tools, can be calculated as follows 

[33]: 
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𝑆𝑆(𝛼𝛼,𝑓𝑓) = �𝑅𝑅𝑥𝑥𝑥𝑥(𝜏𝜏,𝛼𝛼)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑                      

    = �𝑅𝑅(𝑡𝑡, 𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝛼𝛼𝛼𝛼+𝑓𝑓𝑓𝑓)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10)
 

Superior to spectral correlation, spectral coherence can magnify the weak cyclostationarity of 

the measured signal [34]. The spectral coherence is achieved through normalizing the spectral 

correlation; spectral coherence can reveal the level of modulation with cyclic frequency 𝛼𝛼 and 

a carrier with spectral frequency 𝑓𝑓 as follows: 

𝛾𝛾(𝛼𝛼,𝑓𝑓) = 𝑆𝑆(𝛼𝛼,𝑓𝑓) �𝑆𝑆(0,𝑓𝑓)𝑆𝑆(0,𝑓𝑓 − 𝛼𝛼)⁄ (11) 

As for the gear case, due to the unique kinematics of the gear transmission system, the gear 

mesh cyclic frequencies contain rich surface morphology information, as shown in Figure 6 

(limited gear mesh cyclic harmonics are presented for demonstration purposes). Thus, the slices 

of gear mesh cyclic frequencies can be used for monitoring the gear wear progression. 

 
Figure 6 Spectral distribution at the gear mesh cyclic order (the first ten) 

Even though the slices of gear mesh cyclic frequencies contain rich surface degradation 

information, it is challenging to indicate/interpret the gear system degradation status by directly 

observing the spectral coherence maps. Also, the slices of gear mesh cyclic frequencies could 

not indicate the wear severity intuitively. To address this issue, the slices of gear mesh cyclic 
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frequencies can be treated as data from multiple pseudo sources. Inspired by the multivariate 

dispersion entropy [35], a novel gear wear monitoring indicator employing the gear mesh cyclic 

frequencies as pseudo sources of interest is established. The developed similarity-based status 

characterization gear wear monitoring methodology will be introduced in Section 3. 

3 Proposed methodology for gear wear monitoring 

In this section, the proposed similarity-based status characterization methodology, which can 

comprehensively represent the gear system degradation behaviors caused by surface wear 

progression, is presented. 

The calculation procedures of the developed gear wear monitoring indicator are presented as 

follows: 

Step 1: The acquired vibration signal from the gearbox system is denoted as 𝑦𝑦(𝑡𝑡). Following 

the Eqs. (1-7), the separation filter is constructed as 

(|𝑊𝑊(𝑓𝑓)|2𝜌𝜌𝜌𝜌 2⁄ ) (|𝑊𝑊(𝑓𝑓)|2𝜌𝜌𝜌𝜌 2⁄ + 1)⁄ (12) 

where 𝑁𝑁 represents the transform size. The applied Fourier transform window is denoted as 

𝑊𝑊(𝑓𝑓), it has been mapped to a scale in the frequency domain whose maximum value is 1. In 

addition, 𝜌𝜌 = SNR  (signal-to-noise ratio). The random signal 𝑦𝑦𝑟𝑟(𝑡𝑡)  is obtained through 

implementing Eqs. (1-7) and Eq. (12).  

Step 2: Autocorrelation function 𝑅𝑅𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝑡𝑡, 𝜏𝜏)  of 𝑦𝑦𝑟𝑟(𝑡𝑡)  is calculated, followed by the two-

dimensional Fourier transformation of 𝑅𝑅𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝑡𝑡, 𝜏𝜏). At last, the spectral coherence 𝛾𝛾𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝛼𝛼,𝑓𝑓) is 

obtained through: 

𝛾𝛾𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝛼𝛼, 𝑓𝑓)                                                                                     

= �𝑅𝑅𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝑡𝑡, 𝜏𝜏)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝛼𝛼𝛼𝛼+𝑓𝑓𝑓𝑓)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑆𝑆(0,𝑓𝑓)𝑆𝑆(0, 𝑓𝑓 − 𝛼𝛼)� (13)
 

Based on the analysis of Figure 5, the signal at the gear mesh cyclic harmonics, which are 

signals at 𝛼𝛼 = 𝑓𝑓GM𝑞𝑞th (GM𝑞𝑞th denotes the 𝑞𝑞th gear mesh harmonic), closely related to the gear 
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surface morphology. Thus, 𝛾𝛾𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝛼𝛼,𝑓𝑓) at slices of gear mesh cyclic harmonics are extracted 

from the bi-spectral maps of 𝛾𝛾𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝛼𝛼,𝑓𝑓) for further analysis. 

Step 3: Normalize the extracted signals at multiple slices of gear mesh cyclic harmonics from 

𝛾𝛾𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟(𝛼𝛼,𝑓𝑓). The extracted signals are denoted as 𝓜𝓜 = �ℳ𝑘𝑘,ℎ�𝑘𝑘=1,2,⋯,𝑛𝑛
ℎ=1,2,⋯,𝑁𝑁

, where 𝑁𝑁 is the signal 

length at each cyclic harmonics of gear mesh, and 𝑛𝑛  is the number of gear mesh cyclic 

harmonics to be considered. Then the signals 𝓜𝓜 = �ℳ𝑘𝑘,ℎ�𝑘𝑘=1,2,⋯,𝑛𝑛
ℎ=1,2,⋯,𝑁𝑁

 are mapped into a new 

signal 𝐆𝐆 = �𝑔𝑔𝑘𝑘,ℎ�𝑘𝑘=1,2,⋯,𝑛𝑛
ℎ=1,2,⋯,𝑁𝑁

 (whose value is between 0 and 1) through the normal cumulative 

distribution functions [36] as 

𝑔𝑔𝑘𝑘,ℎ = 1 �𝜎𝜎𝑘𝑘√2𝜋𝜋�⁄ � 𝑒𝑒
−(𝑡𝑡−𝜇𝜇𝑘𝑘)2
2𝜎𝜎𝑘𝑘2 𝑑𝑑𝑑𝑑

𝑥𝑥𝑘𝑘,ℎ

−∞
(14) 

where σ and μ denote the standard deviation and mean of gear mesh cyclic harmonic signals, 

respectively, this normalization process will increase the SNR of the signal, which can help 

improve its diagnosis capability. Also, a linear transform 𝑧𝑧𝑘𝑘,ℎ = 𝐑𝐑�𝑐𝑐 ∙ 𝑔𝑔𝑘𝑘,ℎ + 0.5� is utilized 

to re-map the signal from 𝐆𝐆 to 𝐙𝐙 (from 1 to 𝑐𝑐); 𝐑𝐑 is the rounding function. 

Step 5: The signal 𝐙𝐙 is reconstructed based on the multivariate embedding theory: 

𝑍𝑍𝑚𝑚(𝑗𝑗) = �𝑧𝑧1,𝑗𝑗, 𝑧𝑧1,𝑗𝑗+𝑑𝑑1 ,⋯ , 𝑧𝑧1,𝑗𝑗+(𝑚𝑚1−1)𝑑𝑑1 , 

                                                            𝑧𝑧2,𝑗𝑗, 𝑧𝑧2,𝑗𝑗+𝑑𝑑2 ,⋯ , 𝑧𝑧2,𝑗𝑗+(𝑚𝑚2−1)𝑑𝑑2 ,⋯, 

                    𝑧𝑧𝑛𝑛,𝑗𝑗, 𝑧𝑧𝑛𝑛,𝑗𝑗+𝑑𝑑𝑛𝑛 ,⋯ , 𝑧𝑧𝑝𝑝,𝑗𝑗+(𝑚𝑚𝑛𝑛−1)𝑑𝑑𝑛𝑛� (15) 

where 𝑗𝑗 ∈ [1,𝑁𝑁 − (𝑚𝑚− 1)𝑑𝑑] , 𝑚𝑚 = [𝑚𝑚1,𝑚𝑚2,⋯ ,𝑚𝑚𝑛𝑛]  represents embedding dimension and 

𝜆𝜆 = [𝜆𝜆1, 𝜆𝜆2,⋯ , 𝜆𝜆𝑛𝑛] represents time delay. 

Step 6: For every 𝑍𝑍𝑚𝑚(𝑗𝑗) , all possible combinations of 𝑚𝑚  elements in 𝑍𝑍𝑚𝑚(𝑗𝑗) , termed 

𝜙𝜙𝑞𝑞,𝑙𝑙(𝑗𝑗) (𝑞𝑞 ∈ [1,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚], 𝑙𝑙 ∈ [1,𝑚𝑚]), have been created, where the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the total number of all 

combinations of 𝑚𝑚𝑚𝑚 numbers with length 𝑚𝑚. 
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Step 7: Each 𝜙𝜙𝑞𝑞,𝑙𝑙(𝑗𝑗) is mapped to a pattern 𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1(𝜐𝜐 = 1,2,⋯ , 𝑐𝑐), where  𝜙𝜙𝑞𝑞,1(𝑗𝑗) = 𝜐𝜐0, 

𝜙𝜙𝑞𝑞,2(𝑗𝑗) = 𝜐𝜐1, ⋯, 𝜙𝜙𝑞𝑞,𝑙𝑙(𝑗𝑗) = 𝜐𝜐𝑚𝑚−1. Since 𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1  has 𝑚𝑚 digits, and each 𝑚𝑚 is with 𝑐𝑐 classes; 

thus, a total 𝑐𝑐𝑚𝑚 patterns are here. The total number of combinations of each 𝑍𝑍𝑚𝑚(𝑗𝑗) is 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 

Therefore, as for the 𝑛𝑛 channel data, there are a total of  [𝑁𝑁 − (𝑚𝑚− 1)𝑑𝑑]𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 patterns. 

Step 8: The probability of each pattern is [37]: 

𝑝𝑝�𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1� =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1�
(𝑁𝑁 − (𝑚𝑚 − 1)𝑑𝑑)𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

(16) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 in Eq. (16) demotes the number of 𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1 in 𝜙𝜙𝑞𝑞,𝑙𝑙(𝑗𝑗). 

Step 9: At last, based on the theory of Shannon entropy, the gear wear monitoring indicator 

𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is calculated by 

𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 = −�𝑝𝑝�𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1�ln
𝑐𝑐𝑚𝑚

𝜋𝜋=1

𝑝𝑝�𝜋𝜋𝜈𝜈0𝜐𝜐1⋯𝜐𝜐𝑚𝑚−1� (17) 

With the developed novel gear wear monitoring indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 , the gear system degradation 

behaviors can be revealed (as shown in Figure 7), and the wear progression can be assessed. 

The unique advantages of the developed novel gear wear monitoring indicator (over traditional 

indicators) are summarized as follows: 

• Surface morphology-related sliding induced vibration is involved in the novel gear wear 

indicator; thus, it has a better ability to track and assess the surface degradation process 

caused by gear wear propagation over other conventional but prevalent indicators, e.g., 

cyclostaionary indicators, statistical indexes, and gear meshing harmonics. 

• The novel gear wear indicator is valid in tracking gear wear progression for multiple wear 

mechanisms. The developed gear wear indicator focuses on the vibration characteristics 

caused by micro surface morphology alternation, and all gear modes involve surface 

morphology change; thus, it is still effective in tracking gear wear progression, even though 
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multiple wear mechanisms exist or the dominant wear mode varies during the gear 

progression process. 

•  Multiple slices of gear meshing cyclic harmonics are considered, which brings more 

comprehensive information to describe the surface degradation process, compared with 

using a single gear mesh cyclic harmonic. 

 
Figure 7 Calculation procedure of the developed similarity-based status characterization gear wear monitoring 

approach 

The effectiveness of the developed similarity-based status characterization gear wear 

monitoring methodology will be verified using the run-to-failure tests with different operating 
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conditions under different lubrication conditions, as introduced in the following section: 

Section 4. 

4 Experiment 

A series of gear run-to-failure tests were designed and conducted on the test rig, and different 

lubrication conditions were involved, that is, with and without lubricating oil. The tested 

gearbox rig’s schematic diagram is presented in Figure 8. The tested gearbox test rig is 

composed of meshing gear pairs, casing, shafts, motor, support bearings, couplings, and a brake. 

There are two high-resolution encoders that are placed on the free end of connection shafts. 

The encoder signals and vibration signals were acquired at 102,400 Hz sampling frequency for 

15s. The gear surface morphology is revealed by a moulding technique. Moreover, a 

microscope was applied to scan the collected mould to obtain the 3D surface images of the gear 

surface morphology (as demonstrated in Figure 9), and the tribological features were calculated, 

such as the tooth surface roughness 𝑆𝑆𝑎𝑎. The gear tooth surface roughness can be applied to help 

validate the effectiveness of the proposed methodology for evaluating the system degradation 

severity during the gear wear propagation progression. 

 
Figure 8 Gearbox test rig schematic diagram 
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Figure 9 Demonstration of the process of obtaining the surface morphology feature during the gear wear 

propagation 

4.1 Gear wear progression monitoring with lubrication oil 

The gearbox was first run with lubricating oil. Four endurance tests were arranged with 25 Nm 

applied load. The operating speeds of four tests were set as 10 Hz, 15 Hz, 20 Hz, and 25 Hz, 

respectively. In this section, to avoid repetition, only the endurance test with a 20 Hz rotating 

speed will be used to demonstrate the implementation procedures of the developed similarity-

based status characterization gear wear monitoring methodology. The final analysis results of 

other endurance tests will be summarized in a table directly.  

From the duplicated gear surface morphology, it reveals that the main mechanism of gear wear 

in the lubricated test (20 Hz) is gear fatigue pitting, as shown in Figure 10. The same dominant 

mechanism was observed in other endurance tests (with lubrications). 

 
Figure 10 Driving gear tooth surface degradation progression induced by gear wear: one specific location  
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The developed similarity-based status characterization methodology is applied to this endurant 

test (20 Hz) to monitor and assess the gear surface degradation characteristics with lubricating 

oil. Moreover, to quantitively evaluate the degradation progression on the gear surface, surface 

roughness (arithmetical mean height 𝑆𝑆𝑎𝑎 ) is selected as the feature of the microsurface 

morphology to reflect the gear wear severity. 𝑆𝑆𝑎𝑎 will be applied to evaluate the effectiveness 

of the novel indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  for monitoring gear wear, obtained from the proposed similarity-

based status characterization methodology. 

The trend of the proposed gear surface wear indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is shown in Figure 11(a) (blue 

colored line). The R-squared analysis tool is utilized in this paper to demonstrate and quantify 

the performance of the proposed health indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  in monitoring and evaluating gear wear 

progression. As a statistical measure of fit, the R-squared indicates how much variation of a 

dependent variable is explained by the independent variable(s) in a regression model. The two 

variables of R-squared are set as the proposed health indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  and surface roughness 𝑆𝑆𝑎𝑎. 

Thus, the R-squared contributes to revealing and quantifying the internal relationship between 

𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  and 𝑆𝑆𝑎𝑎. The R-squared analysis result is shown in Figure 11(b). From Figure 11(b), a 

linear regression model is applicable, and there is a high correlation coefficient value, which is 

𝑅𝑅2 = 0.9659. It indicates a strong linear relationship between 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  and 𝑆𝑆𝑎𝑎. Therefore, the 

developed gear wear monitoring indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is proved to have an outstanding performance 

in monitoring gear wear propagation progression. 

Meanwhile, several conventional indicators are applied in this paper for comparison purposes, 

such as the typical cyclostationarity indicators, namely ICS2 [28] and RCC [38, 39], and some 

other traditional indicators: kurtosis, RMS, and harmonics of gear meshing. Moreover, the R-

squared is utilized as the tool to quantify the performance of these indicators in monitoring and 

assessing the process of gear wear progression. The analysis and comparison results are 

introduced in Table 1. 
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Figure 11  𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀in monitoring gear wear progression: with lubrication 

Table 1 Gear wear monitoring: with lubrication 

Indicator 
Correlation coefficient with surface roughness 𝑆𝑆𝑎𝑎: 𝑅𝑅2 

Test: 20 Hz Test: 10 Hz Test: 15 Hz Test: 25 Hz 

𝐃𝐃𝐃𝐃𝐌𝐌𝐌𝐌 0.9659 0.9543 0.9478 0.9602 

ICS2 0.8134 0.7998 0.8248 0.8546 

RCC 0.7546 0.7864 0.7732 0.8423 

RMS (raw vibration signal) 0.7124 0.7269 0.7789 0.7764 

RMS (residual vibration signal) 0.7824 0.7745 0.7652 0.8251 

Kurtosis (raw vibration signal) 0.7205 0.7452 0.5489 0.6548 

Kurtosis (residual vibration signal) 0.0714 0.0981 0.1288 0.2365 

1st harmonic of gear meshing 0.0970 0.1147 0.0647 0.0589 

2nd harmonic of gear meshing 0.0470 0.0579 0.0892 0.0546 

 

The comparison results with 20 Hz are discussed as follows. As shown in Table 1, the maximal 

value of the correlation coefficient of other indicators is 𝑅𝑅2 = 0.8134, which is achieved by 

the second-order cyclostationarity (CS2) indicator ICS2. Likewise, RCC, another CS2 

indicator, is also highly correlated to the gear surface roughness. It implies that the vibration-

based cyclostationary analysis approach has the potential to be a good tool to monitor the 

process of gear wear propagation; nevertheless, it needs to select an informative frequency 
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band first (as introduced in [27]). However, neither of the above-mentioned cyclostationary 

indicators has a higher R-squared value compared with the proposed indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 . Therefore, 

the proposed indicator has a better performance in evaluating gear wear progression than other 

conventional indicators, and its unique advantage has been quantified and proved by the R-

squared analysis. 

In addition, RMSs of the raw vibration signal and residual vibration signal show high 

connections with the gear wear progression, which are 𝑅𝑅2 = 0.7124  and 𝑅𝑅2 = 0.7824 , 

respectively. It indicates that the surface wear process can cause energy changes in the vibration 

signal. However, the kurtosis of the measured vibrations presents a correlation coefficient with 

a low value compared with the progression of gear wear propagation. The same phenomenon 

occurs in the harmonics of gear meshing. It means that kurtosis and harmonics of gear meshing 

might not be reliable indexes for monitoring and assessing gear surface degradation severity 

during the process of gear wear propagation. 

Similar comparison results are achieved for the other endurance tests, with 10 Hz, 15 Hz, and 

25 Hz. It means the developed gear wear indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is robust for tracking the progression 

of gear surface wear under lubrication conditions.  

To conclude, as demonstrated in the comparison analysis with the above-mentioned 

conventional health indicators, it can be seen that the proposed gear wear indicator  

𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  has the best capability and performance; thus, it can be serviced as a robust tool for 

evaluating the degradation severity of gear systems caused by surface wear propagation 

progression. 

4.2 Gear wear progression monitoring without lubrication oil 

Another kind of gear run-to-failure test was conducted to validate the effectiveness and 

capability of the proposed gear wear indicator in assessing the progression of surface wear. It 

is executed without lubrication oil. In these dry endurance tests, the operating speeds were set 
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as 5 Hz, 8 Hz, 10 Hz, and 15 Hz, and the applied load for the dry tests was set as 10 Nm. Same 

to Section 4.1, the 10 Hz case was used for demonstration purposes.  

Gears are run under lubricated conditions in the majority of industrial applications. However, 

there are several specific applications that the gears have to run in dry, such as nuclear, 

aerospace, servo-mechanisms, food processing, and in-space [40]. To prove the excellent 

applicability of the proposed gear wear monitoring indicator (even for some extreme situations), 

the dry test was arranged. In addition, another purpose of this dry test is to help generate other 

wear mechanisms so that the ability of the proposed health indicator for monitoring and 

assessing gear wear progression with different mechanisms can be examined and proved. In 

general, as for the fully lubricated gear system, the dominant wear mechanism is fatigue pitting, 

as introduced in Section 4.1. Unlike the lubricated gear system, the dominant gear wear 

mechanism of the dry test is abrasive wear, see Figure 12. 

 
Figure 12 Driving gear surface degradation progression: one specific location 

Likewise, the proposed gear wear indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is used here to monitor and assess the gear 

surface wear propagation (see Figure 13(a)), also the corresponding correlation analysis with 

surface roughness of gear 𝑆𝑆𝑎𝑎 is conducted (see Figure 13(b)). A high correlation coefficient, 

that is 𝑅𝑅2 = 0.9651 , suggests that the proposed gear wear monitoring indicator has an 
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outstanding performance and capability in assessing surface degradation characteristics and 

behaviors during the progression of gear wear propagation, even though the lubrication 

conditions and wear mechanisms have changed significantly. It proves that the proposed gear 

wear indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is a reliable and robust indicator for gear wear monitoring, which can 

significantly benefit the research community and industry practices. 

 
Figure 13 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 in monitoring gear wear progression: without lubrication 

Similar to the lubricated test, some conventional indicators are applied here to implement the 

relevant comparisons. The comparison analysis results are summed up in Table 2. As shown 

in Table 2, it can be seen that the CS2 indicators that are RCC and ICS2 show some correlations 

or connections with the degradation characteristics of the gear surface, which are indicated and 

quantified by R-squared analysis with the gear surface roughness 𝑆𝑆𝑎𝑎 . Nevertheless, the 

effectiveness and performance of CS2 indicators are still inferior to the proposed gear wear 

indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 . The RMS indicator (both the raw and residual vibration signals) correlates 

with gear surface roughness increases to some extent compared with the test with lubrication 

oil. The possible reason is that gear surface morphology changes much more significantly 

without lubrication oil, which results in a significant vibration signal energy change. In addition, 

the correlation between kurtosis and surface morphology features becomes very much higher, 

compared with the test with lubricating oil. This is owning to a much rougher gear engaging 

surface involved in the progression of the gear wear propagation without lubricating oil, as 
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presented in Figure 12. The gear meshing harmonics performance in gear wear monitoring is 

still not good, which means that it might not be a suitable index for assessing the changes of 

gear surface micro-features. 

Table 2 Gear wear monitoring: without lubrication 

Indicator 
Correlation coefficient with surface roughness 𝑆𝑆𝑎𝑎: 𝑅𝑅2 

Test: 10 Hz Test: 5 Hz Test: 8 Hz Test: 15 Hz 

𝐃𝐃𝐃𝐃𝐌𝐌𝐌𝐌 0.9651 0.9643 0.9701 0.9548 

ICS2 0.7634 0.7852 0.7796 0.7689 

RCC 0.7586 0.7748 0.7721 0.7542 

RMS (raw vibration signal) 0.7835 0.8201 0.8001 0.7985 

RMS (residual vibration signal) 0.8167 0.8321 0.8054 0.8251 

Kurtosis (raw vibration signal) 0.7995 0.7745 0.7689 0.7922 

Kurtosis (residual vibration signal) 0.8320 0.8452 0.8321 0.8296 

1st harmonic of gear meshing 0.2293 0.3248 0.3165 0.2871 

2nd harmonic of gear meshing 0.3434 0.4528 0.2674 0.3859 

 

To sum up, when meshing gear pairs operate without lubricating oil, the dominant mechanism 

of gear wear has changed. Nevertheless, the proposed gear wear indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  still has an 

outstanding performance in assessing the propagation of gear wear; therefore, it is a reliable 

and robust health indicator for monitoring and evaluating gear system degradation status during 

surface wear propagation. 

5 Conclusion and future work 

Surface wear is an inevitable phenomenon during the gear system’s lifespan. Also, the 

dominant wear modes keep changing in the process of gear wear propagation. The propagation 

of gear wear can lead to severe failure modes. Therefore, it is vital to evaluate the process of 

gear wear propagation. However, the dynamic interactions between gear wear and gear system 
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dynamics would produce complex vibration features, resulting in rare vibration-based 

techniques/indicators being developed for tracking gear wear progression. In this paper, a novel 

similarity-based status characterization methodology is developed to evaluate the gear surface 

degradation behaviors. In the proposed methodology, a novel gear wear monitoring indicator 

𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is developed, which can evaluate the gear wear severity, even though different dominant 

wear mechanisms and lubrication conditions are present. Moreover, comparison analyses with 

conventional indices were implemented to prove the superiority and advantage of the proposed 

gear wear indicator in assessing gear wear severity. With the help of R-squared analysis, the 

correlation analysis quantifiably shows the excellent performance of the proposed gear wear 

indicator over conventional indicators. Therefore, the developed indicator 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  is a valuable 

and reliable tool for non-destructive monitoring and evaluating the degradation status of gear 

transmission systems induced by the propagation of gear wear in industry practices. Also, the 

developed gear wear indicator is an online technique, and it can help significantly save labor 

costs and provide real-time gear system degradation status to the analyst. Accurately assessing 

the system health status through 𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀  could benefit the gear system health management, 

which is of great importance for various industries. In our future work, prediction models or 

algorithms to accurately predict the remaining useful life (under surface wear progression) 

using the developed gear wear monitoring indicator will be studied for the gear transmission 

system. 
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