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The therapeutic challenges pertaining to leishmaniasis due to reported chemoresistance
and toxicity necessitate the need to explore novel pathways to identify plausible inhibitory
molecules. Leishmania donovani 24-sterol methyltransferase (LdSMT) is vital for the
synthesis of ergosterols, the main constituents of Leishmania cellular membranes. So
far, mammals have not been shown to possess SMT or ergosterols, making the pathway
a prime candidate for drug discovery. The structural model of LdSMT was elucidated
using homology modeling to identify potential novel 24-SMT inhibitors via virtual
screening, scaffold hopping, and de-novo fragment-based design. Altogether, six
potential novel inhibitors were identified with binding energies ranging from −7.0 to
−8.4 kcal/mol with e-LEA3D using 22,26-azasterol and S1–S4 obtained from scaffold
hopping via the ChEMBL, DrugBank, PubChem, ChemSpider, and ZINC15 databases.
These ligands showed comparable binding energy to 22,26-azasterol (−7.6 kcal/mol), the
main inhibitor of LdSMT. Moreover, all the compounds had plausible ligand efficiency-
dependent lipophilicity (LELP) scores above 3. The binding mechanism identified Tyr92 to
be critical for binding, and this was corroborated via molecular dynamics simulations and
molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The
ligand A1 was predicted to possess antileishmanial properties with a probability of activity
(Pa) of 0.362 and a probability of inactivity (Pi) of 0.066, while A5 and A6 possessed
dermatological properties with Pa values of 0.205 and 0.249 and Pi values of 0.162 and
0.120, respectively. Structural similarity search via DrugBank identified vabicaserin,
daledalin, zanapezil, imipramine, and cefradine with antileishmanial properties
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suggesting that the de-novo compounds could be explored as potential
antileishmanial agents.
Keywords: leishmaniasis, 24-sterol methyltransferase, Leishmania donovani, de-novo drug design, molecular
docking, molecular dynamics simulation
1 INTRODUCTION

Visceral leishmaniasis, the most debilitating form of leishmaniasis,
is caused by Leishmania donovani and Leishmania infantum
(Ikeogu et al., 2020). It is one of the oldest neglected tropical
diseases that remain a major challenge to the global community.
It is estimated to affect over 10millionpeople and causeup to 30,000
deaths annually (Hernández-Bojorge et al., 2020). The present
chemotherapeutic options comprising pentavalent antimony,
pentamidine (PTM), amphotericin B (Amp B), miltefosine (Milt),
paromomycin, and liposomal Amp B suffer from numerous
inefficiencies such as long treatment durations, cytotoxicity,
resistance, and high cost, necessitating the urgent need for
alternative therapeutic agents (Ghorbani and Farhoudi, 2018;
Sakyi et al., 2021a).

Target identification and validation are pivotal for rational drug
designs (Lionta et al., 2014). Contemporary strategies comprising
experimental (metabolomic and transcriptomic approaches) and
computational (structure- and ligand-based) approaches have led
to the identificationof numerous biological targets necessary for the
survival of Leishmania parasites (Mandal et al., 2009;
Mavromoustakos et al., 2011; Rinschen et al., 2019; Kwofie et al.,
2020). However, the incomplete knowledge on Leishmania biology
and the limited studies on the exact functions of sterols in
intracellular organelles have hampered the exploitation of
effective sterol inhibitors against leishmaniasis. While cholesterol
is biosynthesized in humans, Leishmania and other protozoa
synthesize ergosterol. Due to this difference, a number of drugs
including bisphosphonates, statins, azoles, and quinuclidine have
been used for leishmaniasis treatment via the inhibition of the
ergosterol biosynthetic pathway (Sakyi et al., 2021b). Sterol
methyltransferase (SMT) is an enzyme involved in ergosterol
biosynthesis which is understudied partly due to the paucity of
structural genomics data. This notwithstanding, investigations are
ongoing to explore SMT in designing drugs against leishmaniasis
due to its absence in the human host coupled with the fact that it is
highly conserved among all Leishmania parasites (Magaraci et al.,
2003; Kidane et al., 2017).

SMT belongs to the family of transferases and functions by
catalyzing methyl transfer from S-adenosyl methionine onto the
C24 position of the lanosterol or the cycloartenol side chain during
ergosterol biosynthesis. For example, genetic ablation studies of 24-
SMT orthologs involved in the sterol biosynthetic pathway have
demonstrated that ergosterol, one of the widely recognized classes
of lipids in the cellular membrane of protozoans, plays a significant
role inplasmamembrane stabilizationandmitochondrion function
(Mukherjee et al., 2019). Studies have demonstrated the crucial
functionsof SMTtoLeishmania survival, andhence, it is considered
as a plausible target for drug design (Urbina et al., 1995; Mukherjee
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et al., 2019; Sakyi et al., 2021a). For instance, vaccine evaluation
studies against Leishmania 24-SMT identified 24-SMT as an
essential drug target (Goto et al., 2009). Leishmania 24-SMT
dysfunction results in the increased generation of reactive oxygen
species and vesicular trafficking (Mukherjee et al., 2019). In
addition, 24-alkyl sterols have been shown to be essential growth
factors of Trypanosoma cruzi to the extent that its perturbation
during ergosterol biosynthesis leads to cell cycle defects and DNA
fragmentation (Urbina et al., 1995; Pérez-Moreno et al., 2012).
Furthermore, RNA-seq analysis has revealed genomic instability at
the locus of SMT, resulting in the promotion of amphotericin B
resistance in Leishmania parasites (Pountain et al., 2019). Similarly,
gigantol and imipramine suppressed the growth and proliferation
of promastigotes and amastigotes via inhibition of SMT (Andrade-
Neto et al., 2016; Rahman et al., 2021). Similarly, the
antiproliferative effects of sterol biosynthesis inhibition on
Pneumocystis carinii have hinted sterol methyltransferase
suppressors as potential chemotherapeutic options for the
treatment of P. carinii infections (Urbina et al., 1997). However,
the recent resistance associated with 22,26-azasterol targeting SMT
warrants the identification of novel inhibitors.

In-silico techniques in drug design are advantageous due to
the reduced cost, time, and energy compared with traditional
high-throughput screening (HTS) (Mak and Pichika, 2019). One
of the strategies employed in the identification of lead
compounds with improved efficacy in rational drug design
includes scaffold hopping (Hu et al., 2017). It starts with a
known active compound and ends up with new chemotypes
with different core structures but with equal or improved efficacy
(Hu et al., 2017). A typical example is the discovery of
cyproheptadine from pheniramine, an antihistamine used to
treat allergic conditions, such as hay fever or urticaria
(Sun et al., 2012). Pheniramine has two aromatic rings joined
to one carbon or nitrogen atom and a positive charge center.
Cyproheptadine, an analog of pheniramine, has significantly
improved binding affinity against the H1 receptor. This
rigidified molecule with better absorption was achieved by
locking both aromatic rings of pheniramine to the active
conformation through ring closure and by introducing the
piperidine ring to further reduce the flexibility of the molecule
(Sun et al., 2012). In addition, these structural changes gave other
medical benefits including cyproheptadine as a prophylaxis for
migraine, pizotifen for the treatment of migraine, and azatadine
as a typical potent sedating antihistamine (Sun et al., 2012).
Tramadol was obtained through scaffold hopping of morphine
(Sun et al., 2012). The recent interest in de-novo drug design
compared with repurposing presents a new paradigm shift, not
only in terms of time and cost but also innovation (Talevi and
Bellera, 2019). The identification of leads from hits and then
June 2022 | Volume 12 | Article 859981
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optimization to druggable candidates in the drug design pipeline
result not only in an increase in potency and selectivity but also
improved drug-like properties (Gil and Martinez, 2021). In
addition, de-novo drug design has increased the areas explored
in the chemical space of molecules leading to improvements in
chemotherapeutic efficacy (Lin et al., 2020). This strategy has
also been used in the design of drugs including vemurafenib,
venetoclax, and dihydroorotate dehydrogenase inhibitors against
malaria and aryl sulfonamide, a new aurora A kinase inhibitor
(Jacquemard and Kellenberger, 2019). Despite the success
achieved using the de-novo design, its use in the search for
potential hits against L. donovani 24-sterol methyltransferase
(LdSMT) is limited.

The study sought to utilize in-silico approaches to predict
putative inhibitors targeting LdSMT. To accomplish this, the
three-dimensional (3D) structure of LdSMT was first elucidated
via modeling followed by subjection of 22,26-azasterol to de-
novo drug design. Next, molecular docking and molecular
dynamics simulation studies of the complexes were undertaken
to identify potential novel LdSMT inhibitors. Furthermore, the
biological activity and pharmacological profiles of the
compounds were predicted to reinforce their lead-likeness.
2 METHODS

A workflow schema detailing the stepwise techniques employed
in this study is shown in Figure 1. The compound 22,26-azaserol
was submitted to balanced rapid and unrestricted server for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
extensive ligand-aimed screening (BRUSELAS) (Banegas-Luna
et al., 2019) to generate non-steroidal inhibitors. Meanwhile, a
reasonably good structure of LdSMT was modeled and validated.
The non-steroidal inhibitors were virtually screened against the
LdSMT to identify compounds with high binding affinity to the
receptor. The complexes of these compounds then served as
input to the e-LEA3D (Douguet, 2010) for the generation of the
novel compounds. Molecular dynamics (MD) simulation and
molecular mechanics Poisson–Boltzmann surface area (MM-
PBSA) were computed on the LdSMT–ligand complexes to
determine the molecular interactions as well as the stability
during the simulation. Absorption, distribution, metabolism,
excretion, and toxicity (ADMET) predictions were performed
to evaluate the pharmacological profiles of the selected compounds.
The inhibitory constant, ligand efficiency, ligand efficiency scale, fit
quality, binding efficiency index, surface efficiency index, and
ligand efficiency-dependent lipophilicity were also calculated to
assess the quality parameters of the ligands in binding to the target
protein. In addition, the biological activity of the selected hits was
predicted using the open Bayesian machine learning technique
(Lagunin et al., 2000).

2.1 Sequence Retrieval
The protein sequence of LdSMT (SCMT1/GenBank ID:
AAR92099.1) was retrieved from the National Center for
Biotechnology Information (NCBI) database (Boratyn
et al., 2013). To identify similar proteins as templates for
building the 3D structure of LdSMT, the fast-all (FASTA)
format of the sequence was aligned with the homologous
sequences of crystal protein structures in the Protein Data
Bank (PDB) (Berman et al., 2000) using the Basic Local
Alignment and Sequencing Tool (BLAST) (Burley et al., 2017).

2.2 LdSMT Model Generation
Due to the unavailability of an experimentally elucidated 3D
structure for LdSMT, molecular modeling techniques were used
to predict a reasonably accurate protein structure (Crentsil
et al., 2020). Modeller version 10.2 (Eswar et al., 2008) was
employed in building the 3D structure using three different
templates: i) the 3BUS template was used to generate five
models of the LdSMT (Eswar et al., 2008), ii) the protein
structure with PDB ID 4PNE was also used to model five
different structures of the LdSMT (Eswar et al., 2008), and iii)
multitemplate homology modeling was employed to generate
five structures of the LdSMT (Eswar et al., 2008). A total of three
templates comprising 4PNE, 3BUS, and 6UAK were used in the
multitemplate homology modeling approach. Modeller 10.2 was
employed in generating all the potential structures of the LdSMT
(Fiser and Šali, 2003; Eswar et al., 2008). The reasonably best
model in each approach was selected based on the discrete
optimized protein energy (DOPE) scores (Eswar et al., 2008).

2.3 Structural Validation
The structural quality and accuracy of the best models from each
approach were assessed using PROCHECK (Laskowski
et al., 2012) with results reported as Ramachandran plots
(Anderson et al., 2005). Further validation with VERIFY 3D
FIGURE 1 | Methodology schema employed in the study for predicting
antileishmanial agents.
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(Sasin and Bujnicki, 2004), ERRAT (Colovos and Yeates, 1993;
Messaoudi et al., 2013), and PROVE (Sasin and Bujnicki, 2004)
was also performed. The reasonably best model was selected
based on all the quality assessments for the molecular docking
studies. Protein Structure Analysis (ProSA) (Wiederstein and
Sippl, 2007) was then used to investigate the problematic regions
of the selected model.

2.4 Determining Binding Sites
The plausible binding sites of the selected protein were
determined using the Computed Atlas of Surface Topology of
proteins (CASTp) (Dundas et al., 2006; Tian et al., 2018). The
predicted sites were visualized using PyMOL (PyMOLMolecular
Graphics System, Version 1.5.0.4, Schrödinger, LLC, New York,
USA) (Lighthall et al., 2010) and Chimera 1.16 (Pettersen et al.,
2004). The predicted binding sites with relatively small areas and
volumes, where no ligand could fit, were ignored (Agyapong
et al., 2021).

2.5 Scaffold Hopping
Shape similarity searching and pharmacophore screening were
undertaken using the spatial data file (sdf) format of 22,26-
azasterol via BRUSELAS (Banegas-Luna et al., 2019). A total of
100 ligands were generated with varying degrees of similarities to
the input ligand, 22,26-azasterol. All ligands devoid of the
steroidal core with varying degrees of similarities were selected
for binding affinity prediction using AutoDock Vina v1.2.0
(Trott and Olson, 2010).

2.6 Molecular Docking Studies
AutoDock Vina (Trott and Olson, 2010) was used for molecular
docking. The molecular docking process was performed in two
different stages. The first docking stage involved ligands obtained
from the scaffold hopping process (Pathania et al., 2021), while
the second involved compounds obtained from the de-novo
design studies (Agyapong et al., 2021). Altogether, 1,448
ligands were used for the docking studies.

For the first stage, the ligands were obtained from the scaffold
hopping and their structural derivatives fetched from the
DrugBank (Wishart et al., 2018), PubChem (Kim et al., 2021),
ZINC15 (Sterling and Irwin, 2015), and ChemSpider databases
(Pence and Williams, 2010). Compounds labeled X1, X2, X3, X4,
X5, X6, and X7 which showed good half-maximum inhibitory
concentration (IC50) values against Leishmania parasite’s sterol
methyltransferase together with amphotericin B, miltefosine,
paromomycin, and 22,26-azasterol were also used.

The ligands generated from the de-novo design were virtually
screened against the LdSMT in the second stage. For both stages,
the ligands and the protein were prepared using the AutoDock
Tools (Morris et al., 2009) and saved in the input format of
AutoDock Vina (Trott and Olson, 2010). The charge, hydrogen
bond network, and histidine protonation state of the protein
were assigned after pdbqt conversion. Grid box size was set to
(91.445 × 73.502 × 78.352) Å3 with the center at (72.200, 58.009,
13.302) Å. Ligands were then screened against the LdSMT
protein with exhaustiveness set to default 8.
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2.7 De-Novo Drug Design
The potential protein–ligand complex from the scaffold hopping
was submitted to e-LEA3D (Douguet, 2010) for further de-novo
design. The binding site radius was set to 15 Å and the final score
set to 1 with the same active site coordinates as used in the
molecular docking study. Conformational search was set to 10,
number of generations to 30, and population size to 30 with the
rest of the options left as default.

2.8 Characterization of the Mechanism of
Binding
The atomistic details of binding between the LdSMT and small
molecules upon ligand binding were determined using the
BIOVIA discovery studio visualizer v19.1.0.18287 (BIOVIA,
San Diego, CA, USA) (Šudomová et al., 2019).

2.9 Quality Evaluation of Shortlisted
Molecules
The inhibitory constant (Ki) of the ligands was calculated from
the binding energies of the selected compounds and the LdSMT
protein (Islam and Pillay, 2020). In addition, ligand efficiency
(LE) metrics including ligand efficiency scale (LE_Scale), fit
quality (FQ), ligand efficiency-dependent lipophilicity (LELP),
and surface binding efficiency were also determined (Hopkins
et al., 2014).

2.10 ADMET Properties and Drug-Likeness
Assessment
The ADMET properties were determined using SwissADME
(Daina et al., 2017) and the OSIRIS Property Explorer in Data
Warrior (Sander et al., 2015). Pan-assay interference compounds
(PAINS) (Daina et al., 2017) and synthetic accessibility (Daina
et al., 2017) search using SwissADME (Daina et al., 2017) were
performed to eliminate false positive compounds that possess
good physiochemical properties as well as those with
complex structures.

2.11 Prediction of Biological Activity of
Selected Compounds
The biological activity of the selected compounds was predicted
using prediction of activity spectra for substance (PASS)
(Lagunin et al., 2000) with the simplified molecular input line
entry system (SMILES) as inputs.

2.12 Molecular Dynamics Simulation
A 100-ns MD simulation was performed for the unbound
LdSMT and the protein–hit complexes using GROMACS 2018
(Van Der Spoel et al., 2005; Abraham et al., 2015). QtGrace
(Dahiya et al., 2019) was used to plot the graphs generated from
the MD simulation. The binding free energies of the complexes
were calculated using MM-PBSA (Kumari et al., 2014). The
energy contribution of each residue was also determined using
g_MMPBSA. The graphs from the MM-PBSA computations
were generated using the R programming language
(Tippmann, 2014; Alkarkhi and Alqaraghuli, 2020).
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2.13 Antileishmanial Exploration of
Potential Leads
Structural similarity search of all the hits was done via DrugBank
(Wishart et al., 2018) to identify drugs with potential
antileishmanial activity and possible mechanisms of action
from similar compounds.
3 RESULTS AND DISCUSSION

3.1 Template Search
The 3D structure of LdSMT is yet to be experimentally
elucidated; therefore, the structure was modeled. A BLAST
(Boratyn et al., 2013) search of the protein sequence of LdSMT
(SCMT1/GenBank ID: AAR92099.1) was performed via NCBI
BLAST (Boratyn et al., 2013) to identify suitable identical
templates to the LdSMT. The search revealed 12 experimentally
determined protein structures that are identical to the LdSMT
(Supplementary Table 1). The most widely used criteria in
selecting a template is to choose the template with the highest
sequence identity to the query sequence (Broni et al., 2021) and that
was used for the modeling. However, the resolution at which the
template protein structure was experimentally determined must
also be taken into consideration. Also, the coverage of the template
sequence to the query is another important factor. Herein, the E-
value, sequence identity, query coverage, and the resolution of the
3D structures were used to select the most suitable templates as
previously done (Meier and Söding, 2015; Haddad et al., 2020;
Kwofie et al., 2021).

All the 12 identical protein structures had sequence identity
less than 30% to the LdSMT, and 5WP4 demonstrated the
highest with an identity of 29.01% (Supplementary Table 1);
however, 5WP4 had a relatively low coverage of 45% to the
LdSMT (Supplementary Table 1) and an E-value of 1 × 10−11.
The 3BUS template had the least E-value of 6 × 10−20 and
identity of 24.12%. The 3BUS protein has previously been used in
modeling the SMT of L. infantum (Azam et al., 2014). Although
3BUS had a low resolution (2.65 Å), it was selected as one of the
structures for modeling. 3BUS is the crystal structure of the
rebeccamycin 4′-O-methyltransferase (RebM) in complex with
S-adenosyl-l-homocysteine (Singh et al., 2008). On the other
hand, the 4PNE template was also shortlisted as a suitable
template due to its high coverage to the LdSMT (61%), high
resolution (1.50 Å), and sequence identity similar to that of 3BUS
(24.15%). 4PNE is the SpnF enzyme in Saccharopolyspora
spinosa involved in the biosynthesis of the insecticide spinosyn
A (Fage et al., 2015; Jeon et al., 2017). SpnF has been reported to
be structurally similar to S-adenosyl-L-methionine (SAM)-
dependent methyltransferases (Fage et al., 2015).

Furthermore, a BLAST search via the SWISS-MODEL
(Waterhouse et al., 2018) revealed that 4PNE covered residues
43 to 258 while 3BUS spanned from residues 47 to 276 of the
LdSMT. From residues 258 to 353 of the LdSMT sequence, both
templates do not share similarities with the LdSMT. Thus, the
protein structure with PDB ID 6UAK was selected in addition
to 3BUS and 4PNE for the multitemplate homology modeling.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
The 6UAK shared similarity with the LdSMT mostly from
res idues 100 to 345 . 6UAK is a SAM-dependent
methyltransferase (LahSB) from the Lachnospiraceae bacterium
C6A11 (Huo et al., 2020). Both 3BUS and 6UAK templates, like
the LdSMT, are methyltransferases, while the 4PNE is a
methyltransferase-like protein.

3.2 Structure Prediction of LdSMT
An earlier study identified Modeller (Eswar et al., 2008) to predict
the most accurate model of L. infantum sterol methyltransferase
(Azam et al., 2014). Although the two organisms (L. infantum and
L. donovani) belong to the samegenus andSMT ishighly conserved
among Leishmania species (Goto et al., 2007), there was a need to
model the structure of LdSMT to ascertain its accuracy. Therefore,
Modeller 10.2 (Eswar et al., 2008) was employed for modeling the
structure of the LdSMT.

Three modeling approaches were employed to predict the
most reasonably accurate LdSMT model. First, 3BUS was used as
template to model five structures of the LdSMT. Secondly, 4PNE
was also used to model five different structures of the LdSMT.
Lastly, a multitemplate homology modeling approach was
employed by using three templates comprising 3BUS, 4PNE,
and 6UAK protein structures. For each approach, the best model
was selected based on the DOPE score, which is an atomic
distance-dependent statistical potential calculated from a sample
of native protein structures (Shen and Sali, 2006). The DOPE
scores were used to distinguish “good” models from “bad” ones
with lower DOPE scores signifying a better model (Shen and Sali,
2006; Eswar et al., 2008).

3.2.1 Structure Prediction Using 3BUS as Template
The 3BUS template with a sequence identity of 24.12% and
coverage of 63% to the LdSMT was used to generate five potential
models of the LdSMT (Supplementary Table 1). The five
generated models (referred to as MOD3BUS1, MOD3BUS2,
MOD3BUS3, MOD3BUS4, and MOD3BUS5) had genetic
algorithm 341 (GA341) scores ranging from 0.87 to 0.99
(Supplementary Table 2). The GA341 score assesses the
reliability of a model and has a determined threshold of 0.7. A
model is said to be reliable when the GA341 score is higher than
the cutoff (0.7) (Broni et al., 2021). For all the 3BUS-based
models, the GA341 scores were greater than the cutoff signifying
their reliability. Model MOD3BUS2 had the least DOPE score of
−30,234.79297 and was selected as the most reasonable structure
among the three models (Supplementary Table 2 and
Supplementary Figure 2A).

3.2.2 Structure Prediction Using 4PNE as Template
A total of five structures were predicted using 4PNE as template.
4PNE had a sequence identity of 24.15% and a coverage of 61%
to the LdSMT (Supplementary Table 1). For the 4PNE-based
models, the GA341 scores ranged between 0.73 and 0.98,
signifying their high level of reliability (Supplementary
Table 2 and Figure 2). Model MOD4PNE5 had the least
DOPE score of −31,608.05664 and was thus selected as the
most reasonably accurate model for the 4PNE-based structures
(Supplementary Table 2 and Figure 2).
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3.2.3 Structure Prediction Using 3BUS, 4PNE, and
6UAK as Templates
For the third set of models, three templates comprising 3BUS,
4PNE, and 6UAK were used for the modeling because it has been
reported that the use of multiple templates can help increase the
accuracy of a model (Larsson et al., 2008). Model MOD3TEMP2
had a GA341 score of 0.64307, lower than the 0.7 cutoff.
However, the other four models had good GA341 scores
ranging from 0.7 to 0.94 (Supplementary Table 2). Among the
multiple template-generated models, MOD3TEMP3 had the
least DOPE score and was thus selected as the most accurate
(Supplementary Table 2 and Supplementary Figure 2B).

3.3 Validation of the Predicted Models
Next, validation and quality assessment of the predicted 3D
structures were undertaken to obtain reasonable structures of the
proteins. The best models from each of the three different
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
approaches MOD3BUS2, MOD4PNE5, and MOD3TEMP3
were evaluated to select the most reasonably valid structure of
the LdSMT.

The percentage of residues in the most favored, additionally
allowed, generously allowed, and disallowed regions in a
Ramachandran plot determines the quality of protein
structures. From the Ramachandran plots generated from
PROCHECK, model MOD3BUS2 had 270 (86.8%), 32 (10.3%),
6 (1.9%), and 3 (1.0%) residues in the most favored, additionally
allowed, generously allowed, and disallowed regions, respectively
(Table 1 and Supplementary Figure 3A). Model MOD3TEMP3
had 266 (85.5%), 31 (10.0%), 8 (2.6%), and 6 (1.9%) residues in
the most favored, additionally allowed, generously allowed, and
disallowed regions, respectively (Table 1 and Supplementary
Figure 3B). For the MOD4PNE5 model, 264 (84.9%) residues
were in the most favored region, 32 (10.3%) in the additionally
favored region, 11 (3.5%) in the generously allowed region, and 4
(1.3%) in the disallowed region (Table 1 and Figure 3). The
Ramachandran plot statistics of all three structures were
comparatively close (Table 1) and are consistent with those of
a previously modeled LiSMT structure using Modeller (Azam
et al., 2014).

The qualities of the three structures were further assessed via
SAVES v6.0 (Behera et al., 2021). The protein structure
MOD3BUS2 had a VERIFY score of 62.61%, ERRAT quality
factor of 41.5663, PROVE score of 11%, and four PROCHECK
errors, one warning and three passes (Supplementary Table 3).
For the MOD3TEMP3 model, ERRAT predicted an overall score
of 45.858, VERIFY a score of 53.82%, PROVE a score of 9.6%,
and five PROCHECK errors, one warning and two passes
(Supplementary Table 3). Model MOD4PNE5 was predicted
to have ERRAT, VERIFY, and PROVE scores of 46.9565, 62.04%,
and 7.1%, respectively. MOD4PNE5 was also predicted to have
four PROCHECK errors, two warnings and two passes
(Supplementary Table 3) For a model to be considered high
quality, 80% of its amino acids must have a score of 0.2 in the
3D-1D profile (VERIFY score). Although all the top 3 structures
did not have a VERIFY score above 80%, MOD3BUS2 (VERIFY
score of 62.61) and MOD4PNE5 (VERIFY score of 62.04) could
be considered since a previous study has shown that a
crystallized structure also performed poorly based on the
TABLE 1 | Ramachandran plot statistics for the best models from the three modeling approaches.

Model MOD3BUS2 MOD4PNE5 Refined MOD4PNE5 MOD3TEMP3

No. of
residues

Percentage
(%)

No. of
residues

Percentage
(%)

No. of
residues

Percentage
(%)

No. of
residues

Percentage
(%)

Most favored regions [A, B, L] 270 86.8 264 84.9 268 86.2 266 85.5
Additionally allowed regions [a, b, l,
p]

32 10.3 32 10.3 34 10.9 31 10.0

Generously allowed regions [~a, ~b,
~l, ~p]

6 1.9 11 3.5 7 2.3 8 2.6

Disallowed regions 3 1.0 4 1.3 2 0.6 6 1.9
Non-glycine and non-proline
residues

311 100.0 311 100.0 311 100.0 311 100.0
June 2022
 | Volume 12 |
For all three models, the number of end residues (excluding Gly and Pro) = 2, glycine residues = 27, proline residues = 13, and the total number of residues = 353.
FIGURE 2 | Cartoon representation of the structure of the selected Leishmania
donovani 24-sterol methyltransferase (LdSMT) model (MOD4PNE5).
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VERIFY 3D quality indicator (Mora Lagares et al., 2020). For the
ERRAT predictions, MOD4PNE5 had the best score and was
also predicted using PROVE to be less erroneous
(Supplementary Table 3). Generally, model MOD3TEMP3
exhibited the lowest quality scores from SAVES v6.0.

Based on the quality assessments, the protein structure
MOD4PNE5 was selected as the most reasonable structure of
the LdSMT protein. Aligning the selected LdSMT structure and
the chain A of the 4PNE structure revealed a close similarity with
a root mean square deviation (RMSD) of 0.356 Å
(Supplementary Figure 2C). The quality of the selected model
(MOD4PNE5) was further assessed via ProSA-web (Sippl, 1993;
Wiederstein and Sippl, 2007). With a Z-score (Zhang and
Skolnick, 1998) of −3.97, the LdSMT structure was predicted
to be of X-ray quality (Supplementary Figure 4A). The Z-score
was used to indicate the overall protein quality (Zhang and
Skolnick, 1998; Benkert et al., 2011). ProSA (Sippl, 1993;
Wiederstein and Sippl, 2007) was used to plot the energies as a
function of the amino acid sequence position for the LdSMT
protein (Supplementary Figure 4B). Positive energy values
signify problematic or erroneous regions of the protein
structure. The residues of the protein demonstrated relatively
low energies until residue 230, where positive energy values were
observed until the end of the sequence.

The selected LdSMT structure was then refined using
ModRefiner (Xu and Zhang, 2011). The refined structure of the
selected LdSMT model showed improved Ramachandran plot
statistics with 268 (86.2%), 34 (10.9%), 7 (2.3%), and 2 (0.6%)
residues in the most favored, additionally allowed, generously
allowed, and disallowed regions, respectively (Table 1).
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3.4 Active Site Prediction
CASTp was used to predict the plausible binding sites within the
refined LdSMT structure. CASTp predicted 65 potential binding
sites of the LdSMT protein. Ligand binding sites tend to involve
the largest pockets or cavities on the protein (Laskowski et al.,
1996; Liang et al., 1998); thus, pockets with relatively low areas
and volumes, such that no ligand could fit, were not considered
(Broni et al., 2021; Kwofie et al., 2021). A total of seven binding
sites were shortlisted (Supplementary Table 4), which were
visualized using PyMOL (PyMOL Molecular Graphics System,
Version 1.5.0.4, Schrödinger, LLC) (Lighthall et al., 2010) and
Chimera 1.16 (Pettersen et al., 2004). However, superimposing
the LdSMT on the 4PNE template revealed that pocket 1 was
similar to the S-adenosyl-L-homocysteine (SAH) ligand’s
binding site in the 4PNE protein (Fage et al., 2015).
Surprisingly, pocket 1 for LdSMT was predicted to have no
opening in Chimera 1.16 (Pettersen et al., 2004), leaving pockets
2 to 7 as the most plausible binding cavities of the LdSMT
(Supplementary Table 4). Pockets 5 and 7 also overlapped and
occupied the same region (Supplementary Table 4).

3.5 Scaffold Hopping via BRUSELAS and
Molecular Docking
Following the protocols of BRUSELAS, 100 ligands were
generated using the ChEMBL database (Davies et al., 2015)
with varying degrees of similarities to 22,26-azsterol. Out of
the 100 ligands, 17 were identified to possess unique scaffolds
devoid of the steroidal nucleus present in the 22,26-azasterol.
The total score (comprising a combination of WEGA, LiSiCA,
Screen3D, and OptiPharm) ranged from 0.38458 to 0.65814. Ten
of the molecules with different scaffolds and varying scores are
presented (Supplementary Table 5).

A search via the PubChem (Kim et al., 2021), ZINC15
(Sterling and Irwin, 2015), DrugBank (Wishart et al., 2018),
and ChemSpider databases (Pence and Williams, 2010)
generated 1,342 derivatives of all 17 scaffolds. The 1,370
compounds consisting of 17 scaffolds, 1,342 derivatives, 22,26-
azasterol, 7 other known inhibitors (labeled X1–X7), and 3
already known drugs (amphotericin B, miltefosine, and
paromomycin) were screened against an energy minimized
LdSMT using a grid box of (91.445 × 73.502 × 78.352) Å3 with
the center at (72.200, 58.009, 13.302) Å to cover the protein.
Screening 1,370 compounds against the active site of the protein
identified 25 hits which were selected based on the binding
affinities and orientation within the binding site of the protein.

Among the three drugs used in leishmaniasis treatment,
amphotericin B had the least binding energy of −5.3 kcal/mol
followed by paromomycin (−5.0 kcal/mol) and miltefosine (−4.0
kcal/mol). Interestingly, all the known inhibitors had binding
energies lower than the three drugs signifying a higher binding
affinity to LdSMT. The binding energies of −5.9, −6.2, and −6.5
kcal/mol were obtained for X6, X3, and X4, respectively. The
least binding energy of −7.7 kcal/mol was observed for X5
comparable to 22,26-azasterol (−7.6 kcal/mol). In-vitro studies
reported that 22,26-azasterol inhibited L. donovani intracellular
amastigotes and Trypanosoma brucei subsp. brucei with IC50
FIGURE 3 | Ramachandran plot of the selected LdSMT model (MOD4PNE5)
obtained via PROCHECK. The percentages of residues in the most favored
regions, additionally allowed regions, generously allowed regions, and
disallowed regions are 84.9%, 10.3%, 3.5%, and 1.3%, respectively.
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values of 8.9 and 1.76 mM, respectively (Magaraci et al., 2003;
Gros et al., 2006), supporting the results reported herewith.
Compounds X1, X7, and X2 had binding energies of −7.3,
−7.2, and −7.0 kcal/mol, respectively (Supplementary
Table 6). Similarly, in-vitro studies revealed that X1, X2, X3,
X4, X5, X6, and X7 inhibited the growth of Leishmania parasites
with IC50 less than 10 mM, except for X6 and X7 which were
found to suppress growth with IC50 values of 28.6 and 30 mM,
respectively (Magaraci et al., 2003; Lorente et al., 2004; Andrade-
Neto et al., 2016; Torres-Santos et al., 2016).

The 12 best hits out of the 25 selected from the scaffold
hopping had lower binding energies compared with the three
drugs (Supplementary Table 6). In addition, the binding
energies of these ligands were also found to be comparable to
the known inhibitors with S1 showing the least binding energy of
−9.0 kcal/mol. The closest to this ligand were S2, S3, and S4 with
binding energies of −8.9, −8.8, and −8.7 kcal/mol, respectively
(Supplementary Table 6). Compounds S12, S11, and S10 had
the highest binding energies among the 12 best compounds with
binding energies of −7.0, −7.0, and −7.2 kcal/mol, respectively. In
addition, the binding energies of compounds S9 (−7.3 kcal/mol),
S8 (−7.4 kcal/mol), and S7 (−7.4 kcal/mol) were also obtained.
Comparable binding energies to the two lowest binding energies
of the known inhibitors were obtained for S5 (−7.7 kcal/mol) and
S6 (−7.6 kcal/mol).

3.6 De-Novo Design via e-LEA3D and
Molecular Docking
The de-novo drug design is the generation of novel chemical
entities that fit a set of constraints using computational
algorithms (Schneider and Schneider, 2016). Despite the
challenges of synthetic accessibility associated with this
method, the application of de-novo drug design leads to the
development of drug candidates in a cost- and time-efficient
manner (Mouchlis et al., 2021). In addition, the de-novo design
generates novel compounds with improved biological activity
(Mouchlis et al., 2021). A number of studies have been
undertaken for the de-novo design of inhibitors against
plausible targets (Kranthi et al., 2018; Islam and Pillay, 2020;
Pathania et al., 2021). A previous study selected a lead molecule
based on the least binding energy as well the accurate pose of the
ligand within the protein binding pocket for the de-novo design
of inhibitors (Pathania et al., 2021). A similar approach was used
in the identification of promising anti-DNA gyrase antibacterial
compounds (Islam and Pillay, 2020). Ligands with very low
binding energies and accurate pose have the potential to inhibit
the receptor.

Among the compounds obtained from scaffold hopping, the
well-known heterocyclic quinolinone and the phenylpiperazine/
phenylpiperidine moieties found in several bioactive compounds
were present. These compounds with diverse pharmacological
potencies have been explored for various ailments including
leishmaniasis (Kshirsagar, 2015; Chanquia et al., 2019; Mishra
et al., 2021). One of such derivatives is 2-(4-(4,6-di(piperidin-1-
y l ) - 1 , 3 , 5 - t r i a z in -2 - y l am ino )pheny l ) - 2 -me thy l 2 , 3 -
dihydroquinazolin-4(1H)-one which had an IC50 value of 0.65
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mM against intracellular amastigotes when compared with
miltefosine (IC50 of 8.4 mM) (Sharma et al. , 2013),
corroborating the fact that de-novo drug design could result in
novel scaffolds as potential antileishmanial agents.

The e-LEA3D was used to generate 155 potential novel
compounds against LdSMT after using protein–S1, S2, S3, S4,
and 22,26-azasterol complexes. They were filtered based on
Lipinski’s rule of five (Benet et al., 2016) and redundancy to
generate 78 ligands that were subjected to molecular docking
studies. The six best hits (A1,A2,A3,A4,A5, andA6) (Figure 4)
were selected for downstream analysis. The search via public
databases including PubChem (Kim et al., 2021) and
ChemSpider (Pence and Williams, 2010) showed that the six
ligands do not have duplicates.

The docking analysis of the six compounds revealed the
binding energies of A1 (−8.4 kcal/mol), A2 (−7.5 kcal/mol),
andA3 (−7.2 kcal/mol), whileA4,A5, andA6 had −7.0 kcal/mol.
Though A1, A2, A3, and A6 have similar core structures, they
had different binding energies (Table 2). Interestingly, using
AutoDock Vina, compounds that had shown binding energies
≤−7.0 kcal/mol have been found to demonstrate significant
inhibitory activities against the parasite of consideration
(Chang et al., 2007; Wyllie et al., 2018; Tabrez et al., 2021). In
lieu of this, the predicted compounds may have the potential of
suppressing LdSMT since the binding energies were lower than
−7.0 kcal/mol. Altogether, compounds A1, A2, A3, A4, A5, and
A6 showed binding energies lower than amphotericin B,
miltefosine, and paromomycin. Similarly, all the compounds
had binding energies comparable to the known inhibitors and,
therefore, have the potential of attenuating LdSMT.

3.7 Characterization of Binding
Interactions
Compounds with similar activity against a receptor may possess
identical chemical features in sterically consistent locations
within the pocket of a macromolecule (Held et al., 2011; Du
et al., 2016). Most of the compounds including 22,26-azasterol
and its derivatives were observed to interact with residues Asp58,
Ala88, Arg89, Tyr92, Glu85, Phe93, Phe100, Glu102, Lys198,
Pro199, and Gly200, which lined binding pockets 5 and 7
(Supplementary Tables 4 and 6). A similar study involving L.
infantum SMT, however, showed the ligands to interact with
residues Tyr1, Gly4, Gln5, Gly45, Gly47, Asn67, Asn68, Gln72,
and Ile112 within the binding pocket of the receptor (Azam et al.,
2014). The nature of interactions included pi–anion, pi–pi
stacking, pi–alkyl, pi–sigma, carbon–hydrogen, and hydrogen
bonds similar to the other study (Azam et al., 2014). Among all
the ligands, only amphotericin B had five hydrogen bonds, with
residues Asp31, Phe307, Val308, Arg309, and Leu310 found to
line pocket 2. Compounds X1 and X5 formed two hydrogen
bonds each with LdSMT. Compound X1 interacted with pockets
5 and 7 and residues Asp172 and Gly200, while X5 interacted
with pocket 4 and residues Asn12 and Thr319 via hydrogen
bonds (Supplementary Table 6).

In addition, compounds X2, X6, X7, S1, S5, S9, S10, and S12
docked into the binding pocket of the receptor but showed no
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hydrogen bond interactions with any of the residues. The
compound 22,26-azasterol formed two hydrogen bonds with
Glu102 and Gly200 as well as hydrophobic interactions with
Phe100, Lys198, and Pro199. Moreover, while paromomycin, S2,
S3, S4, S5, and S11 formed a hydrogen bond with Arg89, that of
S6 and S7 showed a similar interaction with Asp58. Apart from
paromomycin, all the other ligands which interacted with Arg89
had low binding energies, implying that it might be critical for
binding. The known drugs and inhibitors formed hydrophobic
interactions with one or more of the residues Phe100, Met101,
Asp104, Asp172, Pro199, Gly200, Thr201, Tyr343, and Ile344,
while the selected S-class compounds showed hydrophobic
interactions with one or more of the residues Asp58, Ala88,
Arg89, Tyr92, Phe93, and Phe264 (Supplementary Table 6).

For the e-LEA3D-generated hits, apart from A2 and A3
which were predicted not to form hydrogen bond interactions
with any amino acid residues, the remaining four exhibited
hydrogen bonding with at least one of the amino acid residues
of LdSMT (Table 2). This notwithstanding, all six formed
hydrophobic interactions with the LdSMT protein. The
hydrophobic interactions for A1 were with residues Arg89,
Tyr92, Ala95, Ala96, and Leu123 (Figure 5 and Table 2), and
those for A2 were with Phe84, Glu85, Ala88, Arg89, and Tyr92
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Table 2 and Supplementary Figure 5A). The ligand A3, on the
other hand, formed hydrophobic interactions with Ala88, Arg89,
Tyr92, Phe93, Ala96, and Phe264 (Table 2 and Supplementary
Figure 5B). Furthermore, both A4 (Supplementary Figure 5C)
and A6 (Supplementary Figure 5E) formed hydrogen bonding
with Cys202 and Asp58, respectively, while A5 (Supplementary
Figure 5D) formed two hydrogen bonding interactions with
Arg222 and Lys317.

3.8 Physicochemical, Pharmacological,
and Toxicity Profiling
A druggable candidate must be able to reach the site of action in
the body at optimized concentrations (Hughes et al., 2011).
Predictions of pharmacological and physicochemical
parameters are essential because they offer clues as to whether
the molecule could reach the active site in the desired
concentration and remain there to elicit the required biological
response. The physicochemical and pharmacokinetic parameters
of the six compounds were assessed using SwissADME (Hughes
et al., 2011). Physicochemical profiling assessed both Lipinski’s
rule of five (RO5) and Veber’s rule to determine if the chemical
compounds with certain pharmacological or biological activity
have chemical and physical properties to make them orally active
TABLE 2 | Binding energies and predicted interacting residues in the LdSMT–hit complexes.

Compounds Binding energies (kcal/mol) Interacting residues

Hydrogen bonds Hydrophobic bonds

22,26-Azasterol −7.6 Glu102, Gly200 Phe100, Lys198, Pro199
A1 −8.4 Asp58 Arg89, Tyr92, Ala95, Ala96, Leu123
A2 −7.5 – Phe84, Glu85, Ala88, Arg89, Tyr92
A3 −7.2 – Ala88, Arg89, Tyr92, Phe93, Ala96, Phe264
A4 −7.0 Cys202 Gly98, Phe100, Asp104, Tyr343, Ile344
A5 −7.0 Arg222, Lys317 Val26, Ala30, Phe33, Phe37, Met52, Ile224
A6 −7.0 Asp58 Phe33, Ile258, Phe264
FIGURE 4 | Top hits from de-novo drug design using the e-LEA3D.
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(Lipinski et al., 2001; Veber et al., 2002). A5 and A6 were found
to obey both Lipinski’s and Veber’s rules, and A1, A2, A3, and
A4 violated one of the two rules (Supplementary Table 7).

Solubility, an important physicochemical property, was
predicted to assess the bioavailability and bioactivity of the hit
compounds (van den Anker et al., 2018). Many lead compounds
have failed to reach clinical trials despite being potent because of
low bioactivity attributed to insufficient solubility, making
solubility predictions critical in the early stages of drug design
(Das et al., 2022). Compounds A4, A5, and A6 were, however,
predicted to be soluble compared with A1, A2, and A3 whose
solubility can be improved upon by structural modification (Das
et al., 2022).

Next, molar refractivity (MR) was assessed to give valuable
information on the pharmacokinetics and pharmacodynamics of
the compounds. This is governed by different interactions in
solution such as drug–solvent, drug–drug, and drug–co-solute
interactions (Sawale et al., 2016). The compounds passed
for molar refractivity as the predicted values for MR
(Supplementary Table 7) were all within the acceptable range
of 40 to 130. Since compounds with topological polar surface
area (tPSA) not more than 140 Å2 are considered to have good
oral bioavailability, all compounds are predicted to be orally
active and have good bioavailability.

Furthermore, synthetic accessibility was explored to evaluate
the synthetic feasibility of the de-novo hits and has gained
importance in the prioritization of compounds in drug design
(Ertl and Schuffenhauer, 2009). Many druggable candidates
especially de-novo constructed chemical entities are unable to
reach clinical trials due to their molecular complexity coupled
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
with difficulty in synthesis (Huang et al., 2010; de Souza Neto
et al., 2020). SwissADME (Daina et al., 2017) predicted all the six
compounds to possess synthetic accessibility less than 6 implying
easy synthesis.

The PAINS of the chemical compounds was investigated to
establish whether they will react non-specifically with numerous
biological targets (Baell, 2016). A number of PAINS compounds
include toxoflavin, isothiazolones, hydroxyphenyl hydrazones,
curcumin, phenol-sulfonamides, rhodanines, enones, quinones,
and catechols (Baell and Walters, 2014). It is reported that about
5% of US FDA-approved drugs obtained from natural and
synthetic drugs still contain PAINS-recognized substructures
(Baell and Nissink, 2017). All the compounds were predicted
not to contain PAINS substructures.

Pharmacokinetics studies were used to evaluate the time
course of absorption, distribution, metabolism, and excretion
of the selected hits (Luer and Penzak, 2016). The parameters
measured were blood–brain barrier (BBB), gastrointestinal
absorption (GI), and permeability glycoprotein (P-gp).
Compounds predicted to permeate the BBB have the potential
to bind to relevant receptors of the brain to activate signal
pathways (Banks, 2009). Four of the compounds (A1, A2, A3,
and A5) were predicted not to cross the blood–brain barrier,
while A4 and A6 were predicted to cross the BBB to attach to the
receptors in the brain to elicit a biological response. GI
absorption was probed to investigate whether the hit
compounds will be absorbed into the bloodstream after
metabolism when orally administered (Löbenberg et al., 2013).
All ligands were predicted to have a high GI absorption score
except A2 and A3 (Supplementary Table 7). Another
pharmacokinetic parameter considered for this study was to
explore whether the hits generated were P-gp substrates as
compounds predicted to inhibit P-gp result in their increased
bioavailability (Lin and Yamazaki, 2003; Prachayasittikul and
Prachayasittikul, 2016). The six compounds were screened for
their P-glycoprotein binding affinity and they were all predicted
to be substrates except A4.

The toxicity profiles of all six compounds were predicted using
OSIRIS Property Explorer in Data Warrior (Sander et al., 2015).
Toxicity prediction has become very critical in the development of
drugs as over 45% of drug candidates fail due to toxicity
deficiencies (Van Norman, 2019). Moreover, between 1953 and
2013, as many as 462 medicinal products were withdrawn from
the market due to adverse drug reactions (Onakpoya et al., 2016).
Toxicity profiling considered for this study was mutagenicity,
carcinogenicity, irritancy, and reproductive effects. Of the six
compounds, only A1 was predicted to be tumorigenic. The rest
neither were mutagenic nor possessed any irritant or reproductive
effects (Supplementary Table 8). Among all the compounds
under consideration, only X6 was predicted to possess
reproductive effects. Overall, the predictions indicate that all
mo l e cu l e s may hav e s a f e pha rmacok i n e t i c and
pharmacodynamic profiles except for A1, which would require
structural modification to improve its pharmacological properties.
For instance, the prediction showed that replacement of the
FIGURE 5 | 2D interaction profile of the LdSMT–A1 complex as visualized in
Discovery Studio.
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chlorine substituent with a hydrogen atom could render the A1
analog non-tumorigenic.

3.9 Bioactivity Prediction
The open Bayesian machine learning technique, PASS, was used to
predict the biological activity of the ligands based on the structure–
activity relationship between the selected hits and the training set of
compounds of known biological activity (Lagunin et al., 2000;
Parasuraman, 2011). A ligand is said to be biologically active and
requires experimental validation if the probability of activity (Pa) is
greater than the probability of inactivity (Pi) (Basanagouda et al., 2011).
Amongthesixcompounds,A3waspredictedtopossessantileishmanial
properties with a Pa of 0.362 and a Pi of 0.066 and also dermatological
properties with a Pa of 0.32 and a Pi of 0.091. CompoundsA5 andA6
were also predicted as dermatologic, with Pa values of 0.205 and 0.249
and Pi values of 0.162 and 0.120, respectively. The results may suggest
that A3, A5, and A6 might be beneficial in treating post-kala-azar
leishmaniasis (Momeni et al., 2003; Ali et al., 2012).

CompoundsA1 (Pa of 0.571 andPi of 0.111),A3 (Pa of 0.774 and
Pi of 0.026), andA6 (Pa of 0.615 and Pi of 0.079) were also predicted
as mucomembrane protectors. A recent in-vitro study revealed that
butein acting as a mucomembrane protector on human cells
increased immunity against pathogenic infections (Satari et al.,
2021). This may suggest that the compounds have the potential of
boosting the immune system to prevent disease exacerbation.
Compound A1 was predicted as an indolepyruvate C-
methyltransferase inhibitor with a Pa of 0.226 and a Pi of 0.074.
CompoundA3was also predicted to be phenolO-methyltransferase,
histamine N-methyltransferase, and acetylserotonin O-
methyltransferase inhibitors with Pa values greater than Pi.

3.10 Quality Assessment
The inhibitory constant (Ki) and other parameters such as LE,
LE_Scale, FQ, binding efficiency index (BEI), surface efficiency
index (SEI), and LELP were calculated (Supplementary Table 9).

Ki is the concentration required to produce half-maximum
inhibition and, hence, an indicator of the potency of a ligand
(Fisar et al., 2010). Computation of Ki for the protein–ligand
complexes was obtained using Equation (1), where R is the molar
gas constant (1.987 × 10−3 kcal/K mol−1) and T (298.15 K) is the
absolute temperature (Du et al., 2016).

Ki = e
−DG
RT (1)

The Ki predicted for the ligands was low (Supplementary
Table 9), hence has the capacity to be lead-like with possible high
potency (Reynolds and Reynolds, 2017).

LE is a value that expresses the binding energy of a compound
normalized by the compound’s size and expressed by the number
of heavy (non-hydrogen) atoms (Hopkins et al., 2004). This
property is important to consider in screening for hits as larger
compounds tend to show greater binding energy due to a large
number of interactions but may not necessarily be the most
efficient binder (Hevener et al., 2018). The LE was computed
using Equation (2), where BE is the binding energy and NHA is
the number of heavy atoms (Abad-Zapatero et al., 2010).
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LE =
−BE
NHA

(2)

Interestingly, all the ligands except A1, A3, and A5 were
within the optimal range (LE < 0.3 kcal/mol/HA) (Schultes et al.,
2010) for the ligand efficiency of lead-like molecules.

Results from the computation of LE being size-dependent
may not be a true reflection of the binding energy of the
compound, and therefore, ligand efficiency scaling (LE_Scale),
a size-independent parameter that compares ligands with the
help of an exponential function to the maximal LE values, is
required (Reynolds et al., 2007). LE_Scaling was computed using
Equation (3), where NHA is the number of heavy atoms
(Reynolds et al., 2007).

LE _ Scaling = 0:873e−0:026�NHA − 0:064 (3)

Potential lead-like molecules are suggested to have an
LE_Scale lower than 0.3 (Islam and Pillay, 2020). The LE_Scale
values of all six molecules were, however, predicted to be in the
range of 0.3 to 0.5 with A5 having the highest LE_Scale of 0.455.

FQ is another size-independent parameter that determines
the optimal ligand binding within the receptor active site
(Schultes et al., 2010), and is computed using Equation (4)
(Schultes et al., 2010).

FQ =
LE

LE _ Scale
(4)

FQ scores range from 0 to 1 with values close to 1 signifying an
optimal ligand binding (Schultes et al., 2010). All the compounds
were predicted to have an FQ score above 0.7 except A6 (0.695),
implying a stronger ligand binding. With the predicted FQ being
close to 1, it suggests an optimal ligand binding.

The LELP, on the other hand, assesses the binding energy of a
compound in relation to the compound’s lipophilicity (Hevener
et al., 2018). LELP is a parameter used in drug design and
development to evaluate the quality of compounds by linking
potency and lipophilicity in an attempt to estimate drug-likeness
(Edwards and Price, 2010). Equation (5), where logP is the
lipophilicity, was used in calculating the LELP of the
compounds (Schultes et al., 2010).

LELP =
logP
LE

(5)

The recommended range for promising molecules for LELP
was >3 (Schultes et al., 2010). All the analogs had LELP above 4
(Supplementary Table 9) suggesting an optimized affinity with
respect to lipophilicity.

BEI and SEI are two alternative metrics that are also used to
compare the activity of molecules according to size and area
(Schultes et al., 2010). Binding efficiency index is defined by BEI
= p(IC50)/MW, where MW is the molecular weight (Schultes
et al., 2010). The relation in Equation (6) was used in computing
the BEI of the ligands (Abad-Zapatero et al., 2010).

BEI =
−logKi

MW kDað Þ (6)
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SEI, on the other hand, is defined by SEI = p(IC50)/PSA,
where PSA is the polar surface area of the ligand (Abad-Zapatero
et al., 2010). Calculation of SEI was done using Equation (7)
(Abad-Zapatero et al., 2010).

SEI =
−logKi

PSA=100ð Þ (7)

By rule of thumb, potential inhibitors must approximately
have the same BEI and SEI values (Abad-Zapatero, 2007).
Compounds A1, A4, and A6 were predicted to have BEI equal
to SEI. Altogether, the parameters predicted for all the
compounds were mostly within the acceptable range
prompting the need for experimental analysis.

3.11 Molecular Dynamics Analysis
MD simulation is a computer simulation method for analyzing
the physical movements of atoms and molecules (Hollingsworth
and Dror, 2018). Of great concern for the MD simulation is how
a biomolecular system responds to some perturbation within a
short period of time (Karplus and Kuriyan, 2005; Hollingsworth
and Dror, 2018). Due to its usefulness, a number of drug design
studies have explored molecular dynamics simulation to analyze
and validate the binding poses, stability of the complexes, and
binding affinity of selected hits within the binding pocket of the
receptor (Agyapong et al., 2021; Gupta et al., 2021; Pathania
et al., 2021). To check the relative stability of each complex using
a 100-ns time span MD simulation, parameters such as RMSD,
root mean square fluctuation (RMSF), and radius of gyration
(Rg) were computed.

3.11.1 The Root Mean Square Deviation of the
Unbound LdSMT and the Complexes
The RMSD trajectory was used to evaluate the stability of the
protein–ligand complexes, and the plot shows the system was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
equilibrated in the range of 0 to 0.7 nm. Averagely, the unbound
LdSMT was observed to rise steadily from 0.28 nm until about
0.42 nm for 20 ns before stabilizing thereafter (Figure 6).
Comparatively, there is no significant fluctuation observed in
any of the protein–ligand complexes except for the LdSMT–A3
complex, which rose from 0.28 to 0.62 nm during 10 ns and then
stabilized for the next 10 ns and dropped to about 0.5 nm. It then
rose slightly to 0.56 nm and then stabilized after 40 ns. Across the
board, the LdSMT–A2 complex had high rigidity and the frames
of each complex depict a tight structural packing across the
whole protein influencing the low RSMD values of LdSMT.

3.11.2 Radius of Gyration of the LdSMT and the
Complexes
The radius of the gyration plot, a graph of Rg against simulation
time, is used to analyze the compactness and folding of the
unbound protein and complexes during the molecular dynamics
simulations. The Rg graph obtained showed that all the
complexes had low Rg values implying that the ligands formed
a stable and compact complex (Liao et al., 2014; Pandey et al.,
2020; Sinha and Wang, 2020). All the complexes except for A3
had a steady decline in Rg to about 40 ns before stabilizing
afterward. Rg values for both unbound protein and the
complexes were between 1.925 and 2.75 nm (Supplementary
Figure 6A). The Rg trajectory of each complex demonstrated
that each ligand forms a stable bond with the LdSMT.

3.11.3 The Root Mean Square Fluctuation of the
LdSMT and the Complexes
The RMSF was explored to investigate which amino acids within
the binding site of the receptor interacted with the ligand
resulting in the stability of the protein–ligand complex (Farmer
et al., 2017). The RMSF plots showed that all the hit compounds
caused fluctuations in similar positions of the protein target. The
FIGURE 6 | Root mean square deviation (RMSD) plot of 100 ns molecular dynamics (MD) simulations of the LdSMT–ligand complexes using GROMACS.
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plots revealed that the amino acid residues between 15 and 100,
200 and 250, and 280 and 320 (Supplementary Figure 6B)
fluctuated for all complexes and are predicted to be involved in
the stability of the complexes (Dong et al., 2018). However, the
highest fluctuation was observed around regions 200–280 for A2
and A3 implying it could be involved in ligand binding.

3.12 MM-PBSA Free Energy Computations
3.12.1 Binding Energy Assessment Scores
The free energy of binding of all the protein–ligand complexes
was calculated using the MM-PBSA continuum solvation
method (Kumari et al., 2014). The MM-PBSA was employed
to find the free energies of the bound complexes. Ligand A1,
which was predicted to have the least binding energy from
AutoDock Vina, was shown to have the lowest free binding
energy of −282.550 kJ/mol (Table 3) to the LdSMT. Among the
three top compounds, only A3 exhibited free binding energy
greater than that of the reference candidate, 22,26-azasterol
(Table 3). The dominating interaction per contribution to the
free energy was electrostatic forces of attraction ranging from
−333 to −11 kJ/mol followed by the van der Waals interactions.

3.12.2 Per-Residue Energy Decomposition
Calculation of the energy contribution of each amino acid
residue via per-residue energy analysis was performed using
MM-PBSA (Congreve and Marshall, 2010; Grinter and Zou,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
2014). It has previously been suggested that for a residue to
contribute to the binding, the threshold must be >5 or <5 kJ/mol
(Kwofie et al., 2019). Based on that, a detailed analysis of each
complex was done (Figure 7 and Supplementary Figures 6A–
C), and for all the complexes, several binding site residues
contributed favorable energies for ligand binding. The Tyr92
and Ala96 contributed to strong binding via pi–pi stacked, pi–pi
T-shaped, pi–alkyl, and van der Waals interactions, while Asp58
through its hydrogen bonding strengthened the affinity for
ligands bound in pocket 5.

3.13 Exploring the Antileishmanial
Potential of the Predicted Compounds
Four (A1, A2, A3, and A6) out of the six compounds possessed
benzo[b]azepine moiety as a replacement for the steroidal core in
the 22,26-azasterol. This same moiety is present in paullone and
its derivatives as well as BNZ-1 (Figure 8), which are known to
suppress growth in Leishmania parasites with IC50 values of 47
nM and 100 mM, respectively (Clark et al., 2007; Dao Duong Thi
et al., 2009), implying the possible antileishmanial potentials of
the proposed hits. Moreover, the chemical structural similarity
search of compounds A1, A2, A3, and A6 via DrugBank
(Wishart et al., 2018) revealed a variable similarity to
antipsychotic and antidepressant drugs (Kaur, 2013; Mendonca
Junior et al., 2015). For instance, compounds A1,A2, A3, andA6
showed similarity scores above 0.50 to vabicaserin, sertraline,
TABLE 3 | MM-PBSA energy assessment of the de-novo hits and 22,26-azasterol.

Complex DGvdW (kJ/mol) DGele (kJ/mol) DGele, sol (kJ/mol) DGSASA (kJ/mol) DGbind (kJ/mol)

A1 −254 ± 20.790 −276.921 ± 49.836 268.533 ± 68.275 −19.358 ± 1.489 −282.550 ± 35.346
A2 −165 ± 44.344 −333.723 ± 82.848 371.954 ± 91.519 −14.820 ± 3.992 −142.568 ± 47.076
A3 −49.793 ± 41.867 −11.805 ± 11.107 25.031 ± 43.156 −4.827 ± 4.582 −41.394 ± 44.095
22,26-Azasterol −0.047 ± 0.042 −56.829 ± 37.192 −15.475 ± 37.519 0.045 ± 2.716 −72.305 ± 59.057
June 2022 | Volume
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and indatraline (Richardson et al., 2009; Wishart et al., 2018;
Lima et al., 2018). In addition, the four compounds showed
similarity scores of around 0.55, which are close to those of
daledalin, zanapezil , clocapramine, imipramine, and
dimethacrine (Figure 8) (Mukherjee et al., 2012; da Silva
Rodrigues et al., 2019). Interestingly, these drugs have
been explored for their antileishmanial potentials causing
Le i shman ia para s i t e s to undergo mi tochondr ion
depolarization in addition to inhibiting trypanothione
reductase, thereby inducing strong oxidative stress in the
parasite (Kaur, 2013; Andrade-Neto et al., 2016; da Silva
Rodrigues et al., 2019). The similarity scores and the
antileishmanial properties of these antidepressant and
antipsychotic drugs warrant the testing of the compounds to
assess their antileishmanial propensity.

Furthermore, compound A4 devoid of the benzo[H]azepine
also showed a chemical structural similarity score of 0.564 to CP-
39,332, a serotonin–norepinephrine reuptake inhibitor.
The successes emanating from other serotonin inhibitors for
leishmaniasis treatment suggest A4 as a potential antileishmanial
compound. In addition, A5 showed a similarity score of 0.538 to
cefradine, a broad-spectrum antibiotic for the treatment of skin,
chest, throat, and ear infections (Wishart et al., 2018). A recent
study has revealed that patients exposed to antibiotics had a
greater healing rate (Barakat et al., 2017), suggesting A5 to be
explored as an antileishmanial agent. In lieu of the
aforementioned, the potential leads A1, A2, A3, A4, A5, and
A6 with diverse structural similarities with the antipsychotic and
antibiotic agents are also proposed as potential antileishmanial
agents via inhibition of sterol methyltransferase and are
worthy of further experimental evaluation to assess their
biological efficacy.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
4 POTENTIAL IMPLICATIONS OF THE
STUDY ON LEISHMANIA DONOVANI
STEROL METHYLTRANSFERASE AND
FUTURE PERSPECTIVE

The study modeled a reasonable structure of LdSMT with good
quality parameters, which has been made available to augment
the structure-based drug design. In addition, small non-
steroidal molecules with negligible toxicity with the potential
to suppress LdSMT were identified and could be harmonized
into non-commercial databases for the design of new
biotherapeutic compounds. Furthermore, the de-novo design
was employed in making available chemical structures of
compounds which can be synthesized to ascertain their
antileishmanial potency.

The renewed interest in polypharmacology drugs with the
added advantage of overcoming drug resistance necessitates the
investigation of these compounds against plausible targets
involved in the ergosterol biosynthetic pathway of Leishmania
parasites. Furthermore, coordinating these ligands to transition
metals to find multimodality metallodrugs with the potential of
inhibiting two or more enzymes in the ergosterol pathway may
present a possible biotherapeutic route for leishmaniasis.

5 CONCLUSION

In-silico approaches were used to predict putative inhibitors
targeting LdSMT by elucidating the 3D structure of LdSMT via
Modeller followed by subjection of 22,26-azasterol to scaffold
hopping and de-novo drug design. In all, six potential inhibitors
labeled A1, A2, A3, A4, A5, and A6 were generated via de-novo
design with binding affinities of −8.4, −7.5, −7.2, −7.0, −7.0, and
−7.0 kcal/mol, respectively. The compounds A1 and A2
demonstrated comparable binding affinity to that of 22,26-
azasterol (−7.6 kcal/mol), the main inhibitor of LdSMT. The
study identified Tyr92 to be essential for ligand binding in the
receptor binding pocket, and this was corroborated by MD
simulation and MM-PBSA calculations. The physicochemical
and pharmacological profiling showed that the compounds are
drug-like and predicted as non-toxic. The predicted ligand
quality metrics including Ki, LE, LE_Scale, FQ, LELP, BEI, and
SEI were all within the acceptable range. These findings suggest
that the compounds possess antileishmanial potential and
warrant experimental corroboration.
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Estévez, A. M., et al. (2006). New Azasterols Against Trypanosoma Brucei: Role
of 24-Sterol Methyltransferase in Inhibitor Action. Antimicrob. Agents
Chemother. 50, 2595–2601. doi: 10.1128/AAC.01508-05

Gupta, Y., Maciorowski, D., Zak, S. E., Jones, K. A., Kathayat, R. S., Azizi, S. A., et al.
(2021). Bisindolylmaleimide IX: ANovel Anti-SARS-CoV2Agent TargetingViral
Main Protease 3clpro Demonstrated by Virtual Screening Pipeline and in-Vitro
Validation Assays.Methods 195, 57–71. doi: 10.1016/j.ymeth.2021.01.003

Haddad, Y., Adam, V., and Heger, Z. (2020). Ten Quick Tips for Homology
Modeling of High-Resolution Protein 3D Structures. PloS Comput. Biol. 16,
e1007449/1–e1007449/19. doi: 10.1371/journal.pcbi.1007449

Held, M., Metzner, P., Prinz, J. H., and Noé, F. (2011). Mechanisms of Protein-
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