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Investigating pedestrian-level greenery in urban forms in a high-density city for urban planning 

Abstract 

The understanding of pedestrian-level greenery across urban forms in built environment configurations in 

high-density cities is insufficient. We conducted a citywide investigation of urban greenery from the 

pedestrian perspective by developing a deep learning technique to extract greenery from fisheye images 

generated from Google Street View images in Hong Kong. Relying on open-source data, we compared 

pedestrian-level greenery measurements with the satellite-based normalized difference vegetation index 

(NDVI) in diverse urban forms represented by local climate zone classes. Street greenery was spatially 

variant, and low greenery was found predominantly in private residential and commercial/business lands 

in high-density areas. Pedestrian-level measurement and the NDVI were strongly correlated, but the 

inconsistency between them increased from high- and mid-rise forms to low-rise forms and from compact 

forms to open forms. We also demonstrated the idea of integrating nearby street greenery with spatial 

information on population and urban morphology for inequality analysis. Potential implications for urban 

planning are provided. The findings linking street greenery with urban morphology are useful for urban 

and greenery planning in climate-resilient, sustainable, and healthy cities. Our analytical approach using 

open-source data is transferable to other high-density cities. 

Keywords: urban green space, street view image, deep learning, urban morphology, pedestrian level; 

local climate zone 

1. Introduction

As a key component of the natural environment in cities, street greenery can be used as a sustainable, 

nature-based solution to provide multiple social and environmental benefits (Mullaney et al., 2015; Roy et 

al., 2012) for achieving sustainable development goals, particularly good health and well-being, climate 

adaptation, and sustainable cities and communities (Turner-Skoff & Cavender, 2019). Sustainable city 

development requires a close link between social and environmental dimensions (Bibri, 2018). Therefore, 
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the measurement of individuals’ accessibility and exposure to urban greenery from the pedestrian 

perspective is crucial in urban planning (Fernandes et al., 2019; Ye et al., 2019). There is a growing trend 

in measuring the distribution of street greenery in urban areas by multiple techniques (Labib et al., 2020; 

Shahtahmassebi et al., 2021).  

1.1. Approaches to measuring urban greenery 

Multiple approaches quantitatively measure urban greenery. Small-scale investigations can use high-

resolution data sources, such as on-site photography (Jiang et al., 2017; Yang et al., 2009) and LiDAR 

(MacFaden et al., 2012), which are generally used for specific purposes and highly depend on funding 

resources; however, for large, city-scale greenery measurements, satellite images and street view images 

are more suitable data sources. Both feature extensive datasets, allowing studies that measure greenery 

exposure in urban areas. Satellite images have long been used to measure greenery at different spatial 

scales from an overhead perspective by creating specific indices, such as the widely adopted normalized 

difference vegetation index (NDVI), as a measure of greenness or density of vegetation on a patch 

(Shahtahmassebi et al., 2021). Street view images, represented by Google Street View (GSV), are 

increasingly used to explore innovative approaches for extracting and evaluating city-scale street-level 

environments in urban areas (Li et al., 2018; Middel et al., 2019; Rundle et al., 2011; Seiferling et al., 

2017). Alternative street view products provided by Tencent Maps and Baidu Maps in China, Yandex 

Maps in Russia, and Mapillary have also been used to measure urban environments (Kang et al., 2020; 

Neuhold et al., 2017). Based on on-site photographs in different directions at street intersections (Yang et 

al., 2009), an index was created after modification in combination with GSV images to measure visible 

street greenery (Li et al., 2015). Street view images capture the vertical dimension of urban environments 

(Middel et al., 2019), namely, green façades or shrubs under canopies; pedestrians can see and perceive 

from the ground in the street. Satellite imagery collects the canopy area and green roofs or green spaces 

behind buildings from a bird’s-eye view. The difference in perspectives causes inconsistencies in the 

measurements.  
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The tree view factor (TVF), derived from the sky view factor (Oke, 1981; Steyn, 1980), has been widely 

used to portray urban outdoor environments and innovatively capture the three-dimensional form of 

greenery canopy in a photography-based fisheye image (Gong et al., 2018; Liang et al., 2020). Fisheye 

images, initially used for projecting the radiating environment (Steyn, 1980), depict urban environments 

perceived by pedestrians within an entire radiation space. Street greenery characterized by the TVF can 

therefore reflect how pedestrians benefit from street greenery’s regulating ecosystem services, such as 

microclimatic amelioration that depends on shading and evapotranspiration (Richards & Edwards, 2017). 

GSV images facilitate the creation of large datasets of fisheye images for computing the view factors and 

therefore have been increasingly used for that aim (Carrasco-Hernandez et al., 2015; Li et al., 2018; 

Middel et al., 2018). 

1.2. Inconsistency between satellite-derived vegetation indices and street view image-

based greenery measurements 

A research trend is to examine inconsistencies between satellite-derived vegetation indices and street 

view image-based greenery measurements to provide evidence for urban planning (Helbich et al., 2019; 

Kumakoshi et al., 2020; Larkin & Hystad, 2019; Tong et al., 2020; Villeneuve et al., 2018; Ye et al., 

2019). In studies of Singapore and Hong Kong, GSV-based greenery measurement and the NDVI were 

only moderately correlated (Lu et al., 2019; Ye et al., 2019). In a case study of Nanjing, Tong et al. (2020) 

discovered variations in the association between street view-based greenery measurements and the NDVI 

across urban functional zone types. Lu et al. (2019) identified three neighborhood patterns in Hong Kong 

based on the relationship between the NDVI and GSV-based measurements. This mismatch suggests that 

satellite image-based measurements may over- or under-estimate the actual personal exposure to urban 

greenery because of differences in perspective (Larkin & Hystad, 2019). Therefore, in urban planning, 

merely considering vegetation cover from an overhead perspective, which is a common method, may lead 

to biases in measuring the pedestrian environment of greenery. Measurements based on street view 

images could better reflect pedestrians’ exposure to greenery on the street than overhead views and could 
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therefore represent its impacts on physical activity in the public domain (Lu, 2019) and public health 

(Kang et al., 2020). 

1.3. Effects of urban forms 

Urban forms, widely considered in urban climate research and urban planning (Middel et al., 2019; Xu et 

al., 2017), may affect the inconsistency between street view-based greenery measurements and satellite-

derived indices. Urban environmental studies that provide evidence for urban planning, particularly 

greening master plans, focus on both urban natural landscape components and built environments that 

interact with each other. The characteristics of urban greenery embedded in different built environments 

may be detected from different perspectives. Exposure to greenery depends on both the provision of 

greenery and other built environment attributes such as building density, community forms, and street 

characteristics (Davies et al., 2008; Pham et al., 2017; Zhang et al., 2020). Mixed urban forms have mixed 

effects on greenery investigations and greenery exposure. The mismatch between the two measurements 

may vary across urban forms in complex high-density urban contexts because the detection of urban 

greenery from both pedestrian and overhead perspectives would be affected by the configuration of 

surrounding buildings. Exploring the mismatch will not only help understand the current situation of 

urban greenery in different urban forms but also inform future urban planning and greenery design to 

improve pedestrian exposure to greenery in different urban settings instead of merely increasing 

vegetation cover. However, according to our review of the literature, how street view-based pedestrian-

level greenery measurements and satellite-derived vegetation metrics are inconsistent in diverse urban 

forms has not been studied. 

1.4. Local climate zone (LCZ) classification 

A standardized scheme called the LCZ classification system allows fine-scale spatial investigation of the 

effects of 3-D urban morphology on street greenery measurements. The LCZ scheme (Fig. 1), developed 

                                                           
1Fig.  in Supplementary Materials shows the LCZ typology based on Stewart and Oke (2012). It was created by 

Demuzere et al. (2020), derived from https://www.wudapt.org/lcz-resources/.  
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by Stewart and Oke (2012), categorizes urban surface structures and covers ten built types and seven 

natural types with different climatic responses. The built types were differentiated in building height, 

density, and arrangement of trees. Because of its detailed description of 3-D urban morphology 

(Demuzere et al., 2020) and across-city consistency as an internationally accepted standard, the scheme 

has recently gained increasing applications in research on UHIs (Lehnert et al., 2021; Xue et al., 2020) 

and urban landscape planning (Liu et al., 2020; Zhao et al., 2020). The LCZ classification provides a new 

perspective for understanding pedestrian-level street greenery, spatial variation in street greenery, and 

differences between pedestrian-level greenery and overhead view vegetation cover across 3-D urban 

forms in high-density urban contexts. Different greening strategies can be formulated and implemented in 

various urban forms. In addition, LCZ classification is an international standard, and the properties and 

details of each built class must be defined by local situations. Although some LCZ classes are defined by 

the presence of vegetation, detailed information on vegetation characteristics of the built LCZ types 

remains limited (Bartesaghi-Koc et al., 2019); thus, fine-scale quantification is necessary.  

1.5. Inequality in urban greenery 

Inequalities in urban greenspace provision have drawn increasing attention and have been widely 

observed from spatial and socioeconomic perspectives (Ahn et al., 2020; Kabisch & Haase, 2014; Wolch 

et al., 2014). Inequality implies that in addition to supply, demand should be considered. The 

investigation of visual exposure to street-level urban greenery needs to consider the distribution of end 

users. More importantly, urban morphology may aggravate inequality but is evidence of greenery 

planning. The demand for outdoor greenery may be greater for residents in high-density high-rise areas, 

where the space for greening is limited, than that for residents in open areas. Specific groups of 

individuals, such as elderly individuals, are more vulnerable to environmental stresses, such as extreme 

heat (Åström et al., 2011) and heavy air pollution (Yang et al., 2018), and supply-demand analysis 

requires consideration of sub-populations and totals (Kabisch et al., 2017). According to our review of the 

literature, no studies have combined street view image-based greenery measurements with both urban 
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morphology information and population and subpopulation distributions to address inequalities in urban 

greenery provision. This research gap prompted us to establish a link to facilitate future urban planning.  

1.6. Research objectives 

In this study, our objective was to deepen the GSV image-based investigation of pedestrian-level street 

greenery in complex urban forms in high-density cities by using open-source data. We conducted a case 

study in Hong Kong and developed a pedestrian-level street greenery indicator based on fisheye images 

created from GSV images. Specifically, this study aimed to (1) measure citywide pedestrian-level street 

greenery, (2) quantify greenery and the relationship between the indicator and the NDVI in different 

urban forms, and (3) explore how to use the GSV-based approach in street greenery inequity analysis. Our 

study is the first to quantify greenery captured from streets in different urban forms; thus, it is a 

pioneering attempt to account for the effect of urban morphology on greenery measurements. The 

research findings are expected to help the understanding of street greenery from a pedestrian perspective 

and provide potential implications for urban greenery planning in high-density urban contexts. 

2. Methods 

2.1. Study area 

The study was conducted in Hong Kong, a subtropical, high-density city on the southern coast of China 

(Fig. 1). The city covers an area of 1111 km2, much of which is hilly and mountainous. It accommodates 

approximately 7.5 million people on approximately 25% of the land (PlanD, 2020b). The city comprises 

18 districts: four on Hong Kong Island, five in Kowloon, and nine in the New Territories. The old urban 

areas are concentrated on the northern coast of Hong Kong and Kowloon. High-density urban areas are 

filled with compact high-rise buildings and deep street canyons (Zheng et al., 2018). Despite the 

approximately 440 km2 area of country parks and special areas, green space in built-up areas is generally 

regarded as insufficient. The current average area of open space provision per capita in old urban areas 

and new towns is less than 3 m2, far below that of neighboring large Asian cities (Jim & Chan, 2016). The 
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figure in old compact areas, such as Mong Kok in Kowloon, is even smaller than the low local standard, 

which, given the population density, represents a serious green space inequality problem (Lai, 2017). 

Extensive impervious surfaces further contribute to an extremely low amount of street greenery (Jim & 

Chan, 2016). The Hong Kong government has implemented a Greening Master Plan for green urban areas 

and new towns since 2004 (CEDD, 2020). The aim of the 2015 document “Hong Kong 2030+: Towards a 

Planning Vision and Strategy Transcending 2030” was to achieve a livable high-density city (PlanD, 

2016). 

 

Fig. 1. Map of the study area, Hong Kong. (Built-up areas are based on the spatial information of land utilization for 

2019 released by the Planning Department.) 
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2.2. Data sources 

2.2.1. GSV data 

As discussed in the prior section, GSV is an increasingly well-used image source for analyzing street-

level urban greenery. To investigate the spatial distribution of street greenery in Hong Kong, we collected 

GSV images taken annually in 2019 and 2020 at approximately 53,000 locations every 50 m along the 

more than 2000 km road network of the city via the Street View Static API. For each geolocation, eight 

images, which had a 120° horizontal field of view, the maximum value allowed, and covered the 

360 °horizontal circle from four directions (left, right, front, and back), and two vertical angles were 

stitched to a panorama. Locations in tunnels and highways were excluded. Hence, approximately 37,000 

panoramic images were used for analysis. Detailed information on GSV collection is presented in the 

Supplementary Material. Fig. 2 shows an example of the composite GSV images and processed panorama 

for one point.  
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Fig. 2. GSV image collection and processing at a point: (a) eight images captured from four directions and two 

angles and (b) panorama 

2.2.2. LCZ classification 

An LCZ map (Fig. 3) of Hong Kong was derived from the LCZ map of the Pearl River Delta (PRD) 

region for the year 2019 at a resolution of 100 m, created by using the suggested workflow in Chung et al. 

(2021). The map presents the detailed urban surface morphology of Hong Kong. The workflow used 

open-source remote sensing imagery from Jan 1, 2019, to Dec 31, 2019, the cloud computation platform 

Google Earth Engine (GEE), and the machine learning classifier random forest (Breiman, 2001; Pal, 

2005). Eighteen LCZ classes were identified: the 17 classes defined by Stewart and Oke (2012) and the 

World Urban Database and Access Portal Tools, and an additional class LCZ H for wetlands, which are 
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common in the PRD region. The built-up areas of Hong Kong were categorized into LCZs 1–10 by the 3-

D urban surface morphology. LCZs 1–6 are the main classes of built-up areas and differ in the density 

and height of the buildings. Building density was categorized as open and compact. Building heights were 

categorized as low-rise, mid-rise, and high-rise. A table of the classified LCZ properties and a confusion 

matrix of the classification accuracy are available in the Supplementary Material (Tables S1 and S2). The 

confusion matrix summarizes the producer and user accuracies of each LCZ type obtained from the 

classification based on the elite variable combination in Chung et al. (2021). The overall accuracy 

(76.1%), built-up (LCZ 1-10) accuracy (73.4%), natural land (LCZ A-H) accuracy (71.6%), and Kappa 

(0.747) showed that the classification achieved high classification accuracies.  

 

Fig. 3. Local climate zone map of Hong Kong based on Chung et al. (2021) 

2.2.3. Other data sources 

The NDVI captures the earth-view greenness of vegetation cover. Sentinel-2 MSI Level-2A imagery was 

used to calculate the NDVI. Detailed information on the data source and calculation is presented in the 

Supplementary Material. The NDVI ranges from -1 to 1. Because the photography period of the GSV 
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images covered 1 year from 2019 to 2020 (approximately 72% from May 2019 to Nov 2019) and 

vegetation in Hong Kong in a subtropical region is primarily evergreen, we calculated the average value 

of full-year NDVI in 2020 from January 1 to December 31 to identify the vegetation cover in the study 

area. 

Information on land utilization is from open access sources from the Planning Department (PlanD, 2020b). 

The land utilization of the whole territory of Hong Kong covers 10 built or natural classes and 27 specific 

categories. A raster map at a spatial resolution of 10 m for 2019 was derived for this study.  

The 100 m resolution gridded estimates of the entire population and the male and female population in 

each age group in Hong Kong for 2020 were freely collected from WorldPop (www.worldpop.org). The 

elderly population was calculated as the sum of the estimates for the groups aged 65 years and above 

(Bondarenko et al., 2020).  

All data used in the study, including the GSV images, remote sensing data for LCZ classification and 

NDVI calculation, local land utilization, and gridded population, were derived from open sources, making 

our method highly replicable. 

2.3. Green view factor estimates 

2.3.1. Greenery extraction using deep learning and validation 

We applied a deep learning technique to panoramic images to extract greenery information. Semantic 

segmentation with deep learning has proven effective in pattern recognition and is a state-of-the-art, 

powerful tool for extracting information from images (Hesamian et al., 2019). Based on a pre-trained 

network, objects in the panorama images were classified into 32 predefined classes and further 

categorized into three main classes: vegetation, urban, and sky. The vegetation class captures all 

vegetation, including trees and other greenery; the urban class covers objects other than greenery and sky. 

The accuracy of the vegetation classification was 95%. Furthermore, the segmented panorama images 

were transformed to a complete 180° fisheye sky view image, using the panorama tools developed by 
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Dersch (2005). The workflow of vegetation extraction is summarized in Fig. 4, and details of the 

extraction process are presented in the Supplementary Material. Semantic segmentation and accuracy 

assessments were performed on MATLAB 2020b. 

 

Fig. 4. Greenery extraction using deep learning: (a) workflow of semantic segmentation and validation, (b) 

transformation to fisheye image, (c) confusion matrix  

2.3.2. Green view factor (GVF) calculation 

In this study, we defined a GVF as the ratio of all visible greenery at a certain point to the overlying 

hemisphere based on the TVF. The GSV fisheye images were categorized into three classes: vegetation, 

urban, and sky. The GVF quantifies the proportion of the vegetation class in the fisheye image and 

theoretically ranges from 0 to 1. Therefore, GVF was computed using the following equation: 

𝐺𝑉𝐹𝑖 =
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑖𝑥𝑒𝑙𝑖

𝑃
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where for the GSV image 𝑖 , (𝑖 = 1 𝑡𝑜 𝑛) , 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑖𝑥𝑒𝑙𝑖  denotes the number of pixels of the 

vegetation class, and 𝑃 is the total number of pixels constituting fisheye image 𝑖 (1080 × 1080 in this 

study).  

2.4. Data analysis 

Point-based GVF was mapped in the road network across the built-up areas of Hong Kong to visualize the 

distribution of street-level urban greenery. The GVF data were divided into five categories from low to 

high, based on the Jenks natural break classification method. This method was used to decrease within-

class variance and maximize between-class variance. We probed the differences in street greenery 

measured by the GVF across 18 districts, 12 new towns, 9 principal land use types in built-up areas, and 

18 LCZ classes based on GVF statistics. The land use of each point was determined by the dominant land 

use (the largest proportion, except for roads and transportation facilities) within a 300 m buffer of the 

point.  

The relationship between the GVF and NDVI was then estimated for each GSV point. Spearman’s rank-

order correlation was computed between the GVF and the mean NDVI within buffers at different 

distances (10 m, 20 m, 50 m, and 100 m) from the GVF points, according to Lu et al. (2019) and Ye et al. 

(2019) and Hong Kong’s road width. For the 10 m resolution NDVI raster map, values below zero 

represented non-vegetated areas and were therefore reassigned to zero. The distance with the highest 

correlation was selected for subsequent analysis. We assumed that the 20 m buffer may be the most 

appropriate to measure the mean NDVI for the following point-scale analysis because most roads in urban 

areas are designed to be less than 15 m wide (PlanD, 2021), and the 20 m buffer can best capture greenery 

on paths along the side of roads. 

To explore the effect of urban morphology, we estimated Spearman’s correlation between the two metrics 

for each LCZ class. The focus was the common classes in built-up areas, LCZs 1–6, characterized by 

different compactness and heights of buildings. The correlation between the GVF and NDVI was 

estimated at both scales of the GSV and LCZ grids. The point-scale analysis used the points’ GVF and 
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mean NDVI within the best buffer distance, as aforementioned. For the grid-scale estimation, the point-

based GVF and the 10 m resolution NDVI were joined as mean values into the 100 m resolution LCZ 

grids through spatial join and zonal statistics, respectively, in QGIS 3.16. Only LCZ grids covered by 

GSV points were included. For both the point and grid data, we conducted regression analysis to 

determine the linear relationship between the GVF and mean NDVI using Stata 16.1.  

Last, the GVF and population density were combined to visualize the exposure to surrounding street 

greenery at the LCZ scale. Point-based GVF was joined as mean values into the 100 m resolution LCZ 

grids. Next, we analyzed the walking accessibility of greenery in daily life: the average of the mean GVF 

for the (25) grids within the 500 m × 500 m zone as a buffer defined by each LCZ grid was calculated to 

reflect the surrounding street greenery within and around each LCZ grid within a short walking distance 

according to local standards and the literature. The Hong Kong Planning Standards and Guidelines 

stipulates that a local open space should preferably be within 400 m of residences (PlanD, 2020a). The 

buffering approach is frequently used to measure the accessibility of or exposure to green spaces, and a 

distance of 300 m is a common threshold (Ekkel & de Vries, 2017; Labib et al., 2020). The mean of the 

entire population and elderly population (aged 65 years or above) were summarized into the 100 m 

resolution LCZ grids through the zonal statistics of the 100 m resolution maps derived from WorldPop. 

The mean surrounding street greenery and population were divided into five and three categories, from 

low to high, respectively, based on the Jenks natural breaks classification method. Thus, we characterized 

each grid in three aspects: surrounding street greenery, population density, and LCZ. The overall 

workflow of the methodology is shown in Fig. 5. 
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Fig. 5. Flowchart of the methodology 

3. Results 

3.1. Street greenery distribution based on the green view factor 

The GSV point-based GVF map is presented in Fig. 6 to show the citywide street greenery distribution, 

classified as Jenks natural breaks, particularly the distribution in the old urban areas in Kowloon and the 

northern coast of Hong Kong Island. Overall mean and median values of point-based GVF are 0.39 

(±0.24) and 0.36, respectively, which are close to the corresponding values of LCZ grid-based GVF. 

Citywide street greenery has been found to vary spatially. Low degrees of greenery were mainly 

concentrated in the old urban areas (Fig. 6b) and the central areas in some new towns; highly green areas 

were mainly at the Peak, atop Victoria Peak, on Hong Kong Island, and scattered on the peripheries of the 

urban areas. The overall street greenery distribution is consistent with the NDVI map shown in Fig. 7. 

The map of the LCZ grid-scale GVF is presented in the Supplementary Material (Fig. S2) for reference.  
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Fig. 6. Maps of point-based GVF of (a) the whole city and (b) the old urban areas in Kowloon and the northern part 

of Hong Kong Island 
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Fig. 7. NDVI map of Hong Kong 

Street greenery in each district, new town, land utilization type, and LCZ class are depicted in violin plots 

(Fig. 8. ). Variations across districts further support the overall distribution that was summarized. The 

median GVF values in the four districts of Hong Kong Island were between 0.30 and 0.47. Except for the 

Southern District, all show the presence of peaks at low GVF, reflecting the low greenery on the northern 

coast of Hong Kong Island. The central, western, and Wan Chai areas also had peaks of high values on 

the peripheries of urban areas, as aforementioned. All five districts in Kowloon show a comparatively low 

median GVF, particularly in Yau Tsim Mong (0.11), Sham Shui Po (0.15), and Kowloon City (0.17), 

where the lowest degrees of street greenery in Hong Kong were found. The low-greenery areas 

correspond to the dense street networks in these districts in the old urban area (Fig. 6b). In the New 

Territories, the average street greenery across districts ranges from 0.29 in Kwai Tsing to 0.49 in North, 

much better than that in Kowloon.  

Because the built-up areas of the New Territories are found across urban, suburban, and rural conditions, 

statistics of the GVF in 12 new towns will help to understand spatial variation in street greenery in the 
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urban areas of the New Territories2. The median GVF for all 12 new towns is 0.35. The lowest median 

values of the GVF are found in several early-developed new towns, such as Yuen Long (0.24), Kwai 

Chung (0.27), and Tsuen Wan (0.29), and the highest value is 0.48 in North Lantau, the newest new town. 

Furthermore, the shapes of the GVF distributions within new towns also varied.  

The distribution of street greenery is disproportionate across the types of land use. Land for private 

residential and commercial/business and office has a comparatively low median GVF (approximately 0.2 

and 0.1, respectively), with peaks at approximately 0.1. Lands for public residential, rural settlement, 

government, institutional and community facilities, and open space and recreation shared a similar 

distribution and degree of street greenery, with a median GVF over 0.3. Street greenery on land intended 

for industrial use varies across industrial activities. Lands for warehouse and open storage and industrial 

lands ranked at the top and bottom, respectively, among the nine land use types.  

Variations in street greenery distribution were found among the LCZ classes. LCZs 1 and 2 (compact 

high-rise and mid-rise), mainly concentrated in old urban areas, have the lowest GVF median values at 

0.18 and 0.17, respectively; the situation was slightly better in compact low-rise areas (0.23) and much 

greener in open LCZs (0.41–0.47). Street greenery in ‘natural type’ LCZs is notably higher than that in 

built types and decreases from dense-tree LCZs (0.75) to low plant LCZs (0.51).  

                                                           
2 Titles of some new towns are the same as titles of some districts, but the boundaries differ. These new towns are 

newly developed parts mainly for housing within the corresponding districts. Boundaries of districts  and new towns 

are shown in Fig. 1. 
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Fig. 8. Violin plots of the GVF by (a) district, (b) new town, (c) land utilization type, and (d) LCZ class 

3.2. Comparison of street greenery (GVF) and vegetation cover (NDVI) by LCZs 

Pedestrian-level greenery and remotely sensed vegetation were strongly correlated at the scales of GSV 

and LCZ grids across the city. At the point scale, the correlation decreased with the buffer distance used 

to measure the mean NDVI. Spearman’s ρs for GVF versus the mean NDVI within 10 m, 20 m, 50 m, 

and 100 m buffers of the GVF points are 0.81 (p < 0.001), 0.83 (p < 0.001), 0.80 (p < 0.001), and 0.75 (p 

< 0.001), respectively. The highest correlation of the 20 m buffer supports our assumption of the use the 

20 m buffer to measure the mean NDVI for the subsequent point-scale analysis. At the grid scale, 

Spearman’s correlation coefficient (Spearman’s ρ) was 0.77 (p < 0.001).  
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The statistics for the GVF, NDVI, and correlations between them by LCZs for GSV points and LCZ grids 

are presented in Table 1. We focused on the main built-type LCZs (1–6), which dominate built-up areas. 

The GSV points sampled in LCZs 1–6 accounted for 83.9% of all points in the built-type LCZs (1–10). 

The sampling was representative because LCZs 1–6 accounted for 82.9% of the LCZs 1–10 covered by 

GSV points. The statistics of the GVF points in Table 1 are also shown in violin plot (d) in Fig. 8. Overall, 

the variation trends of the GVF and NDVI across the LCZ classes were consistent between the point and 

grid data. Wilcoxon rank sum tests show that the distributions of the GVF and NDVI significantly 

differed between compact LCZs (1–3) and open LCZs (4–6), between low-rise LCZs (3 and 6) and high- 

and mid-rise LCZs (1, 2, 4, and 5), and between built types (LCZs 1–10) and vegetated LCZs (A–D) for 

both the grid and point data series. The test results are presented in the Supplementary Material (Table 

S3). 

Linear relationships were found between the GVF and NDVI for point data (GVF = 1.124 × NDVI + 

0.113, 𝑟2 = 0.664) and grid data (GVF = 0.993 × NDVI + 0.136, 𝑟2 = 0.582). Similar relationships were 

also found in LCZs 1–6. Scatter plots of the GVF and NDVI for the point data by LCZ class are shown in 

Error! Reference source not found.. The points of the low GVF and NDVI were mainly in LCZs 1 and 

2. Extremely low greenery was observed in LCZs 1 and 2. Among the points in LCZs 1 and 2, 5.3% and 

2.4% had a zero mean NDVI within 20 m buffers, respectively, and 17.8% and 15.9% had a mean NDVI 

below 0.01, which means nearly no vegetation. However, most of the near-zero NDVI points had GVF 

values that were not close to zero.  
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Fig. 9. Scatter plots of the GVF and NDVI at the point scale by LCZ classes 

Spearman’s correlation varied across the LCZ classes for both points and grids. Overall, the correlation 

for the built-type LCZs (1–10) was notably higher than that for the vegetated LCZs (A–D). For LCZs 1–6, 

Spearman’s ρs for compact LCZs (1–3, 0.74 and 0.67, respectively, for points and grids, with p values < 

0.001) are greater than those for open LCZs (4–6, 0.69, and 0.53, respectively, with p values < 0.001). 

Regarding building height, correlations for high-rise LCZs (1 and 4) at 0.81 and 0.74 and mid-rise LCZs 

(2 and 5) at 0.84 and 0.78 with p values < 0.001 are greater than those for low-rise LCZs (3 and 6) at 0.74 

and 0.64 with p values < 0.001. Compact, high- and mid-rise LCZs (1 and 2) show strong correlations 

(approx. 0.75 for points and 0.7 for grids with p values < 0.001), followed by open, high- and mid-rise 

LCZs (4 and 5) with strong correlations for points (approx. 0.7 with p values < 0.001) but moderate 

correlations (over 0.5 with p values < 0.001) for grids. Low-rise LCZs had even lower correlations, 

especially weak-moderate for grids (0.44 and 0.38 with p values < 0.001). Moreover, correlations and 

variations in correlations for grid data are greater than those for point data. For LCZs A–D, the class of 

dense trees exhibited weak correlations, particularly at the grid scale (0.11, p = 0.0024).  
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3.3. Application to investigating inequity in street greenery 

Street greenery assessed by the point-based GVF and the entire population within a 500 m buffer of 

points were moderately and negatively correlated (Spearman’s ρ = -0.44, p < 0.001). A comparable 

correlation (Spearman’s ρ = -0.35, p < 0.001) was found between area-averaged street greenery within 

500 m × 500 m zones and the entire population in the central LCZ grid. The negative correlation with the 

elderly population was similar (ρ = -0.32, p < 0.001).  

Error! Reference source not found. presents a map of the surrounding street greenery for the old urban 

areas of Hong Kong in 100 m resolution grids of LCZs, together with the boundaries of the tertiary 

planning units (TPUs) and maps of GVF, road network, population density, and LCZs for a specific 

central area in Kowloon. The Planning Department divided the territory of the city into 291 TPUs for 

spatial planning. Error! Reference source not found.a shows that the surrounding street greenery within 

buffer zones is also spatially variant, and the lowest degree of surrounding street greenery is concentrated 

in several connected areas in the old urban areas. Error! Reference source not found.b shows the 

central part of the Kowloon Peninsula. The population density can be interpreted as the number of people 

in a 100 m × 100 m grid equivalent to 100 times per square kilometer. Because the entire population 

density is highly correlated with the elderly population density, the map for the elderly population is 

presented in the Supplementary Material (Fig. S3). TPUs vary in urban morphology, road networks, 

population density, and surrounding street greenery. Residents in moderately densely populated open 

LCZs had higher exposure to greenery, for example, in TPU 226. TPU 221 has a compact high- and mid-

rise urban morphology, high population density, dense road networks, and low street greenery exposure. 

In TPU 236, LCZ classes and population density varied, but street greenery was relatively low. 
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Table 1 Statistics of the GVF and NDVI by LCZs 

  Points   LCZ grids 

   
GVF 

 
NDVI 

   
GVF 

 
NDVI 

LCZ Obs. Corr. Median Mean SD   Median Mean SD   Obs. Corr. Median Mean SD 
 

Median Mean SD 

Overall 37813 0.83 0.36 0.39 0.24  0.22 0.24 0.17  19296 0.77 0.38 0.40 0.23  0.24 0.27 0.17 

 
                   

LCZ 1: Compact high-rise 6507 0.75 0.18 0.22 0.17  0.07 0.10 0.10  3094 0.70 0.19 0.22 0.16  0.08 0.10 0.08 

LCZ 2: Compact mid-rise 3865 0.76 0.17 0.21 0.16  0.07 0.10 0.09  1784 0.71 0.19 0.22 0.15  0.09 0.11 0.08 

LCZ 3: Compact low-rise 2239 0.64 0.23 0.27 0.17  0.13 0.15 0.09  1194 0.44 0.25 0.27 0.16  0.14 0.14 0.06 

LCZ 4: Open high-rise 7845 0.70 0.41 0.43 0.19  0.25 0.26 0.13  4030 0.55 0.42 0.43 0.18  0.27 0.28 0.13 

LCZ 5: Open mid-rise 3234 0.68 0.47 0.48 0.21  0.30 0.31 0.13  1612 0.51 0.47 0.48 0.19  0.31 0.32 0.11 

LCZ 6: Open low-rise 1763 0.59 0.47 0.48 0.19  0.33 0.33 0.12  940 0.38 0.48 0.48 0.18  0.34 0.35 0.10 

LCZ 7: Lightweight low-rise 534 0.63 0.36 0.37 0.19  0.22 0.24 0.12  291 0.47 0.36 0.37 0.18  0.23 0.23 0.10 

LCZ 8: Large low-rise 186 0.74 0.23 0.26 0.17  0.11 0.11 0.08  104 0.45 0.24 0.26 0.16  0.08 0.10 0.06 

LCZ 9: Sparsely built 1814 0.63 0.57 0.56 0.20  0.41 0.40 0.13  1039 0.52 0.56 0.55 0.19  0.43 0.42 0.11 

LCZ 10: Heavy industry 2360 0.69 0.32 0.35 0.19  0.20 0.21 0.12  1183 0.53 0.34 0.35 0.18  0.20 0.21 0.10 

LCZ A: Dense trees 1353 0.32 0.75 0.73 0.15  0.54 0.53 0.07  765 0.11 0.73 0.72 0.14  0.56 0.55 0.06 

LCZ B: Scattered trees 1872 0.53 0.64 0.63 0.18  0.50 0.48 0.10  1069 0.34 0.65 0.64 0.16  0.53 0.51 0.09 

LCZ C: Bush, scrub 957 0.51 0.61 0.60 0.18  0.49 0.47 0.10  557 0.32 0.60 0.59 0.17  0.51 0.51 0.08 

LCZ D: Low plants 713 0.52 0.51 0.52 0.19  0.41 0.39 0.12  396 0.42 0.53 0.53 0.18  0.41 0.41 0.11 

LCZ E: Bare rock or paved 1384 0.53 0.16 0.19 0.14  0.09 0.10 0.08  620 0.48 0.17 0.19 0.13  0.09 0.10 0.07 

LCZ F: Bare soil or sand 852 0.56 0.60 0.58 0.22  0.44 0.42 0.11  465 0.42 0.61 0.58 0.20  0.46 0.44 0.10 

LCZ G: Water 12 0.70 0.02 0.23 0.33  0.10 0.12 0.12  1 . 0.52 0.52 .  0.11 0.11 . 

LCZ H: Wetland 323 0.64 0.49 0.49 0.20  0.36 0.34 0.15  152 0.59 0.51 0.50 0.18  0.37 0.34 0.16 

 
                   

Compact (LCZs 1, 2, 3) 12611 0.74 0.18 0.22 0.17  0.08 0.11 0.10  6072 0.67 0.20 0.23 0.16  0.10 0.11 0.08 

Open (LCZs 4, 5, 6) 12842 0.69 0.43 0.45 0.20  0.27 0.28 0.13  6582 0.53 0.44 0.45 0.18  0.29 0.30 0.12 

 
                   

High-rise (LCZs 1, 4) 14352 0.81 0.31 0.33 0.21  0.16 0.19 0.14  7124 0.74 0.33 0.34 0.20  0.18 0.20 0.14 

Mid-rise (LCZs 2, 5) 7099 0.84 0.30 0.33 0.23  0.17 0.19 0.15  3396 0.78 0.31 0.34 0.22  0.19 0.21 0.14 

Low-rise (LCZs 3, 6) 4002 0.74 0.33 0.36 0.21  0.20 0.23 0.14  2134 0.64 0.35 0.37 0.20  0.21 0.23 0.13 

 
                   

Built (LCZs 1–10) 30347 0.80 0.33 0.35 0.22  0.18 0.21 0.15  15271 0.73 0.34 0.36 0.21  0.20 0.22 0.15 

Vegetated (LCZs A–D) 4895 0.55 0.65 0.64 0.19  0.50 0.48 0.11  2787 0.39 0.65 0.64 0.17  0.53 0.51 0.09 
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Fig. 10. Surrounding street greenery at the scale of LCZ grids in the old urban areas (a) and a central part of 

Kowloon Peninsula with information on GVF, road network, population density, and LCZs (b) 
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4. Discussion 

4.1. Spatial variation in street greenery 

There is marked spatial disparity in visible street greenery across built-up areas in Hong Kong. Greenery 

is generally insufficient in high-density urban areas (Haaland & van den Bosch, 2015). Old urban areas in 

Kowloon and the northern coast of Hong Kong Island have long been developed and dominated by 

compact high- and mid-rise buildings with dense and narrow streets. There is limited space along streets 

for greenery, except for inset urban parks and pocket gardens. The worst situation is in areas in Kowloon 

and is aggravated by the situation of residents with a low income. For instance, in Yau Tsim Mong, Sham 

Shui Po, and Kowloon City, residents with a low income can only afford housing in crowded, densely 

distributed old buildings. The disparity is more apparent when comparing the in-district variance on the 

northern coast of Hong Kong. Low street greenery is found in compact areas of Wan Chai and central, 

where private residential and commercial/business buildings are mixed in LCZs 1 and 2, and there is high 

street greenery in the mid-levels and peak, where traditional affluent residential areas are concentrated 

with more trees. This reason is why the two districts had two peaks of high and low GVF values. The 

green inequality found in our study is partly consistent with a finding in the literature that the distribution 

of open space favors upmarket, low-density housing areas in Hong Kong (Tang, 2017). 

Twelve new towns have developed since the 1970s and are scattered in the New Territories because of 

limited urban lands and rising population. They currently accommodate nearly half of the population of 

Hong Kong (CenStatD, 2018). Street greenery access in new towns is better than that in old urban areas 

but remains unequal across them. Low street greenery was observed in newly developed towns. The 

youngest city in Tung Chung, North Lantau, developed in the 1990s, has the highest street greenery, with 

rapid population growth since the 2000s. This finding suggests that greening has received more attention 

in the more recent periods in Hong Kong town buildings (Jim & Chan, 2016; Tian et al., 2012).  

Regarding land utilization, we found that private residential lands provide less street greenery than public 

and rural residential lands. The Hong Kong Planning Standards and Guidelines require the provision of a 
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local open space of at least 1 m2 per person in public housing and comprehensive residential development 

(PlanD, 2020a). The requirement results in a certain amount of green space inside housing estates and 

visible greenery from the streets. Lai (2017) found that in old urban areas in Kowloon or on Hong Kong 

Island, public housing and large private developments are better provided with open spaces where 

greenery is generally offered than other private housing, such as small developments and individual 

buildings. In ultra-high-density Hong Kong, plentiful greenery is legislatively supplied for public housing. 

However, income and poverty in private housing are easy to ignore. The ignorance further confirms the 

aforementioned socioeconomic inequality in street greenery provisions. In addition, the low greenery 

found in commercial and industrial lands and the relatively high greenery found in open spaces in this 

study were consistent with the findings of a study on Nanjing, China (Tong et al., 2020). Because of the 

37,000 GSV points collected and the fine-scale multilevel land use classification in Hong Kong, we could 

quantify the pedestrian-level greenery in each subcategory of land use.  

4.2. Detecting greenery from different perspectives and inconsistency between urban 

forms  

The degrees of street greenery and vegetation cover in the LCZ classes were quantified and found to be 

consistent with the definitions of LCZs in the quantity of plants. This study may be the first to quantify 

vegetation in LCZ classes, enriching this knowledge base and providing localized referential evidence for 

future applications of LCZ classification. The reduced correlation with increasing buffer distance had 

been observed (Lu et al., 2019; Ye et al., 2019; Yu et al., 2018) and suggests that some distant vegetation 

captured by the NDVI may not be observed by pedestrians. The overall strong correlation is greater than 

the estimates in the literature, specifically, moderate correlations separately in Singapore (Ye et al., 2019); 

Nanjing, China (Tong et al., 2020); and Portland, United States (Larkin & Hystad, 2019), possibly 

because of the higher proportion of low greenery in Hong Kong’s ultra-high-density context. The lower 

correlation for grids than that for points may result from the vegetation not close to roads being covered 

by the grid-scale NDVI.  
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Fig. 11. Sample sites of LCZs 1–6 

The inconsistency in correlation across LCZ classes can be attributed to differences in urban morphology. 

This innovative attempt to adopt LCZ classification as a protocol of urban morphology (Liu et al., 2020) 

in the investigation of urban greenery provision was assessed from two perspectives. Error! Reference 

source not found. shows the sample sites of LCZs 1–6. In LCZs 1 and 2, the high correlation between 

the two metrics may be due to the extremely low greenery and difficulties in detecting greenery. In 

compact, high- and mid-rise areas, satellite sensors cannot identify the greenery well because of blocking 

by buildings and the steepness of the angle of a satellite sensor (Kumakoshi et al., 2020), although the 

GVF in a compact high-rise area cannot “see far” and may miss a green park in the next street. 

Additionally, the NDVI, a product of satellite imagery, is pixel-based and indicates the average status of 

vegetation within a pixel. In some circumstances, identifying object-based vegetation scattered at street 
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level is difficult. In LCZs 1 and 2, greenery is likely to be between compact buildings, which may cause a 

low NDVI because of the non-zero GVF.  

Open high- and mid-rise LCZs (4 and 5), widely distributed in the peripheries of old urban areas and 

within new towns, are featured with more greenery but lower correlations between the two metrics than 

LCZs 1 and 2. Such open high- or middle-rise contexts have more room for vegetation growth, and 

greenery at a distance may still be observable because of wider roads and gaps between buildings. This 

phenomenon enlarges the mismatch between the two perspectives: street views are green because of 

distant greenery (even mountains in Hong Kong), and earth-view measures only capture local greenery. In 

this sense, streets in open areas equalize urban morphological features and bring the countryside into 

urban neighborhoods. The finding will be relevant for public health studies in cities, with wide and open 

streets functioning not only as movement and ventilation corridors but also as health-giving view 

corridors (R. Wang et al., 2019; Ruoyu Wang et al., 2019). 

Comparatively, low-rise LCZs (3 and 6), mainly distributed in the suburban areas of the New Territories 

and scattered in the peripheries of urban areas, share lower correlations between the two measurements 

than high- and mid-rise LCZs (1, 2, 4, and 5). The reasons for this phenomenon are the same as those we 

have discussed but are more accentuated. In LCZ 6, there is the most space between low-rise buildings for 

trees with larger canopies to grow, which can be captured well by GSV images when they are far from the 

street view photography point. The vegetation types (LCZs A–D) were mainly distributed in the margins 

of urban and suburban areas. In these LCZs, particularly in the dense-tree LCZ, the correlation was 

significantly lower than that in built-up LCZs because of the extreme divergence of local and distant 

greenery.  

4.3. Inequality in street greenery exposure 

Studies on inequalities in green exposure have mainly focused on spatial and demographic variations 

(Ahn et al., 2020; Kabisch & Haase, 2014), but urban morphology that affects pedestrian-level greenery 

detection and determines how to improve greenery with the interaction with built environments has been 
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little considered to address inequalities from a planning perspective. Factors that influence inequality in 

greenery exposure vary across neighborhoods because of the diverse features of population distribution, 

street greenery, and urban morphology. Greenery is limited to densely populated areas, which are 

generally compact. Open areas within or around TPUs can provide accessible greenery. Urban 

morphology also affects residents’ demands. Compact high- and mid-rise areas (LCZs 1 and 2) have high 

demands from residents for regulating the services of green spaces (Gret-Regamey et al., 2020). Thus, 

jointly considering the pedestrian-level surrounding greenery measurement, population density, and urban 

morphology will enable a planning perspective to alleviate environmental injustice in different urban 

settings in further research.  

4.4. Potential implications for urban planning 

Hong Kong has committed to improving its urban space by implementing greening master plans (CEDD, 

2020), old town renewal, and walkability enhancement measures. All these initiatives require pedestrian-

level greenery investigation and creation. The investigation and creation of urban greenery should be 

implemented from the perspective of end users. Furthermore, in sustainable comminutes and cities, 

individuals enjoy greenery regardless of residential location and socioeconomic status, highlighting the 

importance of combining greenery accessibility with population distribution to achieve environmental 

justice. The GVF measurement describing the green and built environments to which pedestrians are 

exposed also allows further assessment of ecosystem services provided by greenery for green 

infrastructure planning (Liu & Russo, 2021).  

4.4.1. Implications for greenery investigation and mapping 

Greenery planning requires fine-scale mapping of the existing pedestrian-level streetscape greenery. Our 

case indicates that pedestrian-level greenery in a high-density urban context varies substantially across 

administrative units and land use types. Therefore, both interactive systems should be considered in urban 

greenery surveys. Traditional citywide greenery mappings mainly depend on satellite-derived metrics, but 

in this pioneering study, we found a mismatch between the traditional NDVI and street view-based 
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measurements and further detected the effect of urban morphology on the mismatch. Because greenery 

mapping is an initial step for planning, the results from both measurement methods can be complementary 

but with varying contributions in different urban forms. A higher NDVI does not necessarily mean more 

greenery exposure for pedestrians in the street. In compact high- and mid-rise areas, where greenery is 

generally limited, if a very low value of the NDVI is observed, urban planners should be cautious because 

there may be more or less observable pedestrian-level greenery that cannot be detected at the pixel scale 

by satellites’ overhead view. Comparatively, the GVF is more appropriate for greenery detection in high-

density high-rise areas, where street greenery is easier to observe from the ground. In open areas, both 

measurements were important for greenery mapping. The GVF is less capable of detecting greenery 

patches behind buildings than NDVI but includes plants that can be observed from the gaps between 

buildings. The human-perspective measurement by the GSV can help locate areas that not only require 

but also allow new street greenery.  

The difference between the two measures is likely to partially reflect the degree of private gardens. 

Because the extent of private gardens increases as density decreases, earth-view measures such as the 

NDVI will continue to increase, limited only by gross residential density, and street view measures will 

more quickly reach a limit set by the capacity of well-stocked street trees and what can be viewed beyond 

the street. Another dimension is that in a high-density city, the viewshed from the street is highly curtailed; 

thus, the green experience from the street is either totally determined by street planting or added to only 

by the rare bit of green space abutting the street, or perhaps a green mountain glimpsed through a street 

canyon. For these reasons, the two measures of greenery measure different objects in a very high-density 

city versus a suburban city. Street view images measure green public goods, which may be the only 

source of green in some residential areas. Earth-view green picks up the private green supplied by landed 

condominiums and public parks, and in Hong Kong, the green margins of all built-up areas and the green 

created by the city’s abundant watershed national parks.  
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4.4.2. Implications to greenery planning and design 

More importantly, understanding the mismatch between the two measurements will help in planning and 

designing pedestrian-oriented greenery in high-density urban contexts. Green coverage is an essential 

indicator of urban landscaping and can be well reflected by the NDVI. The ultimate objective of urban 

greening is to improve the city’s environment and service citizens. Ground space for new greenery is 

scarce, particularly in LCZs 1 and 2. Because of the narrow space embraced by compact and tall buildings, 

one tree or a small amount of vegetation can produce nearby pedestrians with a relatively considerable 

green view or even serve as a cover from a bottom-up perspective. Existing green spaces require better 

designs to create visit-friendly spaces that can be easily perceived by people (Xue et al., 2017). 

Alternative design strategies corrected for buildings, such as green façades, sky gardens, and green 

pavements (Chàfer et al., 2021). Elevated walkways that facilitate pedestrian shuttling between buildings 

in high-density areas, such as the central area, are also target places for effective greening. In open areas, 

trees can be planted in gaps between buildings and mountain views can be introduced to pedestrians 

through street canyons. Urban parks and pocket gardens can be connected by green tracks to provide 

diverse paths as alternatives to concrete sidewalks along carriageways. Planting courtyard trees should be 

promoted in low-rise areas. In compact places, such trees can provide shade, and in open places, they can 

be enjoyed distantly by pedestrians. Informal green spaces scattered in various places can be identified by 

street view images and redesigned to provide improved ecosystem services (Włodarczyk-Marciniak et al., 

2020). Generally, understanding the effect of urban morphology helps with corresponding greening 

strategies, particularly in high-density urban contexts.  

4.5. Advances and limitations  

This study has several advantages. First, it accurately mapped the citywide distribution of pedestrian-level 

street greenery in a high-density urban context by combining big data from street view images and the 

deep learning technique. The 50 m interval GSV sampling covered the road network of the entire city of 

Hong Kong. It provided a large dataset for investigating spatial variations across districts, new towns, 
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land utilization types, and urban forms. Second, this study introduced the LCZ classification to facilitate a 

comparison of street view image-based greenery measurements and satellite-derived vegetation indices 

across different urban forms. The introduction of LCZ permits the development of a new understanding of 

the differences between two common urban greenery measurements. High spatial resolution data, 

including 50 m interval citywide street greenery extraction from GSV images, a 10 m resolution NDVI 

map based on Sentinel-2 satellite images, and a 100 m resolution LCZ map, jointly allow fine-scale 

mapping of street greenery covering diverse urban forms. Vegetation characteristics across LCZ classes 

were systematically examined. Third, this study provided a potential procedure to analyze the inequality 

of street greenery exposure for individuals by considering population data. Finally, this study relied 

entirely on open data sources, which makes the methods transferrable to other cities.  

This study has several limitations. First, although the GSV covers most roads in Hong Kong, areas not 

covered remain, mainly in suburban areas. In urban areas, some narrow alleys without vehicular access 

are missed, although greenery is scarce. The internal conditions of large green spaces and greenery inside 

the boundaries of development cannot be captured by GSV images. Hence, for comprehensive city-level 

greenery mapping, GSV-based measurements should be integrated with other measurements to capture 

multiple details of green elements in a high-density urban context. Second, GSV images are mainly taken 

from the road, but pedestrians use sidewalks. People may be differently exposed to greenery in the case of 

large roads or those with dramatic differences between the left and right sides. Further research should 

consider the difference between the two sides of roads and the effect on pedestrian greenery exposure. 

Another limitation is the inconsistency in the timeframe between the GSV and NDVI data, as mentioned 

by Larkin and Hystad (2019). In this study, the NDVI was the full-year average value for 2020. Because 

GSV images are updated from time to time, we included all the data for approximately 37,000 locations 

for fuller spatial coverage. Among the GSV images collected, approximately 72% were from May to 

November 2019, and most of the remaining images were taken in the first half of 2020. Although this 

method ignores the seasonal variation in plant phenology, temporal change may not be significant in 
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Hong Kong, mainly because in a subtropical climate, most vegetation is evergreen species. Because of a 

complete mechanism for urban greenery, any changes in urban greenery require rigorous evaluation in 

Hong Kong; therefore, the changes in urban greenery are typically nonsignificant for a period of one year. 

Additionally, in 2020, no large-scale city-level COVID-19 lockdown was imposed in Hong Kong; thus, 

we posit that the spread of COVID-19 did not significantly affect the daily operation of the city. The 

Hong Kong traffic censuses (TD, 2020, 2021) conducted by the Transport Department showed that road 

traffic in Hong Kong did not change significantly between 2019 and 2020. Fourth, bivariate spatial 

autocorrelation is not considered. Bivariate Moran’s I (0.64, p = 0.01) indicated global spatial 

autocorrelation. Although GSV images were collected every 50 m along the road network of the city, the 

central areas, where roads are denser, are more weighted. Bivariate spatial autocorrelation could affect the 

overall correlation between the GSV and NDVI. In different LCZs, effects may be reduced because each 

built LCZ class represents a specific urban form with smaller spatial variation. We also identified varying 

mismatches between the two measurements across the LCZ classes, even if spatial autocorrelation exists; 

thus, further studies are required to estimate and map the spatial relationships between them. Finally, in 

the analysis of inequity in greenery, the accessible area of an LCZ grid by walking was simplified to be 

buffered along the LCZ grid boundary. A realistic accessible area should be located along the pedestrian 

network. Given that related pedestrian networks have been developed (Sun et al., 2019; Tang et al., 2021), 

such datasets will allow further research to depict inequity more precisely than it has been in the literature.  

5. Conclusions 

We developed an indicator, the GVF, to measure pedestrian-level street greenery in a case study of Hong 

Kong by using GSV images, focusing on estimating the spatial variability of pedestrian-level greenery 

across the city, comparing pedestrian-level greenery measurements and satellite-derived vegetation 

metrics in different urban forms, and investigating the inequality of greenery provision.  

First, the mean GVF value in Hong Kong is 0.39, and citywide pedestrian-level street greenery in Hong 

Kong varies across districts, new towns, land utilization types, and urban forms. Old high-density urban 
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areas, especially those on the Kowloon Peninsula, and land for private residential, commercial, business, 

and office areas, have notably lower degrees of street greenery. In old urban areas, low street greenery is 

often associated with low incomes. Regarding urban forms, the study also confirms that open LCZs 

accommodate more greenery than compact LCZs and finds that compact low-rise areas (LCZ 3) are 

slightly greener than compact high- and mid-rise areas (LCZs 1 and 2).  

Second, pedestrian-level street greenery and remotely sensed vegetation cover, represented by the GVF 

and NDVI, were strongly correlated overall, but correlations varied across urban forms. The inconsistency 

between the two measurements increases from high- and mid-rise LCZ classes to low-rise classes, and 

from compact classes to open classes, and is greater in vegetated areas than in built-up areas. Specifically, 

the GVF and NDVI were strongly correlated in LCZs 1 and 2 and moderately correlated in LCZs 4 and 5, 

moderately weakly correlated in LCZs 3 and 6, and weakly correlated in the vegetated areas. Moreover, 

an extremely low NDVI exists in compact high- and mid-rise areas but does not necessarily mean zero 

GVF. Thus, this study calls for considering multiple methods to assess urban greenery to establish a 

holistic view of urban greenery distributions across urban forms and implement corresponding strategies 

to increase pedestrian-level greenery exposure in different urban forms.  

Third, we attempted to integrate surrounding greenery, population density, and urban morphology at a 

fine scale to demonstrate the potential application of pedestrian-level greenery measurements to address 

greenery inequality. The surrounding greenery was negatively associated with population density. 

Neighborhoods vary in aspects, and urban morphology, which affects greenery investigation and creation 

and resident demands in high-density urban contexts, is key to achieving equity.  

The GSV-based greenery indicator developed in this study can reflect the benefits that pedestrians gain 

from street greenery and innovatively link the detected site-specific street greenery in a high-density 

urban context with its surrounding urban morphological conditions. In practice, our research findings 

could help decision-makers and practitioners develop evidence-based urban planning strategies for urban 

street greening in pursuit of climate-resilient, sustainable, and inclusively healthy cities, such as the 
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Greening Master Plan in Hong Kong. Methodologically, transferable analytical approaches using open-

source data can be applied to other high-density cities with relative ease.  
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Supplementary Material 

Methods 

1. GSV data collection 

A set of points of interest were collected by extracting geolocation (latitude and longitude) along each 

street. Each location with available GSV panoramas corresponds to a panorama ID, which can be 

acquired by matching the geolocation of the nearest point of interest. With the panorama ID, each street 

view image can be requested by defining parameters in the HTTP URL form at 

https://maps.googleapis.com/maps/api/streetview?parameters via the Street View Static API. To generate 

a complete street view panorama, we made multiple requests for each location and sent in the form of 

HTTP URLs by varying the heading (compass heading of the camera), horizontal field of view of the 

image, and pitch (vertical angle of the camera). Over 400,000 GSV images at 53,000 locations were 

collected by sending requests via the GSV Image API.  

2. Greenery extraction using deep learning and validation 

Recently developed deep learning techniques have allowed a more accurate detection of vegetation from 

street view images. Different from unsupervised classification methods based on the natural colors of the 

images, exampled by Li et al. (2015), deep-learning algorithms are more able to extract vegetation distinct 

from other features such as sky, roads, and buildings with higher accuracies and less misidentification of 

green objects that are not vegetation (Gong et al., 2018; Helbich et al., 2019; Li, 2020; Lu, 2018; Ye et al., 

2019). Moreover, deep learning further underlines the advantages of street view-based measurements in 

automatic, and batch processing.  

Semantic segmentation with deep learning has been proved effective in pattern recognition and is a state-

of-the-art and powerful tool to extract information from images (Hesamian et al., 2019). We applied the 

deep learning technique to the 37,000 panorama images for the extraction of greenery information. 

Semantic segmentation of images generally contains three steps: first, annotated images with labels are 
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used to train a segmentation network; second, new images are fed into the pre-trained network for 

segmentation; finally, the segmentation results are evaluated by comparing predicted labels with ground-

truth labels.   

A large amount of annotated image datasets is fundamental to the semantic segmentation with deep 

learning, and the recent development of annotated image databases has significantly sped up the semantic 

segmentation process (Siam et al., 2017). In this study, we applied a pre-trained network generated from 

the Cambridge-driving Labeled Video Database (CamVid) (Brostow et al., 2009) and the Deeplab v3+ 

network (Chen et al., 2018) with weights initialized from a pre-trained Resnet-18 network (Alshehhi & 

Marpu, 2021). The CamVid contains street view images with pixel-level ground-truth labels for 32 

semantic classes such as vegetation, sky, building, pedestrian, car, and road. Each pixel in the frames of 

the CamVid dataset is manually labeled with a class by volunteers and examined by another person. It has 

been found that CamVid has the accuracy of 96% for the road category and an overall accuracy of 75% 

for all 11 classes (Brostow et al., 2009). Therefore, the CamVid dataset is suitable for this study because 

of the sufficient annotation of street objects and the precise labelling. We used the ResNet-18 for its 

outstanding balance between accuracy and efficiency, and it has been examined for vegetation 

identification (Xiang et al., 2021). The pre-trained network was applied to the 37,000 panorama images to 

classify objects into the predefined 32 classes, which were further categorized into three main classes, i.e., 

vegetation, urban, and sky. The vegetation class captures all vegetation including trees and other greenery, 

while the urban class covers objects except greenery and sky. Finally, 50 panorama images were 

randomly chosen out of the 37,000 panorama images and were applied to validate the segmentation 

results. The selected images were manually labeled with the three classes as independent ground-truth and 

cross-compared with the corresponding segmentation image. The accuracy can be quantified using a 

confusion matrix. The accuracy of the vegetation class was up to 95%. 

3. Normalized Difference Vegetation Index 
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NDVI captures vegetation health on the basis of light reflectance (Cleland et al., 2007; Pettorelli et al., 

2005). Space-borne European Space Agency Sentinel-2 MSI Level-2A imagery is suitable for calculating 

NDVI, from Band 4 - Red (665 nm) and Band 8 - NIR (842 nm), with a 10-meter spatial resolution at the 

landscape-level observations. In the GEE platform, cloud-free pixels were selected to compute the NDVI 

values of each obtained date of Sentinel-2 using the following equation: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑). 
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Tables 

Table S1 Local climate zones (LCZs) and its simplified surface properties (Stewart & Oke, 2012)   
LCZ 

types 

Built and land cover 

types 

Anthropogenic 

heat flux 

densityf 

Aspect 

ratioa 

Sky view 

factorb 

Building 

surface 

fractionc 

Impervious 

surface 

fractiond 

Height of 

roughness 

elementse 

LCZ 1 Compact high-rise 50–300 >2 0.2–0.4 40–60 40–60 >25 

LCZ 2 Compact mid-rise <75 0.75–1.5  0.3–0.6 40–70 30–50 8–20  

LCZ 3 Compact low-rise <75 0.75–1.5 0.2–0.6 40–70 20–40 3–8 

LCZ 4 Open high-rise <50 0.75–1.25 0.5–0.7 20–40 30–40 >25 

LCZ 5 Open mid-rise <25 0.3–0.75 0.5–0.8 20–40 30–50 8–20 

LCZ 6 Open low-rise <25 0.3–0.75 0.6–0.9 20–40 20–40 3–8 

LCZ 7 Lightweight low-rise <35 1–2 0.2– 0.5 60–90 <10 2–4 

LCZ 8 Large low-rise <50 0.1–0.3 >0.7 30–50 40–50 3–10 

LCZ 9 Sparsely built <10 0.1–0.25 >0.8 10–20 <20 3–8 

LCZ 10 Heavy industry >300 0.2–0.5 0.6–0.9 20–30 20–40 5–15 

LCZ A Dense trees 0 >1 <0.4 <10 <10 3–30 

LCZ B Scattered trees 0 0.25–0.75 0.5–0.8 <10 <10 3–15 

LCZ C Bush, scrub 0 0.25–1.0 >0.9 <10 <10 <2 

LCZ D Low plants 0 <0.1 >0.9 <10 <10 <1 

LCZ E Bare rock or paved 0 <0.1 >0.9 <10 >90 <0.25 

LCZ F Bare soil or sand 0 <0.1 >0.9 <10 <10 <0.25 

LCZ G Water 0 <0.1 >0.9 <10 <10 — 

LCZ H Wetlands 0 <0.1 >0.9 <10 <10 — 

aMean height-to-width ratio of street canyons (LCZs 1–7), building spacing (LCZs 8–10), and tree spacing (LCZs A–G). 
bRatio of the amount of sky hemisphere visible from ground level to that for an unobstructed hemisphere. 
cProportion of ground surface with building cover (%). 
dProportion of ground surface with impervious cover (rock, paved) (%). 
eGeometric average of building heights (LCZs 1–10) and tree/plant heights (LCZs A–F) (m). 
fMean annual anthropogenic heat flux density (Wm−2) at the local scale. It varies significantly with latitude, season, and population density. 
gWetlands is an additional LCZ type that adapted the land surface properties of coastal cities in the study areas. 
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Table S2 Complete confusion matrix of Random Forest with the highest overall accuracy in the SS classifier 

scenario developed by Chung et al. (2021) 
LCZ 1 2 3 4 5 6 7 8 9 10 A B C D E F G H No. 

Classified 

Pixels 

User 

Accuracy 

(%) 

1 429 41 19 57 20 1 6 0 4 15 0 3 0 1 3 1 0 0 600 71.50 

2 99 350 77 9 14 8 5 0 0 31 0 3 0 2 1 1 0 0 600 58.33 

3 7 37 475 6 8 6 29 1 1 24 0 0 0 6 0 0 0 0 600 79.17 

4 40 15 9 497 15 9 0 0 0 13 0 0 0 0 0 2 0 0 600 82.83 

5 48 17 10 43 405 54 11 0 5 0 4 1 0 0 0 2 0 0 600 67.50 

6 3 9 3 2 17 527 4 1 7 15 0 7 0 0 3 2 0 0 600 87.83 

7 1 8 79 0 2 2 502 0 0 0 0 0 0 5 0 0 0 1 600 83.67 

8 3 1 10 4 3 0 0 516 0 46 0 0 0 1 15 1 0 0 600 86.00 

9 3 8 4 12 23 14 3 1 435 28 14 9 19 8 5 14 0 0 600 72.50 

10 1 7 25 3 3 0 0 1 0 514 0 0 0 1 38 6 0 1 600 85.67 

A 0 0 0 2 0 5 0 0 15 0 510 40 25 1 0 0 0 2 600 85.00 

B 1 2 1 33 1 19 1 0 14 9 122 304 58 15 1 17 0 2 600 50.67 

C 0 0 1 0 0 4 3 0 30 3 22 75 361 9 0 92 0 0 600 60.17 

D 0 0 0 0 2 0 2 0 0 0 25 5 10 531 2 7 0 16 600 88.50 

E 0 4 7 6 1 0 4 16 3 30 0 0 0 27 472 28 0 2 600 78.67 

F 2 0 13 14 5 6 3 26 3 33 0 1 30 77 91 293 0 3 600 48.83 

G 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 593 3 600 98.83 

H 0 0 0 0 0 1 8 0 0 0 0 0 0 30 0 2 59 500 600 83.33 

No. Ground 

Truth Pixels 637 499 734 688 519 656 581 562 517 762 697 448 503 715 632 468 652 530 10800  

Producer 

Accuracy (%) 67.35 70.14 64.71 72.24 78.03 80.34 86.40 91.81 84.14 67.45 73.17 67.86 71.77 74.27 74.68 62.61 90.95 94.34   

Overall 

Accuracy 

76.06%  Built 

Accuracy 

73.40%  Land Coverings 

Accuracy 

71.57%   

Kappa 0.7465   

 

For LCZ classification assessment, a confusion matrix was generated to assess the training and expected 

accuracy of LCZ types. The Producer Accuracy is the training accuracy generated by the classification 

model on the LCZ training samples. It presents how well the performance of the Random Forest classifier 

is in recognizing the training samples after learning from the same input dataset. The User Accuracy is the 

expected accuracy created by the classification model on the validation LCZ samples. It shows the 

performance of the Random Forest classifier in classifying unknown input data from known LCZ training 

samples. 

 

Table S3 Results of the Wilcoxon rank-sum tests 

  GVF   NDVI 

 

Point scale Grid scale   Point scale Grid scale 

  Z p Z p   Z p Z p 

Compact (LCZs 1–3) / Open (LCZs 4–6) 84.876 0.0001 62.078 0.0001 

 

99.783 0.0001 79.483 0.0001 

Low (LCZs 3,6) / High- and mid-rise (LCZs 1,2,4,5) 8.587 0.0001 5.777 0.0001 

 

18.624 0.0001 10.758 0.0001 

Built types (LCZs 1–10) / Vegetated types (LCZs A–D) 74.870 0.0001 57.247 0.0001   93.370 0.0001 73.195 0.0001 
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We used Wilcoxon rank sum tests to compare GVF and NDVI between groups of points and grids in 

terms of compactness, height, and land cover. There are statistically significant differences between 

compact LCZs (1–3) and open LCZs (4–6), between low-rise LCZs (3 & 6) and high- and mid-rise LCZs 

(1, 2, 4, & 5), and between built types (LCZs 1–10) and vegetated LCZs (A–D) for both grid and point 

data series of GVF and NDVI. 

Figures 

 

Fig. S1. Local climate zone classification Demuzere et al. (2020) (derived from https://www.wudapt.org/lcz-

resources/)  
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Fig. S2 Map of LCZ grid-based GVF of the whole city 

 

 

Fig. S3 Elderly population density in Kowloon Peninsula 
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