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RESEARCH HIGHLIGHT 20 

 Applying LUR modelling method for fine-scale spatiotemporal UHI estimation. 21 

 Adopting LUR in subtropical high-density urban environment. 22 

 10 LUR models were developed for daytime and nighttime UHI in different seasons. 23 

 Moderately good performance (R
2
 of 0.6-0.7) were achieved in resultant models. 24 

 UHI are largely determined by the LU/LC and urban geomorphometry. 25 

 26 
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ABSTRACT  30 

Urban heat island (UHI) effect significantly raises the health burden and building energy 31 

consumption in the high-density urban environment of Hong Kong. A better understanding of 32 

the spatiotemporal pattern of UHI is essential to health risk assessments and energy 33 

consumption management but challenging in a high-density environment due to the sparsely 34 

distributed meteorological stations and the highly diverse urban features. In this study, we 35 

modelled the spatiotemporal pattern of UHI effect using the land use regression (LUR) 36 

approach in geographic information system with meteorological records of the recent 4 years 37 

(2013-2016), sounding data and geographic predictors in Hong Kong. A total of 224 38 

predictor variables were calculated and involved in model development. As a result, a total of 39 

10 models were developed (daytime and nighttime, four seasons and annual average). As 40 

expected, meteorological records (   ,    ,     ) and sounding indices (KINX, CAPV and 41 

SHOW) are temporally correlated with UHI at high significance levels. On the top of the 42 

resultant LUR models, the influential spatial predictors of UHI with regression coefficients 43 

and their critical buffer width were also identified for the high-density urban scenario of 44 

Hong Kong. The study results indicate that the spatial pattern of UHI is largely determined by 45 

the LU/LC (RES1500, FVC500) and urban geomorphometry (  ,    ,    ,      and   ) in a 46 

high-density built environment, especially during nighttime. The resultant models could be 47 

adopted to enrich the current urban design guideline and help with the UHI mitigation. 48 

KEYWORDS 49 
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Nomenclature 52 

Symbols and abbreviations 53 

A.A.D.T Annual Average Daily Traffic 

ADDRESS A Distance Decay REgression Selection Strategy 

AF Total frontal area of all buildings in the urban lot along with the wind direction 

AICc Akaike information criterion 

AP Building footprint area 

AT The area of a certain urban lot 

AWSs Automatic weather stations 

BIC Bayesian information criterion 

C&SD Hong Kong Census and Statistics Department 

CDh Drag coefficient 

d The radius of the hemisphere circle for SVF calculation 

DEM Digital elevation model 

GIS Geographical information system 

h Building height 

HKO Hong Kong Observatory 

HKPSG Hong Kong Planning Standards and Guidelines 

HKTD Hong Kong Transport Department 

ISA Impervious surface area ratio  

K Kármán's constant 

LCZ Local climate zone 

LOOCV Leave-one-out cross validation 

LST Land surface temperature 

LU/LC Land use and land cover 

LUR Land use regression 

MLR Multiple linear regression 

NDBI Normalized Difference Building Index 

NDVI Normalized Difference Vegetation Index 

P(θ) The probability of wind direction θ. 

PlanD Hong Kong Planning Department 

p-value Significant level 

r Coefficient of correlation  

R
2
 Coefficient of determination 

RMSE  Root-mean-square error 

RS Remote sensing 

SB/VC Street Block/Village Clusters 

SUHI Surface urban heat island 

UHI Urban heat island 

V Total building volume of each district 

v, Spd Wind speed (m/s) 

Var Regression model predictor 

VIF Variance inflation factor 

z0 Roughness length 

α Slope aspect  
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αm, βn Slopes of regression model predictors 

αr(θ)  The angle between the slope aspect α of a certain location and wind direction θ  

β Slope angle 

γ Regression model intercept  

ε Residual 

θ Wind direction (0-360°) 

λF, FAI Frontal area index 

λP Building coverage ratio  

φ  Horizon angles 

Ψsky,SVF Sky view factor 

Ф Azimuth directions 

 54 

The abbreviations of all land use variables/predictors have been included in Table 1, thus not 55 

be included in this nomenclature.  56 
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1. INTRODUCTION 57 

Over the past few decades, the negative impacts of climate and weather conditions on public 58 

health have been identified as an issue of increasing concern (Patz et al., 2005; WHO, 2003). 59 

To be more specific, impacts of climate change (especially, the trend of global warming) and 60 

the intensifying Urban Heat Island (UHI) effect due to rapid urbanization lead to much more 61 

frequent, longer and more severe heatwave events in urban areas (Li and Bou-Zeid, 2013). 62 

UHI effect refers to the phenomenon that the ambient air temperature in highly-urbanized 63 

areas is higher than the rural area and natural lands (Rizwan et al., 2008). Rapid urbanization 64 

processes change the natural landscape into highly artificial environments, which change the 65 

land surface geomorphometry as well as the thermal properties (e.g. emissivity, permeability). 66 

As a result, the radiation balance in the urbanized area is greatly different from the 67 

neighbouring rural area. Urbanization also introduces a large amount of anthropogenic heat 68 

which further exacerbates the UHI intensity (measured by the air temperature difference 69 

between urban and rural area) (Taha, 1997). The subsequent negative impacts on public 70 

health have been identified as serious threats to public health and have raised concerns.  71 

A number of studies have proved strong associations between the increases in health risks 72 

and UHI effect with intensified heat waves, both in the long and short term, worldwide 73 

(Anderson and Bell, 2009; Buechley et al., 1972; Clarke, 1972; Meehl and Tebaldi, 2004) 74 

and locally in Hong Kong (Goggins et al., 2012; Yan, 2000). It has been found that a 1°C 75 

increase in air temperature of 29°C is associated with a 4% increase in mortality in those 76 

areas of Hong Kong with high UHI intensity. In contrast, the corresponding mortality 77 

increase in low UHI intensity areas is less than 1% (Goggins et al., 2012). This finding 78 

indicates the UHI effect could lead to a much higher local heath burden under the same 79 

regional weather background. The above implies that a better understanding and more 80 
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detailed information of the spatiotemporal pattern of UHI are urgently needed for urban 81 

environmental management and heat-related health risk assessment. For instance, local 82 

scholars emphasize that a hot weather warning system might be useful to reduce elderly 83 

mortality (Chau et al., 2009). The detailed information of the spatiotemporal pattern of UHI 84 

will play an important role in that. 85 

In Hong Kong, hourly weather conditions are currently observed and recorded by a well-86 

equipped local monitoring network maintained by the Hong Kong Observatory (HKO). 87 

Currently, it contains 85 well-instrumented automatic weather stations (AWSs). In this 88 

present study, the data of ambient air temperature are obtained from 42 AWSs of this network 89 

(Figure 2). The local meteorological records provide fine temporal resolution for UHI studies. 90 

However, the real challenge of a local UHI study is that, Hong Kong has a total land area of 91 

around 1,100 km
2
 and with extremely heterogeneous urban settings (including but not limited 92 

to topography, land coverage, natural landscape, land use, building form and population 93 

distribution, etc.). This heterogeneity results in large ambient air temperature variations 94 

between different locations of the city, which cannot be effectively observed by the sparsely 95 

distributed meteorological stations. This consequently introduces the issue of using the 96 

meteorological records from the closest AWSs. The distance between the site and the AWS 97 

may lead to uncertainties and even errors in the mapping of the spatiotemporal pattern of the 98 

UHI and further investigation of heat-related health risks at the community level. Moreover, 99 

the identification of hotspots and problematic areas of heat-related health risks will be 100 

difficult if only the local monitoring network is used. 101 

Remote sensing (RS) satellite-based methods are also popularly used to explore the spatial 102 

structure of UHI (Gallo et al., 1995; Tomlinson et al., 2011), because these methods provide 103 

sufficient spatial information at a relatively fine resolution (90-120m) (Liu and Zhang, 2011; 104 
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Nichol and Wong, 2005). However, the main issue of using satellite images is that the 105 

retrieved UHI measurements are based on land surface temperature (LST) not the ambient air 106 

temperature. It is a known fact that the diurnal cycle of atmospheric UHI and surface UHI 107 

(SUHI) are considerably different (Roth et al., 1989). The atmospheric UHI is larger during 108 

nighttime while the SUHI is larger during the daytime. Using SUHI for heat-related health 109 

risk assessment may introduce estimation error. Other vegetation and land use/land cover 110 

indicators, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference 111 

Building Index (NDBI) and impervious surface area ratio (ISA), are also commonly retrieved 112 

and used for UHI estimation (Zhang et al., 2009; Zhou et al., 2014b). However, the use of 113 

these indexes alone may be still insufficient for UHI estimation in Hong Kong due to the 114 

cloudy weather and the occlusion issue among high-rise buildings.  115 

To overcome the above limitations of RS-based UHI studies, an attempt has been made to 116 

quantify the UHI intensity by classifying the near surrounding of a very limited number of 117 

weather stations (17 stations) using the concept of local climate zone (LCZ) classification 118 

with long-term monitored data (Siu and Hart, 2013). Attempts have been made to quantify 119 

the correlations between UHI and urban surface geometry with statistical algorithm as well 120 

(Svensson, 2004; Unger, 2004). In Hong Kong, a significant correlation has been found 121 

between the intra-urban air temperature difference and a surface-geometrical parameter – sky 122 

view factor (SVF) (Chen et al., 2012), which means that the incorporation of surface 123 

geometry as predictors will help improve the accuracy of UHI estimation. However, there are 124 

still some general limitations of the inner LCZ variability and the issues of unclassifiable 125 

areas due to the extremely heterogeneous city form (Leconte et al., 2015). In some cases, the 126 

results are also sensitive to the spatial scale/resolution used for data analysis (Kotharkar and 127 

Bagade).  Moreover, it can be observed that the detailed methods of data processing vary 128 

between different studies despite the standardization efforts of LCZ. Therefore, a 129 
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standardized method is necessary as a supplement to avoid the current limitations of 130 

unclassifiable areas and also the differentiation in data processing among different studies. 131 

Land Use Regression (LUR) is a popularly used and standardized statistical method in the 132 

estimation of spatial variation of environmental exposure at a fine scale and has been widely 133 

adopted in public health studies (Hoek et al., 2008; Ryan and LeMasters, 2007; Xie et al., 134 

2011). LUR estimates the environmental exposure level of locations/individuals in a study 135 

area by treating them as the response variable of a multiple linear regression model (MLR) of 136 

several explanatory variables resulting from geographical predictors and urban indices (such 137 

as land use, traffics and population) in a series of buffers of the receivers’ location. Using 138 

statistical algorithms in geographical information system (GIS), LUR can accurately estimate 139 

the long-term averaged environmental exposure level in unmonitored areas based on existing 140 

monitoring locations. An attempt has been made in applying LUR method in the investigation 141 

of the effect of land use on temperature during heat waves (Zhou et al., 2014a). Furthermore, 142 

recent LUR research have focused on developing temporal-resolved LUR models (Kloog et 143 

al., 2012; Saraswat et al., 2013). These temporal-resolved models allow for a series of 144 

mappings of spatiotemporally varying environmental exposure level at a finer spatial 145 

resolution compared to the RS results (Hoek et al., 2008). Therefore, temporal-resolved LUR 146 

models could be helpful in the process of health risk assessment and further environmental 147 

policy-making. 148 

The objective of this present study is to estimate the spatiotemporal variation of UHI for 149 

high-density Hong Kong for the purpose of providing a good reference for heat-related health 150 

risk assessment. In Hong Kong, spatially varying urban surface characteristics (both the 151 

natural landscape and artificial environment) significantly modifies the local meteorological 152 

conditions, and subsequently affects the intraurban UHI pattern. Moreover, the intraurban air 153 
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temperature difference is also affected by the non-uniformly distributed local anthropogenic 154 

heat sources. In this study, for the first time, we introduce the LUR method to estimate the 155 

spatiotemporal UHI in Hong Kong by incorporating LUR modelling with a comprehensive 156 

set of geographic/meteorological predictors.  157 

2. MATERIALS AND METHODS 158 

Traditionally, UHI is defined as the air temperature difference between urban and rural areas. 159 

However, it is difficult to define the specific terms of “urban” and “rural” in the spatially 160 

varied and unique urban context of Hong Kong (Siu and Hart, 2013). Assessing the heat-161 

related health risk need as detailed as possible spatiotemporal information of UHI rather than 162 

a simple value of air temperature difference between urban and rural areas. Therefore, in this 163 

study, air temperature measurement from the HKO AWSs network over the years of 2013-164 

2016 are used as the proxy for investigating the UHI effect, as such used as the response 165 

variable for spatiotemporal LUR modelling. A comprehensive set of 166 

geographic/meteorological predictors (land cover, urban indices and meteorological sounding 167 

data) were selected as explanatory variables and calculated in GIS by following the buffer-168 

based analysis process of LUR method (Ryan and LeMasters, 2007). After developing the 169 

LUR model, the spatiotemporal distribution of air temperature can be mapped for UHI 170 

investigation and also adopted as the basis for public health assessment. Figure 1 shows the 171 

workflow of the LUR approach used in this present study. 172 
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 173 

Figure 1. The workflow chart of this present LUR modelling study.  174 

2.1 RESPONSE VARIABLES - AIR TEMPERATURE MEASUREMENTS. LUR studies 175 

typically use an environmental exposure sample set of 20−100 fixed reference points within 176 

the study area (Hoek et al., 2008). As mentioned, hourly air temperature measurements at 42 177 

AWSs of HKO meteorological monitoring network over Hong Kong are available for this 178 

study which is much more than a previous study (17 stations involved only) (Siu and Hart, 179 

2013). Hourly meteorological records of the years 2013-2016 were obtained from HKO. 180 

Daily air temperature were calculated in terms of daytime and nighttime average to separately 181 

develop models so that the difference of UHI pattern between day and night can be observed. 182 

The annual and seasonal averages (Spring - Mar to Apr; summer - May to Aug; Fall - Sep to 183 

Nov; winter - Dec to Feb (Chin, 1986)) of air temperature are also calculated to understand 184 

the seasonal difference of the UHI pattern. Figure 3 and Figure 4 show the data plot of daily 185 

average air temperature of different AWSs (by grouping the data by seasonal periods and 186 

separating them in daytime and nighttime). The above data are used as response variables to 187 
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develop the LUR models. A total of ten models will be developed (daytime and nighttime, 188 

four seasons and annual average). 189 

 190 

Figure 2. The locations of 42 available HKO AWSs in the local weather observation network 191 

of Hong Kong.  192 
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 193 

Figure 3. Seasonal data plot of daily averaged daytime air temperature observations. 194 
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 195 

Figure 4. Seasonal data plot of daily averaged nighttime air temperature observations. 196 

2.2 WEATHER RECORDS AND METEOROLOGICAL VARIABLES AS TEMPORAL 197 

PREDICTORS. Besides the hourly records of air temperature (  ), other available hourly 198 

weather data include wind speed (   ), rainfall (  ), mean sea level pressure (    ) and 199 

cloudiness (   ) were also requested from HKO. Rainfall measurements are not available 200 
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for a few of those AWSs. Therefore, observatory data were assigned to the nearest AWS for 201 

those with no available records. A total of 18 sounding indices were also used in this study as 202 

model predictors (Table 1) because the atmospheric stability is also closely related to the 203 

spatial pattern and intensity of UHI (Lee, 1979; Oke, 1982). Relative humidity (  ) was not 204 

used as a predictor variable because it is inherently correlated with   .  205 

2.3 GEOGRAPHIC VARIABLES AS SPATIAL PREDICTORS. A total of five categories of 206 

data sets were prepared as the geographic predictors for the LUR modelling of UHI in this 207 

present study. They are (1) land use distribution, (2) population distribution, (3) traffic 208 

volume, (4) natural geography and (5) urban surface geomorphometry. The ambient    is 209 

jointly determined by the local condition within a small scale neighborhood and the regional 210 

background condition of a larger area. To consider both the local and regional effects. All 211 

predictors were calculated in a series of varied buffer widths (range from 50m to 5000m) for 212 

each AWS (Table 1). 213 

2.3.1 LAND USE AND LAND COVER (LU/LC). Land use distribution as an influential 214 

factor of UHI (Bottyán and Unger, 2002; Oke, 1982) has been used for regional/urban 215 

climatic mapping (Katzschner and Mülder, 2008), thus adopted as the predictors of the LUR 216 

modelling in this study. The land use distribution of Hong Kong was requested from the 217 

Hong Kong Planning Department (PlanD). Based on the literature of previous LUR studies 218 

15
, the complex land use types of Hong Kong was reclassified as the following types: 219 

Residential area (RES); Commercial area (COM); Industrial area (IND); Government area 220 

(GOV) and Open space area (OPN). Using buffering analysis, we calculated the total area 221 

(measured in the unit of m
2
) of each reclassified land use type in the buffers for each AWS as 222 

a predictor variable. Fractional vegetation cover (FVC) was also used as a spatial predictor 223 
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variable of UHI because it depicts the spatial coverage of vegetation and also implies the 224 

fraction of pervious and impervious surface. 225 

2.3.2 POPULATION DISTRIBUTION. The population distribution has been commonly 226 

investigated in UHI studies (Oke, 1973) because it is a major factor of profiling 227 

anthropogenic heating in urban areas (Fan and Sailor, 2005; Sailor and Lu, 2004). In this 228 

present study, the most recent population census data of the year 2011 is obtained from Hong 229 

Kong Census and Statistics Department (C&SD). The population distribution was mapped 230 

using the digital boundary of Street Block/Village Clusters (SB/VC, obtained from PlanD, 231 

which is a standard planning level of Hong Kong) for calculating the population density 232 

(people/km
2
) in the buffers of each AWS. 233 

2.3.3 TRAFFIC COUNTING. UHI is exacerbated by the anthropogenic heating from 234 

vehicles (Yuan and Bauer, 2007). Therefore, it is necessary to examine the possible impact of 235 

urban traffic in a UHI study. The number of vehicles in different road segments in Hong 236 

Kong is counted at more than 800 counting stations and averaged to obtain the Annual 237 

Average Daily Traffic (A.A.D.T) data (HKTD, 2016). The A.A.D.T data and spatial 238 

distribution of the counting stations are available at the Hong Kong Transport Department 239 

(HKTD) in their “Annual Traffic Census”. In this study, to map the spatial distribution of the 240 

traffic volume, the A.A.D.T data were aggregated as a raster data layer in GIS using a grid 241 

system with a spatial resolution of 100m (corresponding to the smallest buffer size used in 242 

this study which is 50m) based on the road network. The traffic volume of public transport 243 

vehicles and private/government vehicles were mapped separately as two data layers in order 244 

to differentiate waste heat sources of different types of vehicles. The traffic volume within 245 

the neighboring area of each AWS was then calculated by using buffering analysis.  246 
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2.3.4 NATURAL GEOGRAPHY AND LANDSCAPE. A set of commonly-used variables 247 

was selected as the predictors to profile the surrounding natural geography of AWSs: x 248 

coordinate, y coordinate, altitude, nearest distance to waterfront, distance to city parks, 249 

distance to country parks. All spatial data were projected to the HK1980 coordinate system.  250 

2.3.5 URBAN SURFACE GEOMORPHOMETRY. Densely-built urban forms significantly 251 

change the aerodynamic and thermal properties of the ground surface, and hence alter the 252 

wind field and radiation/energy balance near the ground surface and result in considerable 253 

urban microclimatic variation (Arnfield, 2003). Urban form and building density differences 254 

result in spatial variability in the intraurban air temperature (Givoni, 1998). Therefore, the use 255 

of those commonly-used land use variables mentioned above alone may not be sufficient in 256 

the investigation of the intraurban air temperature differences in the highly varied urban 257 

environment of Hong Kong. To consider the urban geomorphometric variability and its 258 

influence on the spatial pattern of UHI in a high-density urban environment, a set of urban 259 

surface geomorphometric parameters was calculated and used as predictor variables in LUR 260 

modelling. They are the mean building height (  ), building ground coverage ratio (  ), 261 

building volume density (   ), sky view factors (    ), weighted frontal area index based 262 

on the probability of wind directions (   ), urban surface roughness length (  ). Among these 263 

parameters,    and    are the most basic parameters of describing the geometrical 264 

characteristics of building bulks: 265 

   
 

 
   

 

   
 

        

 

   
     

Where    is the averaged building height of a district.   is the total number of buildings in the 266 

district.    is the height of the building  .    is the area of the district.     is the footprint area 267 
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of the building  . Building bulks absorb the shortwave solar radiation during the daytime such 268 

that the volume of the buildings determines the capacity of heat storage. During the nighttime, 269 

a larger building volume blocks more longwave radiation (released by the buildings) than an 270 

open area, and consequently traps more heat within the city. Therefore, a higher the building 271 

volume density leads to a larger heat capacity (Ng and Ren, 2015).     is calculated as 272 

follows: 273 

        

 

   
 

             

Where the total building volume of each district in the city is calculated as  .   is the total 274 

number of the districts.      is the highest   among all districts in the city.     , as a 275 

measure of urban geometry, has been widely used to analyze the intraurban variation for the 276 

three decades (Chen et al., 2012; Eliasson, 1990; Hillevi and Deliang, 1999). It was 277 

calculated by following the formula proposed by Dozier and Frew (1990 using the 1m-278 

resolution digital elevation model (DEM) of the entire Hong Kong: 279 

     
 

  
                                             

  

 

 

where the      value is calculated for each pixel of the DEM with the corresponding slope 280 

aspect α, slope angle β and the horizon angles φ in azimuth directions Ф of the hemisphere 281 

circle with a search radius of d. Variables     and    are related to the conditions of urban 282 

ventilation which are influential in the cooling potential as well. It has been proved that the 283 

incorporation of     and    enhances the LUR model performance of air pollution in a high-284 

density scenario (Shi et al., 2017). Incorporating these variables could possibly improve the 285 

estimation accuracy of    under such scenario as well. In this present study, they were 286 

calculated based on the local building dataset using following equations: 287 
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where        is the frontal area of building   under the scenario of wind direction  .      is 288 

the probability of the scenario of wind direction  . CDh is drag coefficient considered as 0.8. 289 

K is the Kármán's constant of 0.4. Figure 5 shows the spatial distribution of several spatial 290 

predictors as examples. We use a 10m-spatial resolution for the mapping of all urban 291 

geomorphometric parameters, which is informative for fine-scale LUR modelling of air 292 

temperature variability. 293 

Table 1. List of the temporal and spatial predictor variables for LUR modelling of UHI. 294 

Categories Predictor variables Unit a Abbreviation 

Temporal Predictors 

Available hourly weather 

data (4 variables) 

Wind speed (measured at the WGL as the background wind 

condition) 

m/s     

Rainfall mm    

Mean sea level pressure (measured at the location of WGL) hPa      

Cloudiness (measured at the location of HKO) Oktas     

Atmospheric sounding 

indices (18 variables) 

K index  KINX 

SWEAT index  SWET 

Lifted index  LIFT 

LIFT computed using virtual temperature  LIFV 

Showalter index  SHOW 

Cross totals index  CTOT 

Total totals index  TTOT 

Convective Inhibition J/kg CINS 

Mean mixed layer mixing ratio g/kg MLMR 

Convective Available Potential Energy J/kg CAPE 
CAPE using virtual temperature J/kg CAPV 
CINS using virtual temperature J/kg CINV 
Bulk Richardson Number  BRCH 
Bulk Richardson Number using CAPV  BRCV 
Mean mixed layer potential temperature K MLPT 
Temperature of the Lifted Condensation Level K LCLT 
Total precipitable water mm PWAT 
Pressure of the Lifted Condensation Level hPa LCLP 

Spatial Predictors 

LU/LC (Total land area 

within certain buffer width b, 

6 variables) 

 

Residential use m2 RES 
Commercial use m2 COM 
Industrial use m2 IND 
Government use m2 GOV 
Open space m2 OPN 
Fractional vegetation cover % d FVC 

Population distribution (1 

variables) 

Population density People

/km2 
POP 

Traffic counting (A.A.D.T, 2 

variables) c 

A.A.D.T of public transport vehicles vehicl

es 
AADTPT 

A.A.D.T of private/government vehicles vehicl AADTPG 
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es 

Natural geography (based on 

HK1980 coordinate system,6 

variables) 

Longitude m  X 
Latitude m Y 
Altitude/elevation of the monitoring station m Z 
Distance to waterbody m d_water 
Distance to city parks m d_cityp 
Distance to country parks m d_countryp 

Urban surface 

geomorphometry (6 

variables) 

Mean building height m    
Building grounding coverage ratio %    
Building volume density %     

Sky view factor e %      

Weighted frontal area index based on the probability of 16 

wind directions 

     

Urban surface roughness length m    
a: Empty cell means the data of the corresponding variable is a dimensionless number; 

b: The bufffer width series: 50, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000m; 

c: More details are available at the publicly assessable annual traffic census by HKTD at http://www.td.gov.hk/ 

d: Data normalization (Percentage value/100). All percentage values were normalized into [0-1]; 

e: Point      value was represent as the      within a buffer width of 0m. 

 295 

Figure 5. Example mapping of spatial distribution of spatial predictors. 296 

http://www.td.gov.hk/
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2.4 STATISTICAL MODELING AND VALIDATION METHODS. The study aims to 297 

develop LUR models for the investigation of the UHI spatiotemporal pattern by using spatial 298 

and temporal predictors as explanatory variables. Statistical regression modelling was 299 

conducted to develop the LUR models for investigating daytime and nighttime UHI 300 

spatiotemporal pattern in different seasons. Daytime and nighttime daily averaged    were 301 

used as the response variables for the model development with those predictor variables listed 302 

in Table 1 as explanatory variables. As commonly used in previous studies, the multiple 303 

linear regression (MLR) modelling method was conducted in this study. The structure of a 304 

spatiotemporal LUR modelling by using MLR is as follow: 305 

                                                        

where      is the observed air temperature at the location i on day j. The model includes   306 

temporal predictors and   spatial predictors.    , …,    are the slopes of values of the 307 

temporal predictors       ,…,       on day j.   ,…,    are the slopes of spatial predictors 308 

      ,…,       at the location i on day j.   is the model intercept and   is the residual. 309 

2.4.1 SENSITIVITY TEST FOR DETERMINING THE CRITICAL BUFFER WIDTH FOR 310 

SPATIAL VARIABLES. Buffering analysis was performed for 15 buffer-based spatial 311 

predictors using 13 buffer width. Together with other variables, a total of 224 explanatory 312 

variables need to be examined for model development. The optimal spatial scales in the 313 

evaluation of the microclimatic impact of different spatial variables are varied. For example, 314 

it has been found that the air temperature variation has a higher correlation with the averaged 315 

     calculated within a 100m buffer than the      calculated for the point location (Lindberg, 316 

2007). A previous LUR study in Hong Kong also demonstrates that it is possible that there 317 

are two critical buffers depicting the influence of the same variable at different spatial scales 318 

(Shi et al., 2017). Sensitivity tests were performed for each buffer-based variable by using 319 
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multivariate analysis to understand the sensitivity of the variables’ value to different buffer 320 

widths and determine the critical buffer width for the variables. In this present study, the 321 

critical buffers for each variable were determined by adopting the “A Distance Decay 322 

REgression Selection Strategy (ADDRESS)” developed by Su et al. (2009 in their previous 323 

LUR modelling studies. A simple linear regression between each buffer-based variable within 324 

each buffer width and daytime/nighttime daily averaged    was performed for each of the 325 

four different seasons in different time periods (2013, 2014, 2015, 2016 and 2013-2016) to 326 

check if there is any hidden temporal trend across the study period. It is necessary to confirm 327 

whether the correlations are temporally robust when combining with spatial variability. 328 

Pearson correlation coefficients (r) were calculated and plotted as a distance-decay curve of 329 

distance. Only those buffer-based variables with the highest |r| among all buffers and at the 330 

critical positions of the curves were selected as the explanatory variables for further stepwise 331 

regression modelling (details of the determination criterion refers to Su et al. (2009). 332 

Selecting explanatory variables at the critical buffer from an extensive variables data set 333 

avoids iterative regression computations and the over-fitting problem during the stepwise 334 

MLR modeling caused by the multicollinearity among too many independent variables 335 

(Babyak, 2004).  336 

2.4.2 STEPWISE MLR MODELLING. Stepwise MLR modelling was performed to develop 337 

the daytime and nighttime UHI estimation LUR models for different seasons (spring, 338 

summer, fall and winter). During the stepwise regression process, the models were initially 339 

determined using two different modelling criteria: minimum Akaike information criterion 340 

(AICc) and minimum Bayesian information criterion (BIC), in both forward and backward 341 

directions using SAS JMP statistical software. The model with the highest adjusted 342 

coefficient of determination (      ) was selected. As the results, a total of 10 models were 343 

developed (daytime and nighttime, four seasons and annual average). Multicollinearity (the 344 
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condition when predictor variables are highly correlated with each other) leads to limited 345 

independent explanatory capacity and introduces suspicious regressions.(Franke, 2010) In the 346 

subsequent process, the significant level (measured as p-value) and variance inflation factor 347 

(VIF) of each explanatory variables in all these resultant models were checked to identify 348 

multicollinearity issues in all resultant regression models. As a result, variables with p-value > 349 

.0001 and VIF > 2 were excluded.  350 

2.4.3 MODEL VALIDATION. To evaluate the model performance, we conducted the leave-351 

one-out cross-validation (LOOCV) to compare the difference between the monitored    and 352 

estimated   . The root-mean-square error (    ) and the    from the LOOCV (      
 ) 353 

were used to validate the resultant LUR models: 354 

       
 

 
      

       
 

 

    

 

      
  

      
      

 
    

           
  

    

 

where      is the monitored air temperature at the  location i on day j.     
  is the estimated air 355 

temperature at the location i on day j acquired by using the LUR models.     is the average 356 

value of estimated air temperature     
 . n is total amount of data points in the spatiotemporal 357 

data set used for LUR modelling. 358 

3. RESULTS 359 

3.1 CRITICAL BUFFER WIDTH OF SPATIAL VARIABLES. As mentioned, a sensitivity 360 

test was performed to determine the critical buffer of spatial variables. Only those spatial 361 

variables calculated within its corresponding critical buffers were selected as the explanatory 362 

variables for further stepwise regression modelling. Results of the sensitivity test (Table 2) 363 
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indicate that the critical buffers of these buffer-based spatial predictors remain unchanged 364 

across different years. Most of the spatial variables have the same critical buffer width across 365 

the day and night (except those spatial variables with diurnal effects). In short, the 366 

consistency of critical buffer width among different years implies that the modelling was 367 

temporally robust. RES, COM, GOV land use have the same critical buffer of 1500m while 368 

different buffers of 750m and 400m have been determined for IND and OPN land use. The 369 

building functions and related anthropogenic heat emission in IND land use area are different 370 

from other land use types. OPN land use in Hong Kong refers to public open space, urban 371 

parks, country parks and other vegetated areas. A feature of OPN areas is that they are 372 

beneficial to its surroundings by providing better urban ventilation and vegetation cooling 373 

effects. This is also a possible explanation to the similar critical buffer width between OPN 374 

and FVC. Two critical buffers have been identified for    and    . The larger buffer 375 

(1500m) is the same as the RES, COM, GOV land use and that represents the influence of the 376 

spatial pattern of land use. The smaller buffer (300m) of    and     is the same as the two 377 

other geomorphological variables    and    , and that indicates the microscale impacts of 378 

building geometry on the local microclimatic condition. These findings are also consistent 379 

with the optimal scale of LCZ site determined for the high-density scenario of Hong Kong by 380 

a previous local study (Lau et al., 2015).     has been adopted as an indicator of detecting the 381 

urban air path (Gál and Sümeghy, 2007; Gál and Unger, 2009) and estimating the spatial 382 

variability of UHI (Cardoso et al., 2017; van Hove et al., 2015). The critical buffer identified 383 

for     (750m) by this study could also provide a reference for the experimental design of 384 

field measurement of urban climate (Voogt and Oke, 2003). The critical buffer of      in the 385 

built environment of Hong Kong is 50m which is smaller than the findings in a previous 386 

study (Lindberg, 2007). This implies that the effect of geometrical variable      on 387 
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radiation/energy balance and ventilation is more localized (basically at the street canyon scale) 388 

in a high-density urban environment. 389 

3.2 THE RESULTANT LUR MODELS FOR UHI ESTIMATION. A total of ten models 390 

were developed for daytime and night UHI in four different seasons by using the 4-year 391 

dataset. The resultant models are shown in Table 3 (regression plots were shown in Figure 6). 392 

All models achieve a high significant level that fulfills the criterion of p-value < .0001. The 393 

       values of these ten models range from 0.562 to 0.762. Most of the models have an        of 394 

approximately 0.65 - 0.75 which is a moderately good model performance. The      of 395 

nighttime models are generally smaller than daytime models. The results of model cross-396 

validation show that the       
  of all models are at a very close level with the corresponding 397 

       and that validates the reliability of the model performance. In another prior study, the 398 

Kriging/Co-kriging geo-interpolation method was used to provide an estimation of the long-399 

term averaged summertime UHI spatial pattern for Hong Kong (Cai et al., 2017). The Z, 400 

NDVI, and      were used as covariates during the interpolation process. The prediction 401 

accuracy of all interpolation results measured by the       
  ranges from 0.574 to 0.614. This 402 

accuracy is still lower than the summertime LUR models developed by this present study 403 

despite the temporally aggregated data only provide a long-term averaged estimation (without 404 

time-series information). The better performance of LUR method indicates that incorporating 405 

land use, building variables and sounding data provides better fine-scale spatiotemporal 406 

estimation in unmonitored areas. 407 

 408 

Table 2. Critical buffers of the spatial predictors by daytime/nighttime and seasons (unit: m).  409 

 Spring Summer Fall Winter 

Predictors Daytime Nighttime Daytime Nighttime Daytime Nighttime Daytime Nighttime 

RES 1500 1500 1500 1500 1500 1500 1500 1500 
COM 1500 1500 1500 1500 1500 1500 1500 1500 
IND 750 750 750 750 750 750 750 750 

GOV 1500 1500 1500 1500 1500 1500 1500 1500 
OPN 400 400 400 400 400 400 400 400 
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FVC 400 500 400 500 500 500 500 500 

POP 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000 400,2000 

AADTPT 1000 1000 1000 1000 1000 1000 1000 1000 

AADTPG 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000 200,1000 

   1500 300,1500 1500 300,1500 1500 300,1500 1500 300,1500 

   300 300 300 300 300 300 300 300 

    1500 300,1500 1500 300,1500 1500 300,1500 1500 300,1500 

     50 50 50 50 50 50 50 50 

    300 300 300 300 300 300 300 300 

   750 750 750 750 750 750 750 750 

 410 

Table 3. List of resultant daytime and nighttime UHI estimation models by seasons. All 411 

variables fulfill the criterion of p-value < .0001 and VIF < 2. 412 

 Resultant UHI estimation models Model performance evaluation 

Seasons Day/Night Model structure           RMSE       
  p-value 

Spring 

Daytime 

- 0.701(CLD) - 0.363(Spd) - 0.492(MSLP) + 

(3.488e-02)(KINX) - (5.178e-03)(Z) + (5.381e-

07)(RES1500) + 525.353 

0.685 0.684 2.058 0.684 < .0001 

Nighttime 

- 0.258(Spd) - 0.510(MSLP) + (2.097e-

02)(KINX) - (4.066e-03)(Z)- 1.576(    0050) - 

1.191(FVC0500) + 539.973 

0.678 0.678 1.864 0.678 < .0001 

Summer 

Daytime 

- 0.726(CLD) - (7.886e-02)(Spd) + (1.049e-

03)(CAPV) - (6.823e-03)(Z) + (4.328e-

07)(RES1500) - (1.511e-02)(  0750) + 31.942 

0.663 0.663 1.525 0.662 < .0001 

Nighttime 

- 0.335(CLD) - 0.175(MSLP) + (8.481e-

04)(CAPV) - (5.831e-03)(Z) + 6.760(BVD1500) 

+ 1.341(   0300) + (1.106e-07)(RES1500) + 

203.835 

0.654 0.654 1.235 0.654 < .0001 

Fall 

Daytime 

- 0.419(CLD) - 0.192(Spd) - 0.367(MSLP) - 

0.248(SHOW) - (7.157e-03)(Z) + (1.802e-

02)(  1500) + 402.018 

0.591 0.591 1.970 0.658 < .0001 

Nighttime 

- 0.174(Spd) - 0.375(MSLP) - 0.211(SHOW) - 

(5.506e-03)(Z) - 1.539(    0050) - 

1.749(FVC0500) + 408.011 

0.645 0.645 1.955 0.644 < .0001 

Winter 

Daytime 

- 0.558(CLD) - 0.289(Spd) - 0.347(MSLP) - 

0.251(SHOW) - (6.181e-03)(Z) + (2.467e-

02)(  1500) + 378.299 

0.591 0.591 2.285 0.590 < .0001 

Nighttime 

- (4.377e-02)(CLD) - 0.168(Spd) - 0.346(MSLP) 

- 0.199(SHOW) - (5.497e-03)(Z) + 

15.473(BVD1500) + 371.640 

0.563 0.562 2.251 0.562 < .0001 

Annual 

Daytime 

- 0.426(CLD)- 0.232(Spd) - 0.700(MSLP) - 

(6.455e-03)(Z) + (4.231e-07)(RES1500) + 

735.977 

0.748 0.748 2.890 0.748 < .0001 

Nighttime 
- 0.153(Spd) - 0.686(MSLP) - (5.679e-03)(Z) + 

13.916(BVD1500) + 717.341 
0.762 0.762 2.705 0.762 < .0001 

 413 

Basic weather records     ,     and     , as temporal predictors, show in all resultant 414 

models.     shows in all daytime models and has a strong negative correlation with    415 

which is as expected because the amount of cloud determines the incoming solar radiation 416 

during daytime. Fewer clouds allow more incoming solar radiation to reach the ground 417 



 27 

surface and that consequently increases the land surface temperature and then increases 418 

daytime air temperature near the ground surface.    is negatively correlated with the     in 419 

all daytime and nocturnal models because air flows take heat away and cool down the near 420 

surface atmosphere. Larger background wind speed contributes to a better condition of urban 421 

air ventilation for mitigating the UHI.      along with three other sounding indices (KINX, 422 

CAPV and SHOW) show in these resultant models as important temporal predictors as well. 423 

They depict the meteorological conditions and atmospheric stability which are influential to 424 

the UHI.    linearly reduces as the attitude increases within the troposphere (for altitude Z < 425 

11000m). As expected, elevation of the monitoring locations are included in all models and 426 

have the regression coefficients basically consistent with the Earth Atmosphere Model 427 

(NASA, 2014), as follows:  428 

                               

where Z is the altitude,    is the air temperature.  429 

3.3 LUR SPATIAL MAPPING OF UHI. Based on the resultant models, the long-term 430 

averaged spatial mapping of UHI was plotted and shown in Figure 6. The spatial estimations 431 

of UHI were mapped using the spatial resolution of 10m, the resolution of land use data used 432 

in this present study. Regarding the other spatial predictors, as shown in resultant LUR 433 

models, two categories of variables - LU/LC and urban surface geomorphometry - are clearly 434 

identified as the essential predictors. LU/LC variables, RES1500 (the total area of residential 435 

land use within the buffer of 1500m) and FVC500 (Fractional vegetation cover within the 436 

buffer of 500m) are included in resultant models. RES is positively correlated with   . It can 437 

be seen from the UHI mapping that the spatial distribution of areas with higher    is 438 

consistent with the RES land use area, especially during summer. The area of residential land 439 

use largely reflects the spatial distribution of anthropogenic heat emission (for example, the 440 
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heat emitted by the summertime air conditioning which is a considerable part of the 441 

anthropogenic heat source of Hong Kong) (Giridharan et al., 2005). RES is also positively 442 

correlated with the population distribution (which is the reason of the exclusion of spatial 443 

variable POP of all resultant models). FVC represents the coverage ratio of urban 444 

vegetation/forests which is similar to the NDVI. The difference between FVC and NDVI is 445 

that NDVI differentiates between vegetation and bare land based on the remotely sensed 446 

signal of near infrared band (of satellite images in the format of raster) while FVC was 447 

directly calculated using LU/LC data (in the format of vector data layer in GIS). Therefore, 448 

FVC provides more details and has a higher accuracy than NDVI if the LU/LC data is 449 

available. In this study, results show that the    is negatively correlated with FVC which 450 

confirms the cooling effect of urban greenery and its importance in UHI mitigation in high-451 

density Hong Kong (Ng et al., 2012). The spatial pattern of greenery area can be observed on 452 

the UHI spatial maps. 453 
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 454 

Figure 6. Regression plot of all resultant models and corresponding spatial mapping of 455 

annual/seasonal averaged daytime and nighttime UHI spatial mapping. 456 

Building bulks store heat by absorbing shortwave solar radiation during the day and release it 457 

by emitting longwave radiation during the night. Larger     stores more heat than open area 458 

during daytime and release more longwave radiation during nighttime. Building geometry 459 

with a smaller      impedes the longwave radiation back to the sky and traps the heat within 460 
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the street canyons/gaps between building bulks. The above makes the nighttime cooling rate 461 

of ambient air in the urban area much slower than in the rural area, and thus exacerbates the 462 

spatial variability in   . As a result, a higher    remains in the areas with a large     value 463 

and lower     . They can be seen in the north of Hong Kong Island and the Kowloon 464 

Peninsula. Those built-up areas with a relatively small     in the New Territories are 465 

cooling faster than those large     areas thus have lower   . Unlike our previous LUR 466 

models of air quality (Shi et al., 2017), urban traffic variables were not included in the LUR 467 

modelling for UHI. This implies that the influence of urban traffic may be less decisive than 468 

other predictors despite being one of the most decisive factors of air quality (Shi et al., 2016). 469 

There are still a few clusters of outliners appear in the regression plot. This indicates that 470 

there are still potentials of improving UHI LUR models for Hong Kong. Better prediction 471 

performance is possible with more informative datasets of variables (e.g. sounding data with 472 

a finer temporal scale, building energy consumption records and more detailed data of 473 

anthropogenic heat estimation, etc.). 474 

4. DISCUSSION 475 

4.1 APPLYING LUR IN UHI ESTIMATION FOR SUB-TROPICAL HIGH-DENSITY 476 

URBAN ENVIRONMENT. The present study is an attempt to estimate the spatiotemporal 477 

UHI pattern in a sub-tropical city with extremely high-density urban environment using LUR 478 

modelling. A prior local study has been conducted to associate the short-term meteorological 479 

factors with UHI-related mortality in Hong Kong by calculating an UHI index at the 480 

geographical tertiary planning units (TPU) level of the city of Hong Kong (Goggins et al., 481 

2012). However, a major limitation of this prior study, which is also shared by some other 482 

earlier studies, is that the direct use of meteorological observations from nearby fixed 483 

monitoring station may not reflect the actual individual exposure. To overcome above 484 
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limitation, we provide a fine-scale mapping of spatial variability of    using LUR modelling 485 

approach in this study, which could provide more accurate information in the representation 486 

of the individual exposure condition. LUR method is originally designed for evaluating 487 

individual environmental exposure (Kriz et al., 1995). Therefore, identifying UHI hotspots 488 

with LUR spatial mapping can provide more information to policy-makers for a more 489 

effective health management process than taking each TPU as a whole. The determination of 490 

the critical buffer width for each predictor separately is one of the most important procedures 491 

of LUR modelling (Hoek et al., 2008). Previous urban climate studies usually analyzed all 492 

predictors/variables of the study area based on a grid system with a fixed resolution. 493 

However, the critical buffer widths of different spatial predictors may vary due to the 494 

complex physical basis of the energy balance and ventilation in the urban microclimate 495 

environment. For example, as proved by this present study, the microclimatic effect of      496 

on radiation balance and ventilation is more localized than other geomorphometric variables. 497 

LUR allows the determination of the spatial scale individually for different predictors and 498 

that is helpful in obtaining a better prediction performance. Moreover, the findings and 499 

outputs of this present study could be further expanded to other megacities with similar urban 500 

scenario (e.g. Guangzhou and Shenzhen, China). 501 

4.2 ESTIMATING SPATIAL PATTERN OF UHI BY USING GEOMORPHOMETRY AS 502 

FINE-SCALE SPATIAL PREDICTORS. The investigation of fine-scale spatial variability of 503 

UHI in an urban environment is an important part of urban planning and policy decision-504 

making, especially for a high-density urban environment because the complicated 505 

urban/building morphology significantly changes the microclimatic conditions in urban areas 506 

by disturbing the wind field and modifying the energy balance within street canyons. As a 507 

result, the microclimatic variability is increased, and thus the UHI pattern is altered. 508 

Compared to the previous studies, the spatial mapping of UHI was downscaled by this 509 
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present study from the TPU level to a very fine spatial scale by parameterizing the urban 510 

geomorphometry based on interdisciplinary knowledge.  511 

4.3 LUR UHI MODELING AS QUANTITATIVE RECOMMENDATION FOR 512 

ENVIRONMENTAL URBAN DESIGN. Urban climate and urban form are 513 

interdependent.(Eliasson, 1990; Landsberg, 1981) From the viewpoint of urban planning and 514 

design, more compact urban forms are commonly thought to be more sustainable because 515 

they save land resources, reduce traffic commuting cost and promote an efficient use of 516 

public facilities (Yin et al., 2013). However, a high-density urban environment without 517 

appropriate planning/design and management leads to urban environmental degradation 518 

(Betanzo, 2007). LUR models developed by this present study enrich the current 519 

understanding on the influence of urban design on the urban climatic condition by identifying 520 

influential urban design parameters, determining their critical buffers and investigating their 521 

quantitative correlations with   . For example, as found in the modelling process,           522 

at the buffer of 300m has the strongest positive correlation (regression coefficient of 1.341) 523 

with     during nighttime. This finding indicates that the    of a specific location is strongly 524 

influenced by the horizontal permeability of podium layer within its surrounding of 300m due 525 

to the impact of the building geometrical permeability on ventilation. An increase of 526 

20,000m
2
 in building frontal area is associated with a 0.5°C increase in   . Simply speaking, 527 

designing and constructing one single large building without proper consideration on urban 528 

ventilation may lead to an increase of 0.5°C in UHI intensity of the whole neighborhood. 529 

Such information could substantially enrich the current urban design guideline – Chapter 11 530 

of the Hong Kong Planning Standards and Guidelines (HKPSG) (PlanD, 2005) and help with 531 

the UHI mitigation. 532 

 533 
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5. CONCLUSION 534 

Assessing the exposure to urban environmental heat is essential. The fine-scale estimation of 535 

the spatiotemporal pattern of UHI is urgently needed for heat exposure assessment and public 536 

health management. LUR is a promising method of predicting environmental spatiotemporal 537 

variability and estimating human exposure. In this present study, we modelled the fine-scale 538 

spatiotemporal UHI pattern using the LUR method with land use, building variables and 539 

sounding data. Our resultant spatiotemporal LUR models provide a daily-resolved estimation 540 

of air temperature (for both the daytime and the nighttime) at a very fine spatial scale (of a 541 

10m resolution), which provide a robust basis for heat exposure assessment. The study 542 

outputs also enable the integration of environmental consideration into urban environmental 543 

planning policy for a better quality of living environment. The findings of this present study 544 

could be further expanded to other cities with a similar densely-populated urban scenario. 545 
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