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Highlight 

 We performed hourly air temperature mapping with 1-km resolution across multi-year 

warm seasons using local-climate-zone-based landscape metrics and random forest 

algorithms. 

 Nighttime results: Analysis revealed that the maps steadily maintained high accuracy at 

nighttime (20:00–7:00), which is important to investigate the nighttime urban climate 

conditions, especially the urban heat island effect. 

 Spatial pattern of the air temperature estimations exhibited a pronounced landscape divide 

that air temperatures in contiguous mountainous areas with dense trees were significantly 

lower than those in the plains. 

 Air temperatures tend to fall more slowly in the core of metropolitan areas than in the urban 

fringe. 
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Abstract 20 

Air temperature is a crucial variable of urban meteorology and is essential to many urban 21 

environments, urban climate and climate-change-related studies. However, due to the limited 22 

observational records of air temperature and the complex urban morphology and environment, 23 

it might not be easy to map the hourly air temperature with a fine resolution at the surface level 24 

within and around cities via conventional methods. Thus, this study employed machine 25 

learning (ML) algorithms and meteorological and landscape data to develop hourly air 26 

temperature mapping techniques and methods at the 1-km resolution over a multi-year warm 27 

seasons period. Guangdong Province, China was selected for the case study. Random forest 28 
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algorithm was employed for the hourly air temperature mapping. The validation results showed 29 

that the hourly air temperature maps exhibit good accuracy from 2008 to 2019, with mean R2, 30 

root mean square error (RMSE) and mean absolute error (MAE) values of 0.8001, 1.4821℃ 31 

and 1.0872℃, respectively. The importance assessment of the driving factors showed that 32 

meteorological factors, especially relative humidity, contributed the most to the air temperature 33 

mapping. Simultaneously, landscape factors also played a non-negligible role. Further analysis 34 

revealed that the maps steadily maintained high accuracy at nighttime (20:00–7:00), which is 35 

essential for investigating nighttime urban climate conditions, especially the urban heat island 36 

effect. Moreover, a correlation existed between the nighttime air temperature changes and 37 

urban morphology represented by the local climate zones. Air temperatures tended to fall more 38 

slowly in the core of metropolitan areas than in the urban fringe. Using ML, this study reliably 39 

improves the spatial refinement of hourly air temperature mapping and reveals the spatially 40 

explicit air temperature patterns in and around cities at different times in a day during the warm 41 

seasons. Moreover, it provides a novel valuable and reliable dataset for air-temperature-related 42 

implementation and studies. 43 

Highlight 44 

 We performed hourly air temperature mapping with 1-km resolution across multi-year 45 

warm seasons using local-climate-zone-based landscape metrics and random forest 46 

algorithms. 47 

 Nighttime results: Analysis revealed that the maps steadily maintained high accuracy at 48 



nighttime (20:00–7:00), which is important to investigate the nighttime urban climate 49 

conditions, especially the urban heat island effect. 50 

 Spatial pattern of the air temperature estimations exhibited a pronounced landscape divide 51 

that air temperatures in contiguous mountainous areas with dense trees were significantly 52 

lower than those in the plains. 53 

 Air temperatures tend to fall more slowly in the core of metropolitan areas than in the urban 54 

fringe. 55 
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1. Introduction 59 

The rise of mega- and high-density compact urban regions is now an irreversible trend of 60 

urbanization1. Such high-density mega-urban living has caused numerous environmental 61 

challenges and problems, such as intensified urban heat islands (UHIs)2-4 and air pollution5,6. 62 

Simultaneously, the complex urban morphology poses a great challenge in depicting the near-63 

surface air temperature within and around cities. 64 

Characterising the spatiotemporal variability of the near-surface air temperature at fine 65 

resolutions is of importance for investigating the UHI intensity and heat-related risks7. It is 66 

becoming even more important in the context of climate change. Specifically, human activities 67 



are predicted to have caused about 1.0 ℃ of global warming, compared to the pre-industrial 68 

period8. Moreover, it is projected that without a significant reduction in greenhouse gas 69 

emissions, the global near-surface temperature will continue to increase with an increasing 70 

number of extreme weather events, like extreme heat waves8.  71 

Air temperature (Ta) is a key variable in the investigation of climate change8, energy 72 

consumption9, thermal comfort10 and human health11. Ta has been widely employed in the 73 

fields of epidemiology and public health to explore its relation to morbidity and mortality in 74 

vulnerable populations12,13. An accurate and in-depth understanding of Ta will help scientists 75 

conduct subsequent research applications in various fields to provide scientific-evidence-based 76 

findings for policymakers to achieve sustainable development. However, this subject is still 77 

under-researched in many regions worldwide due to technical limitations. 78 

1.1. Literature review 79 

Typically, meteorological stations measure Ta at a reference height of 2 m above the 80 

ground14. Meteorological stations usually keep a long-term archive of observational weather 81 

data. However, their ability to capture the spatial variation of Ta, particularly in heterogeneous 82 

areas, is limited due to their limited spatial coverage15. Specifically, meteorological stations 83 

provide long-term observational weather data at fine temporal resolution. However, due to the 84 

lack of adequate spatial coverage, their ability to depict small-scale spatial variability in 85 

heterogeneous regions (including cities) is limited. Therefore, data from meteorological 86 

networks are not often sufficient for studying the impact of extreme hot weather on heat-related 87 



health risks, as the air temperature may greatly vary with space and time. To address this issue, 88 

statistical methods are applied to map the spatiotemporal pattern of Ta based on limited 89 

meteorological stations. These methods can be divided into two groups: (1) Spatial 90 

interpolation methods, e.g. inverse distance weighting (IDW)16, Kriging interpolation17 and 91 

geographic weighted regression16. These interpolation methods are employed to predict Ta in 92 

an area surrounding a known meteorological station at a fixed time. A prerequisite of these 93 

methods is a relatively homogenous distribution of weather stations, but a study area may have 94 

a highly heterogeneous distribution of weather stations. (2) Regression methods that can predict 95 

Ta at any location and time by establishing a quantitative relation between Ta and possible 96 

influencing factors. These methods include linear regression with simple or multiple 97 

variants18,19 and nonlinear regression, including machine learning (ML) methods20. Through 98 

training and testing with considerable input data, ML models learn how to estimate Ta with 99 

optimal accuracy, even in areas with highly heterogeneous landscape patterns. 100 

Climate model simulation is another choice for mapping the spatiotemporal pattern of Ta 101 

across different scales, from global, regional, to city scales. Global or regional climate models 102 

yield Ta with low spatial resolution (approximately 100–250 and 25–50 km) and high temporal 103 

resolution (e.g. hourly or minute). Both kinds of climate models provide rough descriptions of 104 

climate variables since the urban structure and its influence on climate are both simplified in 105 

the model setup and simulation21. Mesoscale models, such as the weather research and forecast 106 

model, have been developed with additional urban information to simulate climates at the local 107 

scale (1–5 km)21. However, simulation of Ta using mesoscale climate models is time-108 



consuming and relies on the computation power of the hardware. Furthermore, Ta generated 109 

via mesoscale models can still not assist in the spatiotemporal pattern analysis of a thermal 110 

environment at the district/block scale (e.g. hundreds or tens of meters). Microscale climate 111 

models, like ENVI-met, have been further developed for simulating microscale urban 112 

climates22. Unfortunately, despite the fine spatial and temporal resolution, the spatiotemporal 113 

pattern of Ta across the entire city is hard to simulate using microscale climate models due to 114 

the high time cost and limited computing ability of the model. Generally, the simulation of Ta 115 

using various climate models is limited by the lack of historical input data, long simulating 116 

time, high learning cost, complicated model setup and simulation, a balance between spatial 117 

coverage and spatial/temporal resolution and computational power. 118 

Remotely sensed data have the advantage of broad spatial coverage and various spatial 119 

and temporal resolutions; the land surface temperature (LST) retrieved from remote sensing 120 

images is the most commonly used satellite predictor for mapping the spatiotemporal variation 121 

of Ta23. LST-based Ta estimation is mainly achieved via the following ways: (1) Temperature-122 

vegetation index method. This method assumes that the LST of vegetation is similar to its 123 

surrounding Ta. Hence, the spatial pattern of Ta can be interpolated based on the relation 124 

between LST and vegetation24,25. However, such a method is unsuitable for urban areas, which 125 

are mostly covered by unvegetated surfaces26. (2) Energy balance model. Both LST and Ta are 126 

important components of energy fluxes in the energy balance model, i.e. both are essential for 127 

calculating the longwave radiation and sensible heat flux27. Ta can be retrieved by analysing 128 

the energy exchanges within an urban canopy layer using LST28. This method requires input 129 



data that are not measured by satellite sensors and needs prior knowledge to construct energy 130 

balance models. (3) Statistical methods. Linear and nonlinear regression models have been 131 

implemented for building a relation between Ta and LST as well as other auxiliary data, like 132 

the land cover, daylight duration and evapotranspiration29-33. However, such a Ta–LST relation 133 

is sensitive to location, background climate and the presence of daylight34,35.  134 

1.2. Research gaps 135 

The spatiotemporal changes of air temperature at a micro to local climate scale can be 136 

largely affected by the landscape pattern of land use/land cover (LU/LC) because the land 137 

surface changes the boundary layer climate conditions36. The abovementioned Ta estimation 138 

methods have their own strengths and limitations in the investigation of the spatiotemporal 139 

changes in Ta. Therefore, developing a time-series Ta dataset with both high spatial and 140 

temporal resolutions still needs to be explored, especially when focusing on the intra-urban 141 

variation of the thermal environment. Most of the existing research is concerned with the daily 142 

air temperature characteristics. Furthermore, most resulting spatiotemporal temperature models 143 

are usually site-specific. 144 

The local climate zone (LCZ) classification scheme not only enables the investigation of 145 

a fine-scale intra-urban variation of Ta but also increases the transferability of the resultant 146 

models, due to its ten built types classified using building morphology parameters (e.g. building 147 

height, building coverage ratio and sky view factor)37. Furthermore, the relevance of LCZs to 148 

the urban thermal environment has been argued in literature38-40. Moreover, information from 149 



remote sensing imagery, such as Normalized Difference Vegetation Index (NDVI) and 150 

multispectral albedos, has been used as input variables for generating LCZ maps. Hence, 151 

landscape patterns of LCZ classes, which can be represented by landscape metrics of LCZs, 152 

will help refine the spatial variation of Ta, particularly in a complex urban context. As 153 

mentioned earlier, ML algorithms exhibit good performance in estimating Ta across the city 154 

scale because of their strong learning ability from a large number of trials.  155 

1.3. Study objectives 156 

Herein, we aim to estimate the spatiotemporal hourly resolved air temperature on a 1 km 157 

grid across the study area (Guangdong province in China as the testbed) by incorporating LCZ-158 

based landscape patterns as predictors, refining both the temporal and spatial coverage. 159 

Specifically, this study combines the LCZ-based landscape patterns with an ML method to 160 

predict the Ta distribution in a highly urbanised region with complex urban morphology, the 161 

Guangdong province. The study objectives include (1) developing a 12-year (2008–2019) 162 

spatiotemporal distribution map of Ta at an hourly resolution and 1-km grid across the 163 

Guangdong province, (2) generating averaged hourly Ta maps during warm seasons (May–164 

September) for each year and (3) identifying different Ta patterns during the nighttime and 165 

daytime in urban and rural areas to facilitate an understanding of the spatiotemporal variability 166 

of Ta. 167 

2. Materials and method 168 

2.1. Study area and time period 169 



Guangdong province is located in the southernmost part of mainland China and faces the 170 

South China Sea to the south. The east and west sides of the Pearl River Estuary in the Pearl 171 

River Delta region of Guangdong Province are bordered by Hong Kong and Macao Special 172 

Administrative Regions, respectively. Additionally, it is a subtropical region with high spatial 173 

heterogeneity of LU/LC. The terrain of is high in the north and low in the south and is complex 174 

and diverse, including mountains, hills, plains and mesas. Its geographic complexity makes it 175 

a suitable study area for testing the applicability of ML algorithms in predicting air temperature 176 

with high spatial and temporal resolution. 177 

2.2. Meteorological data 178 

As a part of the national meteorological stations network of China, 86 national 179 

meteorological monitoring stations are located and are operational in the Guangdong province 180 

(Fig. 1). All stations are operated by the China Meteorological Administration (CMA). The 181 

siting, equipment set up and operation strictly follow the World Meteorological Organization 182 

(WMO) guidelines41. Hourly air temperature has been continuously recorded and managed by 183 

CMA data centre (https://data.cma.cn/en) as a dataset, which is ready for scientific and 184 

academic use. Herein, to facilitate the development of ML-based prediction models, the hourly 185 

air temperature data from 2008 to 2019 was requested from the CMA. The data are quality 186 

controlled by the CMA. The observed data missing rate is less than 1%. 187 



 188 

Fig. 1 Weather stations in the study area 189 

In addition to the air temperature, the observed data include meteorological variables such 190 

as relative humidity (RHU), precipitation (PRE), barometric pressure (PRS) and wind speed 191 

(VV2). These variables are used as meteorological drivers in the subsequent spatial estimation 192 

modelling of the hourly air temperature. Furthermore, the geographical coordinates and 193 

elevation information of the weather stations are provided. 194 

To drive a well-trained Random Forest (RF) model for spatially estimating the air 195 

temperature, the spatial pattern of these meteorological drivers across the study area needs to 196 

be obtained. Hence, we performed the Kriging interpolation using the observed data to estimate 197 

the spatial patterns. 198 



2.3. LCZ data and Landscape pattern analysis 199 

2.3.1. LCZ mapping 200 

Previous studies have demonstrated that the physical foundations of cities, including 201 

building form and building materials, can influence the spatial variations in the air 202 

temperature42,43. As a widely used land surface classification scheme that defines the land cover 203 

types based on the physical characteristics of the land surface (Table 1), LCZ has unique 204 

advantages over traditional land cover classifications in depicting landscapes, especially 205 

landscapes within cities37,44,45. Based on LCZ, urban and natural landscapes have been 206 

classified into 18 types. We generated correspondingly categorical maps for each year in the 207 

study period (2008–2019), which well represent the landscape diversity and geographic 208 

complexity as well as the temporal changes of LU/LC in the study area. Noted that the 2012 209 

LCZ map was not generated due to the quality deficiencies of the 2012 remote sensing images. 210 

The LCZ map development process can be divided into three steps: (1) creating a multi-year 211 

LCZ sample set, (2) preparing the input data on the Google Earth Engine (GEE) platform and 212 

(3) conducting LCZ classification on the GEE platform using an RF classifier, as performed in 213 

Chung et al.46. 214 

Table 1 Categories and definitions of local climate zone (LCZ) simplified from Stewart & Oke37 215 

LCZ types Built and land cover types 

LCZ 1 Compact high-rise 

LCZ 2 Compact mid-rise 

LCZ 3 Compact low-rise 

LCZ 4 Open high-rise 



LCZ 5 Open mid-rise 

LCZ 6 Open low-rise 

LCZ 7 Lightweight low-rise 

LCZ 8 Large low-rise 

LCZ 9 Sparsely built 

LCZ 10 Heavy industry 

LCZ A Dense trees 

LCZ B Scattered trees 

LCZ C Bush, scrub 

LCZ D Low plants 

LCZ E Bare rock or paved 

LCZ F Bare soil or sand 

LCZ G Water 

LCZ H Wetlands# 

# Wetlands is an additional LCZ type that adapted the land surface properties of coastal cities in the Guangdong province. 216 

First, we selected 2165 LCZ sample polygons through Google Earth Pro based on fine-217 

resolution remote sensing images of 2019, which comprise more than 100 sample polygons per 218 

LCZ type. Then, using the historical images provided by Google Earth Pro, we modified the 219 

labels of these samples in different years to construct a year-by-year sample set from 2008 to 220 

2019. In the LCZ classification of each year, 70% of the 2165 samples were randomly selected 221 

for classifier training, while the remaining 30% were used for accuracy validation. 222 

Second, we selected suitable multi-year images from the multi-source remote sensing 223 

images provided by the GEE platform and clipped them to the Guangdong province extent. 224 

Data from Landsat 8 (Landsat 8 Surface Reflectance Tier 2), Landsat 5 (Landsat 5 Surface 225 

Reflectance Tier 2), Sentinel-1 SAR GRD (C-band Synthetic Aperture Radar Ground Range 226 

Detected, log scaling), Sentinel-2 MSI (Multi-Spectral Instrument, Level-1C), VIIRS (Stray 227 

Light Corrected Nighttime Day/Night Band Composites Version 1) and DMSP OLS (Nighttime 228 

Lights Time Series Version 4) were selected as input data for multi-year LCZ classification 229 



since they cover different spectral and nighttime light information. Furthermore, GMTED2010 230 

(Global Multi-resolution Terrain Elevation Data 2010) ware chosen as the input data to provide 231 

elevation information. Table S1 provides the descriptions of these input data. 232 

Third, we performed year-by-year LCZ classification by applying the RF classifier 233 

provided by the GEE platform using training samples and multi-source remote sensing images 234 

as the input data. RF is an ensemble ML algorithm that estimates or classifies objectives by 235 

constructing multiple decision trees and aggregating their decision results based on votes47. It 236 

is a nonlinear algorithm that balances accuracy and computational efficiency and performs 237 

stably because errors in a single decision tree are unlikely to affect the voting results48,49. 238 

Therefore, RF is widely used in land classification based on remote sensing images. Herein, 239 

we employed the ‘.smileRandomForest’ package from the GEE platform to perform LCZ 240 

classification. We kept the default parameter settings of the package except for the number of 241 

trees (i.e. n-tree). We searched for the optimal n-tree from 20 to 120 at 10-tree intervals based 242 

on the validation accuracy and finally set n-tree as 80. 243 

2.3.2. LCZ-based landscape pattern 244 

Most previous studies on the spatial estimation of air temperature have usually 245 

investigated the LU/LC and landscape types at the exact location of the weather stations50,51. 246 

Few studies have analysed how the spatial configuration, such as the mixture, evenness, 247 

diversity, clustering of different LU/LC and landscape types, affects the variability in the 248 

spatiotemporal distribution of air temperature. Herein, based on the generated LCZ maps, we 249 



introduced highly quantifiable measures, landscape metrics, to quantify the LU/LC pattern of 250 

the study area. Landscape metrics are developed based on the classic ‘patch-corridor-matrix’ 251 

theory in the landscape ecology52. Corresponding to the above landscape theory, landscape 252 

metrics can be divided into three main categories: patch-, class- and landscape-level metrics. 253 

Patch-level metrics represent the characteristics of a single patch of a specific type of landscape 254 

or LCZ class. Class-level metrics reflect the spatial pattern of all patches with the same LCZ 255 

class within a certain spatial extent, while landscape-level metrics provide an understanding of 256 

how different LCZ classes spatially mix together. Landscape metrics have been widely used to 257 

categorically analyse remote-sensed spatial datasets for two decades53. Herein, based on 258 

literature54,55, a set of landscape metrics with radiuses ranging from 1 to 10 km were chosen as 259 

candidate predictor variables (Table S2) to quantify the detailed spatial pattern around each of 260 

the weather stations and the spatial pattern in the entire study area. Fragstats (program version 261 

4), a widely used software56, was employed to determine the landscape metrics on the basis of 262 

the LCZ categorical map for each year in the study period. Using the above process, a large 263 

predictor dataset (with an extensive amount of landscape pattern metrics of 13550 variables, as 264 

there are 18 classes of LCZ types reflecting the various landscape in the study area) has been 265 

generated. However, to reduce the computational burden on the model, only landscape metrics 266 

with more than 80% of the valid values in the sample were included as the preliminary drivers 267 

for subsequent modelling. Figures S1~S3 present the patterns of the three landscape metrics 268 

with the highest contribution to the model, based on the subsequent importance assessment of 269 

the drivers. 270 



2.4. Estimating hourly air temperature spatial patterns using the random forest model 271 

The previously prepared meteorological and landscape drivers were input into the RF 272 

model to estimate the spatial hourly air temperature patterns. We selected the RF model as the 273 

regressor because it not only has the abovementioned advantages but also allows the 274 

importance assessment of each driver to the estimation accuracy57, which is essential for this 275 

study. To estimate the air temperature at a certain hour, we considered real-time-efficient 276 

drivers like the current time (hour), meteorological drivers for each of the previous 24 h and 277 

environmental drivers like the landscape drivers, longitude, latitude and elevation, yielding a 278 

total of 941 preliminary drivers in the RF model. The driving factors need to be considered as 279 

comprehensively as possible, but this will increase the computational burden of the model and 280 

significantly increase the operation time. Moreover, most of the drivers contribute little to 281 

improving accuracy. Therefore, we first built an RF model using the 2019 data to select critical 282 

drivers from the 941 preliminary drivers based on the importance assessment. Simultaneously, 283 

we tested the optimal n-tree for the RF model. Finally, we identified key drivers and adopted 284 

the optimal n-tree for building the RF model for other years. 285 

In Python, we used the ‘.RandomForestRegressor’ class provided by the ‘scikit-learn’ 286 

extension package (Version 0.24.2) to build the RF model. The default values are employed for 287 

all parameters except the n-tree. Additionally, we employed the permutation importance 288 

provided by scikit-learn as the metric to assess the importance of the drivers as it is applicable 289 

in cases where there are many unique values of the features. The permutation importance of a 290 

feature is defined as the deviation of the metric value from the baseline metric value after 291 



permutation of this feature column. We performed ten evaluations of the permutation 292 

importance of the drivers and took their average value as the importance of the drivers. 293 

To build the RF model, 70% of the samples were randomly selected for training the model. 294 

We used four accuracy metrics to measure the model accuracy. One is to calculate the 295 

goodness-of-fit, R2, of the trained model using the remaining 30% samples. The second is to 296 

estimate the R2 of the model using the out-of-bag samples (oob_score) during model training. 297 

Further, the root mean square error (RMSE) and mean absolute error (MAE) were calculated 298 

using the test samples to evaluate the model’s bias. These four metrics provide a comprehensive 299 

picture of the model’s generalisation ability. 300 

3. Result 301 

3.1. Accuracy of the LCZ mapping 302 

Table S3 presents the assessment table for LCZ mapping in the study area from 2008 to 303 

2019. Moreover, we used user accuracy (UA) and producer accuracy (PA) to assess the 304 

performance of each LCZ type and used the overall accuracy (OA) and Kappa coefficient to 305 

measure the overall performance of LCZ maps for each year. The results showed that the 306 

average value of the OA of the LCZ maps reached 61.64% and that of the Kappa coefficient 307 

reached 0.594; the best performance was observed in 2019, where OA and the Kappa 308 

coefficient reached 71.86% and 0.702, respectively. According to Bechtel et al.44, the accuracy 309 

of our LCZ maps is comparable to that of most current LCZ mapping and is therefore 310 

acceptable. 311 



3.2. Accuracy of the hourly air temperature estimation 312 

We selected 90 drivers from the 941 preliminary drivers for subsequent model training 313 

and estimation with the permutation importance. The sum of the importance scores of the 90 314 

drivers (1.772) represents 97.0% of the total importance score of all the preliminary drivers 315 

(1.826). Therefore, the selected drivers are sufficiently representative. Among the 90 drivers, 316 

74 meteorological and 12 landscape drivers are present, and current time, latitude, longitude 317 

and elevation drivers are also present. The five most important drivers are 318 

RHU_1Hours_Before (0.725), Current_time (0.471), mw09_shdi (Shannon’s Diversity Index 319 

at a radius of 9 km, 0.072), latitude (0.072) and RHU_10Hours_Before (0.065). 320 

We performed tests to search for the optimal n-tree from 50 to 400. The results showed 321 

that the R2 calculated using the out-of-bag samples (oob_score) logarithmically grew with 322 

increasing n-tree value (Fig. 2). Furthermore, the oob_score significantly improved with 323 

increasing n-tree increased from 50 to 200. With increasing n-tree from 200 to 400, the 324 

oob_score still displayed a slight improvement. Therefore, for better accuracy, we set the n-325 

tree value in the RF modelling to 400. 326 



 327 

Fig. 2 Relation between the number of trees (n-tree) in the RF modelling and R2 calculated using the out-328 

of-bag samples (oob_score) 329 

After determining the drivers and n-tree value, we executed the RF modelling for each 330 

year. Table 2 shows the performance of the RF models for each year. The R2, RMSE and MAE 331 

calculated using the 30% validation samples and the oob_score calculated using the out-of-bag 332 

samples exhibit similar accuracies. The RF models exhibited good accuracy in different years, 333 

with the mean values of R2 and oob_score reaching 0.8001 and 0.7960, respectively. 334 

Additionally, the mean values of RMSE and MAE were 1.4821℃ and 1.0872℃, respectively. 335 

The results indicate that the RF models constructed to estimate the hourly air temperatures 336 

from 2008 to 2019 are acceptable and reliable. 337 

Table 2 Accuracy of the RF models for each year 338 

Year R2 oob_score RMSE (℃) MAE(℃) 

2008 0.8036 0.7992 1.5112 1.0940 

2009 0.8127 0.8084 1.4592 1.0879 

2010 0.7684 0.7652 1.6049 1.1953 

2011 0.8202 0.8132 1.5062 1.0951 

2013 0.7685 0.7648 1.5498 1.1163 

2014 0.8272 0.8252 1.4336 1.0323 



2015 0.8197 0.8153 1.3368 0.9886 

2016 0.7725 0.7697 1.5097 1.1133 

2017 0.7810 0.7762 1.5145 1.1259 

2018 0.8041 0.7997 1.3607 1.0002 

2019 0.8234 0.8188 1.5165 1.1100 

Mean 0.8001 0.7960 1.4821 1.0872 

 339 

3.3. Performance of the air temperature estimation in various hours 340 

Furthermore, we explored the performance of the estimated air temperature at different 341 

hours. We merged the temperatures for all dates at a particular hour and assessed the model 342 

performance for that hour by comparing the observed and estimated mean air temperature. We 343 

selected three metrics to measure the hourly model performance: R2, RMSE and a deviation 344 

ratio. 345 

Figure 3 shows the R2 of the models for different hours in different years. Figures S4–S14 346 

display the scatter plots of the estimated versus observed values for different hours in different 347 

years. Clearly, the performances show consistency and stability across the years. For example, 348 

the models maintained stable high R2 during the nighttime (i.e. 20:00–07:00), while during the 349 

daytime hours, the models did not perform well overall, except for the period from 14:00 to 350 

16:00 when they reached a high R2 level. Note that herein we directly calculated R2 using the 351 

estimated and observed air temperatures, rather than calculating R2 after fitting a linear 352 

regression to them; thus, R2 affords a maximum value of 1 and it could be negative. However, 353 

when R2 is negative, the estimated and observed air temperatures may still exhibit a good linear 354 

relation, as shown in Figure S4–S14. 355 



 356 

Fig. 3 R2 of the air temperature estimation models for different hours in different years 357 

RMSE is a metric reflecting the absolute error between the estimated and observed values; 358 

thus, a smaller RMSE value denotes a higher estimation accuracy. Fig. 4 presents the RMSE 359 

of the air temperature estimation models for different hours in different years. The RMSE 360 

distribution is similar to the R2 distribution. The performance of the models for the same hour 361 

was essentially stable across the years. Better RMSE performance was obtained from 20:00 to 362 

07:00 at night and for a short period in the afternoon. Larger RMSE values were afforded in 363 

the morning (8:00–11:00), but the RMSE values slightly increased in the late afternoon (around 364 

18:00). During the periods when the model performed well, RMSE did not exceed 0.6°C 365 

overall, even reaching 0.2°C. 366 



 367 

Fig. 4 RMSE of the air temperature estimation models for different hours in different years 368 

In addition to using RMSE to measure the absolute error of the estimation results, we 369 

defined a deviation ratio to reflect the relative error of the estimation results. The deviation 370 

ratio is the ratio of RMSE to the difference between the air temperatures observed at the middle 371 

50% of the weather stations. Fig. 5 shows the deviation ratio of the estimated air temperatures 372 

for different hours in different years. Notably, the trajectory of the deviation ratio is similar to 373 

that of the R2 and RMSE. In most years, the deviation ratios were generally below 0.5 and even 374 

below 0.2 during the night (20:00–07:00) and afternoon (14:00–16:00). 375 



 376 

Fig. 5 Deviation ratio of the estimated hourly air temperatures in different years. Here, ‘TEM 50%’ 377 

denotes the difference between the air temperatures observed at the middle 50% of the weather stations. 378 

3.4. Spatial performance of the air temperature estimation 379 

In addition to the overall and temporal perspective, we explored how the models 380 

performed in space. We compared the performance of the RF model with traditional spatial 381 

interpolation methods, such as IDW and Kriging interpolation, for estimating the spatial 382 

distribution of the air temperature. Fig. 6 shows the comparison result for the mean air 383 

temperature in warm seasons in 2019. Clearly, the air temperature distribution estimated by the 384 

RF model was generally consistent with that estimated by IDW and Kriging interpolation. 385 

Although humidity strongly contributes to the predictions of the air temperature distribution, 386 

landscape metrics add considerable spatial detail to the air temperature distribution mapping, 387 

which cannot be obtained by directly interpolating air temperature using almost any other 388 



methods. Moreover, the difference in air temperature between urban and rural areas was more 389 

evident in the results of the RF model than in the those of IDW and Kriging interpolation. Rural 390 

areas cooled faster than the urban areas at night. Moreover, comparing the air temperature 391 

distribution at 21:00 and 04:00, the temperature dropped more slowly in the urban core than in 392 

the urban fringe. 393 



 394 

Fig. 6 Comparing IDW and Kriging interpolation with the RF model in terms of the spatial performance 395 



of the air temperature estimation for the mean air temperature in warm seasons in 2019. 396 

Furthermore, to demonstrate the role of landscape drivers in enhancing the spatial detail 397 

of the air temperature estimation, we added a control experiment without LCZ-based landscape 398 

drivers in the modelling. Fig. 7 shows the role of LCZ-based landscape drivers in the air 399 

temperature estimation, taking the example of 21:00 in the 2019 warm season. When modelling 400 

without the LCZ-based landscape drivers (Fig. 7(a)), elevation enhanced the spatial detail by 401 

making the air temperatures cooler in mountainous places and hotter at lower elevations near 402 

the sea. However, the effect of urban morphology on the air temperature distribution could not 403 

be reflected. When the LCZ-based landscape drivers were considered (Fig. 7(b)), the effect of 404 

urban agglomerations on the air temperature distribution was revealed. 405 

 406 

Fig. 7 Comparing the impact of modelling with and without LCZ-based landscape drivers on the spatial 407 

detail of the air temperature estimation. (a) Mean air temperature at 21:00 for the 2019 warm season modelling 408 

without LCZ-based landscape drivers; (b) Mean air temperature at 21:00 for the 2019 warm season modelling 409 



with LCZ-based landscape drivers; (c) LCZ in 2019. 410 

Since the RF model spatially demonstrated the difference in air temperature between 411 

urban and rural areas, we analysed the difference in the RF model performance for estimating 412 

urban and rural air temperatures. Therefore, we first selected urban and rural stations from the 413 

86 weather stations. To exclude changes in the station types due to urbanisation, we counted 414 

the major land types around a station within a radius of 500 m. LCZs 1–10 are urban and LCZs 415 

A–H are rural. If more than 50% of the land around a station was urban LCZs, it was denoted 416 

as an urban station; otherwise, it was denoted as a rural station. Ultimately, only the stations 417 

whose station type remained constant throughout 2008–2009 were included in the subsequent 418 

urban–rural analysis. Consistent with Section 3.3, we selected the gaps in R2, RMSE and the 419 

deviation ratio between urban and rural areas to measure the difference in the RF model 420 

performance in urban and rural areas. 421 

Fig. 8 shows the differences in R2 between urban and rural areas in different years for the 422 

hourly air temperature estimations. In the figure, R2
urban–rural greater than zero denotes that R2 423 

is better for air temperature estimation in urban areas than rural areas. The results show that at 424 

night (20:00–07:00), which is also the period that continuously maintains good overall R2, 425 

urban areas afforded better R2 than rural areas. However, during the daytime period, when the 426 

overall R2 was good (14:00–16:00), R2 in urban areas was generally lower than that in rural 427 

areas. In contrast, during the remaining periods, when the overall R2 was relatively low, the 428 

urban and rural areas did not exhibit a general advantage or disadvantage in R2 across the years. 429 



 430 

Fig. 8 Differences in R2 between urban and rural areas in different years for hourly air temperature 431 

estimations 432 

A similar comparison was applied for RMSE. Fig. 9 shows the differences in RMSE 433 

between urban and rural areas in different years for the hourly air temperature estimations. 434 

Since RMSE measures the absolute error between the estimated and observed air temperatures, 435 

an RMSEurban–rural less than zero indicates that the estimated temperature in urban areas is closer 436 

to the observed temperature than that in rural areas, and vice versa. Unlike R2, RMSE was 437 

consistently smaller in urban areas than in rural areas throughout the day, indicating better 438 

performances in urban areas. 439 



 440 

Fig. 9 Differences in RMSE between urban and rural areas in different years for the hourly air temperature 441 

estimations. 442 

Figure 10 shows the urban–rural difference in the performance of the RF models in terms 443 

of the relative error by comparing the deviation ratios. A value of less than zero on the Y-axis 444 

signifies that urban areas afford a smaller deviation ratio than rural areas, signifying better 445 

model performance. The results show that the deviation ratio was consistently slightly lower 446 

in urban areas than rural areas for most nighttime hours. In contrast, the difference was 447 

insignificant during the daytime, or rural areas performed marginally better than urban areas. 448 



 449 

Fig. 10 Differences in the deviation ratio of the estimated hourly air temperatures between urban and rural 450 

areas in different years. ‘TEM 50%’ denotes the difference between the air temperatures observed at the middle 451 

50% urban/rural weather stations. 452 

4. Discussion 453 

4.1. Nighttime vs daytime estimation 454 

Overall, the results show that the RF models for estimating hourly air temperatures 455 

performed better at nighttime than daytime. This suggests that the dataset we created is 456 

appropriate for urban climate studies, such as UHI, which have been demonstrated to be 457 

typically more pronounced at nighttime than daytime58-60. Note that the overall R2 of the RF 458 

models was satisfactory, although R2 was negative for some hours, mainly since we directly 459 

calculated R2 using the estimated and observed temperatures instead of linearly regressing them 460 

before calculating R2. On the other hand, the estimated and observed temperatures maintained 461 



a high linear correlation (Pearson’s correlation coefficient, R) in almost all hourly periods 462 

(Figure S4–S14). 463 

To improve the relatively low accuracy of air temperature estimation during the daytime, 464 

we tried modelling adjustment. We separated the 7:00–21:00 period from the whole day for RF 465 

modelling. However, the adjusted daytime models did not significantly improve the estimation 466 

accuracy during the daytime and presented the same hourly accuracy trajectories as the whole-467 

day models in different years. Furthermore, we determined that the estimation accuracy always 468 

started decreasing in the morning after the sun rose and the fog gradually dissipated, it 469 

recovered in the early afternoon when the solar radiation was stable and then decreased again 470 

when the sun went down and the solar radiation decreased. The decrease in evaluation accuracy 471 

always occurred when there was a significant change in solar radiation. A similar situation has 472 

been observed in some other studies on spatial air temperature estimation, where the accuracy 473 

was lower in the daytime than in the nighttime61. Therefore, we infer that the variation in solar 474 

radiation due to the Earth’s rotation likely decreases the temperature estimation accuracy as it 475 

is the primary source of surface heat, subsequently causing a minor air temperature difference 476 

during the daytime than the nighttime62. However, due to the lack of local observation data, it 477 

is not included in the driving factors. Thus, we currently recommend using the nighttime 478 

portion of our dataset. 479 

4.2. Importance assessment of drivers 480 

According to the importance assessment of the drivers, the top importance drivers are 481 



mainly the meteorological drivers, 74 of the 90 selected drivers. Among them, RHU was the 482 

most important driver. The RHUs for each hour within the last 24 h were input into the 90 483 

drivers, totally contributing 52.9% importance. RHU from 1 h prior was the most important 484 

driver, contributing 40.9% importance, while RHUs from 10 h, 24 h and 16 h prior were also 485 

selected as the top 10 most important drivers. The current time (h) is the second most important 486 

driver (26.6%), demonstrating the inherent characteristics of air temperature at different times 487 

of the day. Additionally, PRSs for each hour within the last 24 h contributed a total of 7.2% 488 

importance. Simultaneously, the landscape and geographic (elevation, latitude and longitude) 489 

factors also evidently influence the final spatial pattern of temperature, contributing 5.9% and 490 

5.8% importance, respectively. Therefore, considering more landscape and physical drivers to 491 

finely depict the hourly air temperature pattern should be helpful. 492 

4.3. Landscape vs temperature pattern 493 

The spatial pattern of the air temperature estimations exhibited a pronounced landscape 494 

divide, which was associated with landscape drivers. Comparing the spatial air temperature 495 

patterns, the LCZ maps and Digital Elevation Model (DEM), we determined that the landscape 496 

divide appeared in the contiguous area of LCZ A (dense trees). In other words, air temperatures 497 

tend to be cooler in the mountainous regions with contiguous dense trees than in the areas of 498 

other land types, such as plains. Some users may be concerned about the accuracy of this hourly 499 

air temperature dataset in mountainous regions. However, since none of the weather stations 500 

are located in mountainous regions with continuous dense trees, we cannot specifically verify 501 

the air temperature estimation accuracy there. Therefore, we recommend that these users 502 



consider the factors of mountainous regions and plains when using this dataset. 503 

Furthermore, the urban–rural comparison showed that the models generally had better 504 

accuracy in urban areas. Moreover, the nighttime temperature pattern showed some correlation 505 

with urban morphology. The tracking of the early- and late-night temperature patterns revealed 506 

that air temperatures tend to fall more slowly in the core of metropolitan areas than in the urban 507 

fringe. Therefore, we believe that this product will be useful for urban-temperature-related 508 

studies. 509 

4.4. Comparison to other studies 510 

Using Fig. 6, we have demonstrated the advantages of ML over conventional interpolation 511 

methods in depicting the hourly air temperature distributions in terms of presenting spatial 512 

details. Simultaneously, our air temperature mapping accuracy is comparable to that of other 513 

studies. On the one hand, hourly air temperature mapping is not well practised. The existing 514 

hourly air temperature mapping studies35,61 typically achieve RMSE and MAE of 0.8–1.9 °C 515 

and 0.6–1.5 °C, respectively. On the other hand, the accuracy of our hourly air temperature 516 

mapping can be even better than that of the daily air temperature mapping. For example, a 517 

national-scale daily air temperature mapping using deep learning63 affords RMSE and MAE of 518 

2.0 and 1.5 °C, respectively. Overall, our hourly air temperature mapping achieves comparable 519 

or even better accuracy. 520 

Additionally, the previous hourly and daily air temperature estimation studies are mainly 521 

driven by multi-source remote sensing imagery; however, this study focused on integrating 522 



meteorological station data and remote sensing techniques for air temperature estimation. In 523 

the future, to improve the air temperature estimation accuracy, more available near real-time 524 

remote sensing imagery along with meteorological data and remote sensing techniques could 525 

be included. 526 

4.5. Potential applications 527 

Our proposed hourly temperature dataset has the potential for application in various fields. 528 

For example, this dataset provides air temperature maps with more spatial detail than traditional 529 

air temperature maps obtained by station interpolation, providing better weather service for 530 

relevant studies such, as UHI and heat wave. Additionally, the hourly air temperature maps can 531 

strongly support health-related heat exposure risk studies, such as blood pressure and 532 

myocardial infarction64,65. Moreover, air temperature is closely related to energy consumption66, 533 

precipitation67,68 and air pollution69. Therefore, the hourly air temperature maps can contribute 534 

towards affording an accurate assessment of urban environmental studies on a fine scale, such 535 

as at a building or community level70. 536 

4.6. Study limitations and future work 537 

Despite several benefits of this dataset, some limitations still exist. First, the 538 

meteorological spatial drivers used to predict air temperatures were obtained via Kriging 539 

interpolation. In the future, with more efficient interpolation methods, meteorological drivers 540 

with more spatially detailed information could further improve the accuracy of the air 541 

temperature maps. Second, the accuracy of this dataset is relatively low during the daytime, 542 



especially in the morning and at dusk. We believe that this is related to the rapid changes in 543 

solar radiation effected by the sun’s rising and setting. Therefore, hourly solar radiation could 544 

be added to the driving factor in future work. Third, the RF modelling herein only focused on 545 

the 1-km scale, and the optimal scale for RF models in air temperature estimation is a topic 546 

worth exploring in the future. Forth, although comparable to existing LCZ classification studies, 547 

the accuracy of the LCZ maps herein is still not flawless. In future work, improvements in LCZ 548 

map accuracy could help enhance the air temperature mapping performance. Furthermore, in 549 

the future, if hourly air temperature mapping is extended to cover the whole year, the effect of 550 

seasonal differences may need to be considered in the model. 551 

5. Conclusion 552 

Herein, we presented an hourly air temperature mapping method at 1-km resolution by 553 

adopting the ML (RF algorithm) technology. The method considered topography and LCZ-554 

based landscape drivers; consequently, the air temperature mapping maintained a satisfactory 555 

accuracy while affording a more detailed air temperature pattern than spatial interpolation 556 

methods. The generated hourly air temperature maps exhibited particularly outstanding 557 

accuracy during the nighttime and showed a pattern of slower cooling processes in the urban 558 

core during the nighttime than that in the urban fringe, which can help improve studies such as 559 

UHI. Moreover, the importance assessment of the driving factors revealed the essential 560 

contribution of relative humidity to air temperature mapping, while landscape drivers played a 561 

nonnegligible role. Furthermore, given the high spatiotemporal resolution, the generated air 562 

temperature mapping can remarkably contribute towards understanding the spatial patterns of 563 



urban climate and health-related heat exposure risk studies. 564 
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Table 1 Categories and definitions of local climate zone (LCZ) simplified from Stewart & Oke36 

LCZ types Built and land cover types 

LCZ 1 Compact high-rise 

LCZ 2 Compact mid-rise 

LCZ 3 Compact low-rise 

LCZ 4 Open high-rise 

LCZ 5 Open mid-rise 

LCZ 6 Open low-rise 

LCZ 7 Lightweight low-rise 

LCZ 8 Large low-rise 

LCZ 9 Sparsely built 

LCZ 10 Heavy industry 

LCZ A Dense trees 

LCZ B Scattered trees 

LCZ C Bush, scrub 

LCZ D Low plants 

LCZ E Bare rock or paved 

LCZ F Bare soil or sand 

LCZ G Water 

LCZ H Wetlands# 

# Wetlands is an additional LCZ type that adapted the land surface properties of coastal cities in the Guangdong province. 

Table 2 The accuracy of the RF models for each year 

Year R2 oob_score RMSE (℃) MAE(℃) 

2008 0.8036 0.7992 1.5112 1.0940 

2009 0.8127 0.8084 1.4592 1.0879 

2010 0.7684 0.7652 1.6049 1.1953 

2011 0.8202 0.8132 1.5062 1.0951 

2013 0.7685 0.7648 1.5498 1.1163 

2014 0.8272 0.8252 1.4336 1.0323 

2015 0.8197 0.8153 1.3368 0.9886 

2016 0.7725 0.7697 1.5097 1.1133 

2017 0.7810 0.7762 1.5145 1.1259 

2018 0.8041 0.7997 1.3607 1.0002 

2019 0.8234 0.8188 1.5165 1.1100 

Mean 0.8001 0.7960 1.4821 1.0872 

Table

https://www.editorialmanager.com/stoten/download.aspx?id=6084342&guid=140afb00-9910-4574-816a-5e6c84618feb&scheme=1
https://www.editorialmanager.com/stoten/download.aspx?id=6084342&guid=140afb00-9910-4574-816a-5e6c84618feb&scheme=1
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