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1. Introduction 

Uncertainties are typically classified into aleatory and epistemic uncertainty [1], and uncertainty 
characterization models can be then categorized into the following three groups: 
• Probability model is the most classical one, and is usually used to represent aleatory uncertainty; 
• Non-probabilistic models [2] are set-theoretical models, and are especially suitable to characterize 

epistemic uncertainty; 
• Imprecise probability models [3] are considered as a combination of the former two models, and 

can separately characterize aleatory and epistemic uncertainties. 
Among the aforementioned models, effective propagation of the imprecise probability models 

has been intensively investigated in the past decades. The extended Monte Carlo simulation (EMCS) 
[4] is an importance sampling-based method relying on a single stochastic simulation. Therefore, its 
computational cost is the same as that for the conventional reliability analysis. Moreover, the method 
has been integrated with the high-dimensional model representation (HDMR) decomposition as the 
metamodel strategy and sensitivity analysis to measure the importance of the epistemic parameters, 
to establish a general methodology framework, called non-intrusive imprecise stochastic simulation 
(NISS) [5,6], and it has been also generalized to propagate the imprecise probability models and non-
probabilistic models simultaneously [7]. 

However, the main drawback of the NISS framework is that it is restricted to the parameterized 
imprecise probability models, e.g., distributional p-boxes [8], which impose constraints on admissible 
distribution functions by assuming a specific distribution family. Comparatively, if the distribution 
families of the aleatory parameters cannot be determined a priori, it becomes necessary to propagate 
all the possible distributions of arbitral distribution families enclosed within a concerned p-box, so as 
to accurately estimate the failure probability bounds. Crespo et al. [9] has recently developed a novel 
distribution family, called staircase distribution, that can approximate a broad range of distributions 
arbitrary close. Whereas its applications in imprecise stochastic simulation are quite limited in current 
literatures, it has a potential to define a parametric p-box approximately containing any distributions 
within its bounds. The aim of this work is consequently to generalize the staircase distribution-based 
p-boxes and integrate them with the NISS method to develop a novel framework for propagating the 
imprecise probability models without limiting hypotheses on the distribution family. 

The present work particularly focuses on the generalized global NISS method [7], because it can 
propagate both the imprecise probability models and non-probabilistic models at the same time. The 
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staircase distributions are theoretically ready to be utilized in this method by constructing parametric 
p-boxes defining their hyper-parameters as interval values. However, it requires to parameterize the 
distribution function for a significant number of the hyper-parameters sets to derive NISS estimators. 
This can be computationally prohibitive for the staircase distributions whose density functions are 
parameterized by solving optimization problems. To address this issue, a novel hybrid NISS method 
is proposed, where the staircase distribution-based p-boxes are propagated by the local NISS method 
[5] whereas the non-probabilistic models, i.e., interval models, are propagated using the global NISS 
method [6]. The feasibility of the proposed method is demonstrated by solving the reliability analysis 
subproblem of the NASA UQ challenge problem 2019 [10].  

2. Parametric p-boxes bases on staircase distributions 

Staircase distributions [9] are functions of their hyper-parameters 𝜽𝜽 = [𝜇𝜇,𝑚𝑚2,𝑚𝑚�3,𝑚𝑚�4] consisting 
of the mean 𝜇𝜇, variance 𝑚𝑚2, skewness 𝑚𝑚�3, and kurtosis 𝑚𝑚�4. The PDF of a staircase random variable 𝑥𝑥 
on its support domain �𝑥𝑥,𝑥𝑥� can be expressed as: 

𝑓𝑓x(𝑥𝑥) = �𝑙𝑙𝑖𝑖      ∀𝑥𝑥 ∈ (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1], for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑏𝑏
0      otherwise                                      

 (1) 

where 𝑙𝑙𝑖𝑖(≥ 0) means the PDF value of the 𝑖𝑖th bin; 𝑥𝑥𝑖𝑖 = 𝑥𝑥 + (𝑖𝑖 − 1)𝜅𝜅, with the length 𝜅𝜅 = �𝑥𝑥 − 𝑥𝑥� 𝑛𝑛𝑏𝑏⁄ , 
denotes the 𝑖𝑖th left partitioning point; 𝑛𝑛𝑏𝑏 is the number of bins. The PDF values 𝑙𝑙𝑖𝑖 , for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑏𝑏, can 
be obtained by solving an optimization problem based on the moment matching constraints, and one 
can refer to Ref. [9] for their detailed derivation. The staircase distribution can define a parametric p-
box by CDF families the hyper-parameters of which are known in intervals: 

𝐹𝐹x(𝑥𝑥) = 𝐹𝐹x(𝑥𝑥|𝜽𝜽), for 𝜽𝜽 ∈ {𝐷𝐷𝜽𝜽 ∩ Θ} (2) 

where 𝐷𝐷𝜽𝜽 is the interval domain of 𝜽𝜽; Θ means the feasible domain of 𝜽𝜽 as moment constraints for the 
existence of 𝑥𝑥 [9]. Without loss of generality, we assume the intervals are independent with each other 
and 𝐷𝐷𝜽𝜽 = �𝜇𝜇,𝜇𝜇� × �𝑚𝑚2,𝑚𝑚2� × �𝑚𝑚�3,𝑚𝑚�3� × �𝑚𝑚�4,𝑚𝑚�4� denotes a hyper-rectangular domain. 

Fig.1 depicts an example of a parametric p-box consisting of a staircase distribution family with 
a support set 𝑥𝑥 ∈ [−5, 5], mean 𝜇𝜇 ∈ [−1, 1], variance 𝑚𝑚2 ∈ [0.8, 1.2], skewness 𝑚𝑚�3 ∈ [−0.75, 0.75], and 
kurtosis 𝑚𝑚�4 ∈ [2, 4], as well as a parametric p-box that consists of a Gaussian distribution family with 
the same intervals for the mean and variance as above. Moreover, four possible CDF realizations for 
each type of the p-box are shown in the figure. The Gaussian distribution-based p-box naturally only 
contains Gaussian distributions, while the staircase distribution-based p-box contains a broad range 
of distributions, including skewed and bi-modal distributions. 

The staircase distribution-based p-box is capable of realizing arbitral distribution functions the 
hyper-parameters of which are in {𝐷𝐷𝜽𝜽 ∩ Θ}, while it allows a clear separation of aleatory uncertainty, 
represented by distribution families, and epistemic uncertainty, represented by given intervals of the 
hyper-parameters. These properties fulfill the expectation as a parameterized imprecise probability 
model with no limiting hypothesis on the distribution family.  

 
Fig. 1. Illustration of Gaussian distribution-based and staircase distribution-based p-boxes.  
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3. Hybrid NISS method 

Suppose 𝑔𝑔(𝒙𝒙,𝒚𝒚) be the limit state function, where 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)𝑇𝑇  denotes the 𝑛𝑛-dimensional 
staircase random variables and 𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2 ,⋯ ,𝑦𝑦𝑚𝑚)𝑇𝑇 ∈ 𝐷𝐷𝒚𝒚 is the 𝑚𝑚-dimensional independent interval 
parameters with the hyper-rectangular domain 𝐷𝐷𝒚𝒚. Without loss of generality, we assume that 𝒙𝒙 are 
independent to each other, so that the joint PDF is expressed as 𝑓𝑓𝐱𝐱(𝒙𝒙) = ∏ 𝑓𝑓x𝑖𝑖(𝑥𝑥𝑖𝑖|𝜇𝜇𝑖𝑖 ,𝑚𝑚2𝑖𝑖,𝑚𝑚�3𝑖𝑖 ,𝑚𝑚�4𝑖𝑖)𝑛𝑛

𝑖𝑖=1 , 
for 𝝁𝝁 ∈ 𝐷𝐷𝝁𝝁, 𝒎𝒎2 ∈ 𝐷𝐷𝒎𝒎2, 𝒎𝒎� 3 ∈ 𝐷𝐷𝒎𝒎�3, and 𝒎𝒎� 4 ∈ 𝐷𝐷𝒎𝒎� 4, where 𝝁𝝁, 𝒎𝒎2, 𝒎𝒎� 3 and 𝒎𝒎� 4 are columns of the means, 
variances, skewnesses and kurtoses, respectively; 𝐷𝐷𝝁𝝁, 𝐷𝐷𝒎𝒎2 , 𝐷𝐷𝒎𝒎�3  and 𝐷𝐷𝒎𝒎�4  mean the hyper-rectangular 
domains of 𝝁𝝁, 𝒎𝒎2, 𝒎𝒎� 3 and 𝒎𝒎� 4. Noted that, the independence assumption on 𝒙𝒙 is not crucial for the 
proposed method. In fact, the dependence structure among the staircase random variables enables to 
be uniquely defined by a copula function [11], thus the following steps to derive the NISS estimators 
do almost not affected by the presence of dependent inputs. The above definition further brings 4𝑛𝑛-
dimensional epistemic parameters 𝝑𝝑 = (𝜇𝜇1,⋯ , 𝜇𝜇𝑛𝑛,𝑚𝑚21,⋯ ,𝑚𝑚2𝑛𝑛,𝑚𝑚�31,⋯ ,𝑚𝑚�3𝑛𝑛, 𝑚𝑚�41,⋯ ,𝑚𝑚�4𝑛𝑛)𝑇𝑇, and their 
support set is the hyper-rectangular 𝐷𝐷𝝑𝝑 = 𝐷𝐷𝝁𝝁 × 𝐷𝐷𝒎𝒎2 × 𝐷𝐷𝒎𝒎�3 × 𝐷𝐷𝒎𝒎�4 . For convenience in notation, let 𝝑𝝑 =
(𝜗𝜗1, ⋯ ,𝜗𝜗4𝑛𝑛)𝑇𝑇, where 𝜗𝜗𝑖𝑖 = 𝜇𝜇𝑖𝑖, 𝜗𝜗2𝑖𝑖 = 𝑚𝑚2𝑖𝑖, 𝜗𝜗3𝑖𝑖 = 𝑚𝑚�3𝑖𝑖, and , 𝜗𝜗4𝑖𝑖 = 𝑚𝑚�4𝑖𝑖, for 𝑖𝑖 = 1,⋯ ,𝑛𝑛. 

We assume that the failure happens when 𝑔𝑔(𝒙𝒙,𝒚𝒚) < 0 and the failure domain can be represented 
as 𝐹𝐹 = {𝒙𝒙,𝒚𝒚: 𝑔𝑔(𝒙𝒙,𝒚𝒚) < 0}. The indicator function of 𝐹𝐹 is then formulated by 𝐼𝐼𝐹𝐹(𝒙𝒙,𝒚𝒚) = 1 if {𝒙𝒙,𝒚𝒚} ∈ 𝐹𝐹, 
and else 𝐼𝐼𝐹𝐹(𝒙𝒙,𝒚𝒚) = 0. The failure probability function can be then expressed as:  

𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚) = � 𝐼𝐼𝐹𝐹(𝒙𝒙,𝒚𝒚)𝑓𝑓𝐱𝐱(𝒙𝒙|𝝑𝝑)𝑑𝑑𝒙𝒙
ℝ𝑛𝑛

 (3) 

The HDMR decomposition of the failure probability function expresses 𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚) as the sum of a series 
of component functions: 

𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚) ≈ 𝑃𝑃𝑓𝑓0 + �𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖)
4𝑛𝑛

𝑖𝑖=1

+ �𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

+ � � 𝑃𝑃𝑓𝑓𝝑𝝑𝑖𝑖𝑖𝑖�𝝑𝝑𝑖𝑖𝑖𝑖�
4𝑛𝑛

𝑖𝑖=𝑖𝑖+1

4𝑛𝑛−1

𝑖𝑖=1

+ � � 𝑃𝑃𝑓𝑓𝒚𝒚𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖�
𝑚𝑚

𝑖𝑖=𝑖𝑖+1

𝑚𝑚−1

𝑖𝑖=1

+ ��𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖𝑦𝑦𝑖𝑖�𝜗𝜗𝑖𝑖 , 𝑦𝑦𝑖𝑖�
𝑚𝑚

𝑖𝑖=1

4𝑛𝑛

𝑖𝑖=1

+ ⋯+ 𝑃𝑃𝑓𝑓𝝑𝝑𝒚𝒚(𝝑𝝑,𝒚𝒚) 

(4) 

where 𝑃𝑃𝑓𝑓0 denotes the constant component; 𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖 and 𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖 refer to the first-order component functions; 
𝑃𝑃𝑓𝑓𝝑𝝑𝑖𝑖𝑖𝑖 , 𝑃𝑃𝑓𝑓𝒚𝒚𝑖𝑖𝑖𝑖, and 𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖𝑦𝑦𝑖𝑖 mean the second-order component functions; 𝝑𝝑𝑖𝑖𝑖𝑖  is the two-dimensional vector 
consisting of 𝜗𝜗𝑖𝑖 and 𝜗𝜗𝑖𝑖, and 𝒚𝒚𝑖𝑖𝑖𝑖 possesses a similar structure for 𝒚𝒚. It has been demonstrated that the 
HDMR decomposition with second-order truncation commonly leads to a satisfactory approximation 
of the failure probability function [6,7]. Thus, we do not go for the higher-order component functions 
in the rest part of this paper. 

A hybrid NISS method is herein developed, where the staircase distribution-based p-boxes are 
propagated by the local NISS method [6] to significantly suppress the computational cost to estimate 
the component functions over the hyper-parameters, by performing the parameterizations of the joint 
PDFs at a single well-chosen point of 𝝑𝝑. On the other hand, the interval models are propagated using 
the global NISS method [7] for maintaining the global accuracy of the estimators of the corresponding 
component functions. In this context, the HDMR component functions can be defined as: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑃𝑃𝑓𝑓0 = �𝑃𝑃𝑓𝑓(𝝑𝝑∗,𝒚𝒚)𝑓𝑓𝐲𝐲(𝒚𝒚)𝑑𝑑𝒚𝒚                                                                                            

𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖) = �𝑃𝑃𝑓𝑓(𝜗𝜗𝑖𝑖 ,𝝑𝝑−𝑖𝑖∗ ,𝒚𝒚)𝑓𝑓𝐲𝐲(𝒚𝒚)𝑑𝑑𝒚𝒚  − 𝑃𝑃𝑓𝑓0                                                               

𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖) = �𝑃𝑃𝑓𝑓(𝝑𝝑∗,𝒚𝒚)𝑓𝑓𝐲𝐲−𝑖𝑖(𝒚𝒚−𝑖𝑖)𝑑𝑑𝒚𝒚−𝑖𝑖  − 𝑃𝑃𝑓𝑓0                                                            

𝑃𝑃𝑓𝑓𝝑𝝑𝑖𝑖𝑖𝑖�𝝑𝝑𝑖𝑖𝑖𝑖� = �𝑃𝑃𝑓𝑓�𝝑𝝑𝑖𝑖𝑖𝑖 ,𝝑𝝑−𝑖𝑖𝑖𝑖∗ ,𝒚𝒚�𝑓𝑓𝐲𝐲(𝒚𝒚)𝑑𝑑𝛝𝛝−𝑖𝑖𝑖𝑖𝑑𝑑𝒚𝒚 − 𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖) − 𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖�𝜗𝜗𝑖𝑖� − 𝑃𝑃𝑓𝑓0    

𝑃𝑃𝑓𝑓𝒚𝒚𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖� = �𝑃𝑃𝑓𝑓(𝝑𝝑∗,𝒚𝒚)𝑓𝑓𝐲𝐲−𝑖𝑖𝑖𝑖�𝒚𝒚−𝑖𝑖𝑖𝑖�𝑑𝑑𝒚𝒚−𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖) − 𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖�𝑦𝑦𝑖𝑖� − 𝑃𝑃𝑓𝑓0           

𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖𝑦𝑦𝑖𝑖�𝜗𝜗𝑖𝑖 , 𝑦𝑦𝑖𝑖� = �𝑃𝑃𝑓𝑓(𝜗𝜗𝑖𝑖 ,𝝑𝝑−𝑖𝑖∗ ,𝒚𝒚)𝑓𝑓𝐲𝐲−𝑖𝑖�𝒚𝒚−𝑖𝑖�𝑑𝑑𝒚𝒚−𝑖𝑖 − 𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖) − 𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖�𝑦𝑦𝑖𝑖� − 𝑃𝑃𝑓𝑓0

 (5) 
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where 𝝑𝝑∗ means the fixed point of 𝝑𝝑 chosen as the mid-point of 𝐷𝐷𝝑𝝑 in this study. Unbiased estimators 
of each component function in Eq. (5) are then derived using the joint sample set 𝑊𝑊 = �𝒙𝒙(𝑘𝑘),𝒚𝒚(𝑘𝑘)�, for 
𝑘𝑘 = 1,2,⋯ ,𝑁𝑁, as: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑃𝑃�𝑓𝑓0 =

1
𝑁𝑁
� 𝐼𝐼𝐹𝐹�𝒙𝒙(𝑘𝑘),𝒚𝒚(𝑘𝑘)�

𝑁𝑁

𝑘𝑘=1
                                                    

𝑃𝑃�𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖) = 𝑃𝑃�𝑓𝑓0𝑟𝑟𝜗𝜗𝑖𝑖�𝒙𝒙
(𝑘𝑘)�𝜗𝜗𝑖𝑖 ,𝝑𝝑−𝑖𝑖∗ �                                                

𝑃𝑃�𝑓𝑓𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖) = 𝑃𝑃�𝑓𝑓0𝑟𝑟𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹,𝑊𝑊)                                                       
𝑃𝑃�𝑓𝑓𝝑𝝑𝑖𝑖𝑖𝑖�𝝑𝝑𝑖𝑖𝑖𝑖� = 𝑃𝑃�𝑓𝑓0𝑟𝑟𝝑𝝑𝑖𝑖𝑖𝑖�𝒙𝒙

(𝑘𝑘)�𝝑𝝑𝑖𝑖𝑖𝑖 ,𝝑𝝑−𝑖𝑖𝑖𝑖∗ �                                       

𝑃𝑃�𝑓𝑓𝒚𝒚𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖� = 𝑃𝑃�𝑓𝑓0𝑟𝑟𝒚𝒚𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖�𝐹𝐹,𝑊𝑊�                                                 

𝑃𝑃�𝑓𝑓𝜗𝜗𝑖𝑖𝑦𝑦𝑖𝑖�𝜗𝜗𝑖𝑖 , 𝑦𝑦𝑖𝑖� = �𝑃𝑃�𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖) + 𝑃𝑃�𝑓𝑓0�𝑟𝑟𝑦𝑦𝑖𝑖�𝑦𝑦𝑖𝑖�𝐹𝐹,𝑊𝑊� − 𝑃𝑃�𝑓𝑓𝒚𝒚𝑖𝑖�𝑦𝑦𝑖𝑖�

 (6) 

where  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑟𝑟𝜗𝜗𝑖𝑖 �𝒙𝒙

�𝑘𝑘��𝜗𝜗𝑖𝑖,𝝑𝝑−𝑖𝑖
∗

� =
𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝜗𝜗𝑖𝑖,𝝑𝝑−𝑖𝑖

∗
�

𝑓𝑓𝐱𝐱 �𝒙𝒙
�𝑘𝑘��𝝑𝝑∗�

−1                                                                     

𝑟𝑟𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖�𝐹𝐹,𝑊𝑊′
� =

𝑓𝑓� y𝑖𝑖
�𝑦𝑦𝑖𝑖�𝐹𝐹,𝑊𝑊�

𝑓𝑓y𝑖𝑖
�𝑦𝑦𝑖𝑖�

−1                                                                              

𝑟𝑟𝝑𝝑𝑖𝑖𝑖𝑖 �𝒙𝒙
�𝑘𝑘��𝝑𝝑𝑖𝑖𝑖𝑖,𝝑𝝑−𝑖𝑖𝑖𝑖

∗
� =

𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝝑𝝑𝑖𝑖𝑖𝑖,𝝑𝝑−𝑖𝑖𝑖𝑖
∗

�

𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝝑𝝑∗�
−
𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝜗𝜗𝑖𝑖,𝝑𝝑−𝑖𝑖

∗
�

𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝝑𝝑∗�
−
𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝜗𝜗𝑖𝑖,𝝑𝝑−𝑖𝑖

∗
�

𝑓𝑓𝐱𝐱 �𝒙𝒙�𝑘𝑘��𝝑𝝑∗�
+ 1 

𝑟𝑟𝒚𝒚𝑖𝑖𝑖𝑖 �𝒚𝒚𝑖𝑖𝑖𝑖�𝐹𝐹,𝑊𝑊′
� =

𝑓𝑓�𝐲𝐲𝑖𝑖𝑖𝑖 �𝒚𝒚𝑖𝑖𝑖𝑖�𝐹𝐹,𝑊𝑊�

𝑓𝑓𝐲𝐲𝑖𝑖𝑖𝑖 �𝒚𝒚𝑖𝑖𝑖𝑖�
−
𝑓𝑓� y𝑖𝑖

�𝑦𝑦𝑖𝑖�𝐹𝐹,𝑊𝑊�

𝑓𝑓y𝑖𝑖
�𝑦𝑦𝑖𝑖�

−
𝑓𝑓� y𝑖𝑖

�𝑦𝑦𝑖𝑖�𝐹𝐹,𝑊𝑊�

𝑓𝑓y𝑖𝑖
�𝑦𝑦𝑖𝑖�

+ 1                     

 (7) 

are regarded as weight coefficients, where 𝑓𝑓y𝑖𝑖(𝑦𝑦𝑖𝑖|𝐹𝐹,𝑊𝑊) and 𝑓𝑓𝐲𝐲𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖�𝐹𝐹,𝑊𝑊� denote the conditional PDFs 
of 𝑦𝑦𝑖𝑖  and 𝒚𝒚𝑖𝑖𝑖𝑖, respectively, on the failure domain 𝐹𝐹 estimated using the sample set 𝑊𝑊. The readers can 
refer to Ref. [7] for the detailed derivations of these conditional PDFs. It is noted that, to generate the 
joint sample set 𝑊𝑊, an auxiliary PDF of 𝒚𝒚, 𝑓𝑓𝐲𝐲(𝒚𝒚) = ∏ 𝑓𝑓y𝑖𝑖(𝑦𝑦𝑖𝑖)

𝑚𝑚
𝑖𝑖=1 , is necessary. Without loss of generality, 

we assume that each 𝑦𝑦𝑖𝑖 follows a uniform distribution on its relaxed interval domain �𝑦𝑦𝑖𝑖 − 𝛿𝛿∆𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖 +

𝛿𝛿∆𝑦𝑦𝑖𝑖�, where ∆𝑦𝑦𝑖𝑖  indicates the difference of the original interval and 𝛿𝛿 is a given value (e.g., 𝛿𝛿 = 0.2), 
to improve the estimation performance around the original bounds [7]. Finally, sensitivity indices are 
proposed as follows for measuring the relative importance of the component functions: 

𝑆𝑆(∙) =
V�𝑃𝑃𝑓𝑓(∙)(∙)�

V�𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚)�
 (8) 

with 

V�𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚)� = �V�𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖(𝜗𝜗𝑖𝑖)�
4𝑛𝑛

𝑖𝑖=1

+ �V�𝑃𝑃𝑓𝑓𝑦𝑦𝑖𝑖(𝑦𝑦𝑖𝑖)�
𝑚𝑚

𝑖𝑖=1

+ � � V �𝑃𝑃𝑓𝑓𝝑𝝑𝑖𝑖𝑖𝑖�𝝑𝝑𝑖𝑖𝑖𝑖��
2𝑛𝑛

𝑖𝑖=𝑖𝑖+1

4𝑛𝑛−1

𝑖𝑖=1

+ � � V �𝑃𝑃𝑓𝑓𝒚𝒚𝑖𝑖𝑖𝑖�𝒚𝒚𝑖𝑖𝑖𝑖��
𝑚𝑚

𝑖𝑖=𝑖𝑖+1

𝑚𝑚−1

𝑖𝑖=1

+ ��V �𝑃𝑃𝑓𝑓𝜗𝜗𝑖𝑖𝑦𝑦𝑖𝑖�𝜗𝜗𝑖𝑖 , 𝑦𝑦𝑖𝑖��
𝑚𝑚

𝑖𝑖=1

4𝑛𝑛

𝑖𝑖=1

+ ⋯+ V�𝑃𝑃𝑓𝑓𝝑𝝑𝒚𝒚(𝝑𝝑,𝒚𝒚)� 

 

where V denotes the variance operator. The sensitivity indices measure the average L2 distance of the 
components to the fixed point 𝝑𝝑∗. The smaller the distance is, the less influential the component is. 

The detailed procedure of the hybrid NISS method is shown in Fig.2. The statistical error of the 
NISS estimators is assessed by the bootstrap scheme. Let 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 indicate the number of total bootstrap 
replications, we can obtain 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 estimates of each component function and sensitivity index, and can 
calculate the confidence intervals �𝑃𝑃�𝑓𝑓(∙),  𝑃𝑃�𝑓𝑓(∙)�, e.g., �E�𝑃𝑃�𝑓𝑓(∙)� − 2�V�𝑃𝑃�𝑓𝑓(∙)��

1 2⁄ , E�𝑃𝑃�𝑓𝑓(∙)� + 2�V�𝑃𝑃�𝑓𝑓(∙)��
1 2⁄ �, 

where E is the mean operator, since the NISS estimators follow Gaussian distributions. We propose 
to estimate two coefficients of variations (CV), i.e., CVs at the points where 𝑃𝑃�𝑓𝑓(∙) returns the minimum 
and maximum values, CVmin�𝑃𝑃�𝑓𝑓(∙)�

 and CVmax�𝑃𝑃�𝑓𝑓(∙)�
. If their larger value is less than a given tolerance 𝜀𝜀, 

the statistical error is acceptable, and if not, one should enrich the size of the joint sample set 𝑁𝑁. The 
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truncation error on the other hand is quantified by the sensitivity indices. The components sensitivity 
indices of which are less than a threshold 𝑆𝑆thr are ignored, and the resultant truncation error can be 
accepted if the summation of the sensitivity indices for all the components used is larger than a given 
threshold 𝜖𝜖. Otherwise, one should decrease 𝑆𝑆thr. Finally, the failure probability function 𝑃𝑃𝑓𝑓(𝝑𝝑,𝒚𝒚) is 
approximated as synthetic of all the influential component functions. One can also estimate the failure 
probability bounds by sampling methods, where not only the mean estimators but also the variance 
estimators can be evaluated within the bootstrap scheme.  

 
Fig. 2. Flowchart of the hybrid NISS method.  

4. NASA UQ challenge problem 2019  

The NASA UQ challenge problem 2019 [10] is investigated to demonstrate the capabilities of the 
proposed method. Fig. 3 shows the overall structure of Sub-problem C (Reliability analysis of baseline 
design). The model inputs consist of the five aleatory parameters 𝒂𝒂 = (𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎5)𝑇𝑇, four epistemic 
parameters 𝒆𝒆 = (𝑒𝑒1, 𝑒𝑒2,⋯ , 𝑒𝑒4)𝑇𝑇, and pre-specified design variable 𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎 with nine components. The 
aleatory parameters are modeled by p-boxes while the epistemic parameters are modeled by intervals, 
based on the results of the first two subproblems, i.e., Sub-problem A (Model calibration & UQ of the 
subsystem) and Sub-problem B (Uncertainty reduction). It is important to note that, the distribution 
families of each aleatory parameter are completely unknown a priori. The reliability requirements of 
interest are represented by three limit state functions, i.e., a black-box function 𝑔𝑔1(𝒂𝒂, 𝒆𝒆,𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎) < 0,  
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𝑔𝑔2 = max
𝑏𝑏∈[𝑇𝑇 2⁄ , 𝑇𝑇]

|𝑧𝑧1(𝒂𝒂, 𝒆𝒆,𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎 , 𝑡𝑡)| − 0.02 < 0 (9) 

with a black-box time-independent output 𝑧𝑧1, and 

𝑔𝑔3 = max
𝑏𝑏∈[0, 𝑇𝑇]

|𝑧𝑧2(𝒂𝒂, 𝒆𝒆,𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎 , 𝑡𝑡)| − 4 < 0 (10) 

with a black-box time-independent output 𝑧𝑧2. The worst-case limit state function is then defined as:  

𝜔𝜔(𝒂𝒂, 𝒆𝒆,𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎) = max
𝑖𝑖=1,2,3

𝑔𝑔𝑖𝑖(𝒂𝒂, 𝒆𝒆,𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎) (11) 

The safe domain of the system is determined by the 𝒂𝒂 points where 𝜔𝜔(𝒂𝒂, 𝒆𝒆, 𝜃𝜃𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑎𝑎) < 0, whereas its 
complement set is accounted for as the failure domain.  

 
Fig. 3. Schematic of the NASA UQ challenge 2019 Sub-problem C.  

Some of the authors have addressed the first two subproblems and have represented the aleatory 
parameters by the staircase distribution-based p-boxes [12]. We herein use the results in Ref. [12] for 
uncertainty characterization of 𝒂𝒂 and 𝒆𝒆, as summarized in Table 1. Under this assumption, 20 hyper-
parameters of the staircase distributions are additionally employed as epistemic parameters, and thus 
totally 24 epistemic parameters (i.e., 𝜗𝜗𝑖𝑖 = {𝜇𝜇𝑖𝑖,𝑚𝑚2𝑖𝑖 ,𝑚𝑚�3𝑖𝑖,𝑚𝑚�4𝑖𝑖}, for 𝑖𝑖 = 1,⋯ ,5, and 𝒆𝒆) are investigated in 
the reliability analysis. Each auxiliary PDF 𝑓𝑓𝑎𝑎𝑖𝑖(𝑒𝑒𝑖𝑖) is assumed as a uniform distribution on its relaxed 
intervals as shown in parentheses after the true intervals in Table 1. The parameters of the proposed 
method are set as 𝑁𝑁 = 5 × 105 and 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 20, 𝜀𝜀 = 0.15 and, 𝜖𝜖 = 0.9, respectively.  

Table 1. Model parameters of the NASA UQ challenge problem. 

Parameter Uncertainty characteristic 

𝑎𝑎1 Staircase distribution, 𝜇𝜇1 ∈ [0.5050, 0.5980], 𝑚𝑚21 ∈ [0.0200, 0.0750], 𝑚𝑚�31 ∈ [0.9800, 1.4550], 
𝑚𝑚�41 ∈ [4.0790, 6.3690] 

𝑎𝑎2 Staircase distribution, 𝜇𝜇1 ∈ [1.1110, 1.2290], 𝑚𝑚21 ∈ [0.0660, 0.0670], 𝑚𝑚�31 ∈ [−0.6640,−0.2440], 
𝑚𝑚�41 ∈ [3.7760, 4.9680] 

𝑎𝑎3 Staircase distribution, 𝜇𝜇1 ∈ [0.8040, 0.8720], 𝑚𝑚21 ∈ [0.0300, 0.0440], 𝑚𝑚�31 ∈ [−0.9620,−0.6080], 
𝑚𝑚�41 ∈ [3.7140, 3.7150] 

𝑎𝑎4 Staircase distribution, 𝜇𝜇1 ∈ [0.7870, 1.2050], 𝑚𝑚21 ∈ [0.3520, 0.3530], 𝑚𝑚�31 ∈ [−0.7430, 0.2340], 
𝑚𝑚�41 ∈ [1.4030, 2.5000] 

𝑎𝑎5 Staircase distribution, 𝜇𝜇1 ∈ [0.8510, 1.2240], 𝑚𝑚21 ∈ [0.2390, 0.3690], 𝑚𝑚�31 ∈ [−0.5430, 0.4370], 
𝑚𝑚�41 ∈ [1.3040, 3.0480] 

𝑒𝑒1 Interval, 𝑒𝑒1 ∈ [0.4674, 0.6433] (Relaxed interval [0.2674, 0.8433]) 
𝑒𝑒2 Interval, 𝑒𝑒2 ∈ [0.7607, 0.9736] (Relaxed interval [0.5607, 1.1736]) 
𝑒𝑒3 Interval, 𝑒𝑒3 ∈ [0.2865, 0.4583] (Relaxed interval [0.0865, 0.6583])  
𝑒𝑒4 Interval, 𝑒𝑒4 ∈ [0.9627, 1.1664] (Relaxed interval [0.7627, 1.3664])  
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The mean value and standard deviation of the constant component estimator 𝑃𝑃�𝑓𝑓0 are computed 
as 0.1646 and 4.4 × 10−4, respectively. The mean estimators of the first-order component functions as 
well as their 95.45 % confidence intervals are shown in Fig.4 for the hyper-parameters of the aleatory 
parameters 𝒂𝒂 and in Fig.5 for the interval parameters 𝒆𝒆. It can be seen that the confidence interval of 
each component function is narrow enough, indicating all the 24 component functions are accurately 
estimated using the proposed method. Similarly, among the second-order component functions, the 
mean estimators of the three most influential component functions are shown in Fig.6, together with 
their 95.45 % confidence intervals. As can be seen, these three second-order component functions are 
also effectively estimated with narrow confidence intervals.  

 
Fig. 4. First-order component functions of the hyper-parameters of 𝒂𝒂.  

We compute the sensitivity indices for all the first- and second-order component functions. The 
mean estimates as well as standard deviations are summarized in Table 2, for all the first-order and 
three most influential second-order component functions. It can be seen that all the sensitivity indices 
are accurately derived with small standard deviations. We assume that the component functions with 
the sensitivity indices larger than 0.01 are influential. Among the 24 first-order component functions, 
the eight components 𝑃𝑃�𝑓𝑓𝜇𝜇1, 𝑃𝑃�𝑓𝑓𝑚𝑚21 , 𝑃𝑃�𝑓𝑓𝑚𝑚�44, 𝑃𝑃�𝑓𝑓𝑚𝑚�45, 𝑃𝑃�𝑓𝑓𝑎𝑎1 , 𝑃𝑃�𝑓𝑓𝑎𝑎2 , 𝑃𝑃�𝑓𝑓𝑎𝑎3 , and 𝑃𝑃�𝑓𝑓𝑎𝑎4 , and the three most influential 
second-order component functions 𝑃𝑃�𝑓𝑓𝑎𝑎1𝑎𝑎2 , 𝑃𝑃�𝑓𝑓𝑎𝑎1𝑎𝑎3 , and 𝑃𝑃�𝑓𝑓𝑎𝑎2𝑎𝑎3  are thus employed. The summation of the 
sensitivity indices of all these 11 components is larger than the threshold 𝜖𝜖, implying the truncation 
error due to the truncation of the remaining components is acceptable. Finally, the failure probability 
function is approximated using the 11 influential components, and the failure probability bounds are 
estimated. The mean estimates and standard deviations are listed in Table 3. The results are compared 
with the reference bounds in Ref. [12] by the double-loop MCS [13] using the same parameter settings. 
It can be seen that both the upper and lower bounds show good agreement with the reference bounds. 
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Moreover, the total number of model evaluations of the hybrid NISS method is 𝑁𝑁 = 5 × 105, whereas 
that of the double-loop MCS is 5 × 106 [12]. Thus, the hybrid NISS method is ten times more efficient 
than the double-loop MCS. These outcomes demonstrate the feasibility of the hybrid NISS method in 
the propagation of mixed aleatory and epistemic uncertainties for the case where distribution families 
of the aleatory parameters are unknown. 

 
Fig. 5. First-order component functions of the epistemic parameters 𝒆𝒆.  

 
Fig. 6. The three most influential second-order component functions, where the in-between surfaces indicate 

the mean estimators and the other two surfaces indicate the 95.45 % confidence intervals. 
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Table 2. Sensitivity indices of the NASA UQ challenge problem. 

 Mean estimate Standard deviation  Mean estimate Standard deviation 
𝑆𝑆𝜇𝜇1 0.0107  2.3 × 10−4 𝑆𝑆𝑚𝑚�34 0.0018  3.0 × 10−4 
𝑆𝑆𝑚𝑚21 0.0121  3.2 × 10−4 𝑆𝑆𝑚𝑚�44 0.0331  1.2 × 10−3 
𝑆𝑆𝑚𝑚�31 0.0006  4.9 × 10−5 𝑆𝑆𝜇𝜇5 0.0062  1.9 × 10−4 
𝑆𝑆𝑚𝑚�41 0.0027 1.6 × 10−4 𝑆𝑆𝑚𝑚25 0.0087 2.3 × 10−4 
𝑆𝑆𝜇𝜇2 0.0017 7.3 × 10−5 𝑆𝑆𝑚𝑚�35 0.0000 1.8 × 10−6 
𝑆𝑆𝑚𝑚22 0.0000  9.3 × 10−9 𝑆𝑆𝑚𝑚�45 0.0273  1.0 × 10−3 
𝑆𝑆𝑚𝑚�32 0.0000  2.2 × 10−6 𝑆𝑆𝑎𝑎1 0.2202  3.8 × 10−3 
𝑆𝑆𝑚𝑚�42 0.0001 6.1 × 10−6 𝑆𝑆𝑎𝑎2 0.4112 4.8 × 10−3 
𝑆𝑆𝜇𝜇3 0.0047 5.0 × 10−4 𝑆𝑆𝑎𝑎3 0.1044 2.0 × 10−3 
𝑆𝑆𝑚𝑚23 0.0019  2.0 × 10−4 𝑆𝑆𝑎𝑎4 0.0213  5.7 × 10−4 
𝑆𝑆𝑚𝑚�33 0.0010 1.9 × 10−4 𝑆𝑆𝑒𝑒1𝑒𝑒2 0.0415 5.9 × 10−4 
𝑆𝑆𝑚𝑚�43 0.0000 2.1 × 10−10 𝑆𝑆𝑎𝑎1𝑎𝑎3  0.0105 2.9 × 10−4 
𝑆𝑆𝜇𝜇4 0.0093  2.9 × 10−4 𝑆𝑆𝑎𝑎2𝑎𝑎3  0.0197  5.4 × 10−4 
𝑆𝑆𝑚𝑚24 0.0000  6.7 × 10−9    

Table 3. Failure probability bounds of the NASA UQ challenge problem. 
Parameter Double-loop MC  

in Ref. [12] 
Hybrid NISS method 

Mean estimate Standard deviation 
Lower bound of 𝑃𝑃𝑓𝑓 0.0270 0.0299 0.0024 
Upper bound of 𝑃𝑃𝑓𝑓 0.2746 0.2564 0.0030 

5. Conclusions and discussions 

This paper presents two contributions to effectively propagate the imprecise probability models 
without limiting hypotheses on the distribution family. First, the staircase distribution-based p-boxes 
are defined as a novel class of the parametric p-box. They can explicitly consider the imprecision not 
only in their hyper-parameters but also in the distribution families. Thus, they are especially suitable 
to characterize the true-but-unknown CDFs of the random variables whose distribution families are 
not known. Second, the novel hybrid NISS method is developed, in which the staircase distribution-
based p-boxes are propagated by the locally expanded HDMR decomposition whereas the interval 
models are propagated by the globally expanded HDMR decomposition. This method can achieve a 
good balance between the efficiency in computing the NISS estimators for the hyper-parameters of 
the p-boxes and the global accuracy of those for the interval parameters. The NASA UQ challenge 
2019 has demonstrated the effectiveness of the proposed method. 
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